# Glycosyl phenylthiosulfonates (Glyco-PTS): Novel Protein Glycosylating Reagents 

David P. Gamblin, Philippe Garnier, Sarah J. Ward, Neil J. Oldham, Antony J. Fairbanks,* and Benjamin G. Davis*

## Supporting Information

## Sodium phenylthiosulfonate (NaPTS)



Sodium benzenesulfinate ( $10 \mathrm{~g}, 61 \mathrm{mmol}$ ) and sulfur ( $1.95 \mathrm{~g}, 61 \mathrm{mmol}$ ) were dissolved in anhydrous pyridine ( 60 mL ) to give a yellow solution. The reaction was stirred under argon and after 1 h gave a white suspension. The reaction was filtered and washed with anhydrous diethyl ether. Recrystalisation from anhydrous ethanol afforded sodium phenylthiosulfonate ( $10.5 \mathrm{~g}, 88 \%$ ) as a white crystalline solid m.p. 305-306 ${ }^{\circ} \mathrm{C}$ [Lit. $\left.287{ }^{\circ} \mathrm{C}\right]^{1}$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right)$ 7.28-7.76 (5H, m, Ar-H); $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 219\left(\mathrm{MNa}^{+}, 100 \%\right)$.

## 2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl phenylthiosulfonate 2a



2,3,4,6-tetra- $O$-acetyl- $\alpha$-D-glucopyranosyl bromide 4 a ( $207 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) was dissolved in anhydrous acetonitrile ( 5 mL ). To this sodium phenylthiosulfonate ( $201 \mathrm{mg}, 1 \mathrm{mmol}$ ) and tetrabutylammonium bromide ( $16 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) were added. The resulting mixture was stirred under argon at $70^{\circ} \mathrm{C}$. After a 4.5 h period, t.l.c.
(petrol:ethyl acetate, 1:1) indicated the formation of a product $\left(\mathrm{R}_{\mathrm{f}} 0.5\right)$ with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} 0.3$ ). The solution was concentrated in vacuo. The crude solid was partitioned between DCM ( 20 mL ) and water ( 20 mL ), and the aqueous layer re-extracted with DCM ( $2 \times 20 \mathrm{~mL}$ ). The combined organics were washed with brine ( 20 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 1:1) to afford 2,3,4,6-tetra- $O$-acetyl- $\beta$-D-glucopyranosyl phenylthiosulfonate 2a ( $225 \mathrm{mg}, 88 \%$ ) as a white crystalline solid $\mathrm{mp} 129-130^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+51.2$ (c, 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) 1754(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1376(\mathrm{~s}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.68$, $1.72,1.73,1.75(4 \times 3 H, 4 \times \mathrm{s}, 4 \times \mathrm{OAc}), 3.09\left(1 \mathrm{H}, \operatorname{ddd}, J_{4,5} 10.2 \mathrm{~Hz}, J_{5,6} 2.4 \mathrm{~Hz}, J_{5,6}\right.$, $4.2 \mathrm{~Hz}, \mathrm{H}-5), 3.83\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.4 \mathrm{~Hz}, J_{6,6} 12.7 \mathrm{~Hz}, \mathrm{H}-6\right), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 4.2 \mathrm{~Hz}\right.$, $\left.J_{6,6^{\circ}} 12.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 5.17-5.23$ (2H, m, H-2, H-4), 5.40 ( $1 \mathrm{H}, \mathrm{d}, J_{1,2} 10.2 \mathrm{~Hz}, \mathrm{H}-1$ ), 5.44 (1H, at, $J 9.4 \mathrm{~Hz}, \mathrm{H}-3), 6.98-7.03$ (3H, m, Ar-H), 7.90-7.92 (2H, m, Ar-H); $\delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) 20.1, 20.1, 20.3 ( $3 \mathrm{x} \mathrm{s}, 4 \mathrm{x} \mathrm{CH}_{3}$ ) 61.4 (t, C-6), $68.0,69.4$ (2 x d, C-2, C-4), 74.0 (d, C-3), 76.6 (d, C-5), 87.4 (d, C-1), 127.4, 128.0, 128.2, 128.4, 128.6, 129.3 ( $6 \times \mathrm{d}, 5 \mathrm{x}$ Ar-C), 146.9 (s, $\mathrm{SO}_{2}-\mathrm{C}$ ), 169.1, 169.3, 169.8, 170.0 (4 x s, $4 \times \mathrm{CO}$ ); $\mathrm{m} / \mathrm{z}$ (HRMS TOF ES ${ }^{+}$) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{11} \mathrm{~S}_{2}\left(\mathrm{MNH}_{4}{ }^{+}\right)$522.1104. Found 522.1110).

## 2,3,4,6-Tetra-O-acetyl- $\beta$-D-galactopyranosyl phenylthiosulfonate 2c



2,3,4,6-tetra- $O$-acetyl- $\alpha$-D-galactopyranosyl bromide $\mathbf{4 c}(2.0 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in anhydrous acetonitrile ( 80 mL ). To this sodium phenylthiosulfonate $(2.02 \mathrm{~g}, 10.3 \mathrm{mmol})$ and tetrabutylammonium bromide ( $160 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) were added. The resulting mixture was stirred under argon at $70^{\circ} \mathrm{C}$. After a 5 h period, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a product $\left(\mathrm{R}_{\mathrm{f}} 0.4\right)$ with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} 0.6$ ). The solution was concentrated in vacuo. The crude oil was partitioned between DCM ( 50 mL ) and water $(50 \mathrm{~mL})$, and the aqueous layer re-extracted with DCM ( $2 \times 50 \mathrm{~mL}$ ). The combined organics were washed brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 2:1) to afford 2,3,4,6-tetra- $O$-acetyl- $\beta$-D-galactopyranosyl phenylthiosulfonate $2 \mathrm{c}(1.7 \mathrm{~g}$, $65 \%, 2$ steps) as a white crystalline solid $\mathrm{mp} 53-54^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}+24.2\left(\mathrm{c}, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{\max }(\mathrm{KBr}) 1756(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1366(\mathrm{~s}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.98, 2.03, 2.06, $2.11(4 \times 3 H, 4 \times \mathrm{s}, 4 \times \mathrm{OAc}), 3.85\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 8.8 \mathrm{~Hz}, J_{6,6}, 14.0 \mathrm{~Hz}, \mathrm{H}-6\right), 3.95-4.00$ (2H, m, H-5, H-6), 5.11 ( $1 \mathrm{H}, \mathrm{dd}, J_{2,3} 9.7 \mathrm{~Hz}, J_{3,4} 3.3 \mathrm{~Hz}, \mathrm{H}-3$ ), 5.23 ( 1 H , at, J 10.3 Hz , $\mathrm{H}-2), 5.25\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 10.2 \mathrm{~Hz}, \mathrm{H}-1\right), 5.43\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 3.6 \mathrm{~Hz}, J_{4,5} 1.0 \mathrm{~Hz}, \mathrm{H}-4\right)$, 7.54-7.68 (3H, m, Ar-H), 7.93-7.97 (2H, m, Ar-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ 20.4, 20.5, 20.6 ( $3 \mathrm{x} \mathrm{d}, 4 \times \mathrm{CH}_{3}$ ), 60.7 (t, C-6), 65.9 (d, C-2), 66.8 (d, C-4), 71.5 (d, C-3), 75.0 (d, C-5), 87.3 (d, C-1), 127.0, 128.0, 129.2, 129.3, 134.0 ( $5 \mathrm{x} \mathrm{d}, 5 \mathrm{x}$ Ar-C), 146.0 (s, $\mathrm{SO}_{2}-\mathrm{C}$ ), $169.6,167.0(2 \mathrm{x} \mathrm{s}, 4 \times \mathrm{CO}) ; \mathrm{m} / \mathrm{z}$ LRMS ( $\mathrm{ES}^{+}$) $525 \mathrm{MNa}^{+} 100 \% ; \mathrm{m} / \mathrm{z}$ HRMS $\left(\mathrm{ES}^{+}\right)$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{11} \mathrm{~S}_{2}\left(\mathrm{MNH}_{4}^{+}\right)$522.1104 Found 522.1109.

Ethyl 2,3,4,6-tetra-O-acetyl-1-dithio- $\beta$-D-glucopyranosyl disulfide 5a


2,3,4,6-Tetra-O-acetyl- $\beta$-D-glucopyranosyl phenylthiosulfonate 2 a (100 mg, $0.2 \mathrm{mmol})$ and triethylamine $(0.03 \mathrm{~mL}, 0.2 \mathrm{mmol})$ were dissolved in anhydrous DCM ( 10 mL ) and stirred at RT under an atmosphere of argon. A solution of ethane thiol ( $0.016 \mathrm{~mL}, 0.2 \mathrm{mmol}$ ) in anhydrous DCM ( 10 mL ) was slowly added dropwise via a syringe pump over a 30 min period. After a 40 min period, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a major product ( $\mathrm{R}_{\mathrm{f}} 0.5$ ) along with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} 0.3$ ). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 1:1) to afford ethyl 2,3,4,6-tetra-O-acetyl-1-dithio- $\beta$-D-glucopyranosyl disulfide 5 a ( $70 \mathrm{mg}, 82 \%$ ) as a white crystalline solid $\mathrm{mp} 95-96^{\circ} \mathrm{C}$ [Lit. $\left.100-102^{\circ} \mathrm{C}\right]^{2}$; $[\alpha]_{\mathrm{D}}^{22}-164.9\left(\mathrm{c}, 0.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)\left[\text { Lit. }[\alpha]_{\mathrm{D}}{ }^{24}-178.0(\mathrm{c}, 1.0 \text { in } \mathrm{MeOH})\right]^{2} ; v_{\text {max }}(\mathrm{KBr})$ $1749(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30\left(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.00,2.02$, 2.03, $2.06\left(4 \times 3 H, 4 \times \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 2.79\left(2 \mathrm{H}, \mathrm{dq}, J_{\mathrm{CH} 3-\mathrm{H}} 7.5 \mathrm{~Hz}, J_{\mathrm{HH}} 2.7 \mathrm{~Hz}\right), 3.73(1 \mathrm{H}$, ddd, $\left.J_{4,5} 10.2 \mathrm{~Hz}, J_{5,6} 2.5 \mathrm{~Hz}, J_{5,6}, 4.8 \mathrm{~Hz}, \mathrm{H}-5\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.4 \mathrm{~Hz}, J_{6,6} 12.4 \mathrm{~Hz}\right.$, H-6), 4.22 ( $\left.1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 4.7 \mathrm{~Hz}, J_{6,6}, 12.4 \mathrm{~Hz}, \mathrm{H}^{6} \mathrm{~b}^{\prime}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 9.8 \mathrm{~Hz}, \mathrm{H}-1\right)$, $5.10(1 \mathrm{H}$, at, $J 9.8 \mathrm{~Hz}, \mathrm{H}-4), 5.21-5.26(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.2$ (q, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ), 20.5, $20.6\left(2 \mathrm{x} \mathrm{q}, 4 \times \mathrm{CH}_{3}\right), 34.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 62.0(\mathrm{t}, \mathrm{C}-6), 68.0,(\mathrm{~d}, \mathrm{C}-$ 4), 69.1, 73.8 ( $2 \mathrm{x} \mathrm{d}, \mathrm{C}-2, \mathrm{C}-3$ ), 76.0 (d, C-5), 88.0 (d, C-1), 169.1, 169.4, 170.2, 170.5, ( $4 \times \mathrm{x} \mathrm{s}, 4 \times \mathrm{C}=\mathrm{O}$ ); m/z (ES+) $447.074\left(\mathrm{MNa}^{+}, 100 \%\right) ; \mathrm{m} / \mathrm{z}$ HRMS (ES $\left.{ }^{+}\right)$Calcd. For $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{NaS}_{2}\left(\mathrm{MNa}^{+}\right)$447.0759. Found 447.0764.

