Supplementary data

Synthesis, biological activity, and conformational analysis of CD-ring modified trans-decalin $1 \alpha, 25$-dihydroxyvitamin D analogs

Yong-Jun Chen, ${ }^{a}$ Ling-Jie Gao, ${ }^{a}$ Ibrahim Murad, ${ }^{a}$ Annemieke Verstuyf, ${ }^{b}$ Lieve Verlinden, ${ }^{b}$ Christel Verboven, ${ }^{b}$ Roger Bouillon, ${ }^{b}$ Davide Viterbo, ${ }^{c}$ Marco Milanesio, ${ }^{c}$ Dirk Van Haver, ${ }^{a}$ Maurits Vandewalle, ${ }^{a}$ Pierre J. De Clercq* ${ }^{a}$
${ }^{a}$ Laboratory for Organic Synthesis, Department of Organic Chemistry, Ghent University, Krijgslaan 281 (S4), B-9000 Gent, Belgium; pierre.declercq@rug.ac.be
${ }^{b}$ Laboratory of Experimental Medicine and Endocrinology, Catholic University of Leuven, Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
${ }^{c}$ Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale "A. Avogadro", Corso T. Borsalino 54, I-15100 Alessandria, Italy

Supplementary Information

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

General Methods.

All air sensitive reactions were run under Ar or N_{2} atmosphere and reagents were added through septa using oven dried syringes. $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from benzophenone ketyl prior to use. N, N-Diisopropylethylamine (DIPEA), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$ and HMPA were distilled from CaH_{2}, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. TLC were run on glass plates precoated with silica gel (Merck, UV 254). Flash and column chromatography was performed on silica gel (Merck, 230-400 mesh) and HPLC separations were performed on Bio-Sil D 90-$10,10-\mu \mathrm{m}$ columns (Bio-Rad) of $1 \times 25 \mathrm{~cm}$ and $2.2 \times 25 \mathrm{~cm} .[\alpha] \mathrm{D}$ values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Chemical shifts d_{H} are reported in ppm relative to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{6}(7.16$ ppm), or $\mathrm{CD}_{3} \mathrm{OD}(3.34 \mathrm{ppm})$ as an internal reference. J values are given in Hz . Chemical shifts d_{C} are reported in ppm relative to $\mathrm{CDCl}_{3}(77.16 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{6}$ (128.06 ppm), or $\mathrm{CD}_{3} \mathrm{OD}$ (49.86 ppm) as an internal reference. Mass spectra (EI) were recorded at 70 eV .

((8aS)-8a-Methyl-3,4,6,7,8,8a-hexahydro-1(2H)-naphthylidene)acetonitrile (12).

To a suspension of sodium amide $(9.5 \mathrm{~g}, 244 \mathrm{mmol})$ in dry THF $\left(250 \mathrm{~cm}^{3}\right)$ was added a solution of diethyl (cyanomethyl)phosphonate ($43.2 \mathrm{~g}, 244 \mathrm{mmol}$) in dry THF $\left(250 \mathrm{~cm}^{3}\right)$ at rt . After stirring for 6 h , a solution of $\mathbf{1 1}(10.1 \mathrm{~g}, 62 \mathrm{mmol})$ in dry THF $\left(250 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was stirred at rt for 12 h and the reaction was quenched with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were washed with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The light-red residue was purified by flash chromatography (cyclohexaneEtOAc, 50:1) to give an inseparable $E: Z 6: 1$ mixture of cyanide $\mathbf{1 2}(10.9 \mathrm{~g}, 96 \%)$ as an oil: R_{f} (cyclohexane-EtOAc, 5:1) 0.54; [$\alpha]^{20}{ }_{\mathrm{D}}-68.0\left(\mathrm{c} 0.74 \mathrm{in}_{\mathrm{CHCl}}^{3}\right.$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 2935, 2863, $2215,1610,1436,1271,1143,1067$ and $819 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.45(Z)$ and $5.41(E)(1$

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$\mathrm{H}, \mathrm{m}), 5.15(Z)(\mathrm{t}, J 1.2)$ and $5.13(E)(\mathrm{d}, J 1.5)(1 \mathrm{H}), 2.96(1 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}, \operatorname{ddt}, J 1.6,5.0$ and 13.9), $2.33(1 \mathrm{H}, \mathrm{m}), 2.1(1 \mathrm{H}, \mathrm{m}), 1.95(3 \mathrm{H}, \mathrm{m}), 1.67(4 \mathrm{H}, \mathrm{m}), 1.38(1 \mathrm{H}, \mathrm{qt}, J 4.4$ and 13.4), $1.26(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.5,122.7,117.8,91.2,42.3,34.9,32.1,30.6$, 27.5, 27, 25.2, 19; m / z (EI) $187\left(\mathrm{M}^{+}\right), 172,145,133,91,77,66$ and 41; $\mathrm{m} / \mathrm{z}(\mathrm{ESI}) 210(\mathrm{M}+$ $\mathrm{Na})$ and $188(\mathrm{M}+\mathrm{H})$.
((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)acetonitrile (13) and ((1S,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)acetonitrile (14).

To a stirred solution of cyanide 12 ($E: Z 6: 1$ mixture, $8.1 \mathrm{~g}, 42.7 \mathrm{mmol}$) in dry methanol (900 cm^{3}) were added magnesium turnings ($41.6 \mathrm{~g}, 1.73 \mathrm{~mol}$) at rt . The vigorous exothermic reaction was controlled by occasionally immerging the reaction flask in a dry ice-isopropanol bath $\left(-20^{\circ} \mathrm{C}\right)$. After stirring the reaction mixture at rt for 18 h , the magnesium salts were dissolved by the addtion of a 2 M HCl aqueous solution. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The colorless residue was purified by flash chromatography to give a $10: 1$ mixture of $\mathbf{1 3}$ and $\mathbf{1 4}$, respectively ($7.4 \mathrm{~g}, 92 \%$), which was separated by HPLC (cyclohexane-EtOAc, 50:1) to afford $\mathbf{1 3}$ as a white semi-solid, and $\mathbf{1 4}$ as an oil. Data of 13: R_{f} (cyclohexane-EtOAc, 5:1) 0.51 ; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2935,2861,2245$, $1610,1443,1342,1216,1144$ and $1069 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.33(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{dd}, J$ 16.6 and 3.7$), 2.14(1 \mathrm{H}, \mathrm{m}), 2.07(1 \mathrm{H}, \mathrm{dd}, J 16.6$ and 10.4$), 2.00(1 \mathrm{H}, \mathrm{m}), 1.91(3 \mathrm{H}, \mathrm{m})$, $1.81(1 \mathrm{H}, \mathrm{m}), 1.70-1.45(4 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{qd}, J 13.0$ and 3.6$), 1.31(2 \mathrm{H}, \mathrm{m})$ and $0.96(3 \mathrm{H}$, s); $d_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.4,121.2,120.1,46.2,37.5,28.2,27.7,27.2,25.7,25.3,19.2,18.8$ and 18.4; $m / z(E I) 189\left(\mathrm{M}^{+}\right), 172,149,144,131,105,91,77,65$ and 41; $m / z(E S I) 212(\mathrm{M}+$ $\mathrm{Na})$ and $190(\mathrm{M}+\mathrm{H})$. Data of 14: $d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.49(1 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{dd}, J 16.9$

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

and 6.0), $2.25(1 \mathrm{H}, \mathrm{dd}, J 17.4$ and 9.5$), 2.23(1 \mathrm{H}, \mathrm{m}), 2.00(2 \mathrm{H}, \mathrm{m}), 1.91(2 \mathrm{H}, \mathrm{m}), 1.87(1$ $\mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 14.1), 1.57(5 \mathrm{H}, \mathrm{m}), 1.37(2 \mathrm{H}, \mathrm{m})$ and $1.22(3 \mathrm{H}, \mathrm{s})$.
(2S)-2-((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)propionitrile (15a) and (2R)-2-((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)propionitrile (15b).

To a solution of $i-\operatorname{Pr}_{2} \mathrm{NH}(4.49 \mathrm{~g}, 44.4 \mathrm{mmol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ was dropwise added $n-\operatorname{BuLi}$ (2.5 M solution in hexanes, $16.3 \mathrm{~cm}^{3}, 40.7 \mathrm{mmol}$). The reaction mixture was stirred for 30 min , then cooled to $-78^{\circ} \mathrm{C}$ and a solution of cyanide $\mathbf{1 3}(7.0 \mathrm{~g}, 37 \mathrm{mmol})$ in dry THF ($25 \mathrm{~cm}^{3}$) was dropwise added. After stirring for 1 h , a solution of MeI ($16.0 \mathrm{~g}, 113$ $\mathrm{mmol})$ in dry THF ($10 \mathrm{~cm}^{3}$) was dropwise added. The reaction mixture was stirred for 3 h , then allowed to warm to $-20{ }^{\circ} \mathrm{C}$ and quenched by the addition of $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The red residue was purified by flash chromatography (cyclohexane-EtOAc, 40:1) followed by HPLC (cyclohexane-EtOAc, 200:1) to afford a $5: 1$ mixture of $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$, respectively (7.0 g , 93%), used as such in the following step. An analytical sample of both isomers was obtained by careful HPLC separation. Data of 15a: R_{f} (cyclohexane-EtOAc, 5:1) $0.51 ;[\alpha]^{20}{ }_{\mathrm{D}}+138.0$ (c 0.84 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 2930,2861,2236,1659$ and $1444 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $5.34(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{br} q, J 7.3), 2.20(1 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 1.95-1.80(3 \mathrm{H}, \mathrm{m}), 1.80-$ $1.50(3 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, J 7.3), 1.20(2 \mathrm{H}, \mathrm{m})$ and $1.16(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{H}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 143.1, 122.8, 120.8, 65.9, 52.7, 37.6, 32.8, 27.4, 25.7, 24.7, 24.4, 19.6, 19.4 and $19.0 ; m / z$ (EI) $203\left(\mathrm{M}^{+}\right) ; m / z(\mathrm{ESI}) 242(\mathrm{M}+\mathrm{K}), 226(\mathrm{M}+\mathrm{Na})$ and $204(\mathrm{M}+\mathrm{H})$. Data of $\mathbf{1 5 b}: \mathrm{R}_{\mathrm{f}}$ (cyclohexane-EtOAc, 5:1) $0.52 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.34(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{qd}, J 7.2$ and

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

3.1), $2.20(1 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 1.95-1.80(3 \mathrm{H}, \mathrm{m}), 1.80-1.50(3 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, J$ 7.3), $1.20(2 \mathrm{H}, \mathrm{m})$ and $1.04(3 \mathrm{H}, \mathrm{s})$.
(2S)-2-((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)propan-1-ol (16a) and (2R)-2-((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)propan-1-ol (16b).

