Supplementary Information

Synthesis of a-hydroxycinnamic acids (5)

 α -hydroxycinnamic acids **5a,b** were commercially available and **5g** was prepared by a literature procedure.¹

Ethyl 3-(4-chlorophenyl)- 3-cyano-2-oxopropanoate (4c). A solution of NaOEt (1.98 g, 29 mmol) in absolute EtOH (25 cm³) was treated with diethyl oxalate (3.86 g, 26.4 mmol) and then a solution of aryl acetonitrile 3c (4g, 26.4 mmol) was added dropwise. After 19 h (TLC monitoring) the mixture was acidified (HCl, 1M). The precipitated yellow solid (5.07 g, 76%) was filtered, washed with water and dried, mp 140 °C (from toluene); v_{max} (KBr)/cm⁻¹ 3200, 2200 and 1735; d_H(300 MHz; CDCl₃; Me₄Si) 7.82 (2 H, d, *J* 8.79, ArH), 7.40 (2 H, d, *J* 8.79, ArH), 4.55 (2 H, q, *J* 7.14, CH₂) and 1.50 (3 H, t, *J* 7.14, CH₃); δ_{C} (300 MHz; CDCl₃; Me₄Si) 163.07, 148.67, 135.24, 130.32, 129.25, 128.76, 116.70, 95.87, 64.98, and 13.90.

Ethyl 3-(4-trifluoromethylphenyl)- 3-cyano-2-oxopropanoate (4f). By the same procedure, 3f (0.5 g, 2.7 mmol), NaOEt (0.238 g, 3.513 mmol) and diethyl oxalate (0.524 g, 2.702 mmol) yielded 4f (0.6 g, 78%) as a yellow solid, mp 162-164 °C ; v_{max} (KBr)/cm⁻¹ 3200, 2200, 1735 and 1330; d_H(300 MHz; CDCl₃; Me₄Si) 7.98 (2 H, d, *J* 9.52, ArH), 7.69 (2 H, d, *J* 9.52, ArH), 4.57 (2 H, q, *J* 7.14, CH₂) and 1.51 (3 H, t, *J* 7.14, CH₃).

Ethyl 3-cyano-3-(4-methylphenyl)-2-oxopropanoate (4h). By the same procedure, 3h (8 g, 60.98 mmol), NaOEt (4.57g, 67 mmol) and diethyl oxalate (8.91 g, 60.98 mmol) yielded 4h (10.3 g, 73%) as a yellow solid, mp 94 °C (from hexane); v_{max}(KBr)/cm⁻¹ 3350, 2230 and 1700; d_H(300 MHz; CDCl₃; Me₄Si) 7.75 (2 H, d, *J* 8.25, ArH), 7.21 (2 H, d, *J* 8.25, ArH), 4.50 (2 H, q, *J* 7.14, CH₂), 2.36 (3 H, s, CH₃) and 1.46 (3 H, t, *J*

7.14, CH₃); δ_C (300 MHz; CDCl₃; Me₄Si) 163.11, 148.14, 139.38, 129.11, 128.79, 127.85, 117.06, 96.76, 64.49, 21.16 and 13.77.

3-(4-chlorophenyl)-2-oxo-propanoic acid (5c). Cold glacial acetic acid (20 cm³) was added slowly to concentrated sulphuric acid (37.5 cm³). The solid ester **4c** (4 g, 15.89 mmol), was added in portions to the mixture, and the resulting solution was stirred at room temperature until total disappearance of the starting ester (TLC). After cooling to 0 °C, the reaction mixture was quenched with water (150 cm³ per 10 g of starting ester) and then was refluxed until decarboxylation was complete. The solid formed was filtered, washed with water and dried, yielding **5c** (2.97 g, 94%) as a yellow solid, mp 208-209 °C; v_{max} (KBr)/cm⁻¹ 3600-2200, 3490 and 1675; d_H(300 MHz; DMSO-*d*₆; Me₄Si) 13.21 (1 H, br s, COOH), 9.47 (1 H, br s, OH), 7.78 (2 H, d, *J* 8.54, ArH), 7.40 (2 H, d, *J* 8.54, ArH) and 6.40 (1 H, s, vinyl); δ_{C} (300 MHz; DMSO-*d*₆; Me₄Si) 166.09, 142.47, 133.93, 131.34, 130.81, 128.32 and 108.16.