## Ethyl 2,3,4,6-tetra-O-acetyl-1-dithio-3-D-galactopyranosyl disulfide 5c



2,3,4,6-Tetra-O-acetyl- $\beta$-D-galactopyranosyl phenylthiosulfonate 2 c ( 100 mg , $0.2 \mathrm{mmol})$ and triethylamine ( $0.03 \mathrm{~mL}, 0.2 \mathrm{mmol}$ ) were dissolved in anhydrous DCM ( 10 mL ) and stirred at RT under an atmosphere of argon. A solution of ethane thiol ( $0.016 \mathrm{~mL}, 0.2 \mathrm{mmol}$ ) in anhydrous DCM ( 10 mL ) was slowly added dropwise via a syringe pump over a 30 min period. After a 40 min period, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a major product $\left(R_{f} 0.4\right)$ along with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} 0.3$ ). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 1:1) to afford ethyl 2,3,4,6-tetra-O-acetyl-1-dithio- $\beta$-D-galactopyranosyl disulfide $5 \mathbf{c}(78 \mathrm{mg}, 91 \%)$ as a white crystalline solid $\mathrm{mp} 65-66^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-52.1$ (c, 1.4 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) 1746(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30(1 \mathrm{H}, \mathrm{t}, J$ $\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.95,2.01,2.02,2.13\left(4 \mathrm{x} 3 \mathrm{H}, 4 \mathrm{x} \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 2.79\left(2 \mathrm{H}, \mathrm{dq}, J_{\mathrm{CH} 3-\mathrm{H}}\right.$ $7.2 \mathrm{~Hz}, J_{\mathrm{HH}} 1.7 \mathrm{~Hz}$ ), $3.94\left(1 \mathrm{H}, \mathrm{td}, J_{4,5} 0.9 \mathrm{~Hz}, J_{5,6} 6.3 \mathrm{~Hz}, J_{5,6} 7.0 \mathrm{~Hz}, \mathrm{H}-5\right), 4.06(1 \mathrm{H}$, dd, $\left.J_{5,6} 6.3 \mathrm{~Hz}, J_{6,6^{\prime}} 11.3 \mathrm{~Hz}, \mathrm{H}-6\right), 4.12\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6^{\cdot}} 7.0 \mathrm{~Hz}, J_{6,6} 11.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.51$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 9.9 \mathrm{~Hz}, \mathrm{H}-1\right), 5.05\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 9.9 \mathrm{~Hz}, J_{3,4} 3.6 \mathrm{~Hz}, \mathrm{H}-3\right), 5.35-5.40(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2, \mathrm{H}-4) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.5,20.6,20.7$, $21.0(4 \mathrm{x} \mathrm{q}, 4 \mathrm{x}$ $\mathrm{CH}_{3}$ ), $34.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.5(\mathrm{t}, \mathrm{C}-6), 66.7,67.2(2 \mathrm{x} \mathrm{d}, \mathrm{C}-2, \mathrm{C}-4), 71.8(\mathrm{~d}, \mathrm{C}-3), 74.7$ (d, C-5), 89.8 (d, C-1), 169.3, 170.0, 170.1, 170.3, ( $4 \times \mathrm{x} \mathrm{s}, 4 \times \mathrm{C}=\mathrm{O}$ ); m/z (ES+) 447 $\left(\mathrm{MNa}^{+}, 100 \%\right), 442\left(\mathrm{MNH}_{4}{ }^{+}, 90 \%\right) ; \mathrm{m} / \mathrm{z}$ HRMS $\left(\mathrm{ES}^{+}\right)$Calcd. For $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{~S}_{2} \mathrm{Na}$ $\left(\mathrm{MNa}^{+}\right)$447.0759. Found 447.0768.

## bis-N-Acetyl-L-cysteinyl-L-serine methylester


bis-L-Cysteinyl-L-serine methylester ( $100 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) was dissolved in methanol $(5 \mathrm{~mL})$. To this solution acetic anhydride $(0.09 \mathrm{~mL}, 0.92 \mathrm{mmol})$ and pyridine $(0.075 \mathrm{~mL}, 0.92 \mathrm{mmol})$ were added. After a 15 min period, t.l.c. (ethyl acetate:methanol 5:1) indicated the formation of a major product $\left(\mathrm{R}_{\mathrm{f}} 0.5\right)$ along with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.1\right)$. The reaction was concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate:methanol 5:1) to afford bis- $N$-acetyl-L-cysteinyl-L-serine methylester ( $60 \mathrm{mg}, 50 \%$ ) as a white crystalline solid $\mathrm{mp} 145-147^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-33.4$ (c, 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.96\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 13.9 \mathrm{~Hz}\right.$, $\left.J_{\text {CH, }, ~} 4.7 \mathrm{~Hz}, \mathrm{CysCHH}\right), 3.23\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 13.9 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{aH}} 4.7 \mathrm{~Hz}, \mathrm{CysCH} \underline{H}\right), 3.76$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), $3.83\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 11.4 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{H}} 4.1 \mathrm{~Hz}, \operatorname{SerCHH}\right), 3.93$ (1H, dd, $\left.J_{\mathrm{CH}, \mathrm{H}} 11.3 \mathrm{~Hz}, J_{\mathrm{CH}, \alpha \mathrm{H}} 4.9 \mathrm{~Hz}, \operatorname{SerCHH}\right), 4.55(1 \mathrm{H}, \mathrm{t}, J 4.3 \mathrm{~Hz}, \alpha \mathrm{HSer}), 4.87(1 \mathrm{H}, \mathrm{t}, J$ 4.8, $\alpha \mathrm{HCys})$.

## $N$-Acetyl-L-cysteinyl-L-serine methylester


bis- $N$-Acetyl-L-cysteinyl-L-serine methylester ( $1.92 \mathrm{~g}, 3.96 \mathrm{mmol}$ ) was dissolved in wet chloroform $(100 \mathrm{~mL})$ and methanol $(10 \mathrm{~mL})$ and stirred. To this stirred solution tributylphosphine ( $1.1 \mathrm{~mL}, 4.36 \mathrm{mmol}$ ) was added. After a 2 h period, t.l.c. (ethyl acetate:methanol 10:1) indicated the formation of a product ( $\mathrm{R}_{\mathrm{f}} 0.6$ ) along with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} 0.3$ ). The reaction was concentrated in vacuo. Recrystallization from ethyl acetate/methanol afforded N -acetyl-L-cysteinyl-L-serine methylester ( $1.77 \mathrm{~g}, 93 \%$ ) as a white crystalline solid mp $127-128{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-32.0(\mathrm{c}, 1.0$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.89(1 \mathrm{H}$, at, $J 8.9 \mathrm{~Hz}, \mathrm{SH}), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.84-2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CysCHH}), 2.97-3.04(1 \mathrm{H}, \mathrm{m}$, CysCHH $)$, 3.79 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), 3.91 ( 1 H , dd, $J_{\mathrm{CH}, \mathrm{H}} 11.4 \mathrm{~Hz}, J_{\mathrm{CH}, \alpha \mathrm{H}} 3.1 \mathrm{~Hz}, \operatorname{SerCHH}$ ), $4.03\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 11.7 \mathrm{~Hz}, J_{\mathrm{CH}, \alpha \mathrm{H}} 4.2 \mathrm{~Hz}, \operatorname{SerCHH}\right), 4.61-4.65(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{HSer})$, 4.71-4.76 ( $1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{HCys}$ ), $6.93\left(1 \mathrm{H}, \mathrm{d}, J_{\alpha \mathrm{H}, \mathrm{NH}} 7.8 \mathrm{~Hz}, \mathrm{NHCys}\right), 7.73\left(1 \mathrm{H}, \mathrm{d}, J_{\alpha \mathrm{H}, \mathrm{NH}}\right.$ 7.4 Hz, NHSer).

## $N$-Acetyl-L-cysteine (2,3,4,6-tetra-O-acetyl-1-dithio- $\beta$-D-glucopyranosyl

 disulfide)-L-serine methylester 6a

2,3,4,6-Tetra-O-acetyl- $\beta$-D-glucopyranosyl phenylthiosulfonate ( $61 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) was dissolved in anhydrous DCM ( 5 mL ) and stirred at RT under an atmosphere of argon. To this $N$-acetyl-L-cysteine-L-serine methylester ( $32 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) and triethylamine ( $0.015 \mathrm{~mL}, 0.11 \mathrm{mmol}$ ) in anhydrous DCM ( 10 mL ) and anhydrous methanol ( 0.5 mL ) were slowly added dropwise via a syringe pump over a 4 h period.

After a 5 h period, t.l.c. (ethyl acetate:methanol, 10:1) indicated the formation of a major product $\left(\mathrm{R}_{\mathrm{f}} 0.5\right)$ along with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.3\right.$, (t.l.c system (petrol:ethyl acetate, 1:1)). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate:methanol, 10:1) to afford $N$-acetyl-L-cysteine (2,3,4,6-tetra- $O$-acetyl-1-dithio-$\beta$-D-glucopyranosyl disulfide)-L-serine methylester ( $75 \mathrm{mg}, 99 \%$ ) as a white crystalline solid mp $126-128^{\circ} \mathrm{C}\left[\text { Lit. } 125-128^{\circ} \mathrm{C}\right]^{2} ;[\alpha]_{\mathrm{D}}{ }^{25}-47.9\left(\mathrm{c}, 0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)[$ Lit. $[\alpha]_{\mathrm{D}}{ }^{24}-178.0(\mathrm{c}, 1.0$ in MeOH$\left.)\right]^{2} ; v_{\max }(\mathrm{KBr}) 3306(\mathrm{bs}, \mathrm{OH}, \mathrm{NH}), 1746(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $1639,1543(\mathrm{~s}, \mathrm{NH}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.03,2.06,2.07,2.11(5 \mathrm{x} 3 \mathrm{H}, 4 \mathrm{x} \mathrm{s}$, $\left.5 \mathrm{x} \mathrm{CH}_{3}\right), 3.05\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 13.9 \mathrm{~Hz}, J_{\mathrm{CH}, \alpha \mathrm{H}} 8.8 \mathrm{~Hz}\right.$, CysCHH$), 3.28(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\mathrm{CH}, \mathrm{H}} 13.9 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{H}} 4.8 \mathrm{~Hz}, \mathrm{CysCH} \underline{\mathrm{H}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5} 10.0\right.$ $\left.\mathrm{Hz}, J_{5,6} 2.2 \mathrm{~Hz}, J_{5,6}, 4.1 \mathrm{~Hz}, \mathrm{H}-5\right), 3.94\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 11.7 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{aH}} 3.0 \mathrm{~Hz}\right.$, SerCHH), 4.00 ( 1 H , dd, $J_{\mathrm{CH}, \mathrm{H}} 13.8 \mathrm{~Hz}, J_{\mathrm{CH}, \alpha \mathrm{H}} 3.7 \mathrm{~Hz}$, $\operatorname{SerCHH}$ ), 4.23 ( 1 H , dd, $\left.J_{5,6} 4.2 \mathrm{~Hz}, J_{6,6}, 12.4 \mathrm{~Hz}, \mathrm{H}-6\right), 4.38\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}{ }^{\prime} 2.0 \mathrm{~Hz}, J_{6,6}, 12.5 \mathrm{~Hz}, \mathrm{H}-6\right.$ '), 4.62-4.65 (1H, m, $\alpha$ HSer), $4.64\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 9.5 \mathrm{~Hz}, \mathrm{H}-1\right), 4.90-4.94(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{HCys})$, $5.18(1 \mathrm{H}$, at $, J 10.1 \mathrm{~Hz}, \mathrm{H}-4), 5.24-5.29(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3), 6.94\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{NH}, \mathrm{H}} 7.9 \mathrm{~Hz}\right.$, NHAc), $7.52\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{NH}, \mathrm{H}} 7.6 \mathrm{~Hz}, \mathrm{NHSer}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.5,20.7(2 \times \mathrm{q}$, $\left.5 \times \mathrm{CH}_{3}\right), 42.2\left(\mathrm{t}, \mathrm{CysCH}_{2}\right), 52.5\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 54.8,54.9(\mathrm{~d}, \alpha \mathrm{HSer}, \alpha \mathrm{HCys}), 61.6(\mathrm{t}$, $\mathrm{SerCH}_{2}$ ), 62.3 (t, C-6), 67.7,(d, C-4), 65.9 (d, C-3), 73.6 (d, C-2), 76.0 (d, C-5), 88.4 (d, C-1), 169.2, 169.3, 170.0, 170.3, 170.4, 170.5, 170.7, 171.2 ( $8 \times \mathrm{x} \mathrm{s}, 7 \mathrm{CO}$ ); m/z $(\mathrm{ES}+) 627\left(\mathrm{MH}^{+}, 60 \%\right), 649\left(\mathrm{MNa}^{+}, 100 \%\right) ; \mathrm{m} / \mathrm{z}$ HRMS (ES $\left.{ }^{+}\right)$Calcd. For $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{14} \mathrm{~N}_{2} \mathrm{Na}^{23} \mathrm{~S}_{2}\left(\mathrm{MNa}^{+}\right)$649.1349. Found 649.1352.

