
Towards parallel fabrication single electron transistors using carbon nanotubes

Muhammad R. Islam^{a,b}, Daeha Joung^{a,b} and Saiful I. Khondaker^{a,b,c*} ^aNanoscience Technology Center, ^bDepartment of Physics, ^cSchool of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32826, USA.

*To whom correspondence should be addressed. E-mail: <u>saiful@ucf.edu</u>

Supplementary figure S1: Figure S1 demonstrates the variation of room temperature resistance of 50 SET devices.

S1. Variation of room temperature resistance of the 100 nm metal-SWNT devices

Supplementary table 1: A summary of the charging energy of the top contact devices as a function of R_T . From the electron transport measurements of 50 top contact devices we found that most (~90%) of the devices with 100 k $\Omega < R_T < 1$ M Ω shows single QD behavior with consistent charging energy (~ 15 ± 5 meV). Multiple QD behavior with high charging energy (between 15-200 meV) is observed for the devices with $R_T > 1M\Omega$.

Table 1. Summary of the SET devices		
R _T	# of	SET
	Devices	observed
	measured	
$R_T < 100 \text{ k}\Omega$	10	1
$100 \text{ k}\Omega < R_T < 1M\Omega$	28	25
$R_T > 1 M\Omega$	12	12