Supplementary Material for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2003

Supplementary data

Studies on the Lewis acid mediated cleavage of α -

aminoacetals: Synthesis of Novel 1,2-Aminoethers, and

Evidence for α -Alkoxy Aziridinium Ion Intermediates.

Mark A. Graham,^a Alan H. Wadsworth,^b Abdul Zahid^a and Christopher M.

Rayner^a*

^aSchool of Chemistry, University of Leeds, Leeds, LS2 9JT, UK;

email c.m.rayner@chem.leeds.ac.uk

^bGlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts., SG1 2NY, UK.

> Correlation of ¹H NMR spectra between the *syn* and *anti* diastereomeric series.

Supplementary data

Although actual chemical shifts differ considerably, the difference in chemical shift between the protons H_a and H_b is consistently greater in the *anti* stereoisomer than in the *syn*. In the case of the uracil adduct (**37** R = Bn), only the *syn* product is obtained, however, the value of δ H_a- δ H_b is comparable to that for the pyridone *syn* product (**38** R = Bn). Similarly, a comparison of the difference in chemical shifts of the diastereotopic *N*-benzylic methylene protons for *syn* and *anti* products (δ H_c - δ H_d) again reveals that in all cases where a comparison is available, the difference in chemical shifts is consistently greater for the products assigned as *syn* compared to those for the *anti*. In the case of the uracil adduct **37** the value of δ H_c - δ H_d is large, which is consistent with the other *syn* examples (Table S4).

Comparative data was only obtained for compounds comprising >10% in mixture.

Supplementary Material for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2003

Supplementary data

Table S4. Correlation of ¹H NMR data of *syn* and *anti* products to confirm stereochemical assignments.