## $N$-Acetyl-L-cysteine (2,3,4,6-tetra- $O$-acetyl-1-dithio-_-D-galactopyranosyl disulfide)-L-serine methylester 6c



2,3,4,6-Tetra- $O$-acetyl- $\beta$-D-galactopyranosyl phenylthiosulfonate $2 \mathbf{2 c}$ ( 50 mg , 0.1 mmol ) was dissolved in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ and stirred at RT under an atmosphere of argon. A solution of $N$-acetyl-L-cysteine-L-serine methylester ( 31 mg , $0.12 \mathrm{mmol})$ and triethylamine ( $0.015 \mathrm{~mL}, 0.11 \mathrm{mmol}$ ) in anhydrous $\mathrm{DCM}(10 \mathrm{~mL})$ and anhydrous methanol ( 0.5 mL ) was slowly added dropwise via a syringe pump over a 2 h period. After a 2 h period, t.l.c. (ethyl acetate:methanol, 10:1) indicated the formation of a major product $\left(\mathrm{R}_{\mathrm{f}} 0.5\right)$ along with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} \quad 0.5$, (t.l.c system (petrol:ethyl acetate, $\left.1: 1\right)$ ). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate:methanol, 10:1) to afford N -acetyl-L-cysteine (2,3,4,6-tetra- O -acetyl-1-dithio- $\beta$-D-galactopyranosyl disulfide)-L-serine methylester 6c (59 mg, 95\%) as a white amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{25}-48.8$ (c, 0.25 in $\mathrm{CHCl}_{3}$ ); $v_{\text {max }}(\mathrm{KBr}) 3306$ (bs, OH , NH ), 1746 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 1639, $1543(\mathrm{~s}, \mathrm{NH}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.99, 2.04, 2.05, 2.08, $2.18\left(5 \times 3 H, 4 \times s, 5 \times H_{3}\right), 2.80(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 14.1 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{CH}, \alpha \mathrm{H}} 9.2 \mathrm{~Hz}, \mathrm{CysCHH}\right), 3.32,3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 11.7 \mathrm{~Hz}, J_{\mathrm{CH}, \alpha \mathrm{H}}\right.$ $3.0 \mathrm{~Hz}, \operatorname{SerCH} \mathrm{H}), 4.01\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 11.7 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{aH}} 3.7 \mathrm{~Hz}, \operatorname{SerCH} H\right), 4.06-4.14$ (2H, m, H-5, H-6), 4.20-4.26 (1H, m, H-6'), 4.61-4.63 (1H, m, $\alpha$ HSer), $4.65(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1,2} 9.8 \mathrm{~Hz}, \mathrm{H}-1\right), 4.88-4.93(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{HCys}), 5.11\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 9.8 \mathrm{~Hz}, J_{3,4} 3.3 \mathrm{~Hz}\right.$,

H-3), 5.42-5.47 (2H, m, H-2, H-4), $6.68\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{NH}, \mathrm{H}} 7.8 \mathrm{~Hz}, \mathrm{NHAc}\right), 7.28(1 \mathrm{H}, \mathrm{d}$, $\left.J_{\mathrm{NH}, \mathrm{H}} 8.1 \mathrm{~Hz}, \mathrm{NHSer}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.6,20.7,20.8,21.0,23.1(5 \mathrm{x} \mathrm{q}$, $5 \mathrm{xCH}_{3}$ ), $42.0\left(\mathrm{t}, \mathrm{CysCH}_{2}\right), 52.7$ (q, d, $\left.\mathrm{OCH}_{3}, \alpha \mathrm{HCys}\right), 54.8$ (d, $\alpha \mathrm{HSer}$ ), 61.7 (t, C-6), $62.4\left(\mathrm{t}, \mathrm{SerCH}_{2}\right), 66.5,67.2$ ( $2 \mathrm{x} \mathrm{d}, \mathrm{C}-2, \mathrm{C}-4$ ), 71.7 (d, C-3), 74.9 (d, C-5), 89.7 (d, C-1), 169.5, 170.0, 170.2, 170.3, 170.4, 170.9, 171.0 ( $7 \mathrm{x} \mathrm{s}, 7 \mathrm{x}$ CO); m/z (ES+) 627 $\left(\mathrm{MH}^{+}, 100 \%\right), 649\left(\mathrm{MNa}^{+}, 20 \%\right) . \mathrm{m} / \mathrm{z}$ HRMS $\left(\mathrm{ES}^{+}\right)$Calcd. For $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}\left(\mathrm{MH}^{+}\right)$ 627.1530. Found 627.1528).

## 2,3,4,6-Tetra-O-benzyl- $\alpha$-D-glucopyranose bromide 4b



2,3,4,6-Tetra- $O$-benzyl-D-glucopyranose ( $1.0 \mathrm{~g}, 1.9 \mathrm{mmol}$ ) was dissolved in anhydrous DCM ( 6 mL ) and anhydrous DMF ( 0.4 mL ) under argon. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$. Oxalyl bromide ( $4 \mathrm{~mL}, 2 \mathrm{M}$ in $\mathrm{DCM}, 24 \mathrm{mmol}$ ) was added dropwise over a 5 min period. The reaction was stirred at RT. After a 40 min period, t.l.c. (petrol:ethyl acetate, 2:1) indicated the formation of a major product $\left(R_{f}\right.$ 0.7). The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched with ice cold water $(30 \mathrm{~mL})$ added over a 5 min period. The reaction was partitioned between $\mathrm{DCM}(20 \mathrm{~mL})$ and water. The aqueous layer was re-extracted with DCM ( $3 \times 20 \mathrm{~mL}$ ), the combined organic layers were washed with brine $(40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford 2,3,4,6-tetra-O-benzyl-D- $\alpha$-glucopyranosyl bromide ( $1.10 \mathrm{~g}, 95 \%$ ) as a crude yellow oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 3.5 \mathrm{~Hz}, J_{2,3} 9.1 \mathrm{~Hz}, \mathrm{H}-2\right)$, $3.68\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.1 \mathrm{~Hz}, J_{6,6^{\prime}} 11.0 \mathrm{~Hz}, \mathrm{H}-6\right), 3.79-3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-6^{\prime}\right), 4.07(1 \mathrm{H}$, at, $J 9.1 \mathrm{~Hz}, \mathrm{H}-3), 4.07-4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.47-4.62\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 4.74(\mathrm{~s}, 2 \mathrm{H}$,
$\left.\mathrm{PhCH}_{2}\right), 4.84-4.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 5.10\left(1 \mathrm{H}, \mathrm{d}, J 11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 6.46(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-$ 1), $7.15-7.41(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$.

## 2,3,4,6-Tetra- $O$-benzyl- $\boldsymbol{\beta}$-D-glucopyranosyl phenylthiosulfonate 2b



2,3,4,6-Tetra-O-benzyl-D- $\alpha$-glucopyranosoyl bromide $\mathbf{4 b}$ ( $3.55 \mathrm{~g}, 5.88 \mathrm{mmol}$ ) and sodium phenylthiosulfonate $(4.76 \mathrm{~g}, 24.3 \mathrm{mmol})$ were dissolved in anhydrous 1,4 dioxane ( 90 mL ). The reaction was heated to $70{ }^{\circ} \mathrm{C}$ under argon. After 20 h , t.l.c. (petrol:ethyl acetate, 2:1) indicated the formation of a major product ( $\mathrm{R}_{\mathrm{f}} 0.6$ ) with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} 0.7$ ). The reaction was cooled to RT and filtered, the precipitate was washed with petrol/ethyl acetate and the filtrate concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 4:1) to afford 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl phenylthiosulfonate ( $3.18 \mathrm{~g}, 78 \%$ ) as a white viscous gum as a mixture of $\alpha, \beta$ compounds both in an $\beta: \alpha$ ratio of 3:1. Selective re-crystallisation from ethyl acetate/petrol afforded pure 2,3,4,6-tetra-O-benzyl- $\beta$-D-glucopyranosyl phenylthiosulfonate 2b as a white crystalline solid m.p. $106-108{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+21.4$ (c, 0.35 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }$ (Thin film) 1328, $1362(\mathrm{~s}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 3.21$ ( 1 H , ddd, $J_{4,5} 9.7 \mathrm{~Hz}, J_{5,6} 1.4 \mathrm{~Hz}, J_{5,6}, 3.8 \mathrm{~Hz}, \mathrm{H}-5$ ), $3.29\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 1.4 \mathrm{~Hz}, J_{6,6}\right.$, $11.1 \mathrm{~Hz}, \mathrm{H}-6), 3.34\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 9.9 \mathrm{~Hz}, J_{2,3} 8.7 \mathrm{~Hz}, \mathrm{H}-2\right), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 3.8 \mathrm{~Hz}\right.$, $J_{6,6}{ }^{\prime} 11.1 \mathrm{~Hz}, \mathrm{H}-6$ '), $3.51(1 \mathrm{H}$, at, $J 9.4 \mathrm{~Hz}, \mathrm{H}-3), 3.60(1 \mathrm{H}$, at, $J 9.4 \mathrm{~Hz}, \mathrm{H}-4), 4.15$, $4.25\left(2 \mathrm{H}, \mathrm{ABq}, J 12.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.52$, $4.58\left(2 \mathrm{H}, \mathrm{ABq}, J 11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.72$,
$4.76\left(2 \mathrm{H}, \mathrm{ABq}, J 11.3 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.78,4.52\left(2 \mathrm{H}, \mathrm{ABq}, J 11.3 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 5.25$ ( $1 \mathrm{H}, \mathrm{d}, J_{1,2} 10.2 \mathrm{~Hz}, \mathrm{H}-1$ ), 6.82-6.88 (3H, m, Ar-H), 7.05-7.26 (20H, m, Ar-H), 7.96-7.98 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 69.1$ (t, C-6), 73.8, 75.1, 75.7, 75.9 (4 x d, $4 \times \mathrm{PhCH}_{2}$ ), 77.7 (d, C-4), 80.0 (d, C-2), 86.9 (d, C-3), 89.2 (d, C-1), 127.8, 128.1, 128.3, 128.3, 128.5, 128.6, 128.7, 128.8, 128.9, 129.2 ( $9 \mathrm{x} \mathrm{d}, 25 \mathrm{x} \mathrm{Ar}-\mathrm{C}$ ), 138.4, 139.0, 139.3, 139.4 (4 x s, $4 \times \mathrm{Ar}-\mathrm{C}), 147.7$ (s, $\left.\mathrm{SO}_{2}-\mathrm{C}\right) ;$ m/z (ES) $714\left(\mathrm{MNH}_{4}{ }^{+}\right.$, $48 \%), 719\left(\mathrm{MNa}^{+}, 100 \%\right) . \mathrm{m} / \mathrm{z}$ HRMS $\left(\mathrm{ES}^{+}\right)$Calcd. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Na}^{23}\left(\mathrm{MNa}^{+}\right)$ 719.2115. Found 719.2115. (Found: C, $68.80 \%$; H, $5.80 \% . \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires: C , 68.94\%; H, 5.79\%).

Ethyl 2,3,4,6-tetra-O-benzyl-1-dithio- $\boldsymbol{\beta}$-D-glucopyranosyl disulfide 5b


2,3,4,6-Tetra- $O$-acetyl- $\beta$-D-glucopyranosyl phenylthiosulfonate 2b $(100 \mathrm{mg}$, $0.14 \mathrm{mmol})$ and triethylamine $(0.02 \mathrm{~mL}, 0.14 \mathrm{mmol})$ were dissolved in anhydrous DCM ( 10 mL ) and stirred at RT under an atmosphere of Ar. To this ethane thiol $(11 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(10 \mathrm{~mL})$ was slowly added dropwise via a syringe pump over a 90 min period. After a 90 min period, t.l.c. (petrol:ethyl acetate, 6:1) indicated the formation of a major product ( $\mathrm{R}_{\mathrm{f}} 0.4$ ) along with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} 0.2$ ). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 7:1) to afford ethyl 2,3,4,6-tetra- $O$-benzyl-1-dithio- $\beta$-D-glucopyranosyl disulfide 5b (83 mg, 95\%) as a clear oil; $[\alpha]_{\mathrm{D}}{ }^{22}-164.9$ (c, 0.2 in $\mathrm{CHCl}_{3}$ ) $\left[\right.$ Lit. $[\alpha]_{\mathrm{D}}{ }^{25}-$
$80.0(\mathrm{c}, 3.0$ in MeOH$)]^{2} ; v_{\max }(\mathrm{KBr}) 3019(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1495,1526(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }_{\mathrm{H}} \mathrm{H}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $1.22\left(1 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.68-2.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.24(1 \mathrm{H}$, ddd, $\left.J_{4,5} 9.7 \mathrm{~Hz}, J_{5,6} 3.3 \mathrm{~Hz}, J_{5,6}{ }^{\prime} 2.1 \mathrm{~Hz}, \mathrm{H}-5\right)$, $3.56-3.60$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-6$ '), 3.61 (1H, at, J 9.1 Hz, H-3), 3.72 (1H, at, J $9.4 \mathrm{~Hz}, \mathrm{H}-4), 3.89$ ( 1 H, at, $J 9.1 \mathrm{~Hz}, \mathrm{H}-2$ ), 4.34 ( $1 \mathrm{H}, \mathrm{d}, J_{1,2} 9.7 \mathrm{~Hz}, \mathrm{H}-1$ ), 4.37, 4.31 (2H, Abq, $\left.J 12.2 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.56,4.83(2 \mathrm{H}$, Abq, $\left.J 11.3 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.77-4.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 4.90(1 \mathrm{H}, \mathrm{d}, J 11.1 \mathrm{~Hz}, \mathrm{PhCHH})$, 4.97 ( $1 \mathrm{H}, \mathrm{d}, J 10.7 \mathrm{~Hz}, \mathrm{PhCHH}), 7.07-7.21$ ( $14 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), $7.25-7.27$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), 7.29-7.31 (2H, m, Ar-H), 7.36-7.38 (2H, m, Ar-H); $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.8$ (q, $\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}$ ), 34.6 (t, $\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}$ ), 69.6 (t, C-6), 73.8, 75.2, 75.7, 75.8 (4 x t, $4 \times \mathrm{PhCH}_{2}$ ), 78.2 (d, C-4), 79.8 (d, C-5), 80.2 (d, C-2), 87.2 (d, C-3), 90.5 (d, C-1), 127.9, 128.0, 128.1, $128.2,128.6,128.8,128.9$ ( $7 \mathrm{x} \mathrm{d}, 16 \mathrm{x}$ Ar-C), $139.2,139.4,139.7$ (3x s, $4 \times \mathrm{Ar}-\mathrm{C}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 634\left(\mathrm{MNH}_{4}^{+}, 100 \%\right), 639\left(\mathrm{MNa}^{+}, 90 \%\right) ; \mathrm{m} / \mathrm{z}$ HRMS (ES $\left.{ }^{+}\right)$ Calcd. For $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{NS}_{2}\left(\mathrm{MNH}_{4}{ }^{+}\right)$634.2661. Found 634.2656.