To a solution of nitriles 15a and $\mathbf{1 5 b}$ (ratio $5: 1,6.5 \mathrm{~g}, 32 \mathrm{mmol}$) in a mixture of dry n-hexane $\left(100 \mathrm{~cm}^{3}\right)$ and dry $\mathrm{Et}_{2} \mathrm{O}\left(12 \mathrm{~cm}^{3}\right)$ was dropwise added DIBALH (1.5 M solution in toluene, $42.7 \mathrm{~cm}^{3}, 9.1 \mathrm{~g}, 64 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring for 4 h , the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$, was quenched with $\mathrm{Et}_{2} \mathrm{O}$ and a 0.25 M oxalic acid aqueous solution (pH 2 3), and further stirred at rt for 1 h . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The colorless residue was purified by flash chromatography (cyclohexane-EtOAc, 50:1) to give a mixture of the corresponding aldehydes ($5.3 \mathrm{~g}, 80 \%$): R_{f} (cyclohexane-EtOAc, 5:1) 0.59.

The mixture of aldehydes was treated again with DIBALH according to the above procedure. The crude mixture was purified by flash chromatography (cyclohexane-EtOAc, 5:1), followed by HPLC (cyclohexane-EtOAc, 6:1) to afford alcohols $\mathbf{1 6 a}(3.4 \mathrm{~g}, 64 \%$) and 16b $(0.85 \mathrm{~g}, 16 \%)$. Data of 16a: R_{f} (cyclohexane-EtOAc, 4:1) $0.26 ;[\alpha]^{20}{ }_{\mathrm{D}}+116.0$ (c 1.15 in CHCl_{3}); Found: C, 80.6; H, 11.75. Calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 80.7 ; \mathrm{H}, 11.6 \% ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1}$ 3352, 2927, 2858, 1658, 1442, 1373, 1215, 1032 and $758 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.27(1 \mathrm{H}, \mathrm{s})$, $3.81(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and 3.5$), 3.29(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and 9.9$), 2.11(1 \mathrm{H}, \mathrm{m}), 1.91(5 \mathrm{H}, \mathrm{m})$, $1.77(1 \mathrm{H}, \mathrm{m}), 1.63-1.50(4 \mathrm{H}, \mathrm{m}), 1.30(2 \mathrm{H}, \mathrm{m}), 1.15(2 \mathrm{H}, \mathrm{m}), 1.06(3 \mathrm{H}, \mathrm{s})$ and $1.02(3 \mathrm{H}$, d, $J 6.9$); $d_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 146.2,120.9,67.6,55.5,40.2,38.9,35.7,34.7,29.9,27.2,24.2$, 21.6, 21.0 and 20.5; $m / z(E I) 208\left(\mathrm{M}^{+}\right), 192,181,169,156,149,135,121,109,93,79,67,55$

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2002
Supplementary data

and $41 ; m / z(\mathrm{ESI}) 226\left(\mathrm{M}+\mathrm{NH}_{4}\right), 209(\mathrm{M}+\mathrm{H})$ and $191\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)$. Data of 16b: R_{f} (cyclohexane-EtOAc, 4:1) 0.28; $[\alpha]^{20}{ }_{\mathrm{D}}+121.0$ (c 0.98 in CHCl_{3}); Found: C, 80.6; H, 11.7. Calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 80.7 ; \mathrm{H}, 11.6 \%$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3364,2923,2858,1654,1442,1382$, 1032 and $808 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.28(1 \mathrm{H}, \mathrm{s}), 3.39$ and $3.37(\mathrm{AB}$ of $\mathrm{ABX}: 1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 7.5, and 1 H , dd, $J 10.4$ and 6.8$), 2.13(1 \mathrm{H}, \mathrm{m}), 1.94(6 \mathrm{H}, \mathrm{m}), 1.81(2 \mathrm{H}, \mathrm{m}), 1.64-1.38$ $(5 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{m}), 1.05(3 \mathrm{H}, \mathrm{s})$ and $0.86(3 \mathrm{H}, \mathrm{d}, J 7.0) ; d_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 146.2, 119.5, 68.6, 48.5, 38.6, 37.7, 33.8, 33.4, 28.1, 25.9, 23.5, 20.4, 19.2 and 13.6; m / z (EI) 208 $\left(\mathrm{M}^{+}\right), 192,181,169,156,149,135,121,109,93,79,67,55$ and $41 ; m / z($ ESI $) 226\left(\mathrm{M}+\mathrm{NH}_{4}\right)$ and $209(\mathrm{M}+\mathrm{H})$.
(2S)-2-((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)propyl N-((1S)-1-(1naphthyl)ethyl)carbamate (17).

To the solution of alcohol $\mathbf{1 6 b}(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added $(S)-(+)-1-(1-$ naphthyl)ethyl isocyanate $(50 \mathrm{mg})$. A solution of TMSOTf $\left(0.002 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.1 \mathrm{~cm}^{3}\right)$ was added and the resulting mixture was stirred at rt for 40 min . The solvent was removed under reduced pressure to yield a residue, which was purified by HPLC (isooctane-EtOAc, 6:1) to afford $\mathbf{1 7}(94 \mathrm{mg}, 97 \%)$ as a solid. This was crystallised from n-hexane-acetone to give needles, which were recrystalised from n-pentane to give the crystals for X-ray analysis of 17: mp 124-125 ${ }^{\circ} \mathrm{C}$ (from n-pentane); R_{f} (isooctane-EtOAc, 4:1) $0.27 ;[\alpha]^{20}{ }_{\mathrm{D}}+53.0(\mathrm{c} 0.66$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3299,2925,2856,1682,1538,1454,1378,1330,1291,1252$, $1110,1061,1012,981,798$ and $779 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.87(1 \mathrm{H}, \mathrm{d}, J$ 8.0), $7.79(1 \mathrm{H}, \mathrm{d}, J 8.0), 7.56-7.44(4 \mathrm{H}, \mathrm{m}), 5.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.26(1 \mathrm{H}, \mathrm{s}), 4.95(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.89(1 \mathrm{H}, \mathrm{m}), 3.79(1 \mathrm{H}, \mathrm{m}), 2.11(2 \mathrm{H}, \mathrm{m}), 1.95-1.72(5 \mathrm{H}, \mathrm{m})$, $1.66(3 \mathrm{H}, \mathrm{d}, J 5.7)$, $1.50-1.44(4 \mathrm{H}, \mathrm{m}), 1.19(3 \mathrm{H}, \mathrm{m}), 1.01\left(3 \mathrm{H}, \mathrm{br}\right.$ s) and $0.84(3 \mathrm{H}, \mathrm{br} \mathrm{s}) ; d_{\mathrm{C}}(\mathrm{APT} ; 125 \mathrm{MHz}$;

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2002
Supplementary data

$\left.\mathrm{CDCl}_{3}\right) 155.8(\mathrm{C}), 144.9(\mathrm{C}), 138.9(\mathrm{C}), 133.9(\mathrm{C}), 130.9(\mathrm{C}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 126.4$ $(\mathrm{CH}), 125.7(\mathrm{CH}), 125.2(\mathrm{CH}), 123.3(\mathrm{CH}), 122.2(\mathrm{CH}), 119.5(\mathrm{CH}), 69.8\left(\mathrm{CH}_{2}\right), 48.3(\mathrm{CH})$, $46.5(\mathrm{CH}), 38.5(\mathrm{C}), 37.5\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right)$, $21.7\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{2}\right)$ and $13.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 405\left(\mathrm{M}^{+}, 10 \%\right), 215(35), 190$ (60), 156 (55), 148 (100), 127 (30), 91 (40) and 67 (45).
(2S)-2-((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)propyl p-toluenesulfonate (18a).

To a solution of alcohol $\mathbf{1 6 a}(0.87 \mathrm{~g}, 4.2 \mathrm{mmol})$ in dry pyridine $\left(40 \mathrm{~cm}^{3}\right)$ was added p toluenesulfonyl chloride ($2.4 \mathrm{~g}, 12.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred overnight. The reaction was quenched with $\mathrm{Et}_{2} \mathrm{O}$ and water, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were combined, washed with brine and water $(3 \times)$, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The red residue was purified by flash chromatography (cyclohexane-EtOAc, 10:1), followed by HPLC with cyclohexane-EtOAc $40: 1$ as eluent to give tosylate $\mathbf{1 8 a}(1.39 \mathrm{~g}, \quad 92 \%)$: R_{f} (cyclohexane-EtOAc, 5:1) 0.52; $[\alpha]^{20}{ }_{\mathrm{D}}+78.0\left(\mathrm{c} 0.97\right.$ in $^{\left(\mathrm{CHCl}_{3}\right)}$); Found: C, 69.4; H, 8.7. Calc. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 69.6 ; \mathrm{H}, 8.3 \% ; \mathrm{v}_{\max }($ neat $) / \mathrm{cm}^{-1} 2927,2859,1598,1443,1361,1188,1176$, 1097 and $957 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}, \mathrm{d}, J 8.2), 7.34(2 \mathrm{H}, \mathrm{d}, J 8.2), 5.25(1 \mathrm{H}, \mathrm{s})$, $4.19(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 3.5$), 3.68(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and 9.6$), 2.44(3 \mathrm{H}, \mathrm{s}), 2.07(2 \mathrm{H}, \mathrm{m}), 1.90$ $(3 \mathrm{H}, \mathrm{m}), 1.74(2 \mathrm{H}, \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{m}), 1.49(2 \mathrm{H}, \mathrm{m}), 1.26-1.10(4 \mathrm{H}, \mathrm{m}), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.91(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 144.5, 143.9, 133.1, 129.6, 127.7, 119.7, 74.1, 53.5, $38.4,37.2,33.1,31.0,27.8,25.1,22.5,21.5,19.8,19.2$ and 18.9; $m / z(E I) 362\left(\mathrm{M}^{+}\right), 314,287$, 257, 221, 220, 190, 149, 109, 91 and 55; $m / z($ ESI $) 380\left(\mathrm{M}+\mathrm{NH}_{4}\right)$.

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2002
Supplementary data

(2R)-2-((1R,8aR)-8a-Methyl-1,2,3,4,6,7,8,8a-octahydro-1-naphthyl)propyl p-toluenesulfonate (18b).