3-(4-trifluoromethylphenyl)-2-oxopropanoic acid (5f). By the same procedure, **4f** (5.12 g, 17.96 mmol), yielded **5f** (3.99 g, 96%) as a white solid, mp 192-94 °C (from benzene); v_{max} (KBr)/cm⁻¹ 3640-2250, 3450, 1680 and 1315; d_H(300 MHz; DMSO-*d*₆; Me₄Si) 9.81 (1 H, s, OH), 7.95 (2 H, d, *J* 9.52, ArH), 7.69 (2 H, d, *J* 9.52, ArH) and 6.46 (1 H, s, vinyl).

3-(4-methylphenyl)-2-oxo-propanoic acid (5h). By the same procedure, **4h** (0,5 g, 2.16 mmol), yielded **5h** (0.33 g, 86%) as a yellow solid, mp 181 °C; ν_{max}(KBr)/cm⁻¹ 3650-2300, 3500 and 1700; d_H(300 MHz; DMSO-*d*₆; Me₄Si) 9.10 (1 H, s, OH), 7.65 (2 H, d, *J* 7.94, ArH), 7.16 (2 H, d, *J* 7.94, ArH), 6.37 (1 H, s, vinyl) and 2.29 (3 H, s, CH₃); δ_C (300 MHz; DMSO-*d*₆; Me₄Si) 166.38, 141.10, 136.57, 132.1, 129.22, 128.92, 109.71 and 20.89.

N-[4-(2-methyl-5-oxooxazol-4-ylidenemethyl)-phenyl]-acetamide (7d). Aldehyde **6d** (4.39 g, 30.2 mmol), *N*-acetylglycine (4.24 g, 36.24 mmol), anhydrous NaOAc (3.22 g, 39.26 mmol) and Ac₂O (15.4 g, 151 mmol) were mixed and stirred at 120 °C until the reaction was complete (6 h). The mixture was cooled to 0° C and water (1 cm³ per 10 mmol of starting aldehyde) was added. The resulting precipitated was filtered and washed with 50% aq EtOH and acetone, to yield **7d** (4.50 g, 61%) as a white solid, mp 225-226 °C (from EtOH); v_{max} (KBr)/cm⁻¹ 3320, 1800, 1775, 1725, 1670 and 1655; d_H(300 MHz; DMSO-*d*₆; Me₄Si) 10.29 (1 H, s, NH), 8.13 (2 H, d, *J* 8.50, ArH), 7.70 (2 H, d, *J* 8.50, ArH), 7.15 (1 H, s, vinyl), 2.38 (3 H, s, CH₃) and 2.08 (3 H, s, CH₃). **4-(4-***tert***-butilbenzylidene)-2-methyl-4***H***-oxazol-5-ona (7e)**. By the same procedure, **6e** (3.25 g, 20.03 mmol) yielded **7e** (2.7 g, 55%) as a yellow solid, mp 231-233 °C; d_H(300 MHz; DMSO-*d*₆; Me₄Si) 8.10 (2 H, d, *J* 7.90, ArH), 7.51 (2 H, d, *J* 7.90, ArH),

7.19 (1 H, s, vinyl), 2.38 (3 H, s, CH₃) and 1.30 (9H, s, 3CH₃)

3-(4-aminophenyl)-2-oxopropanoic acid hydrochloride (5d). A mixture of **7d** (4.5 g, 18.4 mmol) and 3N HCl (100 cm³) was refluxed for 6 h. After cooling to room temperature, the resulting precipitated was filtered, yielding **5d** (3.85 g, 97%) as a white solid; v_{max} (KBr)/cm⁻¹ 3650-2300, and 1735; d_H(300 MHz; CD₃OD; Me₄Si) 7.93 (2 H, d *J* 8.50, ArH), 7.37 (2 H, d, *J* 8.50, ArH) and 6.50 (1 H, s, vinyl).

3-(4-*tert***-butylphenyl)-2-oxopropanoic acid (5e)**. By the same procedure, **7e** (0.522 g, 2.0 mmol) yielded **5e** (0.403 g, 92%) as a white solid, mp 184-186 °C (from benzene); $v_{max}(KBr)/cm^{-1}$ 3690-2400, 3475 and 1725; d_H(300 MHz; DMSO-*d*₆; Me₄Si) 9.13 (1 H, s, OH), 7.68 (2 H, d, *J* 8.50, ArH), 7.37 (2 H, d, *J* 8.50, ArH), 6.37 (1 H, s, vinyl) and 1.27 (9 H, s, 3 CH₃).