## $N$-Acetyl-L-cysteine (2,3,4,6-tetra-O-benzyl-1-dithio- $\beta$-D-glucopyranosyl disulfide)-L-serine methylester 6b



2,3,4,6-Tetra- $O$-benzyl- $\beta$-D-glucopyranosyl phenylthiosulfonate 2b (50 mg, $0.07 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ and stirred at RT under an atmosphere of Ar. To this $N$-acetyl-L-cysteine-L-serine methylester ( 19 mg , $0.07 \mathrm{mmol})$ and triethylamine ( $11 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$ ) in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ and
anhydrous methanol $(0.5 \mathrm{~mL})$ was slowly added dropwise via a syringe pump over a 5 h period. After a 5 h period, t.l.c. (ethyl acetate) indicated the formation of a major product $\left(R_{f} 0.6\right)$ along with complete consumption of the starting material $\left(\begin{array}{ll}R_{f} & 0.9\end{array}\right)$. The solution was concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate) to afford $N$-acetyl-L-cysteine (2,3,4,6-tetra- $O$-benzyl-1-dithio- $\beta$-D-glucopyranosyl disulfide)-L-serine methylester $\mathbf{6 b}$ ( $48 \mathrm{mg}, 82 \%$ ) as a white crystalline solid $\mathrm{mp} 96-97^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+56.2$ (c, 1 in $\mathrm{CHCl}_{3}$ ); $v_{\max }(\mathrm{KBr}) 3274$ (bs, OH,NH), 1743 (s, C=O), 1640, $1543(\mathrm{~s}, \mathrm{NH}), 1372(\mathrm{~s}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 14.0 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{H}} 8.3 \mathrm{~Hz}, \mathrm{CysCHH}\right)$, $3.37\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{H}} 14.3 \mathrm{~Hz}, J_{\mathrm{CH}, \alpha \mathrm{H}} 6.0 \mathrm{~Hz}, \mathrm{CysCH} \underline{\mathrm{H}}\right), 3.64\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5} 9.6 \mathrm{~Hz}\right.$, $\left.J_{5,6} 1.8 \mathrm{~Hz}, J_{5,6} 3.9 \mathrm{~Hz}, \mathrm{H}-5\right), 3.72(1 \mathrm{H}$, at, $J 9.2 \mathrm{~Hz}, \mathrm{H}-4), 3.77(1 \mathrm{H}, \mathrm{at}, J 8.8 \mathrm{~Hz}$, H-3), 3.82 (3H, s, OMe), 3.84-3.90 (4H, m, SerCHH, H-2, H-6, H-6'), 3.96 (1H, dd, $\left.J_{\mathrm{CH}, \mathrm{H}} 11.7 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{aH}} 3.3 \mathrm{~Hz}, \operatorname{SerCHH}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 9.6 \mathrm{~Hz}, \mathrm{H}-1\right), 4.51,4.70(2 \mathrm{H}$, $\left.\mathrm{ABq}, J 11.6 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.55,4.85\left(2 \mathrm{H}, \mathrm{ABq}, J 10.4 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.59-4.62(1 \mathrm{H}, \mathrm{m}$, $\alpha$ HSer), 4.81, 4.87 (2H, ABq, $J 10.6 \mathrm{~Hz}, \mathrm{PhCH}_{2}$ ), $4.91,4.97$ (2H, ABq, $J 11.0 \mathrm{~Hz}$, PhCH 2 ), 4.93-4.98 ( $1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{HCys}$ ), $6.88\left(1 \mathrm{H}, \mathrm{bd}, J_{\mathrm{NH}, \mathrm{H}} 7.9 \mathrm{~Hz}, \mathrm{NHAc}\right)$, 7.13-7.39 $(20 \mathrm{H}, \mathrm{m}, 20 \mathrm{x} \mathrm{Ar}-\mathrm{C}), 7.48\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{NH}, \mathrm{H}} 7.6 \mathrm{~Hz}, \mathrm{NHSer}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.3$ $\left(\mathrm{q}, \mathrm{COCH}_{3}\right), 41.6\left(\mathrm{t}, \mathrm{CysCH}_{2}\right), 52.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 53.1(\mathrm{~d}, \alpha \mathrm{CSer}), 54.9(\mathrm{~d}, \alpha \mathrm{CCys})$, 62.3 (t, $\mathrm{SerCH}_{2}$ ), 68.7 (t, C-6), 73.3, 74.9,75.3, 75.5 ( $4 \mathrm{x} \mathrm{t}, 4 \times \mathrm{PhCH}_{2}$ ), 77.2,(d, C-4), 78.6 (d, C-5), 79.0 (d, C-2), 86.3 (d, C-3), 88.9 (d, C-1), 127.5, 127.6, 127.8, 128.1, 128.3, 128.5 ( $6 \times \mathrm{d}$, 24 x Ar-C), 136.137.6, 137.7, 138.3 (4 x s, $4 \times$ Ar-C), 170.3, $170.4,170.6(3 \mathrm{x} \mathrm{s}, 3 \mathrm{x} \underline{\mathrm{CO}}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 819\left(\mathrm{MH}^{+}, 95 \%\right), 841\left(\mathrm{MNa}^{+}, 100 \%\right) ; \mathrm{m} / \mathrm{z}$ HRMS (ES ${ }^{+}$) Calcd. For $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{O}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}\left(\mathrm{MH}^{+}\right)$819.2985. Found 819.3011.

## 1,2,3,6-tetra-O-acetyl-4-O-(2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- $\alpha-O$ -glucopyranosyl)- $\alpha$-D-glucopyranosyl)-D-glucopyranose



Sodium acetate ( $700 \mathrm{mg}, 8.3 \mathrm{mmol}$ ) was added to acetic anhydride ( 50 mL ) and heated to reflux, at which point maltotriose ( $3.00 \mathrm{~g}, 6.0 \mathrm{mmol}$ ) was added and stirred vigorously. After 90 min , t.l.c. (petrol:ethyl acetate, 1:2) indicated the formation of a product ( $\mathrm{R}_{\mathrm{f}} 0.3$ ) with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.0\right)$. The reaction was allowed to cool to RT and diluted with $\mathrm{DCM}(50 \mathrm{~mL})$ and partitioned with water $(100 \mathrm{~mL})$. The phases were separated and the aqueous layer was re-extracted with DCM ( $2 \times 50 \mathrm{~mL}$ ). The combined organic layers were washed with sodium hydrogen carbonate ( 400 mL of a saturated aqueous solution) until pH 8 was obtained, brine ( 200 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford 1,2,3,6-tetra- $O$-acetyl-4-O-(2,3,6-tri- $O$-acetyl-4- $O$-(2,3,4,6-tetra- $O$-acetyl- $\alpha-O$ -glucopyranosyl)- $\alpha$-D-glucopyranosyl)-D-glucopyranose as a mixture of anomers $(\alpha / \beta, 2 / 11)$ as an amorphous white solid; $v_{\max }(\mathrm{KBr}) 1758(\mathrm{~s}, \mathrm{C}=\mathrm{O})$; For $\beta$ compound $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.05,2.07,2.10,2.14,2.15,2.19,2.21,2.27(30 \mathrm{H}, 8 \mathrm{x} \mathrm{s}$, 10 x OAc), $3.92\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4,5} 9.5 \mathrm{~Hz}, J_{5,6} 2.9 \mathrm{~Hz}, J_{6,6} 4.1 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}\right), 3.95-4.01(3 \mathrm{H}$, m, H-4b, H-5b, H-5c), $4.05(1 \mathrm{H}$, at, $J 9.1 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.09\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.5 \mathrm{~Hz}, J_{6,6}\right.$, $12.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 3.4 \mathrm{~Hz}, J_{6,6}, 12.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}\right.$ $\left.3.4 \mathrm{~Hz}, J_{6,6}, 12.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{c}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 4.3 \mathrm{~Hz}, J_{6,6}, 12.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.48-4.52$ (2H, m, H-6'a, H-6'b), 4.78 ( 1 H, dd, $\left.J_{1,2} 4.1 \mathrm{~Hz}, J_{2,3} 10.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}\right), 4.90\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}\right.$ $\left.4.1 \mathrm{~Hz}, J_{2,3} 10.6 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{c}\right), 5.01\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 8.0 \mathrm{~Hz}, J_{2,3} 9.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 5.11(1 \mathrm{H}$, at,
$J 10.1 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{c}), 5.31\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.32-5.44(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-3 \mathrm{~b}$, $\mathrm{H}-3 \mathrm{c}), 5.45\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 4.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{c}\right), 5.79\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.2 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) 20.3, 20.5, 20.7, 20.8, 20.9, 22.0 ( $6 \mathrm{x} \mathrm{q}, 10 \mathrm{x} \mathrm{Ac}$ ), $61.2(\mathrm{t}, \mathrm{C}-6 \mathrm{c}), 62.1(\mathrm{t}$, C-6b), 62.5 (t, C-6c), 67.7 (d, C-4c), 68.4, 68.9, 72.3 ( $3 \mathrm{x} \mathrm{d}, \mathrm{C}-4 \mathrm{~b}, \mathrm{C}-5 \mathrm{~b}, \mathrm{C}-5 \mathrm{c}$ ), 69.2, 71.5 (2 x d, C-3b, C-3c), 69.9 (d, C-2c), 70.3 (d, C-2b), 70.8 (d, C-2a), 72.8 (d, C-5a, 73.3 (d, C-4a), 75.0 (d, C-3a), 91.1 (d, C-1a), $95.5,95.8$ ( $2 \times \mathrm{d}, \mathrm{C} 1 \mathrm{~b}, \mathrm{C}-1 \mathrm{c}$ ), 168.7, $169.3,169.5,169.7,169.8,170.2,170.3,170.4,170.5$ ( $9 \mathrm{x} \mathrm{s}, 10 \times \mathrm{CO}$ ); For $\alpha$ compound selected data only, $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.08,2.09,2.12,2.18,2.21,2.23$, $2.26(30 \mathrm{H}, 8 \mathrm{x} \mathrm{s}, 10 \times \mathrm{OAc}), 5.07(1 \mathrm{H}$, at, $J 9.9 \mathrm{~Hz}), 6.28\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right)$. Remaining signals lie in the following multiplet regions, 3.85-3.89, 3.90-3.98, 3.99-4.07, 4.15-4.18, 4.23-4.27, 4.29-4.32, 4.43-4.49, 4.74-4.76, 4.84-4.87, 4.98-4.94, 5.25-5.54; m/z (ES+) $984\left(\mathrm{MNH}_{4}^{+}, 30 \%\right), 989\left(\mathrm{MNa}^{+}, 100 \%\right) ; \mathrm{m} / \mathrm{z}$ HRMS (ES $\left.{ }^{+}\right)$ Calcd. For $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{27} \mathrm{~N}\left(\mathrm{MNH}_{4}{ }^{+}\right)$984.3196 Found 984.3199.