Alcohol 16b was treated with p-toluenesulfonyl chloride as described above for 16a to give tosylate 18b (91\%): $\mathrm{R}_{\mathrm{f}}\left(\right.$ cyclohexane-EtOAc, 5:1) $0.53 ;[\alpha]^{20}{ }_{\mathrm{D}}+52\left(c 0.9, \mathrm{CHCl}_{3}\right)$; Found: C, 69.5; H, 8.5. Calc. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 69.6 ; \mathrm{H}, 8.3 \%$; $v_{\max }$ (neat)/ cm^{-1} 2928, 2857, 1598, 1442, $1361,1188,1177,1098$ and $962 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 8.2), 7.33(2 \mathrm{H}, \mathrm{d}, J$ 8.0), $5.25(1 \mathrm{H}, \mathrm{s}), 3.76(2 \mathrm{H}, \mathrm{m}), 2.44(3 \mathrm{H}, \mathrm{s}), 2.12(1 \mathrm{H}, \mathrm{dd}, J 13.9$ and 7.2$), 2.05(1 \mathrm{H}, \mathrm{dd}, J$ 13.9 and 3.6 Hz), $1.26(1 \mathrm{H}, \mathrm{m}), 1.20-1.04(3 \mathrm{H}, \mathrm{m}), 0.98(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{d}, J 7.0) ; d_{\mathrm{C}}(50$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 144.5, 133.1, 129.6, 127.7, 119.6, 75.3, 47.8, 38.3, 37.2, 33.4, 30.7, 27.8, 25.8, 22.5, 21.5, 20, 19 and 13.1; m/z (EI) 362 (M^{+}), 321, 301, 276, 257, 221, 210, 190, 149, 109, 91, 67 and 55; m / z (ESI) $380\left(\mathrm{M}+\mathrm{NH}_{4}\right)$.
(2S)-2-((1R,4aS,5S,8aR)-5-Hydroxy-8a-methyldecahydro-1-naphthyl)propyl p-toluenesulfonate (19a) and (2S)-2-((1R,4aR,5R,8aR)-5-Hydroxy-8a-methyldecahydro-1-naphthyl)propyl p-toluenesulfonate (20a).

A solution of alkene $\mathbf{1 8 a}(1.37 \mathrm{~g}, 3.8 \mathrm{mmol})$ in dry THF ($25 \mathrm{~cm}^{3}$) was dropwise added to borane-tetrahydrofuran complex (1.0 M solution in THF, $9.5 \mathrm{~cm}^{3}, 9.5 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. The reaction mixture was kept at $-20^{\circ} \mathrm{C}$ overnight, cooled to $-30^{\circ} \mathrm{C}$, and carefully quenched (2 drops $/ \mathrm{min}$) with a 2 M NaOH aqueous solution. A $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution was added, the reaction mixture was stirred at rt for 30 min , and poured into an ice-cold mixture of $\mathrm{Et}_{2} \mathrm{O}$ and a $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The colorless residue was purified by flash chromatography (cyclohexane$\mathrm{Et}_{2} \mathrm{O}, 3: 1$), followed by HPLC (cyclohexane- $\mathrm{Et}_{2} \mathrm{O}, 4: 1$) to give an inseparable 2:1 mixture of

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

alcohols 19a and 20a, respectively ($1.18 \mathrm{~g}, 82 \%$). Data of the mixture of 19a and 20a: $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2927,2859,1598,1443,1361,1188,1176,1097$ and 957; $m / z(E I) 380\left(\mathrm{M}^{+}\right)$, 351, 313, 283, 259, 235, 193, 166, 149, 111, 91 and 55; $m / z(E S I) 403(\mathrm{M}+\mathrm{Na})$ and $398(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right)$. Data of 19a: $\mathrm{R}_{\mathrm{f}}\left(\right.$ cyclohexane-EtOAc 2:1) $0.24 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J$ 8.2), $7.34(2 \mathrm{H}, \mathrm{d}, J 8.0), 4.11(1 \mathrm{H}, \mathrm{t}, J 10.0), 3.84(1 \mathrm{H}, \mathrm{td}, J 10.8$ and 4.7$), 3.63(1 \mathrm{H}, \mathrm{m})$, $2.44(3 \mathrm{H}, \mathrm{s}), 2.10-0.85(15 \mathrm{H}), 0.94(3 \mathrm{H}, \mathrm{d}, J 6.8)$ and $0.85(3 \mathrm{H}, \mathrm{s})$. Data of 20a: R_{f} (cyclohexane-EtOAc 2:1) $0.25 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 8.2), 7.34(2 \mathrm{H}, \mathrm{d}, J$ $8.0), 4.11(1 \mathrm{H}, \mathrm{t}, J 10.0), 3.63(1 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, \mathrm{td}, J 10.5$ and 4.5$), 2.44(3 \mathrm{H}, \mathrm{s}), 2.10-$ $0.85(15 \mathrm{H}), 0.93(3 \mathrm{H}, \mathrm{d}, J 6.8)$ and $0.70(3 \mathrm{H}, \mathrm{s})$.

(2R)-2-((1R,4aS,5S,8aR)-5-Hydroxy-8a-methyldecahydro-1-naphthyl)propyl

p-toluenesulfonate (19b) and (2R)-2-((1R,4aR,5R,8aR)-5-Hydroxy-8a-methyldecahydro-

1-naphthyl)propyl p-toluenesulfonate (20b).

Hydroboration of alkene 18b as described above for 18a gave an inseparable 2:1 mixture of alcohols 19b and 20b, respectively (82%). Data of the mixture of 19b and 20b: $v_{\max }($ neat $) / \mathrm{cm}^{-}$ ${ }^{1} 3419,2931,2864,1448,1377,1216,1052,1019$ and $972 ; m / z(\mathrm{EI}) 380\left(\mathrm{M}^{+}\right), 371,348,311$, 300, 258, 229, 193, 175, 149, 111, 91 and 55; $m / z(E S I) 403(\mathrm{M}+\mathrm{Na})$ and $398\left(\mathrm{M}+\mathrm{NH}_{4}\right)$. Data of 19b: R_{f} (cyclohexane-EtOAc 2:1) 0.24 ; partial $d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}, \mathrm{d}, J$ 8.0), $7.36(2 \mathrm{H}, \mathrm{d}, J 8.0), 3.75(3 \mathrm{H}, \mathrm{m}), 2.45(3 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{s})$ and $0.75(3 \mathrm{H}, \mathrm{d}, J 7.0)$. Data of 20b: $\mathrm{R}_{\mathrm{f}}\left(\right.$ cyclohexane-EtOAc 2:1) 0.25 ; partial $d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}, \mathrm{d}, J$ 8.0), $7.36(2 \mathrm{H}, \mathrm{d}, J 8.0), 3.75(2 \mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{td}, J 10.6$ and 4.6$), 2.44(3 \mathrm{H}, \mathrm{s}), 0.76(3 \mathrm{H}$, s) and $0.77(3 \mathrm{H}, \mathrm{d}, J 7.2)$.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

(6R)-2-Methyl-6-((1R,4aS,8aR)-8a-methyl-5-oxodecahydro-1-naphthyl)heptan-2-ol (25a) and (6R)-2-Methyl-6-((1R,4aR,8aR)-8a-methyl-5-oxodecahydro-1-naphthyl)heptan-2-ol (10a).

To a solution of a 2:1 mixture of tosylates 19a and 20a (1.3 g, 3.4 mmol) in dry acetone (6 cm^{3}) was added a solution of sodium iodide $(12.8 \mathrm{~g}, 86 \mathrm{mmol})$ in dry acetone $\left(60 \mathrm{~cm}^{3}\right)$. Upon heating at $60^{\circ} \mathrm{C}$ overnight a white precipitate was formed. The reaction mixture was poured into $\mathrm{Et}_{2} \mathrm{O}$-water, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The yellow residue was purified by flash chromatography (cyclohexane- $\mathrm{Et}_{2} \mathrm{O}, 9: 1$) to give an inseparable $2: 1$ mixture of the corresponding iodides ($1.07 \mathrm{~g}, 93 \%$). Data of the mixture of isomers: R_{f} (cyclohexane-EtOAc, 4:1) 0.23 ; $m / z(\mathrm{ESI}) 319\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)$. Data of the major isomer: $d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.88(1 \mathrm{H}, \mathrm{td}, J 10.7$ and 4.8$), 3.42(1 \mathrm{H}, \mathrm{m}), 2.77$ $(1 \mathrm{H}, \mathrm{m}), 1.11(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.99(3 \mathrm{H}, \mathrm{s})$. Data of the minor isomer: $d_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.42(1 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}, \mathrm{m}), 1.11(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.83(3 \mathrm{H}, \mathrm{s})$. To a solution of anhydrous $\mathrm{NiCl}_{2}(1.2 \mathrm{~g}, 9.2 \mathrm{mmol})$ in dry pyridine $\left(60 \mathrm{~cm}^{3}\right)$ was added zinc powder ($3.1 \mathrm{~g}, 47.7 \mathrm{mmol}$) followed by ethyl acrylate $\left(5.1 \mathrm{~cm}^{3}, 4.74 \mathrm{~g}, 47.4 \mathrm{mmol}\right)$. After stirring at $65^{\circ} \mathrm{C}$ for 45 min , the red reaction mixture was cooled to $20^{\circ} \mathrm{C}$, and a solution of the above mixture of iodides $(1.06 \mathrm{~g}, 3.16 \mathrm{mmol})$ in dry pyridine $\left(10 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was stirred at rt for 90 min , poured into cold $\mathrm{Et}_{2} \mathrm{O}$-water, and brought to pH 5 (disappearance of the red color) by the careful addition of a 2 M HCl aqueous solution. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The colorless residue was purified by flash chromatography (cyclohexane- $\mathrm{Et}_{2} \mathrm{O}, 9: 1$ to 8:2) to afford an inseparable 2:1 mixture of esters 21a and 22a, respectively ($0.84 \mathrm{~g}, 86 \%$): R_{f} (cyclohexane-EtOAc, 2:1)

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$0.38-0.36$.
To a solution of a 2:1 mixture of esters 21a and 22a $(0.8 \mathrm{~g}, 2.58 \mathrm{mmol})$ in dry THF $\left(40 \mathrm{~cm}^{3}\right)$ at $-5{ }^{\circ} \mathrm{C}$ was added methylmagnesium bromide (3 M solution in $\mathrm{Et}_{2} \mathrm{O}, 21.5 \mathrm{~cm}^{3}, 64.5 \mathrm{mmol}$). The reaction mixture was stirred at rt for 1 h and was then poured into a cold mixture of $\mathrm{Et}_{2} \mathrm{O}$ and a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The colorless residue was purified by flash chromatography (cyclohexane- $\mathrm{Et}_{2} \mathrm{O}, 8: 2$ to $7: 3$) to give an inseparable $2: 1$ mixture of diols 23a and 24a, respectively ($0.71 \mathrm{~g}, 93 \%$): R_{f} (cyclohexane-EtOAc, 2:1) 0.28.

