Theoretical (DFT, GIAO-NMR, NICS) Study of Carbocations (M+H)⁺, Dications (M²⁺) and Dianions (M²⁻) from Dihydro-dicyclopenta[*ef,kl*]heptalene (Dihydro-azupyrene), Dihydro-dicyclohepta[*ed,gh*]pentalene, and Related Bridged [14]annulenes

Takao Okazaki^{a,b} and Kenneth K. Laali*^b

^{a)} Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto, Japan ^{b)} Department of Chemistry, Kent State University, Kent, OH 44242, USA

Fig S1	Optimized geometries for 4 $4_{3}H^{+}$ $4_{5}H^{+}$ triplet 4^{2+} and singlet 4^{2-}	Page S4
11g 51.	at B3LYP/6-31G(d) level (bond length Å)	Ът
Fig S1a.	Optimized geometries for 4, 4bH ⁺ , triplet 4^{2+} , and singlet 4^{2-} at B3LVP/6-31+G(d n) and B3LVP/6-31++G(d n) levels (bond length Å)	S5
Fig S1b.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for 4bH ⁺ , triplet 4 ²⁺ , and singlet 4 ²⁻ ($\Delta\delta$ ¹³ C's and Δ charges relative to 4 in parentheses) at B3LYP/6-31+G(d,p) level	S7
Fig S1c.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for 4bH ⁺ , triplet 4 ²⁺ , and singlet 4 ²⁻ ($\Delta\delta$ ¹³ C's and Δ charges relative to 4 in parentheses) at B3LYP/6-31++G(d,p) level.	S8
Fig S2.	NICS values for $4H^+$, $4aH^+$, $4bH^+$, 4^{2+} , and 4^{2-} at B3LYP/6-31G(d), 6-31+G(d,p), or 6-31++G(d,p) level (Δ NICS values relative to those of 4 in parentheses).	S9
Fig S3.	B3LYP/6-31G(d) optimized geometries for 5, 5 H^+ , 5 aH^+ , 5 bH^+ , 5 ²⁺ , and 5 ²⁻ (bond length, Å).	S10
Fig S4.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for $5H^+$, $5aH^+$, $5bH^+$, 5^{2+} , and 5^{2-} at B3LYP/6-31G(d) level.	S12
Fig S5.	NICS values for $5H^+$, $5aH^+$, $5bH^+$, 5^{2+} , and 5^{2-} at B3LYP/6-31G(d), or $6-31+G(d,p)$ level (Δ NICS values relative to those of 5 in parentheses).	S15
Fig S6.	B3LYP/6-31G(d) optimized geometries for 8 , 8 H ⁺ , triplet 8 ²⁺ , and singlet 8 ²⁻ (bond length, Å).	S15
Fig S7.	NICS values for $\mathbf{8H}^+$, 8^{2+} , and 8^{2-} at B3LYP/6-31G(d) or 6-31+G(d,p) level (Δ NICS values relative to those of 8 in parentheses)	S16
Fig S8.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for $9H^+$, 9^{2+} , and 9^{2-} at B3LYP/6-31G(d) level.	S17

Fig S9.	B3LYP/6-31G(d) optimized geometries for 9, $9H^+$, triplet 9^{2+} , and	S18
	singlet 9 ²⁻ (bond length, Å).	
Fig S10.	NICS values for $9H^+$, 9^{2+} , and 9^{2-} at B3LYP/6-31G(d) or 6-31+G(d,p)	S19
	level (Δ NICS values relative to those of 9 in parentheses).	
Fig S11.	B3LYP/6-31G(d) optimized geometries for 10, $10aH^+$, singlet 10^{2+} ,	S20
	and singlet 10^{2-} (bond length, Å).	
Fig S12.	B3LYP/6-31G(d) optimized geometries for 11, $11H^+$, singlet 11^{2+} ,	S21
	and singlet 11^{2-} and X-ray structure for 11 (bond length, Å).	
Fig S13.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and	S22
	NPA-derived overall charges over CH units for $10aH^+$, 10^{2+} , and 10^{2-} at	
	B3LYP/6-31G(d) level.	
Fig S13a.	Experimental and computed ¹³ C NMR chemical shifts for 10aH ⁺ .	S23
Fig S13b.	Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental	S24
	$\Delta \delta^{13}$ C vs GIAO-derived $\Delta \delta^{13}$ C for 10aH ⁺ .	
Fig S14.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and	S25
	NPA-derived overall charges over CH units for $11aH^+$, 11^{2+} , and 11^{2-} at	
	B3LYP/6-31G(d) level.	
Fig S15.	NICS values for $10aH^+$, 10^{2+} , and 10^{2-} at B3LYP/6-31G(d)	S26
	or $6-31+G(d,p)$ level (Δ NICS values relative to those of 10 in parentheses).	
Fig S16.	NICS values for $11aH^+$, 11^{2+} and 11^{2-} at B3LYP/6-31G(d)	S26
	or $6-31+G(d,p)$ level (Δ NICS values relative to those of 11 in parentheses).	
Fig S17.	B3LYP/6-31G(d) optimized geometries for 14, $14H^+$, singlet 14^{2+} ,	S27
	and singlet 14^{2-} and X-ray structure for 14 (bond length, Å).	
Fig S18.	B3LYP/6-31G(d) optimized geometries for 15, 15H ⁺ , 15aH ⁺ ,	S28
	singlet 15^{2^+} , and singlet 15^{2^-} and X-ray structure for 15 (bond length, Å).	
Fig S19.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and	S29
	NPA-derived overall charges over CH units for $14H^+$, 14^{2+} , and 14^{2-} at	
	B3LYP/6-31G(d) level.	
Fig S20.	Experimental and computed ¹³ C NMR chemical shifts for 14H ⁺ .	S30
Fig S20a.	Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental	S31
	$\Delta \delta^{13}$ C vs GIAO-derived $\Delta \delta^{13}$ C for 14H ⁺ .	
Fig S21.	Experimental and computed 13 C NMR chemical shifts for singlet 14^{2+} .	S32
Fig S21a.	Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental	S33
	$\Delta \delta^{13}$ C vs GIAO-derived $\Delta \delta^{13}$ C for 14 ²⁺ .	
Fig S21b.	Experimental and computed 13 C NMR chemical shifts for singlet 14^{2-} .	S34
Fig S21c.	Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental	S35
	$\Delta \delta^{13}$ C vs GIAO-derived $\Delta \delta^{13}$ C for 14 ²⁻ .	
Fig S22.	Computed ¹³ C NMR chemical shifts, NPA-derived carbon charges, and	S36
	NPA-derived overall charges over CH units for $15H^+$, $15aH^+$, 15^{2+} , and	
	15^{2-} at B3LYP/6-31G(d) level.	
Fig S22a.	Experimental and computed ¹³ C NMR chemical shifts for 15H ⁺ .	S38

