Supporting Information

A Tongs-like Fluorescence Sensor for Metal Ions: Perfect Conformational Switch of Hinge Sugar by a Pyrene Stacking

Hideya Yuasa, * Naofusa Miyagawa, Masatoshi Nakatani, Masayuki Izumi and Hironobu Hashimoto

Table of contents

General experimental procedures	S3
General fluorescence experiments	S4
Figure S1. ¹ H NMR of 5	S5
Figure S2. ¹³ C NMR of 5	S6
Figure S3. ¹ H NMR of 2 in CDCl ₃	S7
Figure S4. COSY spectrum of 2 in CDCl ₃	S 8
Figure S5. ¹ H NMR of 2 in CD_3OD	S9
Figure S6. ¹ H NMR of 2 in DMSO	S10
Figure S7. COSY spectrum of 2 in DMSO	S11
Figure S8. ¹³ C NMR of 2	S12
Figure S9. ¹ H NMR of 7 in $CDCl_3$	S13
Figure S10. ¹³ C NMR of 7 in CDCl ₃	S14

Figure S12. ¹³C NMR of **8**α in CDCl₃

Figure S11. ¹ H NMR of $\mathbf{8a}$ in CDCl ₃	S15
--	-----

Figure S13. ¹H NMR of **8**β in CDCl₃ S17

S16

S35

- Figure S14. ¹³C NMR of **8β** in CDCl₃ S18
- Figure S15. ¹H NMR of **9** in CDCl₃ S19
- Figure S16. ¹³C NMR of **9** in CDCl₃ S20
- Figure S17. ¹H NMR of **1** in CDCl₃ S21
- Figure S18. ¹H NMR of **1** in acetone- d_6 S22
- Figure S19. ¹H NMR of **1** in DMSO-d₆ S23
- Figure S20. ¹H NMR of **1** in DMF-d₇ S24
- Figure S21. ¹³C NMR of **1** in CDCl₃ S25
- Figure S22. ¹H NMR of **1** with $ZnCl_2$ in acetone-d₆ S26
- Figure S23. ¹³C NMR of **1** with ZnCl₂ in acetone-d₆ S27
- Figure S24. COSY spectrum of **1** with ZnCl₂ in acetone-d₆ S28 Figure S25. HMQC spectrum of 1 with ZnCl₂ in acetone-d₆ S29
- Figure S26. HMBC spectrum of **1** with ZnCl₂ in acetone-d₆ S30
- Figure S27. ¹H NMR of **1** with $Mg(ClO_4)_2$ in acetone-d₆ S31
- Figure S28. ¹H NMR of **1-Pt** in DMF-d₇ S32
- Figure S29. ¹³C NMR of **1-Pt** in DMF-d₇ S33
- Figure S30. COSY spectrum of **1-Pt** in DMF-d₇ S34
- S36

Figure S31. HMQC spectrum of **1-Pt** in DMF-d₇

General experimental procedures.

All solvents and reagents used were reagent grade and, in cases where further purification was required, standard procedures (Perrin, D.D.; Armarego, W.L.; Perrin, D.R. Purification of Laboratory Compounds. 2nd ed. Pergamon Press, London. 1980.) were followed. Solution transfers where anhydrous conditions were required were done under dry argon using syringes. Thin-layer chromatograms (TLC) were performed on precoated silica gel Merck 60-F254 plates (Art 5715) and visualized by quenching of fluorescence and/or by charring after spraying with 1 % CeSO₄-1.5 % (NH₄)6Mo₇O₂₄·4H₂O-10 % H₂SO₄. Column chromatography was performed on Merck Kieselges 60 (Art 7734), Wako gel C-300, or Kanto Silica gel 60N (spherical, neutral) with the solvent systems specified

Optical rotations were determined with a Horiba SEPA-200 or JASCO DIP-4 polarimeter using 1 dm or 0.1 dm length cell. ¹H NMR (1D, COSY, HMQC, and HMBC) spectra were recorded at 400 MHz (Varian Unity-400) or 270 MHz (JEOL EX-270). Internal tetramethylsilane (δ 0 ppm) was used as a standard in CDCl₃ or solvents peaks were used as standards (δ 2.05 ppm in acetone-d₆, δ 2.50 ppm in DMSO-d₆ or δ 2.75 in DMF-d₇). Chemical shifts are expressed in ppm referenced to the solvent, as an internal standard. The multiplicity of signals is abbreviated as follows: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, ddd = doublet of doublets of doublets, br = broad signal, m = multiplet. ¹³C NMR spectra were recorded at 67.8 MHz (JEOL JNM-EX-270) or 100.6 MHz (Varian Unity-400) and solvents peaks were used as standards (δ 77.0 ppm in CDCl₃, δ 29.8 ppm in acetone-d₆ or δ 29.76 in DMF-d₇). High resolution mass spectra (HRMS) were recorded on Mariner Biospectrometry Workstation ESI-TOF MS. Fourier transform infrared spectrum was obtained with Shimadzu FTIR-8400S, in which a 10 mM solution in CCl₄ was measured in a cell with 0.5 mm length.