To a solution of a $2: 1$ mixture of diols 23a and $\mathbf{2 4 a}(0.7 \mathrm{~g}, 2.37 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ at rt was added pyridinium dichromate $(0.89 \mathrm{~g}, 2.37 \mathrm{mmol})$. After stirring at rt overnight, the reaction mixture was loaded onto a silica gel column and eluted with cyclohexane- $\mathrm{Et}_{2} \mathrm{O}$ (8:2 to 7:3). The crude product was further purified by HPLC (cyclohexane- $\mathrm{Et}_{2} \mathrm{O}, 85: 15$) to give cis-ketone 25a (407 mg) and trans-ketone 10a (205 mg, total yield 88\%). Data of 25a: R_{f} (cyclohexane-EtOAc, 2:1) 0.36; $[\alpha]^{20}{ }_{\mathrm{D}}+4.3$ (c 1.02 in CHCl_{3}); Found: C, 75.9; H, 11.65. Calc. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}: \mathrm{C}, 77.5 ; \mathrm{H}, 11.6 \%$; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3418,2937,2867,1698,1452,1379$ and $1150 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.33(1 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}, \mathrm{m}), 1.73(2 \mathrm{H}, \mathrm{m})$, $1.61(1 \mathrm{H}, \mathrm{m}), 1.16(6 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s})$ and $0.83(3 \mathrm{H}, \mathrm{d}, J 6.9) ; d_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $212.6,70.7,65.6,58.1,44.6,44.0,42.0,41.3,36.5,32.6,30.4,29.0,26.7,24.0,22.9,22.5$, 21.4, 20.7, 20.5 and 20.3; $m / z(E I) 294\left(\mathrm{M}^{+}\right), 277,276,243,221,191,178,165,149,147$, 111, 98, 69, 59 and 43; $m / z($ ESI $) 317(\mathrm{M}+\mathrm{Na}), 312\left(\mathrm{M}+\mathrm{NH}_{4}\right), 295(\mathrm{M}+\mathrm{H})$ and $277(\mathrm{M}+$ $\mathrm{H}-\mathrm{H}_{2} \mathrm{O}$). Data of 10a: $\mathrm{R}_{\mathrm{f}}\left(\right.$ cyclohexane-EtOAc, 2:1) $0.34 ;[\alpha]^{20}{ }_{\mathrm{D}}+24.0\left(\mathrm{c} 0.86\right.$ in CHCl_{3}); Found: C, 77.35; H, 11.6. Calc. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 77.5; H, 11.6.; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3434,2936$, 2856, 1707, 1447, 1376, 1219, 1159, 936 and $733 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.29(2 \mathrm{H}, \mathrm{dd}, J 9.5$

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2002
Supplementary data

and 4.9), $2.13(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and 2.9 Hz$), 2.01(2 \mathrm{H}, \mathrm{m}), 1.84(2 \mathrm{H}, \mathrm{m}), 1.74(1 \mathrm{H}, \mathrm{m}), 1.59$ $(1 \mathrm{H}, \mathrm{m}), 1.19(6 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.74(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 213.0, $70.8,65.7,59.7,54.7,44.0,41.0,37.3,32.7,31.2,29.1,29.0,26.7,25.4,23.0,22.2,21.4$, 21.3, 20.7 and 14.0; $m / z(\mathrm{EI}) 294\left(\mathrm{M}^{+}\right), 279,276,243,221,191,178,165,147,125,111,98$, 81, 59 and $43 ; m / z(E S I) 611(2 M+N a), 317(M+N a), 295(M+H)$ and $277\left(M+H-\mathrm{H}_{2} \mathrm{O}\right)$.
(6S)-2-Methyl-6-((1R,4aS,8aR)-8a-methyl-5-oxodecahydro-1-naphthyl)heptan-2-ol (25b) and (6S)-2-Methyl-6-((1R,4aR,8aR)-8a-methyl-5-oxodecahydro-1-naphthyl)heptan-2-ol (10b).

Obtained from the mixture of tosylates $\mathbf{1 9 b}$ and $\mathbf{2 0 b}$, as described for the preparation of 25a and 10a, in 3 steps:

Esters 21b and 22b were obtained, via the corresponding iodides (86\%), as an inseparable 2:1 mixture from the mixture of tosylates $\mathbf{1 9 b}$ and $\mathbf{2 0 b}$, respectively (84%), as described for the preparation of 21a and 22a: R_{f} (cyclohexane-EtOAc, 2:1) 0.39-0.33.

Diols 23b and 24b were obtained as an inseparable 2:1 mixture from the mixture of esters 21b and 22b, respectively (91%), as described for the preparation of 23a and 24a: R_{f} (cyclohexane-EtOAc, 2:1) 0.23-0.16.

Ketones $\mathbf{2 5 b}$ and $\mathbf{1 0 b}$ were obtained by oxidation of the mixture of diols $\mathbf{2 3 b}$ and $\mathbf{2 4 b}$ with pyridinium dichromate as described for the preparation of $\mathbf{2 5 a}$ and $\mathbf{1 0 a}$. The isomers were separated by HPLC (cyclohexane- $\mathrm{Et}_{2} \mathrm{O}$, 85:15) to give cis-ketone 25b and trans-ketone 10b in a $2: 1$ ratio, respectively (total yield 86%). Data of $\mathbf{2 5 b}$: R_{f} (cyclohexane-EtOAc 2:1) 0.36; $[\alpha]^{20}{ }_{D}+26.0\left(\mathrm{c} 1.45\right.$ in CHCl_{3}); Found: C, 77.5; H, 11.8. Calc. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 77.5; H, 11.6.; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3426,2938,2868,1698,1469,1452,1381,1236,1154,912$ and $733 ; d_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.37(1 \mathrm{H}, \mathrm{m}), 2.25(1 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{m}), 1.80(2 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{m}), 1.20$

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

($6 \mathrm{H}, \mathrm{s}$), $1.13(3 \mathrm{H}, \mathrm{s}), 0.77(3 \mathrm{H}, \mathrm{d}, J 6.9)$; $d_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 212.5,70.8,58.2,44.0,43.0$, $42.0,41.0,38.8,36.3,30.3,29.0,29.0,24.3,22.4,21.8,21.5,20.7,20.3$ and $15.8 ; m / z$ (EI) $294\left(\mathrm{M}^{+}\right), 280,276,243,221,205,192,178,165,149,147,121,111,98,67,55$ and $43 ; \mathrm{m} / \mathrm{z}$ (ESI) $317(\mathrm{M}+\mathrm{Na}), 312\left(\mathrm{M}+\mathrm{NH}_{4}\right), 295(\mathrm{M}+\mathrm{H})$ and $277\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)$. Data of 10b: R_{f} (cyclohexane-EtOAc, 2:1) 0.28; $[\alpha]^{20}{ }_{\mathrm{D}}-9.0$ (c 1.24 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3434,2936$, 2856, 1707, 1447, 1376, 1219, 1159, 936 and $733 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.29(2 \mathrm{H}, \mathrm{dd}, J 4.9$ and 9.5), $2.13(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 12.7), $2.01(2 \mathrm{H}, \mathrm{m}), 1.88-1.74(3 \mathrm{H}, \mathrm{m}), 1.58(4 \mathrm{H}, \mathrm{m})$, $1.23(6 \mathrm{H}, \mathrm{s}), 0.77(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.75(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 212.0,69.9,58.9$, $51.1,43.1,43.0,40.2,38.0,36.6,29.9,28.4,28.3,24.4,21.4,21.4,20.7,19.9,15.7$ and 13.3; $m / z(\mathrm{EI}) 294\left(\mathrm{M}^{+}\right)$277, 276, 243, 221, 197, 179, 165, 147, 137,125, 111, 95, 81, 67, 59 and 43; $m / z(\mathrm{ESI}) 611(2 \mathrm{M}+\mathrm{Na}), 317(\mathrm{M}+\mathrm{Na}), 295(\mathrm{M}+\mathrm{H})$ and $277\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)$.

(6R)-2-Methyl-6-((1R,4aR,8aR)-8a-methyl-5-oxodecahydro-1-naphthyl)-2-

(triethylsilyloxy)heptane (26a).

To a solution of imidazole ($6 \mathrm{~g}, 88.4 \mathrm{mmol}$) and chlorotriethylsilane ($3.33 \mathrm{~g}, 22.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was added alcohol $\mathbf{1 0 a}(0.65 \mathrm{~g}, 2.21 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at rt . After stirring for 3 h , the reaction mixture was loaded onto a silica gel column and eluted with cyclohexane- $\mathrm{Et}_{2} \mathrm{O}$ (95:5 to $85: 15$) to give silyl ether $\mathbf{2 6 a}$ ($0.795 \mathrm{~g}, 88 \%$): R_{f} (cyclohexaneEtOAc, 4:1) 0.58; $[\alpha]^{20}{ }_{\mathrm{D}}+5.0$ (c 1.6 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3408,2951,2873,1712$, $1458,1381,1364,1235,1158,1085,1041$ and $742 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.29(2 \mathrm{H}, \mathrm{dd}, J 9.3$ and 4.6), $2.13(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and 2.8$), 2.04(1 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{m}), 1.84(2 \mathrm{H}, \mathrm{m}), 1.72(1$ $\mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{m}), 1.40(4 \mathrm{H}, \mathrm{m}), 1.31(4 \mathrm{H}, \mathrm{m}), 1.17(6 \mathrm{H}, \mathrm{s}), 0.93(3 \mathrm{H}, \mathrm{d}, J 7.9), 0.92(9$ $\mathrm{H}, \mathrm{t}, J 7.9), 0.74(3 \mathrm{H}, \mathrm{s})$ and $0.54(6 \mathrm{H}, \mathrm{q}, J 7.9) ; d_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 213.5,73.4,60.0$, $54.9,45.4,44.3,41.3,37.6,33.0,31.5,29.9,25.7,23.3,22.5,21.7,21.6,21.0,14.2,7.2$ (3)

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2002
Supplementary data

and $6.8(3) ; m / z(E I) 408\left(\mathrm{M}^{+}\right), 405,379,350,335,280,259,227,203,173,149,103,75$ and 55; $m / z(\mathrm{ESI}) 447(\mathrm{M}+\mathrm{K}), 432(\mathrm{M}+\mathrm{Na})$ and $409(\mathrm{M}+\mathrm{H})$.
(6S)-2-Methyl-6-((1R,4aR,8aR)-8a-methyl-5-oxodecahydro-1-naphthyl)-2(triethylsilyloxy)heptane (26b).

Reaction of alcohol 10b with chlorotriethylsilane as described above for 10a gave silyl ether 26b (84\%): R_{f} (cyclohexane-EtOAc, 4:1) 0.56; $[\alpha]^{20}{ }_{\mathrm{D}}-10.0$ (c 0.95 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-}$ ${ }^{1} 3408,2937,2873,1713,1456,1382,1363,1235,1157,1043$ and $742 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.31(2 \mathrm{H}, \mathrm{dd}, J 5.2$ and 9.7$), 2.15(1 \mathrm{H}, \mathrm{dd}, J 2.9$ and 12.2$), 2.01(1 \mathrm{H}, \mathrm{m}), 1.97(1 \mathrm{H}, \mathrm{m}), 1.84$ $(2 \mathrm{H}, \mathrm{m}), 1.77(1 \mathrm{H}, \mathrm{m}), 1.61(2 \mathrm{H}, \mathrm{m}), 1.43-1.27(8 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{s}), 0.95$ ($9 \mathrm{H}, \mathrm{t}, J 7.9$), $0.77(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.75(3 \mathrm{H}, \mathrm{s})$ and $0.57(6 \mathrm{H}, \mathrm{q}, J 7.9) ; d_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $213.5,73.4,60.1,51.9,45.3,44.1,41.3,39.1,37.6,31.0,30.1,30.0,25.5,22.5,22.5,21.8$, $21.0,16.9,14.3,7.2$ (3) and 6.9 (3); $m / z(\mathrm{EI}) 408\left(\mathrm{M}^{+}\right), 405,379,350,295,280,259,227$, 203, 173, 149, 115, 103, 75 and 55; $m / z(\mathrm{ESI}) 447(\mathrm{M}+\mathrm{K}), 431(\mathrm{M}+\mathrm{Na})$ and $409(\mathrm{M}+\mathrm{H})$.