Fig S22b.	Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental	S39
	$\Delta \delta^{13}$ C vs GIAO-derived $\Delta \delta^{13}$ C for 15H ⁺ .	
Fig S22c.	Experimental ¹ H NMR chemical shifts for singlet 15^{2-} .	S39
Fig S22d.	Experimental and computed 13 C NMR chemical shifts for singlet 15^{2+} .	S40
Fig S22e.	Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental	S41
	$\Delta \delta^{13}$ C vs GIAO-derived $\Delta \delta^{13}$ C for 15 ²⁺ .	
Fig S23.	NICS values for 14^{2+} , 14^{2-} , 15^{2+} , and 15^{2-} at B3LYP/6-31G(d) or	S42
	6-31+G(d,p) level (Δ NICS values relative to those of parent	
	hydrocarbons 14 and 15 in parentheses).	
Fig S24.	Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C using various basic sets	S43
	(addendum to Fig S24)	S44
Fig S25.	Forms of HOMO, LUMO, and SOMO for 4 , 4bH ⁺ , triplet 4 ²⁺ , and	S44
	singlet 4^{2-} by B3LYP/6-31G(d).	
Table S1.	Energies (E), Zero Point Energies (ZPE), Gibbs Free Energies (G),	S47
	and Relative Gibbs Free Energies (ΔG) for B3LYP/6-31G(d) Optimized	
	Structures of Dihydro-derivatives 4-11.	
Table S2.	Energies (E), Zero Point Energies (ZPE), Gibbs Free Energies (G),	S48
	Relative Gibbs Free Energies (ΔG) for B3LYP/6-31G(d) Optimized	
	Structures for 4, 5, 8-15, their Monocations, Dications, and Dianions	
Table S3.	Energies (E), Zero Point Energies (ZPE), Gibbs Free Energies (G),	S52
	Relative Gibbs Free Energies (ΔG) for the Optimized Structures for 4,	
	its Monocations, Dications, and Dianions	
Table S4.	Energies for Optimized Structures for 5, 8, 9, 10, 11, 14, 15, and	S53
	their dianions by B3LYP/6-31+G(d,p)	

1.430 1.389

H

(H)

H

1.395

1.397

Ĥ

B

Î

1.408

Optimized geometries for 4, $4H^+$, $4aH^+$, $4bH^+$, triplet 4^{2+} , and singlet 4^{2-} at Fig S1. B3LYP/6-31G(d) level (bond length, Å).

Fig S1a. Optimized geometries for 4, $4bH^+$, triplet 4^{2+} , and singlet 4^{2-} at B3LYP/6-31+G(d,p) and B3LYP/6-31++G(d,p) levels (bond length, Å).

triplet 4²⁺ [B3LYP/6-31++G(d,p)]

Fig S1a (contined).

Fig S1b. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for **4bH**⁺, triplet **4**²⁺, and singlet **4**²⁻ ($\Delta\delta$ ¹³C's and Δ charges relative to **4** in parentheses) at B3LYP/6-31+G(d,p) level. [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion) ; threshold was set to 10 ppm].

Fig S1c. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for **4bH**⁺, triplet **4**²⁺, and singlet **4**²⁻ ($\Delta\delta$ ¹³C's and Δ charges relative to **4** in parentheses) at B3LYP/6-31++G(d,p) level. [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion); threshold was set to 10 ppm].

Fig S2. NICS values for $4H^+$, $4aH^+$, $4bH^+$, 4^{2+} , and 4^{2-} at B3LYP/6-31G(d), 6-31+G(d,p), or 6-31++G(d,p) level (Δ NICS values relative to those of 4 in parentheses).

Fig S3. B3LYP/6-31G(d) optimized geometries for 5, $5H^+$, $5aH^+$, $5bH^+$, 5^{2+} , and 5^{2-} (bond length, Å).

Fig S3 (continued).

Fig S4. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for $5H^+$, $5aH^+$, $5bH^+$, 5^{2+} , and 5^{2-} at B3LYP/6-31G(d) level ($\Delta\delta$ ¹³C's and Δ charges relative to 5 in parentheses). [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion); threshold was set to 10 ppm].

Fig S4 (continued).

Fig S5. NICS values for **5H**⁺, **5aH**⁺, **5bH**⁺, **5**²⁺, and **5**²⁻ at B3LYP/6-31G(d) or 6-31+G(d,p) level (Δ NICS values relative to those of **5** in parentheses).

Fig S6. B3LYP/6-31G(d) optimized geometries for 8, $8H^+$, triplet 8^{2+} , and singlet 8^{2-} (bond length, Å).

singlet 8²⁺

Fig S6 (continued).

Fig S7. NICS values for $\mathbf{8H}^+$, $\mathbf{8}^{2+}$, and $\mathbf{8}^{2-}$ at B3LYP/6-31G(d) or 6-31+G(d,p) level (Δ NICS values relative to those of **8** in parentheses).

Fig S8. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for **9H**⁺, **9**²⁺, and **9**²⁻ at B3LYP/6-31G(d) level ($\Delta\delta$ ¹³C's and Δ charges relative to **9** in parentheses). [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion); threshold was set to 10 ppm].