## 2,3,6-Tri-O-acetyl-4-O-(2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- $\alpha-O$ -

 glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\alpha$-D-glucopyranosyl bromide 4d

1,2,3,6-Tetra- $O$-acetyl-4-O-(2,3,6-tri- $O$-acetyl-4- $O$-(2,3,4,6-tetra- $O$-acetyl- $\alpha-O$ -
glucopyranosyl)- $\alpha$-D-glucopyranosyl)-D-glucopyranose ( $200 \mathrm{mg}, 0.21 \mathrm{mmol}$ ) was dissolved in anhydrous DCM ( 5 mL ). To this hydrogen bromide ( $33 \%$ in acetic acid, 2 mL ) was added. The mixture was left under argon at RT. After a 30 min period,
t.l.c. (petrol:ethyl acetate, 1:2) indicated the formation of a product $\left(\mathrm{R}_{\mathrm{f}} 0.6\right)$ with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} \quad 0.3$ ). The reaction mixture was partitioned between $\operatorname{DCM}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, and the aqueous layer reextracted with DCM (3 x 10 mL ). The combined organic layers were washed with sodium hydrogen carbonate ( 20 mL of a saturated aqueous solution) until pH 8 was obtained, brine ( 20 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford 2,3,6-tri- $O$-acetyl-4-O-(2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra- $O$-acetyl- $\alpha-O$ -glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\alpha$-D-glucopyranosyl bromide 4d (203 mg, $98 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}^{22}+152.2\left(\mathrm{c}, 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\text {max }}(\mathrm{KBr}) 1758(\mathrm{~s}, \mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 2.03, 2.05, 2.06, 2.08, 2.10, 2.13, 2.18, $2.21\left(30 \mathrm{H}, 10 \times \mathrm{COCH}_{3}\right)$, 3.93-3.99 (3H, m, H-4b, H-5a, H-5b), 4.05-4.10 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{c}, \mathrm{H}-6 \mathrm{a}$ ), 4.20 ( $1 \mathrm{H}, \mathrm{dd}$, $J_{5,6} 1.8 \mathrm{~Hz}, J_{6,6}, 12.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ ), 4.26-4.34 (2H, m, H-5c, H-6a'), 4.35 ( $1 \mathrm{H}, \mathrm{dd}, J_{5,6} 3.5$ $\left.\mathrm{Hz}, J_{6,6} \cdot 12.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}\right), 4.52\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 0.6 \mathrm{~Hz}, J_{6,6} \cdot 12.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right.$ '), $4.57(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5,6} 2.1 \mathrm{~Hz}, J_{6,6} \cdot 12.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}{ }^{\prime}\right)$ ), $4.74\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.1 \mathrm{~Hz}, J_{2,3} 9.9 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{c}\right), 4.78$ (1H, dd, $\left.J_{1,2} 4.2 \mathrm{~Hz}, J_{2,3} 10.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}\right), 4.88$ ( $1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.0 \mathrm{~Hz}, J_{2,3} 10.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}$ ), $5.10(1 \mathrm{H}$, at, $J 9.7 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 5.32\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 4.0 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.39(1 \mathrm{H}$, at, $J 9.9 \mathrm{~Hz}$, H-3q), 5.43-5.46 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$ ), $5,45\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 5.64(1 \mathrm{H}$, at, $J 9.5 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{c}), 6.53\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{c}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}, \mathrm{MeOD}) 20.5,20.6,20.8$, (3 x q, $10 \times \mathrm{COCH}_{3}$ ), 61.3 (t, C-6a), 61.9 (t, C-6b), 62.1 (t, C-6c), 67.9 (d, C-4a), 68.4 (d, C-5a), 69.1, 72.2 ( $2 \mathrm{x} \mathrm{d}, \mathrm{C}-4 \mathrm{~b}, \mathrm{C}-5 \mathrm{~b}$ ), 69.3 (d, C-3a), 70.0 (d, C-2a), 70.4 (d, C-2b), 71.0 (d, C-2c), 71.6 (d, C-3b), 72.2 (d, C-3c), 72.5 ( $2 \times \mathrm{d}, \mathrm{C}-4 \mathrm{c}, \mathrm{C}-5 \mathrm{c}$ ), 85.9 (d, C-1c), 95.6 (d, C-1b), 95.9 (d, C-1a), 169.4, 169.6, 169.8, 170.3, 170.5, 170.6, 170.8 (7x s, $\left.10 \mathrm{x} \mathrm{COCH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 1004,1006\left(\mathrm{MNH}_{4}^{+}, 100 \%\right), 1009,1011\left(\mathrm{MNa}^{+}, 70 \%\right)$.

## 2,3,6-Tri-O-acetyl-4-O-(2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- $\alpha-O$ -

glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\beta$-D-glucopyranosyl phenylthiosulfonate
2d


2,3,6-Tri- $O$-acetyl-4- $O$-(2,3,6-tri- $O$-acetyl-4- $O-(2,3,4,6$-tetra- $O$-acetyl- $\alpha-O-$
glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\alpha$-D-glucopyranosyl bromide 4d (200 mg, $.21 \mathrm{mmol})$ was dissolved in anhydrous acetonitrile $(10 \mathrm{~mL})$. To this sodium benzenethiosulfonate ( $80 \mathrm{mg}, 0.41 \mathrm{mmol}$ ) and tetrabutylammonium iodide ( 10 mg , 0.02 mmol ) were added. The resulting mixture was stirred under argon at $70^{\circ} \mathrm{C}$. After a 2 h period, t.l.c. (petrol:ethyl acetate, 1:2) indicated the formation of a UV active product ( $\mathrm{R}_{\mathrm{f}} 0.5$ ) with complete consumption of the starting material $\left(\begin{array}{ll}\mathrm{R}_{\mathrm{f}} & 0.5\end{array}\right)$. At which point the solution was allowed to cool to RT and filtered, the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 1:2) to afford 2,3,6-tri- $O$-acetyl-4-O-(2,3,6-tri- $O$-acetyl-4-O-(2,3,4,6-tetra- $O$-acetyl- $\alpha$ - $O$-glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\beta$-Dglucopyranosyl phenylthiosulfonate 2 d ( $140 \mathrm{mg}, 62 \%$ ) as a white amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{22}+69.9\left(\mathrm{c}, 0.75\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) 2963(\mathrm{~m}, \mathrm{C}-\mathrm{H}), 1748(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1372(\mathrm{~s}$, $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.03,2.04,2.06,2.08,2.11,2.15,2.19,(30 \mathrm{H}$, $\left.10 \times \mathrm{COCH}_{3}\right), 3.77-3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}), 3.94-4.00(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-4 \mathrm{c}, \mathrm{H}-5 \mathrm{~b}, \mathrm{H}-5 \mathrm{c})$, $4.10\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.1 \mathrm{~Hz}, J_{6,6}, 12.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.17-4.22$ ( $3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{c}, \mathrm{H}-6 \mathrm{a}^{\prime}$ ), $4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 3.3 \mathrm{~Hz}, J_{6,6^{\prime}} 12.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\prime}\right), 4.46\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 1.9 \mathrm{~Hz}, J_{6,6^{\prime}} 12.4 \mathrm{~Hz}\right.$, H-6c'), 4.76 ( $1 \mathrm{H}, \mathrm{dd}, J_{1,2} 3.9 \mathrm{~Hz}, J_{2,3} 10.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}$ ), 4.89-4.94 (2H, m, H-2b, H-2c), $5.12(1 \mathrm{H}$, at, $J 9.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}), 5.28\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}\right), 5.34\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 9.7 \mathrm{~Hz}\right.$,
$\mathrm{H}-1 \mathrm{c}), 5.37(1 \mathrm{H}$, at, $J 9.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{c}), 5.41(1 \mathrm{H}$, at, $J 10.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 5.41-5.45(2 \mathrm{H}, \mathrm{m}$, H-1b, H-3a), 7.62-7.65 (2H, m, Ar-H), 7.71 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), 8.00-8.02 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.3,20.4,20.5,20.6,20.7\left(5 \mathrm{x} \mathrm{q}, 10 \times \mathrm{COCH}_{3}\right), 61.3(\mathrm{t}, \mathrm{C}-6 \mathrm{~b})$, 62.2 (t, C-6a), 62.5 (t, C-6c), 67.8 (d, C-4b), 68.4, 68.9, 72.4, 73.2 (4 x d, C-4a, C-4c, C-5a, C-5b), 69.2 (d, C-3a), 69.3, 70.0 ( 2 x d, C-2b, C-2c), 70.3 (d, C-2), 71.4 (d, C--3a), 75.5 (d, C-3c), 76.4 (d, C-5c), 86.2 (d, C-1c), 95.6, 95.7 ( $2 \times \mathrm{d}, \mathrm{C}-1 \mathrm{a}$, C-1b), 126.9, 129.2 ( $2 \mathrm{xd}, 5 \mathrm{x} \mathrm{Ar}-\mathrm{C}$ ), 133.9 ( $\mathrm{s}, \mathrm{Ar}-\mathrm{C}$ ), $169.5,170.4$ ( 2 x s , $\left.10 \mathrm{x} \mathrm{COCH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 1103\left(\mathrm{MNa}^{+}, 100 \%\right)$. (Found: C, $48.62 \% ; \mathrm{H}, 5.01 \%$. $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{O}_{27} \mathrm{~S}_{2}$ requires: $\left.\mathrm{C}, 48.89 \% ; \mathrm{H}, 5.22 \%\right)$.

## Ethyl 2,3,6-tri- O-acetyl-4-O-(2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- $\alpha$ - O-

 glucopyranosyl)- $\alpha$-D-glucopyranosyl)- 1-dithio- $\beta$-D-glucopyranosyl disulfide 5d

2,3,6-Tri- $O$-acetyl-4-O-(2,3,6-tri- $O$-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- $\alpha-O-$
glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\beta$-D-glucopyranosyl phenylthiosulfonate 2d ( $50 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) was dissolved in anhydrous DCM ( 10 mL ) and stirred at RT under an atmosphere of argon. A solution of triethylamine ( $7 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$ ) and ethane thiol ( $3 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$ ) and anhydrous $\mathrm{DCM}(10 \mathrm{~mL})$ was slowly added dropwise via a syringe pump over a 1 h period. After a 1 h period, t.l.c. (petrol:ethyl acetate, 1:2) indicated the formation of a major product $\left(\mathrm{R}_{\mathrm{f}} 0.6\right)$ along with complete
consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} \quad 0.4\right)$. The solution was concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 1:2) to afford ethyl 2,3,6-tri- $O$-acetyl-4- $O$-(2,3,6-tri- $O$-acetyl-4- $O-(2,3,4,6-$ tetra- $O$-acetyl- $\alpha$ - $O$-glucopyranosyl)- $\alpha$-D-glucopyranosyl)-1-dithio- $\beta$-Dglucopyranosyl disulfide $5 \mathbf{d}(43 \mathrm{mg}, 93 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}{ }^{24}+26.4$ (c, 1.5 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) 1752(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30(1 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.04,2.05,2.06,2.07,2.10,2.14,2.19,2.20\left(30 \mathrm{H}, 8 \times \mathrm{s}, 10 \times \mathrm{COCH}_{3}\right), 2.75-$ $2.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.77-3.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}), 3.96-4.00(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}, \mathrm{H}-5 \mathrm{c}$, H-5b), 4.03 (1H, at, $J 9.3 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.3 \mathrm{~Hz}, J_{6,6}, 12.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}\right)$, $4.22\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 2.9 \mathrm{~Hz}, J_{6,6} \cdot 12.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 3.7 \mathrm{~Hz}, J_{6,6} \cdot 12.4 \mathrm{~Hz}\right.$, H-6'c), 4.33 ( $\left.1 \mathrm{H}, \mathrm{dd}, J_{5,6} 4.4 \mathrm{~Hz}, J_{6,6}{ }^{\prime} 12.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.51\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}{ }^{\prime} .8 \mathrm{~Hz}, J_{6,6}\right.$ ' $12.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ ', 4.57 ( 1 H , dd, $J_{5,6} 2.3 \mathrm{~Hz}, J_{6,6}, 12.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$ ) , 4.58 ( $1 \mathrm{H}, \mathrm{d}, J_{1,2}$ $9.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 4.79\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.1 \mathrm{~Hz}, J_{2,3} 10.6 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}\right), 4.90\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.3 \mathrm{~Hz}\right.$, $\left.J_{2,3} 10.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{c}\right), 5.11(1 \mathrm{H}$, at, $J 9.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{c}), 5.16(1 \mathrm{H}, \mathrm{at}, J 9.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 5.33$ ( $\left.1 \mathrm{H}, \mathrm{d}, J_{1,2} 4.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.37(1 \mathrm{H}$, at, $J 8.9 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 5.38-5.44(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$, $\mathrm{H}-3 \mathrm{c}), 5.45\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 4.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{c}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.6\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.4$, 20.5, 20.6, 20.8, 20.9 ( $5 \mathrm{x} \mathrm{q}, 10 \times \mathrm{COCH}_{3}$ ), $34.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.8(\mathrm{t}, \mathrm{C}-6 \mathrm{c}), 62.7(\mathrm{t}$, C-6b), 63.3 (t, C-6), 68.4 (d, C-4c), 68.9, 69.4, 72.9 (3 x d, C-4b, C-5b, C-5c), 69.8 (d, C-3c), 70.3 (d, C-2), 70.5 (d, C-2c), 70.9 (d, C-2b), 72.2 (d, C-3b), 73.9 (d, C-4), 76.8 (2 x d, C-5, C-3), 87.7 (d, C-1), 96.1, 96.3 ( $2 \times \mathrm{d}, \mathrm{C}-1 \mathrm{~b}, \mathrm{C}-1 \mathrm{c}$ ), 169.3, 169.5, 169.7, $170.2,170.4,170.5,171.0(7 \mathrm{x} \mathrm{s}, 10 \times \mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}+) 1017\left(\mathrm{MNH}_{4}{ }^{+}, 95 \%\right), 1022$ ( $\mathrm{MNa}^{+}, 100 \%$ ). (Found: $\mathrm{C}, 48.03 \%$; H, $5.61 \% . \mathrm{C}_{40} \mathrm{H}_{56} \mathrm{O}_{25} \mathrm{~S}_{2}$ requires: $\mathrm{C}, 48.00 \%$; H , 5.64\%).