Coupling Reaction of Ketones 26a and 26b with Phosphine Oxides 27 and 28 - General

Procedure.

To a solution of A-ring phosphine oxide 27 (28) (0.67 mmol) in dry THF ($7.5 \mathrm{~cm}^{3}$) was dropwise added $n-\mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ solution in hexanes, $\left.0.24 \mathrm{~cm}^{3}, 0.60 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under Ar . The formed dark red solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and a solution of ketone $\mathbf{2 6 a}$ (26b) $(0.17 \mathrm{mmol})$ in dry THF $\left(2.5 \mathrm{~cm}^{3}\right)$ was dropwise added. The red solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h and was then allowed to warm to rt . The reaction mixture was loaded onto a silica gel column, the reaction product was eluted (n-hexane-EtOAc, $5: 1$) and further purified by HPLC to give the protected $1,25-\mathrm{D}_{3}$ analog.

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2002
Supplementary data

Desilylation of the Protected 1,25-D 3 Analogs using TBAF-General Procedure.

To a solution of the protected $1,25-\mathrm{D}_{3}$ analog $(0.14 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ was added tetrabutylammonium fluoride (TBAF, 1 M solution in THF, $2.1 \mathrm{~cm}^{3}, 2.1 \mathrm{mmol}$). The reaction mixture was stirred at rt for 12 h and then loaded onto a silica gel column. The reaction product was eluted (n-pentane-acetone, $1: 1$) and further purified by HPLC to give the $1,25-\mathrm{D}_{3}$ analog.

$(1 R, 3 S)-5-[(Z, 2 E)-2-[(1 R, 4 a R, 8 a R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-8 a-m e t h y l-$

1,2,3,4,4a,7,8,8a-octahydro-5(6H)-naphthylidene]ethylidene]-4-methylidenecyclohexane-

1,3-diol (2at).

Ketone 26a was coupled with phosphine oxide 27 according to the above general procedure. The crude product was purified by HPLC (n-hexane-EtOAc, 35:1) to give protected 2at (58\%), which was consequently deprotected using TBAF according to the above general procedure. The crude product was purified by HPLC (n-hexane-acetone, 6:4) to give 2at (CY 10012, 57% from 26a): $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 9: 1\right) 0.33$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 264 ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 3416, 2931, 2861, 1448, 1377, 1215, 1156, 1046, 957 and $758 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.37$ (1 H, d, $J 11.0), 5.98(1 \mathrm{H}, \mathrm{d}, J 11.0), 5.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.44(1 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}$, $\mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{dd}, J 13.0$ and 6.4$), 2.01(1 \mathrm{H}, \mathrm{m}), 1.93(2 \mathrm{H}, \mathrm{m})$, $1.83(1 \mathrm{H}, \mathrm{m}), 1.72(4 \mathrm{H}, \mathrm{m}), 1.45(4 \mathrm{H}, \mathrm{m}), 1.36(2 \mathrm{H}, \mathrm{m}), 1.25(6 \mathrm{H}, \mathrm{m}), 1.20(6 \mathrm{H}, \mathrm{s}), 1.11$ $(3 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{d}, J 7.0), 0.88(2 \mathrm{H}, \mathrm{m})$ and $0.67(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 6.31(1$ $\mathrm{H}, \mathrm{d}, J 11.0), 6.05(1 \mathrm{H}, \mathrm{d}, J 11.0), 5.30(1 \mathrm{H}, \mathrm{d}, J 1.0), 4.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.36(1 \mathrm{H}, \mathrm{t}, J 5.8)$, $4.13(1 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.0), 2.52(1 \mathrm{H}, \mathrm{dd}, J 3.4$ and 13.3$), 2.26(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and 13.3), $1.94(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.0), 1.89(2 \mathrm{H}, \mathrm{t}, J 5.6), 1.87-1.67(5 \mathrm{H}, \mathrm{m}), 1.53-1.08(14 \mathrm{H}, \mathrm{m})$,

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$1.16(6 \mathrm{H}, \mathrm{s}), 0.93(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.71(3 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{EI}) 430\left(\mathrm{M}^{+}\right) 412,394,376,344,327$, 299, 283, 260, 245, 215, 190, 175, 152, 135, 134, 81 and 43; $m / z(\mathrm{ESI}) 453(\mathrm{M}+\mathrm{Na}), 448(\mathrm{M}$ $\left.+\mathrm{NH}_{4}\right)$ and $413\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)$.
$(1 R, 3 R)-5-[(Z, 2 E)-2-[(1 R, 4 a R, 8 a R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-8 a-m e t h y l-$ 1,2,3,4,4a, 7,8,8a-octahydro-5(6H)-naphthylidene]ethylidene]cyclohexane-1,3-diol (2ar).

Ketone 26a was coupled with phosphine oxide 28 according to the above general procedure. The crude product was purified by HPLC (n-hexane-EtOAc, 35:1) to give protected 2ar (55\%), which was consequently deprotected using TBAF according to the above general procedure. The crude product was purified by HPLC (n-hexane-acetone, 6:4) to give 2ar (CY $10010,49 \%$ from 26a): $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 9: 1\right) 0.33 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 264 ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 3416, 2931, 2861, 1448, 1377, 1215, 1156, 1046, 957 and $758 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.30(1$ $\mathrm{H}, \mathrm{d}, J 11.0), 5.83(1 \mathrm{H}, \mathrm{d}, J 11.0), 4.10(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{dd}$, $1 \mathrm{H}, J 13.0$ and 4.0), $2.48(1 \mathrm{H}, \mathrm{m}), 2.21(2 \mathrm{H}, \mathrm{m}), 1.98-1.80(6 \mathrm{H}, \mathrm{m}), 1.80-1.65(6 \mathrm{H}, \mathrm{m})$, $1.45(5 \mathrm{H}, \mathrm{m}), 1.37(2 \mathrm{H}, \mathrm{m}), 1.29(3 \mathrm{H}, \mathrm{m}), 1.20(6 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{m}), 0.91(3 \mathrm{H}, \mathrm{d}, J 6.8)$, $0.88(2 \mathrm{H}, \mathrm{m})$ and $0.67(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 6.31(1 \mathrm{H}, \mathrm{d}, J 11.0), 6.06(1 \mathrm{H}, \mathrm{d}, J$ $11.0), 5.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{s}), 4.36(1 \mathrm{H}, \mathrm{t}, J 5.9), 4.12(1 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 12.0), $2.52(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 13.3), $2.26(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and 13.3$), 1.94-1.67(5 \mathrm{H}, \mathrm{m}), 1.89$ $(2 \mathrm{H}, \mathrm{t}, J 5.6), 1.53-1.13(14 \mathrm{H}, \mathrm{m}), 1.18(6 \mathrm{H}, \mathrm{s}), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.71(3 \mathrm{H}, \mathrm{s}) ; m / z$ (EI) $430\left(\mathrm{M}^{+}\right) 412,394,376,352,327,299,283,260,245,225,215,190,175,152,135,134$, 81 and $49 ; m / z(\mathrm{ESI}) 453(\mathrm{M}+\mathrm{Na}), 448\left(\mathrm{M}+\mathrm{NH}_{4}\right)$ and $413\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)$.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

1,3-diol (2bt) and (1R,3R)-5-[(Z,2E)-2-[(1R,4aR,8aR)-1-((1S)-5-Hydroxy-1,5-dimethylhexyl)-8a-methyl-1,2,3,4,4a,7,8,8a-octahydro-5(6H)-naphthylidene]ethylidene]cyclohexane-1,3-diol (2br).

These analogs were obtained from ketone 26b via coupling with phosphine oxide 27 and $\mathbf{2 8}$, respectively, according to the above general procedure, followed by deprotection using TBAF. Data of 2bt (CY 943): $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 264 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.37(1 \mathrm{H}, \mathrm{d}, J$ 11.0), $5.98(1 \mathrm{H}, \mathrm{d}, J 11.0), 5.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{br}$ s), $4.43(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{m})$, $2.87(1 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{m}), 1.83$ ($1 \mathrm{H}, \mathrm{m}$), 1.80-1.68 (4 H, m), $1.45(4 \mathrm{H}, \mathrm{m}), 1.40-1.23(7 \mathrm{H}, \mathrm{m}), 1.22(6 \mathrm{H}, \mathrm{s}), 1.12(4 \mathrm{H}, \mathrm{m})$, $0.86(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}, \mathrm{d}, J 7.0)$ and $0.68(3 \mathrm{H}, \mathrm{s})$. Data of $\mathbf{2 b r}(\mathrm{CY} 941): \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ 261, 251 and $243 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.30(1 \mathrm{H}, \mathrm{d}, J 11.0), 5.80(1 \mathrm{H}, \mathrm{d}, J 11.0), 4.10(1 \mathrm{H}$, m), $4.00(1 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{m}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 13.0$ and 4.0 Hz$), 2.48(1 \mathrm{H}, \mathrm{m}), 2.22(2 \mathrm{H}$, $\mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{m}), 1.87(2 \mathrm{H}, \mathrm{m}), 1.79(3 \mathrm{H}, \mathrm{m}), 1.68(2 \mathrm{H}, \mathrm{m}), 1.50-1.40(5 \mathrm{H}, \mathrm{m}), 1.40-1.24$ $(8 \mathrm{H}, \mathrm{m}), 1.22(6 \mathrm{H}, \mathrm{s}), 1.15(2 \mathrm{H}, \mathrm{m}), 0.86(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.67(3 \mathrm{H}, \mathrm{s})$.
(6R)-6-[(1R,3aR,7aR)-4-(Trifluoromethanesulfonyloxy)-7a-methyl-2,3,3a,6,7,7a-hexahydro-1H-inden-1-yl)]-2-methyl-2-(triethylsilyloxy)heptane (29a).

To a solution of alcohol $9 \mathbf{a}(0.320 \mathrm{~g}, 1.14 \mathrm{mmol})$ and DMAP $(0.278 \mathrm{~g}, 2.28 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added chlorotriethylsilane $\left(0.290 \mathrm{~cm}^{3}, 1.70 \mathrm{mmol}\right)$, and the mixture was stirred at rt for 12 h . After removal of the solvent under reduced pressure, the residue was chromatographed (isooctane-EtOAc, 15:1) to give the corresponding triethylsilyl ether (0.430 g, 96\%).

