Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Plasmon-enhanced MoS2Photocatalysis in Hydrogen Evolution *Yimin Kang¹⁺, Yongji Gong³⁺, Zhijian Hu³⁺, Ziwei Li¹, Ziwei Qiu¹, Xing Zhu¹, Pulickel M. Ajayan², <i>Zheyu Fang^{1*}.* ¹State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China ²Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States ³Key Laboratory of Nanoscale Measurement and Standardization, National Center for Nanoscience and Technology, Beijing 100190, China Email: zhyfang@pku.edu.cn

Figure S1. Scanning electron microscope (SEM) images of a) the as-grown 2H-MoS₂ on Si substrate and b) Ag@Au nanorattles. The dense MoS₂ samples ensure a high catalytic efficiency in hydrogen evolution reactions. The coupling between different Ag@Au nanorattles can be negligible for few clusters are formed, and thus keeps the resonance peek at 690nm.

Figure S2. Extinction spectrum of Ag@Au nanorattles. The nanorattle exhibits both a longitudinal plasmon resonance at 690nm and a transverse mode around 420nm according to different incident laser polarization. These small peaks are the coupling modes. At 532nm, the Ag@Au nanorattles are off- resonant.

Figure S3. HER polarization curves under 690nm laser illumination, for Si and MoS_2 , respectively. Due to the imperfect conductivity of silicon, the HER performance is poor, but the catalytic performance of MoS_2 can be measurable.

Figure S4. Calculated near-field optical intensity map of Ag@Ag nanorattles with a length of 100nm and width of 40nm by FDTD simulation.

Figure S5. HER polarization curves under 690nm laser illumination, for MoS_2 monolayer with Ag@Au nanorattles. At a certain power, the phase transition gets saturated with the polarization curves keep similar at the first and fourth measurement.