Fig S9. B3LYP/6-31G(d) optimized geometries for 9, $9H^+$, triplet 9^{2+} , and singlet 9^{2-} (bond length, Å).

Fig S10. NICS values for $9H^+$, 9^{2+} , and 9^{2-} at B3LYP/6-31G(d) or 6-31+G(d,p) level (Δ NICS values relative to those of 9 in parentheses).

singlet 10²⁺

singlet 10²⁻

Fig S11. B3LYP/6-31G(d) optimized geometries for 10, $10aH^+$, singlet 10^{2+} , and singlet 10^{2-} (bond length, Å).

Fig S12. B3LYP/6-31G(d) optimized geometries for **11**, **11H**⁺, singlet 11^{2+} , and singlet 11^{2-} and X-ray structure for **11** (bond length, Å).

Fig S13. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for $10aH^+$, 10^{2+} , and 10^{2-} at B3LYP/6-31G(d) level ($\Delta\delta$ ¹³C's and Δ charges relative to 10 in parentheses). [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion); threshold was set to 10 ppm].

B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) 157.6 (24.2) (4.1) 137.5 145.3 (22.1) (3.2) 126.4 Ĥ Η 45.1 40.1 (30.3) 160.0 (28.8) 148.3 н <u>H</u> 180.3 (41.2) н Н (3.6) 142.7 166.8 (38.8) (4.2) 132.2 59.7 (11.0) 54.5 (10.7) 140.9 (1.1) (9.1) 148.9 129.1 (2.0) (9.7) 136.8 55.6 (6.9) 50.7 (6.9) 168.4 (29.3) (5.4) 144.5 (4.7) 132.7 155.3 (27.3) Ĥ Ĥ (18.8) 148.6 (16.8) 136.4 132.1 (2.4) 121.8 (2.3) (6.7) 140.1 160.0 (26.6) (6.6) 129.8 147.3 (24.1) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) 156.5 (23.1) (3.9) 137.9 156.8 (22.8) (3.8) 137.3 Н н 43.6 44.3 (28.9) 158.9 (29.0) 158.4 Н н 178.9 (41.1) 179.0 (40.7) (4.2) 142.4 (3.9) 141.7 59.4 (11.5) 58.9 (11.5) 140.7 (1.3) 140.0 (1.1) (9.5) 148.4 (9.5) 148.8 55.0 (7.1) 54.4 (7.1) 166.4 (28.6) 166.8 (28.5) (5.7) 143.5 (5.6) 143.9 Ĥ Н (18.9) 148.4 132.0 (2.5) (19.2) 149.2 132.6 (2.6) (6.7) 140.7 160.1 (26.1) (6.7) 140.2 159.7 (26.3) Experimental- $\delta^{13}C$ B3LYP/6-31G(d)//B3LYP/6-31G(d) (in superacid solution) 149.6 (23.1) (5.3) 131.8 142.0 (21.3) (3.4) 124.1 Ĥ (28.7) 151.5 28.8 37.9 (28.4) 145.2 Н Н (23.3) 154.8 185.5 (54.0) 162.6 (39.7) (5.0) 127.9 57.3 (14.3) 52.0 (11.7) 129.5 (-2.9) (10.5) 142.9 (8.8) 134.8 127.1 (1.0) 61.9 (18.9) 47.6 (7.3) (22.9) 154.4 157.9 (26.4) (6.7) 129.6 51.4 (28.5) Н Ē 131.8 (9.0) (28.7) 151.5 (17.6) 134.5 119.8 (2.9) (6.7) 127.4 145.1 (24.4) (2.2) 128.7 149.6 (23.1)

GIAO-δ¹³C

Fig S13a. Experimental (Ref 22) and computed ¹³C NMR chemical shifts for 10aH⁺.

 $10aH^+$

Figure S13b. Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental $\Delta\delta^{13}$ C vs GIAO-derived $\Delta\delta^{13}$ C for **10aH**⁺ by ($^{\bigcirc}$) B3LYP/6-31G(d)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d), ($^{\times}$) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$)

Fig S14. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for $11aH^+$, 11^{2+} , and 11^{2-} at B3LYP/6-31G(d) level ($\Delta\delta$ ¹³C's and Δ charges relative to 11 in parentheses). [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion); threshold was set to 10 ppm].

Fig S15. NICS values for $10aH^+$, 10^{2+} , and 10^{2-} at B3LYP/6-31G(d) or 6-31+G(d,p) level (Δ NICS values relative to those of 10 in parentheses).

Fig S16. NICS values for $11aH^+$, 11^{2+} and 11^{2-} at B3LYP/6-31G(d) or 6-31+G(d,p) level (Δ NICS values relative to those of 11 in parentheses).

14H⁺

singlet 14²⁺

singlet 14²⁻

Fig S17. B3LYP/6-31G(d) optimized geometries for **14**, **14H**⁺, singlet **14**²⁺ and singlet **14**²⁻ and X-ray structure for **14** (bond length, Å).

singlet 15²⁺

1.407

1.500

.507

1.514

.509

1.383

1.410

1.391

1.399

1.402

Ð

1.375

с Æ

1.377

1.389

Y

1.404

P

.522 1.50

Fig S18. B3LYP/6-31G(d) optimized geometries for 15, 15H⁺, 15aH⁺, singlet 15²⁺, and singlet 15^{2-} and X-ray structure for 15 (bond length, Å).

Fig S19. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for $14H^+$, 14^{2+} , and 14^{2-} at B3LYP/6-31G(d) level ($\Delta\delta$ ¹³C's and Δ charges relative to 14 in parentheses). [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion); threshold was set to 10 ppm].

Fig S20. Experimental (Ref 22) and computed ¹³C NMR chemical shifts for 14H⁺.

Figure S20a. Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental $\Delta\delta^{13}$ C vs GIAO-derived $\Delta\delta^{13}$ C for **14H**⁺ by ($^{\bigcirc}$) B3LYP/6-31G(d)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d), ($^{\times}$) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p).