To the solution of $i-\mathrm{Pr}_{2} \mathrm{NH}\left(0.12 \mathrm{~cm}^{3}, 0.88 \mathrm{mmol}\right)$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was dropwise added $n-\operatorname{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexanes, $\left.0.34 \mathrm{~cm}^{3}, 0.85 \mathrm{mmol}\right)$. The mixture was stirred at 0

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

${ }^{\circ} \mathrm{C}$ for 20 min , then cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of the $\mathbf{9 a}$ derived silyl ether $(210 \mathrm{mg}$, $0.53 \mathrm{mmol})$ in dry THF $\left(0.5 \mathrm{~cm}^{3}\right)$ was dropwise added. The reaction mixture was stirred at $78^{\circ} \mathrm{C}$ for 45 min , allowed to warm to rt over a period of 2 h , cooled again to $-78^{\circ} \mathrm{C}$, and a solution of N-phenyltrifluoromethanesulfonimide ($286 \mathrm{mg}, 0.80 \mathrm{mmol}$) in dry THF $\left(0.5 \mathrm{~cm}^{3}\right)$ was dropwise added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , allowed to warm to rt over a period of 4 h , and $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added. The solution was passed through a short pad of silica gel, which was rinsed with n-hexane-EtOAc 4:1 $\left(20 \mathrm{~cm}^{3}\right)$. Concentration under reduced pressure left a residue, which was purified by HPLC (isooctane-EtOAc, 40:1) to give enol triflate 29a ($258 \mathrm{mg}, 92 \%$) as a colorless oil: R_{f} (isooctane-EtOAc, 5:1) 0.89; $[\alpha]^{20}{ }_{\mathrm{D}}+16.8\left(\mathrm{c} 1.045\right.$ in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 2960, 2874, 1460, 1418, 1379, 1246, 1209, $1145,1099,1044,1012,963,936,900,874,742,725$ and $609 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 5.29(1$ H, br.s), $2.30(1 \mathrm{H}, \mathrm{m}), 1.85-0.95(16 \mathrm{H}, \mathrm{m}), 1.27(6 \mathrm{H}, \mathrm{s}), 1.12(9 \mathrm{H}, \mathrm{t}, J 8.0), 0.91(3 \mathrm{H}, \mathrm{d}, J$ 6.0), $0.71(6 \mathrm{H}, \mathrm{q}, J 8.0)$ and $0.56(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(\mathrm{DEPT} ; 50 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 150.0(\mathrm{C}), 116.2(\mathrm{CH})$, $73.6(\mathrm{C}), 54.4(\mathrm{CH}), 50.2(\mathrm{CH}), 45.8\left(\mathrm{CH}_{2}\right), 45.2(\mathrm{C}), 36.6\left(\mathrm{CH}_{2}\right), 36.2(\mathrm{CH}), 34.8\left(\mathrm{CH}_{2}\right), 30.2$ $\left(\mathrm{CH}_{3}\right), 30.0\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{2}\right), 18.7\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right)$, $7.4\left(\mathrm{CH}_{3}\right)$ and $7.2\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}) 511\left(\mathrm{M}^{+}, 0.2 \%\right), 497$ (4), 281 (2), 245 (2), 235 (2), 173 (25), 135 (15), 103 (50) and 75 (100).
(6R)-2-Methyl-6-[(1R,4aR,8aR)-5-(trifluoromethanesulfonyloxy)-8a-methyl-

1,2,3,4,4a,7,8,8a-octahydro-1-naphthyl]-2-(triethylsilyloxy)heptane (30a).

Obtained by reaction of ketone 26a with N-phenyltrifluoromethanesulfonimide as described above for the preparation of 29a. The crude product was purified by HPLC (cyclohexaneEtOAc, 200:1) to afford, next to recovered 26a (6\%), enol triflate 30a (81\%): R_{f} (cyclohexane-EtOAc, 5:1) 0.70; [$\alpha]^{20}{ }_{\mathrm{D}}+24.0\left(\mathrm{c} 0.86\right.$ in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3418,2954$,

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$2875,1684,1457,1417,1381,1240,1209,1144,1057$ and $872 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.66(1$ H, d, J 3.2), $2.21(3 \mathrm{H}, \mathrm{m}), 1.90(2 \mathrm{H}, \mathrm{m}), 1.78-1.71(2 \mathrm{H}, \mathrm{m}), 1.18(6 \mathrm{H}, \mathrm{s}), 1.07(1 \mathrm{H}, \mathrm{dd}, J$ 2.9 and 12.0), $0.94(9 \mathrm{H}, \mathrm{t}, J 7.9), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.85(3 \mathrm{H}, \mathrm{s}), 0.56(6 \mathrm{H}, \mathrm{q}, J 7.8) ; d_{\mathrm{C}}(50$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 150.6, 116.4, 73.2, 65.6, 53.0, 48.7, 45.2, 38.7, 32.8, 32.6, 31.0, 29.7, 29.6, 26.0, 23.0, 21.7, 21.3 (2), 21.1, 12.4, 6.9 (3) and $6.6(3) ; m / z(\mathrm{EI}) 540\left(\mathrm{M}^{+}\right), 525,511,473$, 427, 379, 346, 335, 293, 259, 235, 203, 173, 149, 135, 103, 75, 69 and 55; m/z (ESI) 563 (M +Na).

Coupling Reaction of Enol Triflates 29a and 30a with A-Ring Intermediates 31 and 32 -

General Procedure.

To a solution of enol triflate 29a (30a) (0.5 mmol) and A-ring synthon $31(32)(0.5 \mathrm{mmol})$ in a mixture of $\mathrm{Et}_{2} \mathrm{NH}\left(2.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{3} \mathrm{CN}\left(5 \mathrm{~cm}^{3}\right)$ were added $\mathrm{CuI}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ and bis(triphenylphosphine) palladium(II) acetate $\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{OAc})_{2}, 37.5 \mathrm{mg}, 0.05 \mathrm{mmol}\right)$. The reaction mixture was stirred at rt for 1 h and diluted with n-pentane-EtOAc 99:1 $\left(25 \mathrm{~cm}^{3}\right)$. The solution was passed through a short pad of silica gel, which was rinsed with n-pentaneEtOAc 99:1 $\left(250 \mathrm{~cm}^{3}\right)$. Concentration under reduced pressure left a residue, which was purified by HPLC to give the protected $1,25-\mathrm{D}_{3}$ analog.
$(1 R, 3 S)-5-[(1 R, 3 \mathrm{a} R, 7 \mathrm{a} R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-7 a-m e t h y l-2,3,3 \mathrm{a}, 6,7,7 \mathrm{a}-$ hexahydro-1H-inden-4-yl]ethynyl-4-methylcyclohex-4-ene-1,3-diol (5at).

Enol triflate 29a was coupled with A-ring synthon 31 according to the above general procedure. The crude product was purified by HPLC (n-pentane-EtOAc, 99:1) to give the protected $1,25-\mathrm{D}_{3}$ analog 33at (86%), which was consequently deprotected using TBAF according to the above general procedure. The crude product was purified by HPLC (n -

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

pentane-acetone, 5:3) to give 5at (GAO 315, 90\%): R_{f} (isooctane-acetone, 1:1) $0.54 ;[\alpha]^{20}{ }_{\mathrm{D}}-$ 28.9 (c 0.353 in CHCl_{3}); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 287$ and 272; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3380$, 2951, 2870, $1650,1469,1377,1218,1153,1108,1046,955,910,845$ and $708 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ $5.91(1 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{dd}, J 16.7$ and 4.2$), 2.23(3 \mathrm{H}, \mathrm{m})$, 2.15-1.90 ($3 \mathrm{H}, \mathrm{m}$), $1.94(3 \mathrm{H}, \mathrm{s}), 1.81(1 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{ddd}, J 13.0,10.8$ and 4.7$), 1.53-$ $0.90(12 \mathrm{H}, \mathrm{m}), 1.17(6 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{d}, J 6.5)$ and $0.73(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}(\mathrm{DEPT} ; 125 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 140.8(\mathrm{C}), 134.0(\mathrm{CH}), 124.0(\mathrm{C}), 117.1$ (C), 93.9 (C), 88.8 (C), 71.5 (C), $69.7(\mathrm{CH})$, $64.0(\mathrm{CH}), 56.1(\mathrm{CH}), 51.4(\mathrm{CH}), 45.3\left(\mathrm{CH}_{2}\right), 43.0(\mathrm{C}), 41.1\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right)$, $37.5(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{3}\right)$, $29.1\left(\mathrm{CH}_{3}\right)$, $29.0\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 21.9$ $\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right)$ and $11.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 414\left(\mathrm{M}^{+}, 4 \%\right), 396(10), 378(10)$, 311 (6), 283 (10), 239 (6), 183 (10), 145 (12), 115 (20), 81 (30) and 58 (100).
$(1 R, 3 S)-5-[(1 R, 3 a R, 7 a R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-7 a-m e t h y l-2,3,3 a, 6,7,7 a-$ hexahydro-1H-inden-4-yl]ethynylcyclohex-4-ene-1,3-diol (5ar).

Enol triflate 29a was coupled with A-ring synthon 32 according to the above general procedure to give the protected $1,25-\mathrm{D}_{3}$ analog 33ar. The crude product was deprotected using TBAF according to the above general procedure. The product was purified by HPLC (n -hexane-acetone, 1:1) to give 5ar (GAO 205, 92% from 29a) as a white powder: R_{f} (isooctane-acetone, 1:1) $0.42 ; \mathrm{mp} 62-63{ }^{\circ} \mathrm{C}$ (decomp.); $[\alpha]^{20}{ }_{\mathrm{D}}-12.5$ (c 0.368 in CHCl_{3}); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 281$ and $267 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3398,2928,2870,1636,1458,1376,1276$, 1048, 978 and 935 ; $d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 5.95(1 \mathrm{H}, \mathrm{m}), 5.91(1 \mathrm{H}, \mathrm{m}), 4.36(1 \mathrm{H}, \mathrm{m}), 4.06$ $(1 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{dd}, J 17.2$ and 4.6), $2.24(2 \mathrm{H}, \mathrm{m}), 2.10-1.05(21 \mathrm{H}, \mathrm{m}), 1.17(6 \mathrm{H}, \mathrm{s})$, $0.99(1 \mathrm{H}, \mathrm{d}, J 6.5)$ and $0.72(3 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{EI}) 400\left(\mathrm{M}^{+}, 2 \%\right), 382(4), 367(5), 364$ (3), 297 (4), 269 (6), 223 (3), 211 (4), 199 (6), 165 (8), 149 (22), 81 (28), 57 (80) and 43 (100).

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

(1R,3S)-5-[(1R,4aR,8aR)-1-((1R)-5-Hydroxy-1,5-dimethylhexyl)-8a-methyl-

1,2,3,4,4a,7,8,8a-octahydro-5-naphthyl]ethynyl-4-methylcyclohex-4-ene-1,3-diol (6at).