Synthesis of a-ketoesters (1); General Procedure A. To a solution of α hydroxycynnamic acid 5 (5 mmol) in DMF (20 cm³) at 0 °C was added DBU (5 mmol) and MeI (25 mmol) and the mixture was stirred for 2.5 h at the same temperature. The reaction mixture was acidified with 1 M HCl and extracted with Et_2O (2 x 25 cm³). The combined organic layers were washed with brine, dried (MgSO₄), and evaporated to dryness. The obtained compounds were used in the following step without further purification.

General Procedure B. A solution of α -hydroxycinnamic acid (5) in methanol at 0 °C was saturated with HCl gas and stirred until total disappearance of the starting material (TLC). The obtained compounds were used in the following step without further purification.

Methyl 3-phenyl-2-oxopropanoate (1a). By method A, 5a (2 g, 12.18 mmol), DBU (1.85 g, 12.18 mmol) and MeI (8.65 g, 60.9 mmol) yielded 1a (1.99 g, 92%) as a yellow oil; v_{max}(film)/cm⁻¹ 3380, and 1690; d_H(300 MHz; CDCl₃; Me₄Si) 8.05 (1 H, s, OH), 7.76 (2 H, d, *J* 9.18, ArH), 7.30 (3 H, m, ArH), 6.53 (1 H, s, vinyl) and 3.92 (3 H, s, CH₃).

Methyl 3-(4-hydroxyphenyl)-2-oxopropanoate (1b). By method A, **5b** (1.32 g, 7.32 mmol), DBU (1.11 g, 7.32 mmol) and MeI (5.2 g, 36.60 mmol) yielded **1b** (1.131 g, 86%); d_H(300 MHz; CDCl₃; Me₄Si) 7.68 (2 H, d, *J* 8.52, ArH), 6.85 (2 H, d, *J* 8.52, ArH), 6.49 (1 H, s, vinyl), 6.28 (1 H, s, OH) and 3.90 (3 H, s, CH₃).

Methyl 3-(4-chlorophenyl)-2-oxopropanoate (1c). By method A, **5c** (0.473 g, 2.38 mmol), DBU (0.362 g, 2.38 mmol) and MeI (1.69 g, 11.9 mmol) yielded **1c** (0.45 g, 89%); v_{max}(KBr)/cm⁻¹ 3400, and 1690; d_H(300 MHz; CDCl₃; Me₄Si) 7.69 (2 H, d, *J* 8.81, ArH), 7.32 (2 H, d, *J* 8.81, ArH), 6.67 (1 H, s, OH), 6.47 (1 H, s, vinyl) and 3.91 (3 H, s, CH₃).

Methyl 3-(4-aminophenyl)-2-oxopropanoate hydrochloride (1d). By method B, **5d** (3.85 g, 17.85 mmol) yielded **1d** (4.0 g, 99%); d_H(300 MHz; CD₃OD; Me₄Si) 7.94 (2

H, d, *J* 8.55, ArH), 7.38 (2 H, d, *J* 8.55, ArH), 6.49 (1 H, s, vinyl) and 3.87 (3 H, s, CH₃).

Methyl 3-(4-*tert*-**butylphenyl)-2-oxopropanoate (1e)**. By method B, **5e** (3.0 g, 13.62 mmol) yielded **1e** (3.19 g, 100%) as a white solid; _{max}(KBr)/cm⁻¹ 3400, 2950 and 1675; d_H(300 MHz; CDCl₃; Me₄Si) 7.70 (2 H, d, *J* 8.25, ArH), 7.39 (2 H, d, *J* 8.25, ArH), 6.52 (1 H, s, vinyl), 3.91 (3 H, s, CH₃) and 1.32 (9 H, s, 3CH₃).

Methyl 3-(4-trifluoromethylphenyl)-2-oxopropanoate (1f). By method A, **5f** (2.205 g, 9.50 mmol), DBU (1.45 g, 9.50 mmol) and MeI (6.75 g, 47.5 mmol) yielded **1f** (1.60 g, 68%) as a white solid, mp 122-124 °C; v_{max} (KBr)/cm⁻¹ 3400, 1695 and 1440; d_H(300 MHz; CDCl₃; Me₄Si) 7.85 (2 H, d, *J* 7.50, ArH), 7.61 (2 H, d, *J* 7.50, ArH), 6.60 (1 H, s, OH), 6.53 (1 H, s, vinyl) and 3.94 (3 H, s, CH₃).