Fig S21. Experimental (Ref 22) and computed ¹³C NMR chemical shifts for singlet 14²⁺.

B3LYP/6-31+G(d,p)//B3LYP/6-31G(d)

2+

39.1 (12.5) 148.9 (25.5)

162.4 (28.3)

137.8 (34.4)

146.9 (15.7)

2+

41.8 (12.9)

B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d)

161.0 (26.3)

175.7 (29.8)

148.3 (36.1)

158.5 (15.2)

Figure S21a. Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental $\Delta\delta^{13}$ C vs GIAO-derived $\Delta\delta^{13}$ C for 14²⁺ by ($^{\bigcirc}$) B3LYP/6-31G(d)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d), ($^{\times}$) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++(d,p)//B3LYP/6-311++G(d,p).

B3LYP/6-31+G(d,p)//B3LYP/6-31G(d)

Fig S21b. Experimental (Ref 21) and computed ¹³C NMR chemical shifts for singlet 14²⁻.

Figure S21c. Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental $\Delta\delta^{13}$ C vs GIAO-derived $\Delta\delta^{13}$ C for 14²⁻ by ($^{\bigcirc}$) B3LYP/6-31G(d)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d), ($^{\times}$) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$)

Fig S22. Computed ¹³C NMR chemical shifts, NPA-derived carbon charges, and NPA-derived overall charges over CH units for $15H^+$, $15aH^+$, 15^{2+} , and 15^{2-} at B3LYP/6-31G(d) level ($\Delta\delta$ ¹³C's and Δ charges relative to 15 in parentheses). [*Dark circles are roughly proportional to the magnitude of* $\Delta\delta$ ¹³Cs (positive/downfield for the carbocations/dication and negative/upfield for the dianion); threshold was set to 10 ppm].

Fig S22 (continued).

Fig S22a. Experimental (Ref 21) and computed ¹³C NMR chemical shifts for 15H⁺.

Figure S22b. Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental $\Delta\delta^{13}$ C vs GIAO-derived $\Delta\delta^{13}$ C for **15H**⁺ by ($^{\bigcirc}$) B3LYP/6-31G(d)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d), ($^{\times}$) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$)

Fig S22c. Experimental ¹H NMR chemical shifts for singlet **15²⁻** (Ref. 21).

164.6 (29.5)

180.3 (41.4)

151.6 (15.4)

148.8 (28.1)

B3LYP/6-31+G(d,p)//B3LYP/6-31G(d)

(17.3)

52.1

Figure S22e. Plots of experimental δ^{13} C vs GIAO-derived δ^{13} C and experimental $\Delta\delta^{13}$ C vs GIAO-derived $\Delta\delta^{13}$ C for **15²⁺** by ($^{\bigcirc}$) B3LYP/6-31G(d)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d), ($^{\times}$) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), ($^{\bullet}$)

Fig S23. NICS values for 14^{2+} , 14^{2-} , 15^{2+} , and 15^{2-} at B3LYP/6-31G(d) or 6-31+G(d,p) level (Δ NICS values relative to those of parent hydrocarbons 14 and 15 in parentheses).

 $\delta^{13}C$ $\delta^{13}C$ Fig S24. Plots experimental vs GIAO-derived ofby (a) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d), B3LYP/6-31G(d)//B3LYP/6-31G(d), (b) (c) B3LYP/6-311++G(d,p)//B3LYP/6-31G(d), (d) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d), (e) $B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) \ (\bigcirc: 10aH^+, \ \bullet: 14H^+, \ \times: \ singlet \ 14^{2+}, \ \Delta: \ singlet \ 14^{2+}, \$ 14²⁻, \blacktriangle : 15H⁺, \Box : singlet 15²⁺).

Addendum to Fig. S24

Computed δ^{13} C values correlate with the experimental data by equations (1-5) (see below) with R² = 0.94-0.95 and a slope of 0.89-0.96. The slopes at higher basic sets are closer to unity, although correlation coefficients R² are similar.

$$\begin{split} & \text{B3LYP/6-31(d)//B3LYP/6-31(d):} \\ & \delta^{13}\text{C} \ (\text{GIAO}) = 0.89 \times \delta^{13}\text{C} \ (\text{experimental}) + 6.4 & \text{R}^2 = 0.951 & (1) \\ & \text{B3LYP/6-31+G(d,p)//B3LYP/6-31G(d):} \\ & \delta^{13}\text{C} \ (\text{GIAO}) = 0.89 \times \delta^{13}\text{C} \ (\text{experimental}) + 10.2 & \text{R}^2 = 0.947 & (2) \\ & \text{B3LYP/6-311++G(d,p)//B3LYP/6-31G(d):} \\ & \delta^{13}\text{C} \ (\text{GIAO}) = 0.96 \times \delta^{13}\text{C} \ (\text{experimental}) + 11.3 & \text{R}^2 = 0.942 & (3) \\ & \text{B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d):} \\ & \delta^{13}\text{C} \ (\text{GIAO}) = 0.95 \times \delta^{13}\text{C} \ (\text{experimental}) + 12.3 & \text{R}^2 = 0.940 & (4) \\ & \text{B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p):} \\ & \delta^{13}\text{C} \ (\text{GIAO}) = 0.96 \times \delta^{13}\text{C} \ (\text{experimental}) + 11.4 & \text{R}^2 = 0.938 & (5) \\ \end{split}$$

HOMO for 4

LUMO for 4

Fig S25. Forms of HOMO, LUMO, and SOMO for 4, $4bH^+$, triplet 4^{2+} , and singlet 4^{2-} by B3LYP/6-31G(d).

Figure S25 (continued).

Figure S25 (continued).