Enol triflate 30a was coupled with A-ring synthon 31 according to the above general procedure. The crude product was purified by HPLC (cyclohexane-EtOAc, 200:1) to give the protected $1,25-\mathrm{D}_{3}$ analog 34at (92%), which was consequently deprotected using TBAF according to the above general procedure. The crude product was purified by $\operatorname{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 98: 2$) to give 6at (IM 902, 91%): $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 9: 1\right) 0.32$; $[\alpha]^{20}{ }_{\mathrm{D}}-51.0$ (c 1.5 in $\left.\mathrm{CHCl}_{3}\right) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 283,269$ and 259; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3414,2930,2854,2281,1448$, $1363,1215,1154,1103,1047,957$ and $759 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.09(1 \mathrm{H}, \mathrm{d}, J 3.0), 4.26(1$ $\mathrm{H}, \mathrm{s}), 4.12(1 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{m}), 2.17(2 \mathrm{H}, \mathrm{m}), 2.0(3 \mathrm{H}, \mathrm{m}), 1.88(2 \mathrm{H}, \mathrm{m}), 1.78(2 \mathrm{H}, \mathrm{m})$, $1.21(6 \mathrm{H}, \mathrm{s}), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.79(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 139.2, 134.3, 123.6, $116.0,93.5,88.0,70.9,69.1,63.1,53.5,47.5,44.1,39.9,39.0,36.4,33.4,32.9,30.4,29.1$, 29.0, 26.8, 25.2, 23.5, 22.8, 21.4 (2), 18.7 and 12.1; m / z (EI) $428\left(\mathrm{M}^{+}\right), 419,410,392,353$, $317,293,221,199,183,173,159,142,105,103,75$ and 43.

(1R,3S)-5-[(1R,4aR,8aR)-1-((1R)-5-Hydroxy-1,5-dimethylhexyl)-8a-methyl-

1,2,3,4,4a,7,8,8a-octahydro-5-naphthyl]ethynylcyclohex-4-ene-1,3-diol (6ar).

Enol triflate 30a was coupled with A-ring synthon 32 according to the above general procedure. The crude product was purified by HPLC (n-hexane- $\mathrm{Et}_{2} \mathrm{O}$, 97:3) to give the protected $1,25-\mathrm{D}_{3}$ analog 34ar (91\%), which was consequently deprotected using TBAF according to the above general procedure. The crude product was purified by HPLC (n -hexane-acetone, 7:3) to give $\mathbf{6 a r}\left(\mathrm{GAO} 183,96 \%\right.$) as a white powder: R_{f} (n-hexane-acetone, 2:1) 0.27; mp 58-60 ${ }^{\circ} \mathrm{C}$ (decomp.); $[\alpha]^{20}{ }_{\mathrm{D}}-38.0\left(\mathrm{c} 0.469\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 282$ and

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

268; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3382,2930,2860,1618,1461,1444,1368,1217,1150,1083,1044,972$, 933, 911 and $822 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 6.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3.2), 5.95(1 \mathrm{H}, \mathrm{t}, J 1.8), 4.36(1$ $\mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 4.5$), 2.18(2 \mathrm{H}, \mathrm{m}), 2.06-0.90(19 \mathrm{H}, \mathrm{m}), 1.17$ $(6 \mathrm{H}, \mathrm{s}), 1.04(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and 3.5$), 0.93(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.81(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}(\mathrm{DEPT} ; 50$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 136.1(\mathrm{CH}), 135.2(\mathrm{CH}), 125.8(\mathrm{C}), 123.4(\mathrm{C}), 91.0(2 \mathrm{C}), 72.3(\mathrm{C}), 66.3(\mathrm{CH})$, $65.2(\mathrm{CH}), 56.0(\mathrm{CH}), 50.0(\mathrm{CH}), 46.1\left(\mathrm{CH}_{2}\right), 40.6\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 38.7(\mathrm{C}), 35.7\left(\mathrm{CH}_{2}\right)$, $35.3\left(\mathrm{CH}_{2}\right), 32.7(\mathrm{CH}), 30.0\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 24.0$ $\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right)$ and $13.6\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 414\left(\mathrm{M}^{+}, 0.1 \%\right), 396(0.5), 381(2), 312(3), 297$ (0.5), 283 (1), 267 (2), 225 (3), 187 (2), 168 (4), 133 (8), 105 (12), 91 (18) and 58 (100).

Semi-Hydrogenation and Hydrogenation of the Yne-Diene Type Derivatives - General Procedure.

A mixture of the ynediene $\mathbf{3 3}$ or $\mathbf{3 4}(0.029 \mathrm{mmol})$, Lindlar catalyst $(0.02 \mathrm{~g})$, and quinoline (2% solution in n-pentane, $0.1 \mathrm{~cm}^{3}$) in EtOAc $\left(2 \mathrm{~cm}^{3}\right)$ was stirred under a H_{2} atmosphere at rt . The reaction was carefully monitored by TLC for disappearance of the starting material. The reaction mixture was then passed through a pad of silica gel and concentrated under reduced pressure to yield the semi-hydrogenated derivative. In the absence of quinoline in the reaction mixture the procedure gave the corresponding derivative with fully hydrogenated triple bond.
$(1 R, 3 S)-5-[(Z)-2-[(1 R, 3 \mathrm{a} R, 7 \mathrm{a} R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-7 a-m e t h y l-$

2,3,3a,6,7,7a-hexahydro-1 H -inden-4-yl]ethenyl]cyclohex-4-ene-1,3-diol (3ar).

Ynediene 33ar was hydrogenated using Lindlar catalyst in the presence of quinoline according to the above general procedure. The crude product was purified by HPLC $(0.2 \%$ EtOAc in n-hexane) to give protected 3ar (86\%), which was consequently deprotected using

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

TBAF according to the above general procedure. The crude product was purified by HPLC (n-pentane-acetone, 5:3) to give 3ar (GAO 306, 93\%): R_{f} (isooctane-acetone, 1:1) 0.38; $[\alpha]^{20}{ }_{\mathrm{D}}+50.3\left(\mathrm{c} 0.628\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 259 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3381,2926,2872$, 1634, 1469, 1377, 1217, 1149, 1044, 974 and $939 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 5.87(1 \mathrm{H}, \mathrm{d}, J$ 12.3), $5.75(1 \mathrm{H}, \mathrm{d}, J 12.3), 5.70(1 \mathrm{H}, \mathrm{br}$ s $), 5.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.36(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{m})$, $2.54(1 \mathrm{H}, \mathrm{dd}, J 17.0$ and 4.6$), 2.30-1.05(21 \mathrm{H}, \mathrm{m}), 1.17(6 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{d}, J 6.5)$ and 0.77 (3 H, s); $d_{\mathrm{C}}\left(\mathrm{DEPT} ; 125 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 138.0(\mathrm{C}), 137.6(\mathrm{C}), 131.5(\mathrm{CH}), 131.1(\mathrm{CH}), 130.0$ $(\mathrm{CH}), 126.5(\mathrm{CH}), 71.5(\mathrm{C}), 66.1(\mathrm{CH}), 65.1(\mathrm{CH}), 55.8(\mathrm{CH}), 52.3(\mathrm{CH}), 45.3\left(\mathrm{CH}_{2}\right), 43.3$ (C), $40.6\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 37.5(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{3}\right), 29.1$ $\left(\mathrm{CH}_{3}\right)$, $25.6\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right)$ and $11.9\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 402\left(\mathrm{M}^{+}\right.$, 3\%), 384 (4), 366 (4), 351 (4), 299 (2), 273 (8), 237 (12), 213 (10), 183 (10), 143 (20), 131 (20), 81 (35) and 58 (100).

$(1 R, 3 S)-5-[(Z)-2-[(1 R, 4 \mathrm{a}, 8 \mathrm{a} R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-8 a-m e t h y l-$

 1,2,3,4,4a,7,8,8a-octahydro-5-naphthyl]ethenyl]-4-methylcyclohex-4-ene-1,3-diol (4at) and $(1 R, 3 S)-5-[2-[(1 R, 4 a S, 8 a R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-8 a-m e t h y l-~$
1,2,3,4,4a,7,8,8a-octahydro-5-naphthyllethyl]-4-methylcyclohex-4-ene-1,3-diol (8at).

Triol 6at was hydrogenated using Lindlar catalyst in the presence of quinoline according to the above general procedure. The reaction mixture was stirred for 45 min . The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 97: 3\right)$, followed by $\mathrm{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 98: 2$) to afford the previtamin 4at (IM 9053, 54\%), and the saturated derivative 8at (IM 9102, 34\%). Data of 4at: $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 9: 1\right) 0.32 ;[\alpha]^{20}{ }_{\mathrm{D}}-51.0$ (c 1.5 in CHCl_{3}); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 283,269$ and 259; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3414,2930,2854,1448,1363,1215,1154$, 1103, 1047, 957 and $759 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.98(1 \mathrm{H}, \mathrm{d}, J 11.9), 5.85(1 \mathrm{H}, \mathrm{d}, J 11.9)$,

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$5.46(1 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}, \mathrm{s}), 4.03(1 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{d}, J 16.1), 2.07(4 \mathrm{H}, \mathrm{m}), 1.93(1 \mathrm{H}, \mathrm{d}, J$ 5.6), $1.85(2 \mathrm{H}, \mathrm{m}), 1.78(3 \mathrm{H}, \mathrm{s}), 1.21(6 \mathrm{H}, \mathrm{s}), 1.02(1 \mathrm{H}, \mathrm{d}, J 9.7), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.82(3 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{EI}) 430\left(\mathrm{M}^{+}\right), 412,394,379,376,351,336,305,291,283,265,237,227$, $209,195,174,156,141,134,131,105,91,81,75,59$ and 43. Data of 8at: $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ MeOH, 9:1) 0.32; $[\alpha]^{20}{ }_{D}-36.0$ (c 0.8 in CHCl_{3}); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3412$, 2928, 2853, 1449, 1378, 1215, 1157, 1044, 909 and 757; $d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.33(1 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{m})$, $4.08(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and 16.5$), 2.02(5 \mathrm{H}, \mathrm{m}), 1.86(3 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.58$ $(4 \mathrm{H}, \mathrm{m}), 1.21(6 \mathrm{H}, \mathrm{s}), 1.00(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and 12.9$), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.77(3 \mathrm{H}, \mathrm{s})$; $d_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.2,132.5,127.1,120.3,70.9,70.9,64.1,53.7,48.4,44.2,40.7,39.0$ $36.8,33.9,32.9,32.6,30.6,29.1,29.0,27.2,23.5,23.1,22.7,21.7,21.4,15.8$ and $12.5 ; m / z$ (EI) $432\left(\mathrm{M}^{+}\right) 414,396,378,363,343,341,325,301,285,277,273,259,199,161,140,105$, 95, 55 and 43.