## (2,3,4,6-tetra- $O$-acetyl- $\alpha$-O-glucopyranosyl)- $\alpha$-D-glucopyranosyl)-1-dithio- $\beta$-D-

 glucopyranosyl disulfide)-L-serine methylester 6d

2,3,6-Tri- $O$-acetyl-4-O-(2,3,6-tri- $O$-acetyl-4-O-(2,3,4,6-tetra- $O$-acetyl- $\alpha-O-$ glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\beta$-D-glucopyranosyl phenylthiosulfonate 2d ( $89 \mathrm{mg}, 0.08 \mathrm{mmol}$ ) was dissolved in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ and stirred at RT under an atmosphere of argon. A solution of triethylamine ( $0.014 \mathrm{~mL}, 0.2 \mathrm{mmol}$ ) and $N$-butoxycarbonyl-L-cysteinyl-L-serine methylester ( $30 \mathrm{mg}, 0.09 \mathrm{mmol}$ ) in anhydrous DCM ( 10 mL ) and anhydrous methanol ( 1 mL ) was slowly added dropwise via a syringe pump over a 3 h period. After a 3 h period, t.l.c. (ethyl acetate) indicated the formation of a major product $\left(\mathrm{R}_{\mathrm{f}} 0.6\right)$ along with complete consumption of the starting material ( $\mathrm{R}_{\mathrm{f}} \quad 0.7$ ). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate) to afford $N$-Butoxycarbonyl-Lcysteine (2,3,6-tri- O-acetyl-4- $O$-(2,3,6-tri- $O$-acetyl-4- $O-(2,3,4,6$-tetra- $O$-acetyl- $\alpha-O-$ glucopyranosyl)- $\alpha$-D-glucopyranosyl)-1-dithio- $\beta$-D-glucopyranosyl disulfide)-Lserine methylester $\mathbf{6 d}(66 \mathrm{mg}, 74 \%)$ as an amorphous white solid; $[\alpha]_{\mathrm{D}}{ }^{24}+25.1$ (c, 1.25 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.47\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.00,2.01,2.02,2.03$, 2.06, 2.09, 2.15, $2.18\left(30 \mathrm{H}, 8 \mathrm{x} \mathrm{s}, 10 \times \mathrm{COCH}_{3}\right), 2.75-2.87(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCys}), 3.16-$ 3.19 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \underline{\mathrm{HCys}), ~} 3.27$ ( $1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}, \mathrm{OH}$ ), 3.81 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ ), $3.83-3.85$ (1H, m, H-5a), 3.92-4.01 (6H, m, H-4b, H-5b, H-5c, H6a, H-6a', CHHSer), 4.06 (1H,
dd, $\left.J_{5,6} 2.2 \mathrm{~Hz}, J_{6,6} \cdot 12.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}\right), 4.09-4.16(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 4.25\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}\right.$ $\left.3.2 \mathrm{~Hz}, J_{6,6}, 12.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{c}^{\prime}\right), 4.39-4.41$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \boldsymbol{H S e r}$ ), 4.52-4.67 (4H, m, $\alpha \mathrm{HSer}$, $\alpha$ HCys, H-1a, H-6'b), 4.74 ( $1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.1 \mathrm{~Hz}, J_{2,3} 10.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}$ ), 4.85 ( $1 \mathrm{H}, \mathrm{dd}, J_{1,2}$ $\left.3.7 \mathrm{~Hz}, J_{2,3} 10.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{c}\right), 5.07$ ( 1 H , at, $J 9.9 \mathrm{HZ}, \mathrm{H}-4 \mathrm{c}$ ), $5.11-5.13$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}$ ), $5.28\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 4.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 5.32-5.41$ ( $4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-3 \mathrm{~b}, \mathrm{H}-3 \mathrm{c}, \mathrm{NHCys}$ ), 5.42 $\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{c}\right), 7.25\left(1 \mathrm{H}, \mathrm{bd}, J_{\mathrm{NH}, \alpha \mathrm{H}} 6.7 \mathrm{~Hz}, \mathrm{NHSer}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 20.4, 20.5, 20.7, $\left.20.8\left(4 \times \mathrm{q}, 10 \times \mathrm{COCH}_{3}\right), 28.6\left(3 \mathrm{x} \mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.8\left(\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)\right)$, 42.7 (t, CH2Cys), 53.1 (q, OMe), 54.4 (d, $\alpha$ CCys), 55.4 (d, $\alpha \mathrm{CSer}$ ), 61.7 (t, C-6c), $62.4(\mathrm{t}, \mathrm{C}-6 \mathrm{~b}), 62.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ser}\right), 63.0(\mathrm{t}, \mathrm{C}-6 \mathrm{a}), 68.4(\mathrm{~d}, \mathrm{C}-4 \mathrm{c}), 69.7,72.1,76.7(3 \mathrm{x} \mathrm{d}$. C-3a, C-3b, C-3c), 70.0 ( $2 \mathrm{xd}, \mathrm{C}-4 \mathrm{~b}, \mathrm{C}-5 \mathrm{c}$ ), 70.3 (d, C-2a), 70.5 (d, C-2b), 70.7 (d, C-2c), 72.6 (d, C-5b), 73.7 (d, C-4a), 77.3 (d, C-5a), 87.3 (d, C-1a), 95.9, 96.3 (2 x d, C-1b, C-1c), 169.3, 169.6, 169.7, 170.0, 170.2, 170.4, 170.5 (7x s, $13 \times \mathrm{C}=\mathrm{O}$ ); m/z (ES+) $1260\left(\mathrm{MH}^{+}, 20 \%\right), 1277\left(\mathrm{MNH}_{4}^{+}, 35 \%\right), 1282\left(\mathrm{MNa}^{+}, 100 \%\right)$.

## Protein glycosylation procedure for 7a

SBLS156C mutant ( $24 \mathrm{mg}, 0.89 \mu \mathrm{~mol}$ ) was dissolved in aqueous buffer solution ( $2.4 \mathrm{~mL}, 70 \mathrm{mM}$ HEPES, $2 \mathrm{mM} \mathrm{CaCl} 2, \mathrm{pH} 6.9$ ). 2,3,4,6-Tetra- $O$-acetyl- $\beta$-Dglucopyranosyl phenylthiosulfonate $2 \mathbf{2 a}$ ( $50 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) was dissolved in water/acetonitrile ( $1.6 \mathrm{~mL}, 9 / 7 \mathrm{v} / \mathrm{v}$ ). A portion of the sugar solution $(50 \mu \mathrm{~L})$ was added to the protein solution and placed on an end-over-end rotator. After 25 min , the absence of free thiol was shown by Ellman's analysis, ${ }^{3}$ at which point another portion of sugar solution ( $50 \mu \mathrm{~L}$ ) was added. The reaction was placed on an end-over-end rotator for a further 5 min , at which point the reaction mixture was loaded onto a PD10 Sephadex ${ }^{\circledR}$ G25 column and eluted with ( 70 mM HEPES, $2 \mathrm{mM} \mathrm{CaCl}_{2} \mathrm{pH} 7.0$ ). The protein fraction was collected and dialysed (MWCO 12-14 KDa) against 10 mM

MES, 1 mM CaCl 2 , pH 5.8 , ( $1 \times 4 \mathrm{~L}$ for $1 \mathrm{~h}, 2 \times 2 \mathrm{~L}$ for 30 min ), to afford $7 \mathrm{a} \mathrm{m} / \mathrm{z}(\mathrm{ES})$ found 27072 calcd. 27078.

## Protein glycosylation procedure for 7c

SBLS156C mutant ( $24 \mathrm{mg}, 0.89 \mu \mathrm{~mol}$ ) was dissolved in aqueous buffer solution ( $2.4 \mathrm{~mL}, 70 \mathrm{mM}$ HEPES, $2 \mathrm{mM} \mathrm{CaCl} 2, \mathrm{pH} 6.9$ ). 2,3,4,6-tetra- $O$-acetyl- $\beta$-Dgalactopyranosyl phenylthiosulfonate $2 \mathrm{c}(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in water/acetonitrile ( $1.0 \mathrm{~mL}, 1 / 1$ ratio). The sugar solution ( $50 \mu \mathrm{~L}$ ) was added to the protein solution and placed on an end-over-end rotator. After 25 min , the absence of free thiol was shown by Ellman's analysis, ${ }^{3}$ at which point another portion of sugar solution $(50 \mu \mathrm{l})$ was added. The reaction was placed on an end-over-end rotator for a further 5 min , at which point the reaction mixture was loaded onto a PD10 Sephadex ${ }^{\circledR}$ G25 column and eluted with ( 70 mM HEPES, $2 \mathrm{mM} \mathrm{CaCl}_{2} \mathrm{pH} 7.0$ ). The protein fraction was collected and dialysed (MWCO 12-14 KDa) against 10 mM MES, 1 mM $\mathrm{CaCl}_{2}, \mathrm{pH} 5.8$, ( $1 \times 4 \mathrm{~L}$ for $1 \mathrm{~h}, 2 \times 2 \mathrm{~L}$ for 30 min ), to afford $7 \mathrm{c} \mathrm{m} / \mathrm{z}(\mathrm{ES})$ found 27072 calcd. 27078.

## Protein glycosylation procedure for 7d

SBLS156C mutant ( $10 \mathrm{mg}, 0.37 \mu \mathrm{~mol}$ ) was dissolved in degassed aqueous buffer solution ( $1 \mathrm{~mL}, 70 \mathrm{mM}$ CHES, 5 mM MES, $2 \mathrm{mM} \mathrm{CaCl}_{2}, \mathrm{pH} 9.5$ ). 2,3,6-Tri-O-acetyl-4-O-(2,3,6-tri- $O$-acetyl-4-O-(2,3,4,6-tetra- $O$-acetyl- $\alpha-O$-glucopyranosyl)- $\alpha$-D-glucopyranosyl)- $\beta$-D-glucopyranosyl phenylthiosulfonate 2d (30mg, 0.03 mmol ) was dissolved in acetonitrile $(150 \mu \mathrm{~L})$. The sugar solution ( $75 \mu \mathrm{~L}$ ) was added to the protein solution and placed on an end-over-end rotator. After 30 min , the absence of free thiol was shown by Ellman's analysis, ${ }^{3}$ at which point the reaction mixture was
loaded onto a PD10 Sephadex ${ }^{\circledR}$ G25 column and eluted with ( 70 mM HEPES, $2 \mathrm{mM} \mathrm{CaCl}_{2} \mathrm{pH} 7.0$ ). The protein fraction was collected and dialysed (MWCO 12-14 KDa) against 10 mM MES, 1 mM CaCl 2 , pH 5.8 , ( 1 x 4 L for $1 \mathrm{~h}, 2 \times 2 \mathrm{~L}$ for 30 min ), to afford 7d m/z (ES) found 27654 calcd. 27653.