Methyl 3-(4-methoxyphenyl)-2-oxopropanoate (1g). By method A, **5g** (1.745 g, 8.98 mmol), DBU (1.367, 8.98 mmol) and MeI (6.37 g, 44.9 mmol) yielded **1g** (1.70 g, 91%) as a yellow oil; d_H(300 MHz; DMSO-*d*₆; Me₄Si) 9.28 (1 H, s, OH), 7.73 (2 H, d, *J* 9.18, ArH), 6.93 (2 H, d, *J* 9.18, ArH), 6.41 (1 H, s, vinyl), 3.78 (3 H, s, CH₃) and 3.76 (3 H, s, CH₃).

Methyl 3-(4-methylphenyl)-2-oxopropanoate (1h). By method A, **5h** (2 g, 12.22 mmol), DBU (1.86 g, 12.22 mmol) and MeI (8.67 g, 61.1 mmol) yielded **1h** (1.70 g, 79%); v_{max}(KBr)/cm⁻¹ 3395, and 1695; d_H(300 MHz; CDCl₃; Me₄Si) 8.02 (1 H, s, OH), 7.66 (2 H, d, *J* 7.80, ArH), 7.18 (2 H, d, *J* 7.80, ArH), 6.51 (1 H, s, vinyl), 3.91 (3 H, s, CH₃) and 2.35 (3 H, s, CH₃).

References

 Cagniant, D. Contribution a l'etude des acides phénylpyruviques para-substitués Ann. Chim. 1952, 442-457.

Butyrolactone I R			Butyrolactone I S			
Atom number	Atom type	charge	Atom number	Atom	charg	
01	08	0 425602	01		0 53080	
C2	03	0.425002	C2	03	0.33960	
03	Ő	-0 527768	03	õ	-0 54317	
C4	C2	0.0277611	C4	C2	0.15898	
05	OH	-0.589578	05	0H	-0.56530	
H6	HO	0 455408	H6	HO	0.43012	
C7	C2	-0 261021	C7	C2	-0.03857	
C8	CA	-0 135571	C8	CA	-0 12448	
C9	CA	0 000000	C9	CA	0.0000	
H10	HA	0.123665	H10	HA	0.11094	
C11	CA	-0.327343	C11	CA	-0.31024	
H12	HA	0.191613	H12	HA	0.18996	
C13	CA	0.439999	C13	CA	0.40365	
O14	OH	-0.603085	O14	OH	-0.58890	
H15	HO	0.437806	H15	HO	0.429373	
C16	CA	-0.370203	C16	CA	-0.32855	
H17	HA	0.161549	H17	HA	0.15250	
C18	CA	-0.014645	C18	CA	-0.02285	
H19	HA	0.141254	H19	HA	0.10984	
C20	80	0.100603	C20	80	0.12779	
C21	С	0.784560	C21	С	0.69749	
O22	0	-0.540530	O22	0	-0.54285	
O23	OS	-0.288738	O23	OS	-0.28188	
C24	CT	-0.108880	C24	СТ	-0.15459	
H25	HC	0.091762	H25	HC	0.11323	
H26	HC	0.091762	H26	HC	0.11323	
H27	HC	0.091762	H27	HC	0.11323	
628		-0.018533	628		-0.01885	
H29 H20	HC	0.038545	H29 H20		0.04311	
C31		0.074913	□30 C31		0.06235	
C32	CA	-0.043038	C32		-0.04071	
H33	НА	0.171062	H33	НА	0 17605	
C34	CA	-0 277678	C34	CA	-0 30932	
H35	HA	0.147156	H35	HA	0.14973	
C36	C	0.298257	C36	C	0.31906	
037	он	-0.596523	037	О́Н	-0.60894	
H38	HO	0.440574	H38	HO	0.44218	
C39	CA	-0.014419	C39	CA	0.00724	
C40	CA	-0.183335	C40	CA	-0.23512	
H41	HA	0.147009	H41	HA	0.23685	
C42	СТ	-0.031407	C42	СТ	0.05433	
H43	HC	0.053139	H43	HC	0.04922	
H44	HC	0.072577	H44	HC	0.07175	
C45	C2	-0.236152	C45	C2	-0.35705	
H46	HC	0.153788	H46	HC	0.14511	
C47	C2	0.089317	C47	C2	0.08456	
C48	CL	-0.180130	C48	CT	-0.16754	
H49	HC	0.063309	H49	HC	0.05629	
H50	HC	0.063309	H50	HC	0.05629	
H51	HC	0.063309	H51	HC	0.05629	
C52	CI	-0.361033	C52		-0.17507	
H53	HC	0.102533	H53	HC	0.06227	
H54		0.102533	H54		0.06227	
100		0.102000	100		0.002273	