Compd	Mole	cular E,	ZPE,	G,	ΔG,
	point	group hartree	hartree	hartree	kcal ^a
4	C ₁	-616.8707181	0.228341	-616.678445	(0)
6	C_1	-616.8465659	0.228190	-616.654624	14.9
5	C_1	-695.4919074	0.284632	-695.245566	(0)
7	C_1	-695.4536401	0.284425	-695.207700	23.8
8	C_1	-616.8234724	0.228569	-616.630880	(0)
10	C_1	-616.8738954	0.228787	-616.681047	-31.5
9	C_1	-695.4358718	0.283847	-695.190422	(0)
11	C_1	-695.5004848	0.284624	-695.254083	-39.9

Table S1. Energies (E), Zero Point Energies (ZPE), Gibbs Free Energies (G), and Relative Gibbs Free Energies (Δ G) for B3LYP/6-31G(d) Optimized Structures of Dihydro-derivatives **4-11**.

^a Relative Gibbs free energies of *syn*-derivatives to those of *anti*-derivatives.

Table S2. Energies (E), Zero Point Energies (ZPE), Gibbs Free Energies (G), Relative Gibbs Free Energies (Δ G) for B3LYP/6-31G(d) Optimized Structures for 4-5, 8-15, their Monocations, Dications, and Dianions

Compd	Protonation	Molecul	ar	Е,	ZPE,	G,	ΔG,	
	site	point gr	oup	hartree ^a	hartree ^a	hartree ^a	kcal ^b	
4		C ₁	-616.	8707181	0.228341	-616.678445	(0)	
		C_{2h}	-616.	8706817	0.228333	-616.677761	0.4	
$4H^+$	C(1)	C_1	-617.	2333368	0.240699	-617.029301	-220.2	
$4aH^+$	C(3)	C_1	-617.	234331	0.240751	-617.030422	-220.9	
$4bH^+$	C(4)	C_1	-617.	2384905	0.240730	-617.033830	-223.4	
$4^{2+}(s)^{c}$		C_1	-616.	2230611	0.228640	-616.031314	406.1	
		Ci	-616.	2230366	0.228626	-616.031306	406.1	
		C_{2h}^{d}	-616.	2214584	0.226870	-616.030650	406.5	
$4^{2+}(t)^{c}$		C_1	- 616.	2244602	0.228783	-616.033230	404.9	
		C_s	- 616.	2244602	0.228777	-616.033237		
		C_{2h}	-616.	2244166	0.228773	-616.032542	405.3	
$4^{2-}(s)^{c}$		C_1	-616.	7220175	0.218179	-616.540687	86.4	
		C_{2h}	-616.	7219216	0.218157	-616.539974	86.9	
$4^{2-}(t)^{c}$		C_1	-616.	7181169	0.217782	-616.538074	88.1	
		C_{2h}	-616.	7180712	0.217772	-616.537382	88.5	
5		C_1	-695.	4919074	0.284632	-695.245566	(0)	
		C_{2h}	-695.	4918974	0.284623	-695.244913	0.4	
$5H^+$	C(1)	C_1	-695.	8578678	0.296845	-695.599860	-222.3	
$5 \mathrm{aH}^+$	C(3)	C_1	-695.	8578801	0.296912	-695.600027	-222.4	
$5bH^+$	C(4)	C_1	-695.	8615373	0.297000	-695.603381	-224.5	
$5^{2+}(s)^{c}$		Ci	-694.	8542078	0.284409	-694.608866	399.5	
		C_{2h}^{d}	-694.	8534797	0.282958	-694.608601	399.7	
		C_1	-694.	8542025	0.284498	-694.608694	399.6	
$5^{2+}(t)^{c}$		C_{2h}	- 694.	8545546	0.284792	-694.608847	399.5	
		C_1	- 694.	8545828	0.284811	-694.609502	399.1	
$5^{2-}(s)^{c}$		C_{2h}	-695.	3532913	0.273662	-695.118077	80.0	
		C_1	-695.	3533188	0.273624	-695.118835	79.5	
$5^{2-}(t)^{c}$		C_{2h}	-695.	3467395	0.273701	-695.112390	83.6	
		C_1	-695.	3467665	0.273722	-695.113043	83.2	

^a 1 hartree = 627.5096 kcal/mol. ^b Relative Gibbs free energies to those of the parent hydrocarbons. ^c (s) and (t) denote triplet and singlet states. ^d Number of imaginary frequencies = 1.

Compd	Protonation	Molecu	lar	E,	ZPE,	G,	ΔG ,	
	site	point gr	oup	nartree	nartree	nartree	ксаг	
8		C _{2h}	-616.	8234939	0.228588	-616.630225	0.4	
		C_1	-616.	8234724	0.228569	-616.630880	(0)	
8H ⁺	C(5)	C_1	-617.	1897954	0.240435	-616.986002	-222.8	
$8 a H^+$	C(1)	C_1	-617.	1836447	0.240668	-616.979726	-218.9	
$8bH^+$	C(2)	C_1	-617.	1886921	0.240909	-616.984366	-221.8	
$8^{2+}(s)^{c}$		C_{2h}	-616.	1844352	0.229021	-615.991327	401.3	
		C_1	-616.	1844054	0.228991	-615.991986	400.9	
$8^{2+}(t)^{c}$		C_{2h}	-616.	1731913	0.228392	-615.981566	407.5	
		C_1	-616.	1731519	0.228345	-615.982242	407.0	
$8^{2}(s)^{c}$		C_{2h}	-616.	7091687	0.218790	-616.526239	65.7	
		C_1	-616.	7091512	0.218781	-616.526889	65.3	
$8^{2-}(t)^{c}$		C_{2h}	-616.	6988577	0.218887	-616.516534	71.8	
		C_1	-616.	6988251	0.218860	-616.517189	71.3	
9		C_{2h}	-695.	4358090	0.283771	-695.189819	0.4	
		C_1	-695.	4358718	0.283847	-695.190422	(0)	
9H ⁺	C(5)	C_1	-695.	8115965	0.296398	-695.554000	-228.1	
9aH ⁺	C(1)	C_1	-695.	7989077	0.295817	-695.542439	-220.9	
$9bH^+$	C(2)	C_1	-695.	8035653	0.295982	-695.546766	-223.6	
$9^{2+}(s)^{c}$		C_{2h}	-694.	8082124	0.284235	-694.562690	393.9	
		C_1	-694.	8081658	0.284146	-694.563478	393.4	
$9^{2+}(t)^{c}$		C_{2h}	-694.	7976001	0.283432	-694.553371	399.8	
		C_1	-694.	7975569	0.283357	-694.554107	399.3	
$9^{2}(s)^{c}$		$C_{2h}^{ \ b}$	-695.	3236722	0.273068	-695.088935	63.7	
		C_1	-695.	3238175	0.273755	-695.089723	63.2	
$9^{2-}(t)^{c}$		C_{2h}	-695.	3166255	0.274226	-695.081418	68.4	
		C_1	-695.	3166141	0.274213	-695.082080	68.0	

Table S2 (continued).

