Electronic Supplementary Information

Synthesis of polybenzoxazine based nitrogen-rich porous

carbons for carbon dioxide capture

Liu Wan ^{a,b}, Jianlong Wang ^a, Yahui Sun ^{a,b}, Changming Zhang ^{a,b}, Chong Feng ^{a,b}, Kaixi Li ^{a*}

^a Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China. E-mail: likx@sxicc.ac.cAddress, Address, Town, Country.

^b Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Contents

 Table S1. Elemental and XPS analysis of all samples.

Table S2. XPS peak positions and relative content of N species in the NPCs.

 Table S3. Elemental and XPS analysis of NPC-2 and NPC-2-HCl.

Fig. S1 DFT fit between the carbon slit adsorption branch kernel (red circle) and the experimental data (nitrogen adsorption, black square) for (a) NPC-0, (b) NPC-1, (c) NPC-2, (d) NPC-3, and (e) NPC-4.

Fig. S2 XPS spectrum of NPC-0 and NPC-2-HCl (a) survey spectra, and (b) N 1s spectra.

Fig. S3 (a) N_2 sorption isotherms and (b) DFT pore size distributions for the NPC-2 and NPC-2-HCl.

Fig. S4 Isosteric heat of CO₂ adsorption for NPC-2 and NPC-2-HCl.

Fig. S5 CO_2/N_2 selectivity versus CO_2 molar fraction with the overall pressure of 1.0 bar.

Sampla	El	emental and	alysis (wt. '	XPS analysis (at. %)			
Sample	С	Н	Ν	0	С	Ν	0
NPC-c	78.31	2.33	5.67	13.69	87.90	4.51	7.59
NPC-0	78.28	2.25	5.32	14.15	87.75	4.36	7.89
NPC-1	77.96	2.27	5.27	14.50	87.10	4.26	8.64
NPC-2	77.63	2.22	5.25	14.90	87.05	4.24	8.87
NPC-3	77.60	2.20	5.24	14.96	86.75	4.23	9.02
NPC-4	77.54	2.15	5.21	15.10	86.59	4.18	9.23

Table S1 Elemental and XPS analysis of all samples.

Sample	N-6	N-5	N-Q	N-X
	398.5 eV	400.2 eV	401 eV	403 eV
NPC-c	32.51	51.18	11.18	5.14
NPC-0	33.72	44.17	13.43	8.68
NPC-1	30.98	51.43	12.19	5.39
NPC-2	29.08	54.54	12.86	3.51
NPC-3	25.37	56.26	13.75	4.62
NPC-4	21.47	59.27	14.19	5.07

 Table S2 XPS peak positions and relative content of N species in the NPCs.

Q 1	Elemental analysis (wt. %)				XPS analysis (at. %)			
Sample	С	Н	Ν	0	C	Ν	0	Cl
NPC-2	77.63	2.22	5.25	14.90	87.05	4.24	8.87	-
NPC-2-HCl	76.55	2.84	5.22	15.38	83.14	4.05	9.75	3.06

 Table S3 Elemental and XPS analysis of NPC-2 and NPC-2-HCl.

Sample	S_{BET} (m ² g ⁻¹)	S_{micro} (m ² g ⁻¹)	V _{total} (cm ³ g ⁻¹)	CO ₂ uptake	<u>e (mmol g⁻¹)</u> 25 °C	CO ₂ uptake/S 0 °C	b _{BET} (μmol m ⁻²) 25 °C
NPC-2	1255.9	1108.4	0.63	6.35	4.02	5.06	3.20
NPC-2-HCl	1171.3	1056.5	0.60	4.79	3.09	4.09	2.64

Table S4 The textural properties and CO_2 uptakes of NPC-2 and NPC-2-HCl.

Fig. S1 DFT fit between the carbon slit adsorption branch kernel (red circle) and the experimental data (nitrogen adsorption, black square) for (a) NPC-0, (b) NPC-1, (c) NPC-2, (d) NPC-3, and (e) NPC-4.

Fig. S2 XPS spectrum of NPC-0 and NPC-2-HCl (a) survey spectra, and (b) N 1s spectra.

Fig. S3 (a) N_2 sorption isotherms and (b) DFT pore size distributions for the NPC-2 and NPC-2-HCl.

Fig. S4 Isosteric heat of CO₂ adsorption for NPC-2 and NPC-2-HCl.

Fig. S5 CO_2/N_2 selectivity versus CO_2 molar fraction with the overall pressure of 1.0 bar. The calculations were based on the single-component gas adsorption data at 25 °C by the IAST method.

Firstly, the experimental single-component gas CO₂ adsorption isotherms of NPC-0 and NPC-2 can be modeled adequately using a single-site Langmuir model:^{1,2}

$$q_i = q_{i,sat} \times \frac{b_i p_i}{1 + b_i p_i}$$

where b_i is the Langmuir constant, Pa^{-1} ; p_i is the bulk gas phase pressure of species i, Pa; q_i is the molar loading of species i, mmol g^{-1} ; $q_{i,sat}$ is the saturation capacity of species i, mmol g^{-1} .

The fitted parameters of the CO_2 adsorption isotherm data at 25 °C for NPC-0 and NPC-2 using a single-site Langmuir model are listed in the following table, which are aimed to enable application of IAST in simulating the property of each adsorbent under a mixed CO_2/N_2 gas.

Sample	q _{i,sat} (mmol g ⁻¹)	$b_i \times 10^5 (Pa^{-1})$	R-square
NPC-0	4.4179	2.130	0.9920
NPC-2	5.7683	1.987	0.9928

The fitted parameters derived from the single-site Langmuir model.

Reference:

- Y. F. Zhao, X. Liu, K. X. Yao, L. Zhao, Y. Han. Chem. Mater., 2012, 24, 4725-4734.
- 2 J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, J. R. Long. *Energy Environ.* Sci., 2011, 4, 3030-3040.