Supplementary Information

In situ synthesis of luminescent carbon nanoparticles toward target bioiomaging

Shazid Md. Sharker^{*a,*}, Sung Min Kim^{*b,*}, Jung Eun Lee^{*c*}, Ji Hoon Jeong^{*c*}, Insik In^{*d, e*}, Kang Dea Lee^{*f*}, Haeshin Lee^{*a**} and Sung Young Park^{*b, e**}

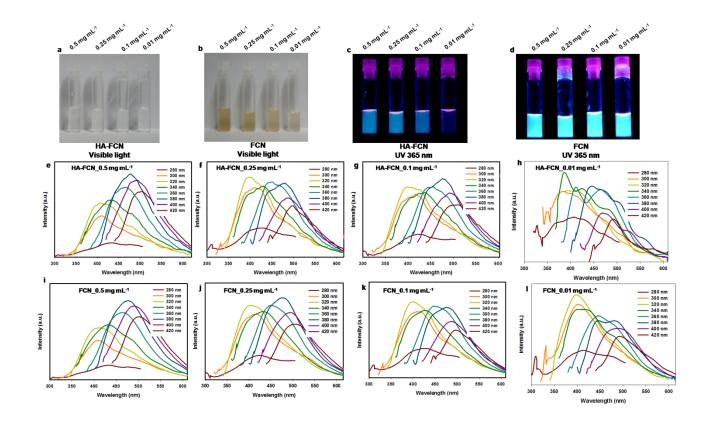
^a Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-

701, Republic of Korea.

^b Department of Chemical and Biological Engineering, Korea National University of Transportation,

Chungju 380-702, Republic of Korea.

^c School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-


do 440-746, Republic of Korea

^d Department of Polymer Science and Engineering, Korea National University of Transportation,

Chungju 380-702, Republic of Korea.

^e Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea.

^f Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Kosin University, Busan, Republic of Korea

Fig. S1- An illuminated photographs of different concentrated aqueous solutions (0.5, 0.25, 0.1 and 0.01 mg mL⁻¹) of HA-FCN and FCN under visible light (a-b), and 365 nm UV lamps (c-d), respectively. The concentration dependents (0.5, 0.25, 0.1 and 0.01 mg mL⁻¹) fluorescence emission spectra of different excited wavelength (from 280 to 420 nm) of HA-FCN (e - h) and FCN (i - l), respectively.

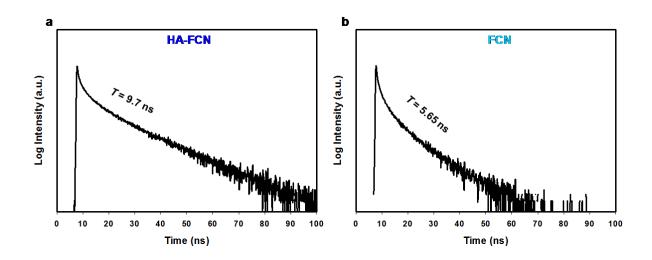
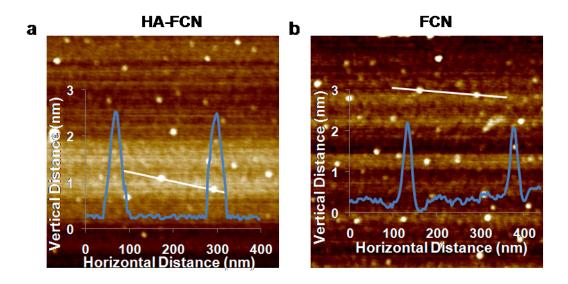
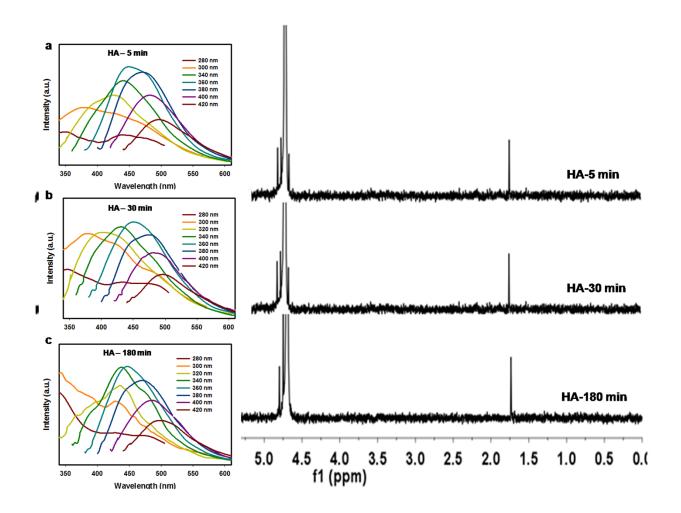




Fig. S2- Fluorescence life time curve of HA-FCN (a) and FCN (b) in 375 nm wavelength. The τ value indicates respective fluorescence lifetime.

Fig. S3- Atomic Force Microscopy (AFM) images and height profile of a droplet of HA-FCN (a) and FCN (b) on a silicon wafer.

Fig. S4- ¹H NMR spectra, and fluorescence emission intensity (from 280 to 420 nm excited wavelength) of hyaluronic acid (HA) in different dehydrated condition of 5 min (a), 30 min (b), and 180 min (c).