Table	S2	(continued).
-------	-----------	--------------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ΔG,	G,	ZPE,	Е,	Molecular	Protonation	Compd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		kcal ^b	hartree ^a	hartree ^a	hartree ^a	point group	site	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.4	-616.680393	0.228787	.8738954	C _{2v} -616		10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0)	-616.681047	0.228787	.8738954	C ₁ -616		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-216.4	-617.025966	0.240586	.2300612	C _s -617	C(5)	$10H^+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-216.4	-617.025967	0.240586	.2300612	C ₁ -617		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-221.9	-617.034712	0.240969	.2391727	C ₁ -617	C(1)	$10 \mathrm{aH}^+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-220.1	-617.031813	0.240777	.235936	C ₁ -617	C(2)	$10 b H^+$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		410.6	-616.026611	0.228383	.2188396	C _{2v} -616		$10^{2^{+}}(s)^{c}$
10^{2+} (t) ^c C _{2v} -616.21690670.228321-616.025267411.5C1-616.21690670.228321-616.025921411.1		410.3	-616.027265	0.228383	.2188396	C ₁ -616		
$C_1 \qquad -616.2169067 \qquad 0.228321 \qquad -616.025921 \qquad 411.1$		411.5	-616.025267	0.228321	.2169067	C _{2v} -616		$10^{2^{+}}(t)^{c}$
		411.1	-616.025921	0.228321	.2169067	C ₁ -616		
10^{2-} (s) ^c C _s -616.7470000 0.218961 -616.564409 73.2		73.2	-616.564409	0.218961	.7470000	C _s -616		10^{2} (s) ^c
C_1 -616.7469915 0.218991 -616.564379 73.2		73.2	-616.564379	0.218991	.7469915	C ₁ -616		
10^{2-} (t) ^c C _s -616.7283051 0.218584 -616.547035 84.1		84.1	-616.547035	0.218584	.7283051	C _s -616		$10^{2-}(t)^{c}$
$C_1 \qquad -616.7282851 \qquad 0.218561 \qquad -616.547050 \qquad 84.1$		84.1	-616.547050	0.218561	.7282851	C ₁ -616		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.4	-695.253430	0.284624	.5004848	C _{2v} -695		11
$C_1 \qquad -695.5004848 \qquad 0.284624 \qquad -695.254083 \qquad (0)$		(0)	-695.254083	0.284624	.5004848	C ₁ -695		
11H^+ C(5) C _s -695.8573173 0.296495 -695.599584 -216.8		-216.8	-695.599584	0.296495	.8573173	C _s -695	C(5)	$11H^+$
C_1 695.8573173 0.296495 -695.599584 -216.8		-216.8	-695.599584	0.296495	.8573173	C ₁ 695		
11aH ⁺ C(1) C ₁ -695.8675051 0.297025 -695.609250 -222.9		-222.9	-695.609250	0.297025	.8675051	C ₁ -695	C(1)	$11 \mathrm{aH}^+$
11bH ⁺ C(2) C ₁ -695.8636513 0.296574 -695.606023 -220.8		-220.8	-695.606023	0.296574	.8636513	C ₁ -695	C(2)	$11bH^+$
$11^{2+} (s)^{c} \qquad \qquad \mathbf{C}_{2v} \qquad -694.8508447 \qquad 0.284850 \qquad -694.604621 \qquad 407.5$		407.5	-694.604621	0.284850	.8508447	C _{2v} -694		$11^{2+}(s)^{c}$
$C_1 \qquad -694.8508447 \qquad 0.284850 \qquad -694.605275 \qquad 407.1$		407.1	-694.605275	0.284850	.8508447	C ₁ -694		
$11^{2+} (t)^{c} \qquad C_{2v} -694.8487787 0.284259 -694.603589 408.2$		408.2	-694.603589	0.284259	.8487787	C _{2v} -694		$11^{2+}(t)^{c}$
$C_1 \qquad -694.8487787 \qquad 0.284260 \qquad -694.604243 \qquad 407.8$		407.8	-694.604243	0.284260	.8487787	C ₁ -694		
11²⁻ (s) ^c C_{2v} -695.3740715 0.274706 -695.137263 73.3		73.3	-695.137263	0.274706	.3740715	C _{2v} -695		$11^{2-} (s)^{c}$
C_1 -695.3740715 0.274707 -695.137917 72.9		72.9	-695.137917	0.274707	.3740715	C ₁ -695		
11²⁻ (t) ^c C_{2v} -695.355764 0.274343 -695.120310 83.9		83.9	-695.120310	0.274343	.355764	C _{2v} -695		$11^{2-}(t)^{c}$
C_1 -695.355764 0.274344 -695.120963 83.5		83.5	-695.120963	0.274344	3.355764	C ₁ -695		