## Protein glycosylation procedures for 8a

BSA ( $10 \mathrm{mg}, 0.14 \mu \mathrm{~mol}$ ) was dissolved in aqueous buffer solution ( $1 \mathrm{~mL}, 50 \mathrm{mM}$ Tris, pH 7.7 ). 2,3,4,6-Tetra- $O$-acetyl- $\beta$-D-glucopyranosyl phenylthiosulfonate 2a ( $10 \mathrm{mg}, 0.02 \mathrm{mmol}$ ) was dissolved in water/acetonitrile ( $1.0 \mathrm{~mL}, 8 / 2$ ratio). The sugar solution $(150 \mu \mathrm{l})$ was added to the protein solution and placed on an end-over-end rotator. After 30 min , the absence of free thiol was shown by Ellman's analysis, ${ }^{3}$ at which point the reaction mixture was loaded onto a PD10 Sephadex ${ }^{\circledR}$ G25 column and eluted with ( 70 mM HEPES, 2 mM CaCl 2 pH 7.0 ). The protein fraction was collected and dialysed (MWCO 12-14 KDa) against pure water, ( $1 \times 4 \mathrm{~L}$ for $1 \mathrm{~h}, 2 \times 2 \mathrm{~L}$ for 30 min ), to afford $\mathbf{8 a} \mathrm{m} / \mathrm{z}(\mathrm{ES})$ found 66798 calcd. 66794.

## Protein glycosylation procedure for 8c

BSA ( $10 \mathrm{mg}, 0.14 \mu \mathrm{~mol}$ ) was dissolved in aqueous buffer solution ( $1 \mathrm{~mL}, 50 \mathrm{mM}$ Tris, pH 7.7 ). 2,3,4,6-tetra- $O$-acetyl- $\beta$-D-galactopyranosyl phenylthiosulfonate 2c ( $25 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) was dissolved in acetonitrile $(0.5 \mathrm{~mL})$. The sugar solution ( $75 \mu \mathrm{~L}$ ) was added to the protein solution and placed on an end-over-end rotator. After 30 min, the absence of free thiol was shown by Ellman's analysis, ${ }^{3}$ at which point the reaction mixture was loaded onto a PD10 Sephadex ${ }^{\circledR}$ G25 column and eluted with ( 70 mM HEPES, 2 mM CaCl 2 pH 7.0 ). The protein fraction was collected and
dialysed (MWCO 12-14 KDa) against pure water, ( $1 \times 4 \mathrm{~L}$ for $1 \mathrm{~h}, 2 \times 2 \mathrm{~L}$ for 30 min ), to afford $8 \mathrm{~cm} \mathrm{~m} / \mathrm{z}(\mathrm{ES})$ found 66792 calcd. 66794.

## Protein ESI-MS summary

| Protein system | Mass found | Theoretical mass |
| :---: | :---: | :---: |
| SBL156C- $\beta$-GlcAc ${ }_{4}$ | 27072 | 27078 |
| SBL156C- $\beta$-GalAc ${ }_{4}$ | 27072 | 27078 |
| SBL156C- $\beta-\mathrm{GlcAc}_{3}(\alpha 1,4) \mathrm{GlcAc}_{3}(\alpha 1,4) \mathrm{GlcAc}_{4}$ | 27654 | 27653 |
| BSA- $\beta$-GlcAc ${ }_{4}$ | 66798 | 66794 |
| BSA- $\beta$-GalAc 4 | 66792 | 66794 |

## References for Experimental

1. Sato, R.; Goto, T.; Takikawa, Y.; Takizawa, S. Synthesis 1980, 615
2. Davis, B. G.; Ward, S. J.; Rendle, P. M. Chem. Commun. 2001, 189
3. Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70



# Chemistry Crystallography Service 

## Single-crystal X-ray diffraction report for

Andrew R. Cowley

E-mail: a r cowley@hotmail.com
Tel. (2)70827


H atoms not shown
Crystals of ARC395 were grown by *. A large single crystal was cut to give a fragment having dimensions approximately $0.28 \times 0.32 \times 0.40 \mathrm{~mm}$. This was mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 200 K in a stream of cold $\mathrm{N}_{2}$ using an Oxford Cryosystems CRYOSTREAM unit. Diffraction data were measured using an Enraf-Nonius KappaCCD diffractometer (graphite-monochromated $\mathrm{MoK}_{\alpha}$ radiation, $\lambda=0.71073 \AA$ ). Intensity data were processed using the DENZO-SMN package ${ }^{1}$.

Examination of the systematic absences of the intensity data showed the space group to be either $P 2_{1}$ or $P 2_{1} / m$, the latter being precluded by the chiral nature of the compound. The structure was solved in the space group $P 2_{1}$ using the directmethods program SIR92 ${ }^{2}$, which located all non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite ${ }^{3}$. Coordinates and anisotropic thermal parameters of all nonhydrogen atoms were refined. Hydrogen atoms were positioned geometrically after each cycle of refinement. A 4-term Chebychev polynomial weighting scheme was applied. Refinement converged satisfactorily to give $R=0.0417$, $w R=0.0465$.

Attached is a thermal ellipsoid plot (ORTEP-3 ${ }^{4}$ ) at $40 \%$ probability. A summary of crystallographic data is given below, as are full lists of atomic coordinates, anisotropic thermal parameters and those bond lengths and angles not concerning H atoms.

## Comment:

On cooling the crystal below 180K, additional peaks become visible in the diffraction pattern. This indicates that a phase change takes place. However, it has not proved to be possible to index these peaks and thus to determine the structure of the low-temperature phase. It should be noted that at 200 K the carbonyl O atoms of two of the acetyl substituents ( $\mathrm{O}(9)$ and $\mathrm{O}(11)$ ) and to a lesser extent the other atoms of these groups and the phenyl ring have large and anisotropic thermal ellipsoids, suggesting that there may be unresolved disorder. The phase change is likely to be associated with ordering of some or all of these groups.

## References for Crystallography:

1 Z. Otwinowski and W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol., 1997, 276, Eds C. W. Carter and R. M. Sweet, Academic Press.

2 A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi ,M. C. Burla, G. Polidori and M. Camalli, J. Appl. Cryst. 1994, 27, 435.

3 D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge and R. I. Cooper, CRYSTALS issue 11, Chemical Crystallography Laboratory, Oxford, UK, 2001.
4 ORTEP-3 v. 1.0.2, C. K. Johnson and M. K. Burnett, 1998.

Table 1: Crystal data and refinement details

| Crystal identification | ARC395 |
| :--- | :--- |
| Chemical formula | $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{11} \mathrm{~S}_{2}$ |
| Formula weight | 504.52 |
| Temperature $(\mathrm{K})$ | 150 |
| Wavelength $(\AA)$ | 0.71073 |
| Crystal system | Monoclinic |
| Space group | $P 2_{1}$ |
| $a(\AA)$ | $10.7470(3)$ |
| $b(\AA)$ | $8.3113(2)$ |
| $c(\AA)$ | $13.5613(4)$ |
| $\alpha\left(^{\circ}\right)$ | 90 |
| $\beta\left(^{\circ}\right)$ | $100.4321(12)$ |
| $\gamma\left({ }^{\circ}\right)$ | 90 |
| Cell volume $\left(\AA^{3}\right)$ | 1191.3 |
| $Z$ | 2 |
| Calculated density $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$ | 1.406 |
| Absorption coefficient $\left(\mathrm{mm}{ }^{-1}\right)$ | 0.280 |
| $\mathrm{~F}_{\text {ooo }}$ | 528.648 |
| Crystal size (mm) | $0.28 \times 0.32 \times 0.40$ |
| Description of crystal | Colourless fragment |
| Absorption correction | Semi-empirical from equivalent reflections |
| Transmission coefficients $(\mathrm{min}, \mathrm{max})$ | $0.89,0.92$ |
| $\theta$ range for data collection $\left({ }^{\circ}\right)$ | $5.0 \leq \theta \leq 27.5$ |
| Index ranges | $-13 \leq h \leq 13,-9 \leq k \leq 10,0 \leq I \leq 17$ |
| Reflections measured | 10203 |
| Unique reflections | 4759 |
| $\mathrm{R}_{\text {int }}$ | 0.024 |
| Observed reflections $(\mathrm{I}>3 \sigma(\mathrm{I}))$ | 3881 |
| Refinement method | Full-matrix least-squares on $F$ |
| Parameters refined | 298 |
| Weighting scheme | Chebychev 4-term polynomial |
| Goodness of fit | 1.0631 |
| R | 0.0417 |
| wR | 0.0465 |
| Residual electron density $(\mathrm{min}, \mathrm{max})\left(\mathrm{e} \AA^{-3}\right)$ | $-0.40,0.36$ |
|  |  |

Table 2: Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ of non-hydrogen atoms

| Atom | X | y | z | Uequiv $^{\text {l }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}(1)$ | $0.22336(17)$ | 0.1065(2) | 0.21698(13) | 0.0467 |
| C(1) | 0.3348(2) | $0.2003(4)$ | 0.2232(2) | 0.0442 |
| C(2) | 0.3256(2) | $0.3445(3)$ | 0.2911(2) | 0.0402 |
| C(3) | 0.3080(2) | 0.2892(3) | 0.39476 (19) | 0.0395 |
| C(4) | 0.1986(2) | 0.1711(3) | 0.3861(2) | 0.0424 |
| C(5) | 0.2133(2) | 0.0366(4) | 0.3121(2) | 0.0450 |
| S(1) | $0.34526(8)$ | $0.27211(12)$ | 0.09878(6) | 0.0558 |
| S(2) | $0.39905(7)$ | $0.05903(12)$ | $0.03654(6)$ | 0.0543 |
| $\mathrm{O}(2)$ | 0.4797(2) | -0.0269(3) | $0.11365(19)$ | 0.0710 |
| $\mathrm{O}(3)$ | $0.4435(3)$ | 0.1116(4) | -0.0514(2) | 0.0835 |
| C(6) | 0.2598(3) | -0.0526(4) | -0.0006(2) | 0.0493 |
| C(7) | 0.2400(4) | -0.1853(5) | 0.0535(3) | 0.0814 |
| C(8) | 0.1295(5) | -0.2721(7) | $0.0255(4)$ | 0.1145 |
| C(9) | $0.0427(4)$ | -0.2275(9) | -0.0554(4) | 0.1037 |
| C(10) | 0.0640(4) | -0.0956(7) | -0.1100(4) | 0.0911 |
| $\mathrm{C}(11)$ | 0.1740(3) | -0.0031(5) | -0.0837(2) | 0.0679 |
| O(4) | 0.44155(15) | 0.4336(2) | $0.29907(14)$ | 0.0435 |
| C(12) | 0.4338(3) | 0.5963(3) | 0.28954(19) | 0.0437 |
| O(5) | 0.3351 (2) | 0.6669(3) | 0.2788(2) | 0.0657 |
| C(13) | 0.5613(3) | 0.6698(4) | 0.2952(2) | 0.0595 |
| O(6) | $0.27377(15)$ | 0.4272(2) | $0.44855(14)$ | 0.0436 |
| $\mathrm{C}(14)$ | 0.3662(2) | 0.5080(4) | 0.5112(2) | 0.0449 |
| O(7) | $0.47348(18)$ | $0.4613(3)$ | $0.53123(17)$ | 0.0585 |
| C(15) | 0.3169(3) | $0.6575(4)$ | 0.5477(3) | 0.0616 |
| O(8) | $0.19953(17)$ | 0.0973(3) | $0.48230(14)$ | 0.0476 |
| C(16) | 0.0938(3) | $0.1131(5)$ | 0.5247(3) | 0.0737 |
| O(9) | 0.0049(3) | $0.1897(6)$ | $0.4872(4)$ | 0.1434 |
| C(17) | $0.1038(4)$ | $0.0176(5)$ | 0.6183(3) | 0.0805 |
| $\mathrm{C}(18)$ | $0.1025(3)$ | -0.0780(4) | 0.2928(2) | 0.0534 |
| $\mathrm{O}(10)$ | -0.00972(18) | 0.0183(3) | 0.2596(2) | 0.0743 |
| $\mathrm{C}(19)$ | -0.1157(3) | -0.0546(5) | 0.2315(3) | 0.0686 |
| $\mathrm{O}(11)$ | -0.1203(4) | -0.1949(5) | 0.2331(5) | 0.1885 |
| C(20) | -0.2249(3) | 0.0525(7) | 0.2000(3) | 0.0911 |

