Supplementary Information Intra- and intermolecular complexation in C(6) monoazacoronand substituted cyclodextrins

Julia S. Lock,^{*a*} Bruce L. May,^{*a*} Philip Clements,^{*a*} Stephen F. Lincoln^{**a*} and Christopher J. Easton^{*b*}

^a Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia. E-mail:stephen.lincoln@adelaide.edu.au

^b Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

Fig. S1. ¹H 600 MHz 2D ROESY NMR spectrum at 298 K of a D_2O solution in which [**3**]_{total} is 0.023 mol dm⁻³. There are no cross-peaks to indicate intramolecular complexation of the substituent.

Fig. S2. ¹H 600 MHz 2D ROESY NMR spectrum at 298 K of a D₂O solution in which [4]_{total} is 0.014 mol dm⁻³. There are no cross-peaks to indicate the intramolecular complexation of the substituent.

Fig. S3. ¹H 600 MHz 2D ROESY NMR spectrum at 298 K of a D₂O solution in which [**3**]_{total} and $[\alpha CD]_{total}$ are 0.022 mol dm⁻³ and 0.032 mol dm⁻³, respectively. There are no cross-peaks to indicate the intermolecular complexation of the substituent.