Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles

Hui Wang^a, Guixin Cao^b, Zheng Gai^b, Kunlun Hong^b, Probal Banerjee^a, Shuiqin Zhou^{a*}

^a Department of Chemistry of College of Staten Island and The Graduate Center, The City University of New York, Staten Island, NY 10314, USA ^bCenter for Nanophase Materials Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Figure S1. Synthetic process of multifunctional $Fe_3O_4@PC-CDs-Au$ NPs. Stage I: formation of $Fe_3O_4@PC-CDs-Ag$ NPs by the loading and reduction of Ag^+ ; Stage II: formation of $Fe_3O_4@PC-CDs-Au$ NPs by the galvanic replacement reaction between the Au precursor (HAuCl₄) and Ag nanocrystals.

Department of Chemistry of College of Staten Island and The Graduate Center, The City University of New York, Staten Island, NY 10314, USA

E-mail address: shuiqin.zhou@csi.cuny.edu (S. Zhou); Tel.: +1 718 982 3897; Fax: +1 718 982 3910.

Figure S2. Typical XRD pattern of the as-obtained Fe₃O₄@PC-CDs NPs.

Figure S3. FT-IR spectra of the Fe₃O₄@PC-CDs and Fe₃O₄@PC-CDs-Ag hybrid NPs.

Figure S4. (A) TEM image of the as-obtained Fe₃O₄@PC-CDs-Ag NPs ;(B) EDAX of the single Fe₃O₄@PC-CDs-Ag NP.

Figure S5. (A) PL spectra of the Fe₃O₄@PC-CDs-Au NPs at different excitation wavelengths. (B) Time dependent PL intensity variation (7.5%) of the Fe₃O₄@PC-CDs-Au NPs under a 2h continuous exposure to the excitation UV light of 365 nm.

 $\label{eq:Figure S7. Z-Scanning confocal fluorescence transmission images of mouse melanoma cells B16F10 incubated with $$Fe_3O_4@PC-CDs-Au NPs.$$$

Figure S8. The pore size distribution of the as-obtained Fe₃O₄@PC-CDs-Au NPs.

Figure S9. Hyperthermia assay on aqueous dispersion of $Fe_3O_4@PC-CDs-Au$ NPs (0.01 g/L) and water (control) under an alternating magnetic field.

Figure S10. (A) Releasing profiles of DOX from the Fe₃O₄@PC-CDs-Au NPs at pH=7.4 under different temperatures of 27 °C, 37 °C, and 42 °C, respectively. (B) Releasing profiles of DOX from the Fe₃O₄@PC-CDs-Au NPs in buffer solutions of different pH of 5.0 and 7.4, respectively, at 37 °C.

Figure S11. In vitro cell viability in the control culture medium without/with 1.5 W/cm² NIR irradiation for 5 min.

m².