Table 3: Atomic coordinates and isotropic thermal parameters $\left(\AA^{2}\right)$ of hydrogen atoms

| Atom | X | y | z | $\mathrm{U}_{\text {iso }}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\mathrm{H}(11)$ | 0.4111 | 0.1345 | 0.2508 | 0.0519 |
| $\mathrm{H}(21)$ | 0.2512 | 0.4127 | 0.2623 | 0.0467 |
| $\mathrm{H}(31)$ | 0.3881 | 0.2375 | 0.4295 | 0.0464 |
| $\mathrm{H}(41)$ | 0.1181 | 0.2312 | 0.3625 | 0.0498 |
| $\mathrm{H}(51)$ | 0.2904 | -0.0251 | 0.3431 | 0.0528 |
| $\mathrm{H}(71)$ | 0.3044 | -0.2193 | 0.1126 | 0.0953 |
| $\mathrm{H}(81)$ | 0.1134 | -0.3688 | 0.0652 | 0.1378 |
| $\mathrm{H}(91)$ | -0.0368 | -0.2913 | -0.0750 | 0.1266 |
| $\mathrm{H}(101)$ | -0.0002 | -0.0644 | -0.1700 | 0.1051 |
| $\mathrm{H}(111)$ | 0.1897 | 0.0941 | -0.1231 | 0.0793 |
| $\mathrm{H}(131)$ | 0.5526 | 0.7892 | 0.2880 | 0.0713 |
| $\mathrm{H}(132)$ | 0.6150 | 0.6435 | 0.3614 | 0.0713 |
| $\mathrm{H}(133)$ | 0.6018 | 0.6260 | 0.2400 | 0.0713 |
| $\mathrm{H}(151)$ | 0.3865 | 0.7143 | 0.5935 | 0.0738 |
| $\mathrm{H}(152)$ | 0.2474 | 0.6311 | 0.5850 | 0.0738 |
| $\mathrm{H}(153)$ | 0.2834 | 0.7285 | 0.4895 | 0.0738 |
| $\mathrm{H}(171)$ | 0.0251 | 0.0321 | 0.6470 | 0.1002 |
| $\mathrm{H}(172)$ | 0.1786 | 0.0552 | 0.6679 | 0.1002 |
| $\mathrm{H}(173)$ | 0.1144 | -0.0987 | 0.6030 | 0.1002 |
| $\mathrm{H}(181)$ | 0.0950 | -0.1369 | 0.3558 | 0.0629 |
| $\mathrm{H}(182)$ | -0.1572 | 0.2397 | 0.0629 |  |
| $\mathrm{H}(202)$ | -0.1140 | -0.3031 | 0.1341 | 0.1795 |
| $\mathrm{H}(203)$ | -0.2358 | 0.1197 | 0.1421 | 0.1065 |

Table 4: Anisotropic thermal parameters $\left(\AA^{2}\right)$

| Atom | $U_{11}$ | $\mathrm{U}_{22}$ | $U_{33}$ | $\mathrm{U}_{23}$ | $U_{13}$ | $U_{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}(1)$ | 0.0440(9) | 0.0447(11) | 0.046(1) | 0.0066(9) | -0.0050(8) | -0.0142(8) |
| C(1) | 0.0377(12) | 0.0458(16) | 0.0462(14) | 0.0103(12) | 0.000(1) | -0.0088(11) |
| C(2) | 0.0292(11) | 0.0402(15) | 0.0474(14) | 0.0063(11) | -0.003(1) | -0.007(1) |
| C(3) | 0.0282(11) | 0.0405(14) | 0.0473(13) | 0.0058(12) | 0.0004(9) | -0.002(1) |
| C(4) | 0.0304(11) | 0.0418(15) | 0.0524(14) | 0.0136(12) | 0.000(1) | -0.003(1) |
| C(5) | 0.0378(12) | 0.0415(16) | 0.0528(14) | 0.0144(12) | 0.000(1) | -0.0073(11) |
| S(1) | 0.0702(5) | 0.0478(4) | 0.0481(4) | 0.0082(3) | 0.0071(3) | -0.0134(4) |
| S(2) | 0.0462(3) | 0.0610(5) | 0.0574(4) | -0.0009(4) | 0.0137(3) | -0.0120(3) |
| $\mathrm{O}(2)$ | 0.0482(11) | 0.0721(17) | 0.0843(16) | -0.0057(13) | -0.0100(11) | 0.0039(11) |
| $\mathrm{O}(3)$ | 0.0901(18) | 0.091(2) | 0.0816(17) | -0.0023(15) | 0.0470(14) | -0.0252(16) |
| C(6) | 0.0455(14) | 0.0590(19) | 0.0426(13) | -0.0083(13) | 0.0059(11) | -0.0061(13) |
| C(7) | 0.095(3) | 0.086(3) | 0.0580(19) | 0.0037(19) | -0.0022(18) | -0.048(2) |
| C(8) | 0.121(4) | 0.145(5) | 0.078(3) | -0.025(3) | 0.021(3) | -0.091(4) |
| C(9) | 0.065(2) | 0.151(5) | 0.101(3) | -0.063(4) | 0.030(2) | -0.046(3) |
| C(10) | 0.0507(19) | 0.123(4) | 0.089(3) | -0.056(3) | -0.0154(19) | 0.019(2) |
| C(11) | 0.0655(19) | 0.075(3) | 0.0572(18) | -0.0176(17) | -0.0037(15) | 0.0179(17) |
| $\mathrm{O}(4)$ | 0.0306(8) | 0.0440(11) | 0.053(1) | 0.0066(9) | -0.0003(7) | -0.0099(7) |
| $\mathrm{C}(12)$ | 0.0548(15) | 0.0383(16) | 0.0381(12) | 0.0029(11) | 0.0084(11) | -0.0103(12) |
| O(5) | 0.0635(14) | 0.0457(13) | 0.0880(17) | 0.0102(12) | 0.0141(12) | 0.0000(11) |
| C(13) | 0.0647(19) | 0.063(2) | 0.0503(16) | 0.0006(15) | 0.0099(14) | -0.0293(16) |
| O(6) | 0.0311(8) | 0.0460(11) | 0.052(1) | -0.0011(9) | 0.0033(7) | -0.0034(8) |
| C(14) | 0.0337(12) | 0.0537(17) | 0.0453(13) | 0.0031(12) | 0.002(1) | -0.0113(11) |
| O(7) | 0.038(1) | 0.0632(15) | 0.0672(13) | -0.0030(11) | -0.0089(9) | -0.003(1) |
| C(15) | 0.0500(16) | 0.064(2) | 0.070(2) | -0.0129(17) | 0.0103(14) | -0.0089(15) |
| $\mathrm{O}(8)$ | 0.0406(9) | 0.0487(12) | 0.054(1) | 0.0116(9) | 0.0095(8) | -0.0009(8) |
| C(16) | 0.0509(17) | 0.085(3) | 0.091(3) | 0.026(2) | 0.0271(17) | -0.0070(18) |
| O(9) | 0.0580(15) | 0.218(5) | 0.168(3) | 0.109(3) | 0.0563(19) | 0.043(2) |
| C(17) | 0.097(3) | 0.079(3) | 0.075(2) | 0.015(2) | 0.039(2) | -0.025(2) |
| C(18) | 0.0478(15) | 0.0428(17) | 0.0666(18) | 0.0102(14) | 0.0021(13) | -0.0096(13) |
| O(10) | 0.038(1) | 0.0559(15) | 0.119(2) | 0.0138(14) | -0.0115(11) | -0.019(1) |
| C(19) | 0.0589(19) | 0.073(3) | 0.068(2) | 0.0110(18) | -0.0029(15) | -0.0366(18) |
| O(11) | 0.109(3) | 0.083(3) | 0.329(7) | 0.025(4) | -0.078(4) | -0.051(2) |
| C(20) | 0.0402(15) | 0.129(4) | 0.097(3) | 0.013(3) | -0.0059(16) | -0.023(2) |

Table 5: Bond lengths ( $\AA$ )

| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.419(3)$ |
| :---: | :---: |
| $\mathrm{O}(1)-\mathrm{C}(5)$ | $1.437(3)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.525(4)$ |
| $\mathrm{C}(1)-\mathrm{S}(1)$ | $1.812(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.523(4)$ |
| $\mathrm{C}(2)-\mathrm{O}(4)$ | $1.437(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.520(3)$ |
| $\mathrm{C}(3)-\mathrm{O}(6)$ | $1.442(3)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.529(4)$ |
| $\mathrm{C}(4)-\mathrm{O}(8)$ | $1.440(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(18)$ | $1.510(4)$ |
| $\mathrm{S}(1)-\mathrm{S}(2)$ | $2.0880(12)$ |
| $\mathrm{S}(2)-\mathrm{O}(2)$ | $1.423(3)$ |
| $\mathrm{S}(2)-\mathrm{O}(3)$ | $1.431(3)$ |
| $\mathrm{S}(2)-\mathrm{C}(6)$ | $1.755(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.362(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(11)$ | $1.383(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.383(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.356(8)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.366(8)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | $1.401(6)$ |
| $\mathrm{O}(4)-\mathrm{C}(12)$ | $1.359(4)$ |
| $\mathrm{C}(12)-\mathrm{O}(5)$ | $1.197(4)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | $1.489(4)$ |
| $\mathrm{O}(6)-\mathrm{C}(14)$ | $1.362(3)$ |
| $\mathrm{C}(14)-\mathrm{O}(7)$ | $1.200(3)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | $1.471(5)$ |
| $\mathrm{O}(8)-\mathrm{C}(16)$ | $1.370(4)$ |
| $\mathrm{C}(16)-\mathrm{O}(9)$ | $1.183(5)$ |
| $\mathrm{C}(16)-\mathrm{C}(17)$ | $1.484(5)$ |
| $\mathrm{C}(18)-\mathrm{O}(10)$ | $1.450(4)$ |
| $\mathrm{O}(10)-\mathrm{C}(19)$ | $1.285(4)$ |
| $\mathrm{C}(19)-\mathrm{O}(11)$ | $1.168(5)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)$ | $1.473(6)$ |

Note - H atoms have been excluded

Table 6: Bond angles $\left({ }^{\circ}\right)$

| $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$ | $111.65(19)$ |
| :---: | :---: |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $108.7(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{S}(1)$ | $108.62(17)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$ | $108.97(19)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $110.6(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(4)$ | $107.5(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(4)$ | $109.71(19)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $110.3(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(6)$ | $108.2(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(6)$ | $106.8(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $110.6(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(8)$ | $109.1(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(8)$ | $107.4(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $109.1(2)$ |
| $\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(18)$ | $106.6(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(18)$ | $113.8(2)$ |
| $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{S}(2)$ | $99.53(11)$ |
| $\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{O}(2)$ | $107.75(12)$ |
| $\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{O}(3)$ | $103.69(14)$ |
| $\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{O}(3)$ | $120.98(17)$ |
| $\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{C}(6)$ | $106.29(11)$ |
| $\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(6)$ | $108.63(15)$ |
| $\mathrm{O}(3)-\mathrm{S}(2)-\mathrm{C}(6)$ | $108.55(16)$ |
| $\mathrm{S}(2)-\mathrm{C}(6)-\mathrm{C}(7)$ | $118.8(2)$ |
| $\mathrm{S}(2)-\mathrm{C}(6)-\mathrm{C}(11)$ | $119.0(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$ | $122.3(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $119.0(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $120.7(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $120.0(4)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $121.2(4)$ |
| $\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $116.9(4)$ |
| $\mathrm{C}(2)-\mathrm{O}(4)-\mathrm{C}(12)$ | $117.9(2)$ |
| $\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{O}(5)$ | $122.5(3)$ |
| $\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{C}(13)$ | $111.3(3)$ |
| $\mathrm{O}(5)-\mathrm{C}(12)-\mathrm{C}(13)$ | $126.2(3)$ |
| $\mathrm{C}(3)-\mathrm{O}(6)-\mathrm{C}(14)$ | $118.93(19)$ |
| $\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{O}(7)$ | $123.0(3)$ |
| $\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{C}(15)$ | $111.1(2)$ |
| $\mathrm{O}(7)-\mathrm{C}(14)-\mathrm{C}(15)$ | $125.9(3)$ |
| $\mathrm{C}(4)-\mathrm{O}(8)-\mathrm{C}(16)$ | $118.0(2)$ |
| $\mathrm{O}(8)-\mathrm{C}(16)-\mathrm{O}(9)$ | $122.5(3)$ |
| $\mathrm{O}(8)-\mathrm{C}(16)-\mathrm{C}(17)$ | $111.7(3)$ |
| $\mathrm{O}(9)-\mathrm{C}(16)-\mathrm{C}(17)$ | $125.7(3)$ |
| $\mathrm{C}(5)-\mathrm{C}(18)-\mathrm{O}(10)$ | $106.9(2)$ |
| $\mathrm{C}(18)-\mathrm{O}(10)-\mathrm{C}(19)$ | $118.3(3)$ |
| $\mathrm{O}(10)-\mathrm{C}(19)-\mathrm{O}(11)$ | $120.2(4)$ |
| $\mathrm{O}(10)-\mathrm{C}(19)-\mathrm{C}(20)$ | $114.7(4)$ |
| $\mathrm{O}(11)-\mathrm{C}(19)-\mathrm{C}(20)$ | $125.0(4)$ |
|  |  |

Note - H atoms have been excluded