Compd	Protonation	Molecu	lar	Е,	ZPE	Ξ,		G,	Z	1G,	
	site	point gr	oup	hartree ^a	hart	ree ^a		hartree ^a	1	ccal ^b	
14		C_{2v}	-618.	0403323	0.252	2018	-6	17.82392	29	0.4	
		C_1	-618.	0403323	0.252	2019	-6	17.82458	83	(0)	
$14H^+$	C(5)	Cs	-618.	413039	0.264	4786	-6	18.18492	28 -2	226.1	
		C_1	-618.	413039	0.264	4786	-6	18.18492	28 -2	226.1	
$14aH^+$	C(1)	C_1	- 618.	4120941	0.264	4625	-6	18.18409	96 -2	225.6	
$14^{2+}(s)^{c}$		C_{2v}	- 617.	3963755	0.252	2767	-6	17.1793	55 4	404.9	
		C_1	- 617.	3963755	0.252	2767	-6	17.18000	09 4	404.5	
$14^{2+}(t)^{c}$		C_{2v}	- 617.	379102	0.251	302	-6	17.1648:	58 4	414.0	
		C_1	- 617.	379102	0.251	302	-6	17.1655	12 4	413.6	
$14^{2-}(s)^{c}$		C_{2v}	- 617.	904338	0.242	2016	-6	17.69850	59	79.1	
		C_1	- 617.	904338	0.242	2016	-6	17.69922	22	78.7	
$14^{2-}(t)^{c}$		C_{2v}	- 617.	8882346	0.241	606	-6	17.68372	25	88.4	
		C_1	- 617.	8882346	0.241	607	-6	17.6843	78	88.0	
15		C_{2v}	-656.	1807873	0.258	3796	-63	55.9576	11	0.4	
		C_1	-656.	1807873	0.258	3797	-63	55.95820	64	(0)	
$15H^+$	C(5)	Cs	-656.	5443439	0.271	000	-63	56.31004	41 -2	220.7	
		C_1	-656.	5443439	0.271	001	-63	56.31004	41 -2	220.7	
15aH ⁺	C(1)	C_1	-656.	5503302	0.271	170	-63	56.31590	06 -2	224.4	
$15^{2+}(s)^{c}$		C_{2v}	-655.	5347736	0.259	9031	-63	55.31158	32 4	405.8	
		C_1	-655.	5347736	0.259	9031	-63	55.31223	36 4	405.4	
$15^{2+}(t)^{c}$		C_{2v}	-655.	5213722	0.258	8087	-6.	55.30039	91 4	412.8	
		C_1	-655.	5213722	0.258	8088	-6.	55.30104	44 4	412.4	
$15^{2-}(s)^{c}$		C_{2v}	-656.	0498283	0.248	3739	-6.	55.83718	88	76.0	
		C_1	-656.	0498283	0.248	3740	-6:	55.83784	42	75.6	
$15^{2-}(t)^{c}$		C_{2v}	-656.	0312338	0.248	3407	-63	55.8198	51	86.9	
		C_1	-656.	0312338	0.248	3408	-63	55.82050	04	86.4	

Table S2 (continued).

Compd Protonation	site					
basic set	Molecular	Е,	ZPE,	G,	ΔG,	
	point grou	p hartree	hartree	hartree	kcal ^a	
4						
B3LYP/6-31G(d)	C ₁ -6	16.8707181	0.228341	-616.678445	(0)	
B3LYP/6-31+G(d,p)	C ₁ -6	16.9102648	0.227337	-616.719035	(0)	
B3LYP/6-31++G(d,p)	C ₁ -6	16.910426	0.227363	-616.719166	(0)	
4H ⁺ C(1)						
B3LYP/6-31G(d)	C ₁ -6	17.2333368	0.240699	-617.029301	-220.2	
B3LYP/6-31+G(d,p)	C ₁ -6	17.2653618	0.239618	-617.062429	-215.5	
B3LYP/6-31++G(d,p)	C ₁ -6	17.2655807	0.239627	-617.062637	-215.5	
$4aH^{+}$ C(3)						
B3LYP/6-31G(d)	C ₁ -6	17.234331	0.240751	-617.030422	-220.9	
B3LYP/6-31+G(d,p)	C ₁ -6	17.266431	0.239662	-617.063632	-216.2	
B3LYP/6-31++G(d,p)	C ₁ -6	17.2667051	0.239676	-617.063890	-216.3	
4bH ⁺ $C(4)$						
B3LYP/6-31G(d)	C ₁ -6	17.2384905	0.240730	-617.033830	-223.4	
B3LYP/6-31+G(d,p)	C ₂ -6	17.2705073	0.239629	-617.066981	-218.3	
B3LYP/6-31++G(d,p)	C ₂ -6	17.2707331	0.239645	-617.067190	-218.4	
$4^{2+}(s)$						
B3LYP/6-31G(d)	C ₁ -6	16.2230611	0.228640	-616.031314	406.1	
B3LYP/6-31+G(d,p)	C ₁ -6	16.2489933	0.227759	-616.058145	414.7	
B3LYP/6-31++G(d,p) 4 ²⁺ (t)	C ₁ -6	16.2492048	0.227777	-616.058331	414.7	
B3LYP/6-31G(d)	C ₁ -6	16.2244602	0.228783	-616.033230	404.9	
B3LYP/6-31+G(d,p)	C _s -6	16.2502732	0.227906	-616.059936	413.6	
B3LYP/6-31++G(d,p)	C _s -6	16.2505412	0.227939	-616.060160	413.5	
$4^{2-}(s)$						
B3LYP/6-31G(d)	C ₁ -6	16.7220175	0.218179	-616.540687	86.4	
B3LYP/6-31+G(d,p)	C _i -6	16.81053	0.218047	-616.629518	56.2	
B3LYP/6-31++G(d,p)	C _i -6	16.8154522	0.220108	-616.632721	54.2	
$4^{2-}(t)$						
B3LYP/6-31G(d)	C ₁ -6	16.7181169	0.217782	-616.538074	88.1	
B3LYP/6-31+G(d,p)	C ₁ -6	16.8027096	0.216199	-616.625230	58.9	
B3LYP/6-31++G(d,p)	$C_1 - 6$	16.8257125	0.221942 ^b	-616.640690	49.0	

Table S3. Energies (E), Zero Point Energies (ZPE), Gibbs Free Energies (G), Relative Gibbs Free Energies (Δ G) for Optimized Structures for 4, its Monocations, Dications, and Dianions

^a Relative energies to the neutral. ^b Number of imaginary frequency is 1.