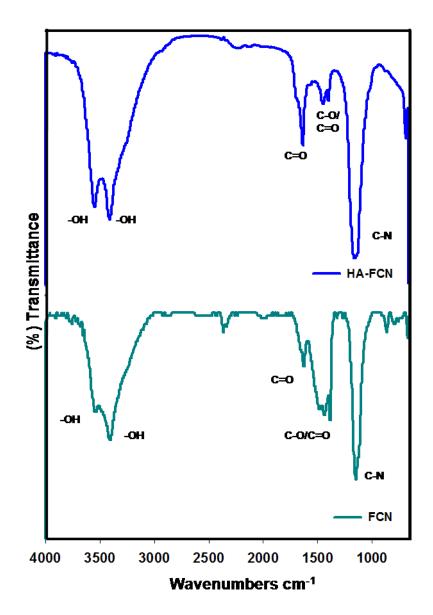
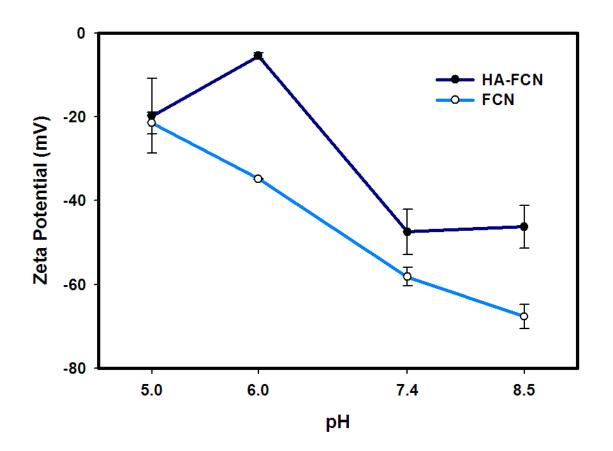



Fig. S5- FT-IR characterization of HA-FCN and FCN obtained from hyaluronic acid (HA).

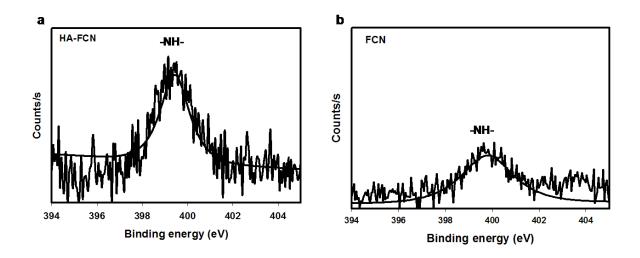
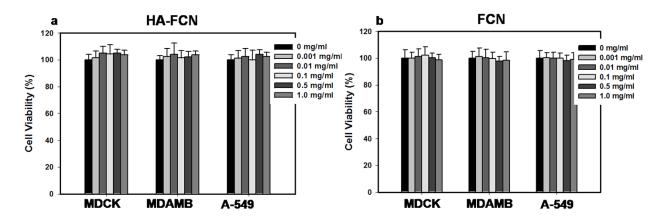

	Area (%) of HA-FCN				Area (%) of FCN			
	Elemental analysis	XPS			Elemental analysis	XPS		
С	18.6	17.2	C=C	27.20	35.5	38.6	C=C	44.8
			C-C	55.63			C-C	34.97
			O-C=O	17.17			O-C=O	20.23
Ν	0.6	0.6			5.3	5.4		
Oa	79.5	82.2			56.3	56.0		
Н	1.3	-			2.9		-	

Table S1. Elemental analysis and XPS based elemental composite of HA-FCN and FCN


^a O by difference.

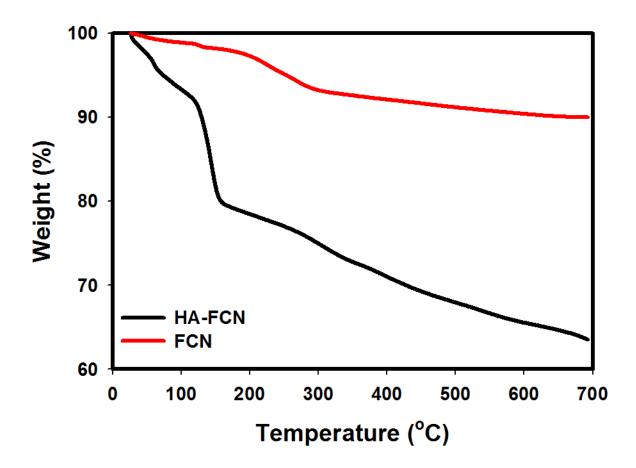

Fig. S6 - Zeta potential of HA-FCN and FCN as a function of pH in an aqueous dispersion at a concentration of 0.01mg mL⁻¹.

Fig. S7 - XPS (N1s) peak for ratio characterization of amino groups in HA-FCN (a) and FCN (b).

Fig. S8 - MTT mediated *in vitro* cell viability assays at different concentrations of HA-FCN (a) and FCN (b) on MDCK, MDAMB and A-549 cells, respectively.

Fig. S9 The comparison of thermograms (TGA) of the HA-FCN and FCN as a function weight loss and temperature (°C).