General fluorescence experiments.

Fluorescence spectra were recorded at 35°C on Shimadzu RF-5300PC fluorophotometer with exitation at 355 nm for **2** (1 μ M) and 347 nm for **1** (1 μ M), sampling intervals of 2 nm for **2** and 1 nm for **1**, excitation band widths of 3 nm for **2** and 1.5 nm for **1**, and an emission band width of 5.0 nm for both compounds. A cell with 10 mm width and 3 mm depth was used.

1) Titration: To a thermostated (35°C) solution of **1** (1 μ M, 1 mL) were dropped appropriate amounts of the solution of a metal ion and **1** (1 μ M), and fluorescence spectrum was recorded each at specified amounts of the metal ion. The titration results with ZnCl₂ and CdCl₂·4H₂O are shown in Figure 1 of the main text. The results with Mg(ClO₄)₂ and MnCl₂·4H₂O were shown in Figure S34-35.

2) Time course: To a thermostated (35°C) solution of **1** (2 μ M) in DMSO (500 μ L) was added the solution of K₂[PtCl₄] (2 μ M) in DMSO (500 μ L), and fluorescence spectrum was recorded at appropriate time intervals. The result is shown in Figure 1 of the main text.

Figure S1. ¹H NMR of **5**.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2004

Figure S3. ¹H NMR of **2** in CDCl₃.

Figure S4. COSY spectrum of $\mathbf{2}$ in CDCl₃.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2004

Figure S5. ¹H NMR of **2** in CD₃OD.

Figure S6. ¹H NMR of **2** in DMSO.

F2 (ppm) 4.0 4.5 5.0 5.5 6.0-6.5 7.0-7.5-8.0-8.5 9.0 1 Т 1 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 F1 (ppm)

Figure S7. COSY spectrum of **2** in DMSO.

Figure S2. ¹³C NMR of **5**.

Figure S8. 13 C NMR of **2**.

Figure S9. ¹H NMR of **7** in CDCl₃.

Figure S10. ¹³C NMR of **7** in CDCl₃.

Figure S11. ¹H NMR of $\mathbf{8\alpha}$ in CDCl₃.

Figure S12. ¹³C NMR of 8α in CDCl₃.

Figure S13. ¹H NMR of 8β in CDCl₃.

Figure S14. ¹³C NMR of 8β in CDCl₃.

Figure S15. 1 H NMR of **9** in CDCl₃.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2004

Figure S16. ¹³C NMR of **9** in CDCl₃.

Figure S17. 1 H NMR of **1** in CDCl₃.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2004

Figure S18. ¹H NMR of **1** in acetone-d₆.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2004

Figure S19. ¹H NMR of $\mathbf{1}$ in DMSO-d₆.

Figure S20. ¹H NMR of **1** in DMF-d₇.

This journal is © The Royal Society of Chemistry 2004

Figure S21. ¹³C NMR of **1** in CDCl₃.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2004

Figure S22. ¹H NMR of $\mathbf{1}$ with ZnCl₂ in acetone-d₆.

Figure S23. 13 C NMR of **1** with ZnCl₂ in acetone-d₆.

Figure S24. COSY spectrum of 1 with ZnCl₂ in acetone-d₆.

This journal is © The Royal Society of Chemistry 2004

Figure S25. HMQC spectrum of 1 with ZnCl₂ in acetone-d₆.

This journal is © The Royal Society of Chemistry 2004

Figure S26. HMBC spectrum of 1 with ZnCl₂ in acetone-d₆.

Figure S27. ¹H NMR of **1** with $Mg(ClO_4)_2$ in acetone-d₆.

Figure S28. ¹H NMR of **1-Pt** in DMF-d₇.

Figure S29. ¹³C NMR of **1-Pt** in DMF-d₇.

Figure S30. COSY spectrum of **1-Pt** in DMF-d₇.

Figure S31. HMQC spectrum of **1-Pt** in DMF-d₇.

Figure S32. HMBC spectrum of **1-Pt** in DMF-d₇.