Compd							
baisc set	Molecu	ular	Е,	ZPE,	G,	ΔG,	
	point g	roup	hartree	hartree	hartree	kcal ^a	
5							
B3LYP/6-31G(d)	C_1	-695	.4919074	0.284632	-695.245566	(0)	
B3LYP/6-31+G(d,p)	C_1	-695	.5373455	0.283160	-695.292516	(0)	
5²⁻ (s)							
B3LYP/6-31G(d)	C_1	-695	.3533188	0.273624	-695.118835	79.5	
B3LYP/6-31+G(d,p)	C_1	-695	.4453828	0.273100	-695.211455	50.9	
5 ²⁻ (t)							
B3LYP/6-31G(d)	C_1	-695	.3467665	0.273722	-695.113043	83.2	
B3LYP/6-31+G(d,p)	C_1	-695	.4356826	0.272290	-695.203664	55.8	
8							
B3LYP/6-31G(d)	C_1	-616	.8234724	0.228569	-616.630880	(0)	
B3LYP/6-31+G(d,p)	C_1	-616	.8639904	0.227603	-616.672389	(0)	
8²⁻ (s)							
B3LYP/6-31G(d)	C_1	-616	.7091512	0.218781	-616.526889	65.3	
B3LYP/6-31+G(d,p)	C_1	-616	.7911433	0.216601	-616.612105	37.8	
8²⁻ (t)							
B3LYP/6-31G(d)	C_1	-616	.6988251	0.218860	-616.517189	71.3	
B3LYP/6-31+G(d,p)	C_1	-616	.783247	0.217881	-616.602835	43.6	
9							
B3LYP/6-31G(d)	C_1	-695	.4358718	0.283847	-695.190422	(0)	
B3LYP/6-31+G(d,p)	C_1	-695	.4821086	0.282391	-695.238197	(0)	
9²⁻ (s)							
B3LYP/6-31G(d)	C_1	-695	.3238175	0.273755	-695.089723	63.2	
B3LYP/6-31+G(d,p)	C_1	-695	.4115526	0.272225	-695.178851	37.2	
9²⁻ (t)							
B3LYP/6-31G(d)	C_1	-695	.3166141	0.274213	-695.082080	68.0	
B3LYP/6-31+G(d,p)	C_1	-695	.4057966	0.272888	-695.172796	41.0	

Table S4. Energies for Optimized Structures for 5, 8, 9, 10, 11, 14, 15, and their dianions by B3LYP/6-31+G(d,p)

^b Relative Gibbs free energies to those of the parent hydrocarbons. ^b Number of imaginary frequencies = 1.

Compd						
baisc set	Molecul	ar	Е,	ZPE,	G,	ΔG,
	point gro	oup	hartree	hartree	hartree	kcal ^a
10						
B3LYP/6-31G(d)	C_1	-616.	8738954	0.228787	-616.681047	(0)
B3LYP/6-31+G(d,p)	C_1	-616.	913608	0.227808	-616.721778	(0)
10²⁻ (s)						
B3LYP/6-31G(d)	Cs	- 616.	7470000	0.218961	-616.564409	73.2
B3LYP/6-31+G(d,p)	C_1	- 616.	8305483	0.217839	-616.649253	45.5
10²⁻ (t)						
B3LYP/6-31G(d)	C_1	-616.	7282851	0.218561	-616.547050	84.1
B3LYP/6-31+G(d,p)	C_1	-616.	8136409	0.217338	-616.634063	55.0
11						
B3LYP/6-31G(d)	C_1	-695.	5004848	0.284624	-695.254083	(0)
B3LYP/6-31+G(d,p)	C_1	-695.	5468117	0.283283	-695.301795	(0)
11 ²⁻ (s)						
B3LYP/6-31G(d)	C_1	-695.	3740715	0.274707	-695.137917	72.9
B3LYP/6-31+G(d,p)	C_1	-695.	4634247	0.273319	-695.228806	45.8
11²⁻ (t)						
B3LYP/6-31G(d)	C_1	-695.	355764	0.274344	-695.120963	83.5
B3LYP/6-31+G(d,p)	C_1	-695.	4472602	0.272326 ^b	-695.214100	55.0
14						
B3LYP/6-31G(d)	C_1	-618.	0403323	0.252019	-617.824583	(0)
B3LYP/6-31+G(d,p)	C_1	-618.	0831353	0.250841	-617.868622	(0)
14 ²⁻ (s)						
B3LYP/6-31G(d)	C_1	-617.	904338	0.242016	-617.699222	78.7
B3LYP/6-31+G(d,p)	C_1	-617.	9946934	0.240771	-617.791012	48.7
$14^{2-}(t)$						
B3LYP/6-31G(d)	C_1	-617.	8882346	0.241607	-617.684378	88.0
B3LYP/6-31+G(d,p)	C_1	-617.	9804216	0.240607	-617.777831	57.0

Table S4 (continued).

Compd						
baisc set	Molecular point group		Е,	ZPE,	G,	ΔG,
			hartree	hartree	hartree	kcal ^a
15						
B3LYP/6-31G(d)	C_1	-656	.1807873	0.258797	-655.958264	(0)
B3LYP/6-31+G(d,p)	C_1	-656	.223446	0.257654	-656.002099	(0)
15²⁻ (s)						
B3LYP/6-31G(d)	C_1	-656	.0498283	0.248740	-655.837842	75.6
B3LYP/6-31+G(d,p)	C_1	-656	.13706	0.247232	-655.926797	47.3
15²⁻ (t)						
B3LYP/6-31G(d)	C_1	-656	.0312338	0.248408	-655.820504	86.4
B3LYP/6-31+G(d,p)	C_1	-656	.120833	0.247308	-655.911436	56.9

Table S4 (continued).