Table 2. Ab Initio 6-31G*\\3-21G Electrostatic Potential Atomic Charges for Butyrolactone I

Table 3. Additional force field parameters for butyrolactone I

			Dihedral angle	idivf	V _n /2 (Kcal/mol)	g (C
Bond	K _r (Kcal/mol A ²)	r _{eq} (Å)				
C -80	317.0	1.522	X -C2-C2-X	4	4.00	18
C -C2	447.0	1.419	X -C2-C -X	4	12.00	18
C2-80	317.0	1.510	X -C2-OH-X	2	1.80	18
C2-C2	549.0	1.350	X -C2-CA-X	4	0.0	0
C2-CT	317.0	1.510	X -OS-80-X	3	0.50	0
C2-OH	450.0	1.364	X -CT-C2-X	6	0.00	0
C2-CA	350.0	1.485	X -80-CT-X	9	1.40	0
C2-HC	367.0	1.080	X -80-C2-X	6	0.00	0
CT-C2	317.0	1.510	X -80-C -X	6	0.00	0
80-CT	310.0	1.526				
OS-80	320.0	1.410				
Angle	K _e (Kcal/mol rad ²)	r _{or} (Å)	Van der Waals	R* (Å)	€ (Kcal/mol)	
$0 - C - C^2$	80.0	123.72	C2	1 9080	0.0860	
C -C2-OH	70.0	124.25	02	1.3000	0.0000	
C2-C2-CA	70.0	123.06			16	
C -C2-C2	70.0	106 21		H ₃ C		_
C2-OH-HO	50.0	111 36		, in the second s	023	\mathbf{i}
	60.0	110.63				
05-80-0	60.0	107.17		0 =	20	/
80-0-00	60.0	124 49		20	\rightarrow $\sqrt{7}$ 8	11
80-0-05	60.0	100.08		28		
80-CT-HC	60.0	109.00) H	
	60.0	113.45	н		$2 4 0_{5}$	
	60.0	108.27				
	60.0	100.27	37		3 0	
	60.0	109.50		12	0	
	60.0	100.09	45	-		
	60.0	109.00			Butyrolactone	? I
	00.0	129.00	47	_		
	0.00	110.04		т		
	0.00	120.17	H ₃ C Cl	H ₃		
	60.0 60.0	111.69				
	60.0	112.39				
CA-C2-80	60.0	125.98				
C -80-CT	60.0	111.80				
C –CA-CT	60.0	121.08				
CA-CT-C2	60.0	109.99				
CT-C2-HC	60.0	114.30				

Table 4. Autodock parameters used for the flexible docking.

Genetic algorithm (GA) and Lamarckian Genetic Algorithm (LGA) paran	neters.
ga pop size	Number of individuals in population	50
ga_num_evals	Maximum number of energy evaluations	250000
ga_num_generation s	Maximum number of generations	27000
ga_elitism	Num. of top individuals that automatically	1
ga_mutation_rate	Rate of gene mutation	0.02
ga_crossover_rate	Rate of crossover	0.80
ga_window_size	Num. of generations for picking worst individual	10
ga_cauchy_alpha	Mean of cauchy distribution for gene mutation	0
ga_cauchy_beta	Variance of cauchy distribution for gene mutation	1
	l ocal search parameters	
ow max ite	Number of iterations of Solis & Wets local	300
sw_max_ns	search	500
sw_max_succ	Number of consecutive successes before changing rho	4
sw_max_fail	Number of consecutive failures before changing rho	4
sw rho	Size of local search space to sample	1.0
sw lb rho	Lower bound on rho	0.01
ls_search_freq	Probability of performing local search on an indiv.	0.06