$(1 R, 3 S)-5-[(Z)-2-[(1 R, 4 \mathrm{a} R, 8 \mathrm{a} R)-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-8 a-m e t h y l-$

1,2,3,4,4a,7,8,8a-octahydro-5-naphthyl]ethenyl]cyclohex-4-ene-1,3-diol (4ar).

Ynediene 34ar was hydrogenated using Lindlar catalyst in the presence of quinoline according to the above general procedure to give protected 4ar. The crude product was deprotected using TBAF according to the above general procedure. The product was purified by HPLC (n-hexane-acetone, 7:3) to give 4ar (GAO 182, 83% from 34ar) as a white powder: R_{f} (n-hexane-acetone, 2:1) 0.28; mp 137-139 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+11.0$ (c 0.371 in CHCl_{3}); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 248,220$ and 206; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3410,2932,2856,1633,1465,1378$, $1217,1156,1083,1044,978,939,828$ and $756 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 5.91(1 \mathrm{H}, \mathrm{d}, J 12.2)$, $5.76(1 \mathrm{H}, \mathrm{d}, J 12.2), 5.70(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 1.8), 5.39(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.0), 4.85(3 \mathrm{H}, \mathrm{s}), 4.36(1 \mathrm{H}$, $\mathrm{m}), 3.99(1 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 4.5$), 2.25-1.05(22 \mathrm{H}, \mathrm{m}), 1.29(6 \mathrm{H}, \mathrm{s}), 0.93(3$

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$\mathrm{H}, \mathrm{d}, J 6.9)$ and $0.91(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(\mathrm{DEPT} ; 50 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 139.9(\mathrm{C}), 138.5(\mathrm{C}), 133.9(\mathrm{CH})$, $132.3(\mathrm{CH}), 131.2(\mathrm{CH}), 127.2(\mathrm{CH}), 72.3(\mathrm{C}), 67.0(\mathrm{CH}), 66.0(\mathrm{CH}), 56.1(\mathrm{CH}), 51.5(\mathrm{CH})$, $46.1\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right), 38.8(\mathrm{C}), 36.0\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 32.7(\mathrm{CH}), 30.0$ $\left(2 \mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right)$ and 14.3 $\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 416\left(\mathrm{M}^{+}, 2 \%\right), 398$ (2), 311 (2), 281 (2), 267 (4), 223 (6), 213 (8), 160 (8), 131 (10), 105 (16), 91 (30), 69 (40), 58 (70) and 43 (100).
(1R,3S)-5-[2-[(1R,3aS,7aR)-1-((1R)-5-Hydroxy-1,5-dimethylhexyl)-7a-methyl-2,3,3a,6,7,7a-hexahydro- $1 H$-inden-4-yl]ethyl]-4-methylcyclohex-4-ene-1,3-diol (7at).

Ynediene 33at was hydrogenated using Lindlar catalyst in the absence of quinoline according to the above general procedure. The crude product was purified by HPLC $(0.1 \%$ EtOAc in n pentane) to give protected 7at, which was consequently deprotected using TBAF according to the above general procedure. The crude product was purified by HPLC (n-hexane-acetone, 5:3) to give 7at (GAO 320, 66\% from 33at): R_{f} (isooctane-acetone, 1:1) $0.52 ;[\alpha]^{20}{ }_{\mathrm{D}}-54.9$ (c 0.35 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3354,2946,2872,1469,1377,1218,1156,1044,941,911$ and $850 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 5.26(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{s})$, 2.35-1.00(28 H, m), $1.17(6 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.5)$ and $0.71(3 \mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}(\mathrm{DEPT} ; 125 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 139.9$ (C), 133.3 (C), 128.7 (C), 120.8 (CH), 71.5 (C), 71.5 (CH), 64.7 (CH), 55.9 $(\mathrm{CH}), 52.2(\mathrm{CH}), 45.3\left(\mathrm{CH}_{2}\right), 43.5(\mathrm{C}), 41.9\left(\mathrm{CH}_{2}\right), 40.2\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 37.6$ $(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{2}\right)$, $21.9\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right)$ and $11.6\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 400(3 \%, \mathrm{M}-18), 382(6), 367$ (5), 364 (4), 348 (2), 282 (5), 245 (12), 243 (6), 203 (8), 147 (28), 85 (55) and 58 (100).

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2002
Supplementary data

2,3,3a,6,7,7a-hexahydro-1H-inden-4-yl]ethyl]cyclohex-4-ene-1,3-diol (7ar).

Protected previtamin 3ar was hydrogenated using Lindlar catalyst in the absence of quinoline according to the above general procedure. The crude product was purified by HPLC $(0.1 \%$ EtOAc in n-pentane) to give protected 7ar, which was consequently deprotected using TBAF according to the above general procedure. The crude product was purified by HPLC (n -hexane-acetone, 5:3) to give 7 ar (GAO 305, 81% from 3ar): R_{f} (isooctane-acetone, 1:1) $0.39 ;[\alpha]^{20}{ }_{\mathrm{D}}-53.0\left(\mathrm{c} 0.474\right.$ in CHCl_{3}); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3354,2946,2872,1469,1377,1218$, 1156, 1064, 941, 911, 850 and 696; $d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 5.48(1 \mathrm{H}$, br.s), $5.24(1 \mathrm{H}$, br.s), $4.27(1 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}, \mathrm{m}), 2.24(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 4.3$), 2.10-1.05(24 \mathrm{H}, \mathrm{m}), 1.16(6 \mathrm{H}$, s), $0.98(3 \mathrm{H}, \mathrm{d}, J 6.5)$ and $0.71(3 \mathrm{H}, \mathrm{s})$; $d_{\mathrm{C}}\left(\mathrm{DEPT} ; 125 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 140.6(\mathrm{C}), 139.7(\mathrm{C})$, $124.1(\mathrm{CH}), 121.0(\mathrm{CH}), 71.7(\mathrm{C}), 66.3(\mathrm{CH}), 65.1(\mathrm{CH}), 56.1(\mathrm{CH}), 52.3(\mathrm{CH}), 45.5\left(\mathrm{CH}_{2}\right)$, $43.6(\mathrm{C}), 40.9\left(\mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 38.0\left(2 \mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 37.7(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 29.6$ $\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right)$ and 11.8 $\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 404\left(\mathrm{M}^{+}\right), 386(10 \%), 368$ (4), 353 (4), 327 (4), 273 (5), 245 (15), 213 (6), 187 (12), 147 (40), 81 (70) and 58 (100).

$(1 R, 3 S)-5-[2-[(1 R, 4 a S, 8 \mathrm{aR})-1-((1 R)-5-H y d r o x y-1,5-d i m e t h y l h e x y l)-8 a-m e t h y l-$

1,2,3,4,4a,7,8,8a-octahydro-5-naphthyl]ethyl]cyclohex-4-ene-1,3-diol (8ar).

Ynediene 34ar was hydrogenated using Lindlar catalyst in the absence of quinoline according to the above general procedure to give protected 8ar. The crude product was deprotected using TBAF according to the above general procedure. The product was purified by HPLC (n -hexane-acetone, 7:3) to give 8ar (GAO 181, 81% from 34ar) as a white powder: R_{f} (n -hexane-acetone, 2:1) $0.28 ; \mathrm{mp} 140-142{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-67.8$ (c 0.36 in CHCl_{3}); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3367,2930,2860,1664,1467,1448,1378,1356,1216,1156,1083,1049,972,936,910$ and

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$829 ; d_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 5.48(1 \mathrm{H}, \mathrm{m}), 5.35(1 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{m}), 2.26$ ($1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 16.9), 2.20-0.85 $(26 \mathrm{H}, \mathrm{m}), 1.17(6 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{d}, J 6.9)$ and $0.82(3$ $\mathrm{H}, \mathrm{s}) ; d_{\mathrm{C}}\left(\mathrm{DEPT} ; 50 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 141.3(\mathrm{C}), 140.1(\mathrm{C}), 124.7(\mathrm{CH}), 122.7(\mathrm{CH}), 72.3(\mathrm{C})$, $67.0(\mathrm{CH}), 65.8(\mathrm{CH}), 56.3(\mathrm{CH}), 50.5(\mathrm{CH}), 46.1\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right)$, $39.0(\mathrm{C}), 36.3\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 32.8(\mathrm{CH}), 30.0\left(2 \mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right), 25.7$ $\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right)$ and $14.0\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 418\left(\mathrm{M}^{+}\right.$, $0.5 \%), 400$ (3), 382 (2), 258 (4), 213 (3), 133 (8), 105 (15), 91 (30) and 58 (100).

X-ray crystal structure analysis of compound 17.

Table 4. Relevant torsion angles $\left({ }^{\circ}\right)$ of the side chain of $\mathbf{1 7}$.

Torsion angle	Molecule A	Molecule B	Molecule C	Molecule D
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(19)$	74.7	70.6	72.1	75.8
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(21)$	95.2	92.8	91.0	97.3
$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(22)$	-141.2	-143.5	-146.4	-140.2
$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{O}(23)$	65.3	172.4	177.9	68.0
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{O}(23)$	-166.8	-60.7	-54.5	-163.5
$\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{O}(23)-\mathrm{C}(24)$	155.3	110.5	106.3	154.6
$\mathrm{C}(22)-\mathrm{O}(23)-\mathrm{C}(24)-\mathrm{O}(25)$	5.6	1.2	5.6	4.8
$\mathrm{C}(22)-\mathrm{O}(23)-\mathrm{C}(24)-\mathrm{N}(26)$	-174.2	-178.4	-174.8	-174.2
$\mathrm{O}(23)-\mathrm{C}(24)-\mathrm{N}(26)-\mathrm{C}(27)$	175.2	172.1	175.3	179.7
$\mathrm{O}(25)-\mathrm{C}(24)-\mathrm{N}(26)-\mathrm{C}(27)$	-4.6	-7.5	-5.1	0.7
$\mathrm{C}(24)-\mathrm{N}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	-99.9	-78.7	-82.4	-101.8
$\mathrm{C}(24)-\mathrm{N}(26)-\mathrm{C}(27)-\mathrm{C}(38)$	136.6	157.9	153.8	133.3
$\mathrm{~N}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	-59.6	-18.8	-24.1	-64.0

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2002

Supplementary data

$\mathrm{C}(38)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	63.2	102.2	98.7	58.8

Table 5. Geometry of the intermolecular hydrogen bonds in the crystal structure of $\mathbf{1 7}$.

D-H----A [position]	H----A (Å)	D----A (Å)	D-H----A ($\left.{ }^{\circ}\right)$
N(26A)-H(26A)----O(25B) [-1-x, -1/2+y, -1-z]	2.17	3.010	164
N(26B)-H(26B)----O(25A)	2.13	2.977	170
N(26C)-H(26C)----O(25D) [-1-x, -1/2+y, -1-z]	2.08	2.929	173
N(26D)-H(26D)----O(25C)	2.23	3.075	168

