Rejzek M., Stockman R. A. and Hughes D. L.:

Combining Two-Directional Synthesis and Tandem Reactions, Part 5: An Efficient Strategy for the Total Syntheses of (±)-Hippodamine and (±)-*epi*-Hippodamine

SUPPLEMENTAL DATA

- Page 2 ¹³C NMR Spectra for Compounds **1**, **2**, **3**, **7**, **10**, **13**, **14**, **18**, **22**, **23**, and **25**.
- Page 13 X-Ray Data for: **22**, **25**.

Compound 1: (100 MHz, CDCl₃)

Compound 2: (100 MHz, CDCl₃)

Compound 3: (100 MHz, CDCl₃)

Compound 7: (100 MHz, CDCl₃)

Compound 10: (100 MHz, CDCl₃)

Compound 13: (100 MHz, CDCl₃)

 NH_{2}

Compound 18: (100 MHz, CDCl₃)

Compound 22: (100 MHz, CDCl₃)

Compound 23: (100 MHz, CDCl₃)

Compound 25: (100 MHz, CDCl₃)

Crystal structure analyses

Compound **22**. *Crystal data:* $C_{13}H_{23}NO$, M = 209.3. Monoclinic, space group P2₁/n (equiv. to no. 14), a = 7.660(2), b = 14.610(3), c = 10.367(2) Å, β = 91.13(3) E, V = 1160.0(4) Å³. Z = 4, Dc = 1.199 g cm⁻³, F(000) = 464, T = 140(1) K, μ (Mo-K α) = 0.7 cm⁻¹, λ (Mo-K α) = 0.71069 Å. A clear, colourless tapered, rectangular prismatic crystal, *ca* 0.50 x 0.25 x 0.20 mm, was mounted on a Rigaku R-Axis IIc image-plate diffractometer. Total no. of reflections recorded to θ_{max} = 25.4E, was 6174 of which 2043 were unique (Rint = 0.052); 1851 were >observed= with I > 2 σ_I . Refinement gave wR₂ = 0.103 and R₁ = 0.042⁻¹ for all 2043 reflections weighted w = [$\sigma^2(F_o^2)$ + (0.0384P)² + 0.38P]⁻¹ with P = (F_o^2 + 2 F_c^2)/3; for the 'observed' data only, R₁ = 0.039.

Compound 25. *Crystal data:* $C_{13}H_{23}NO$, M = 209.3. Monoclinic, space group P2₁/c (no. 14), a = 9.766(3), b = 9.337(2), c = 13.767(2) Å, $\beta = 102.38(2)$ E, V = 1226.1(5) Å³. Z = 4, Dc = 1.134 g cm⁻³, F(000) = 464, T = 293(2) K, μ (Mo-K α) = 0.7 cm⁻¹, λ (Mo-K α) = 0.71069 Å. A clear, colourless plate crystal, *ca* 0.62 x 0.21 x 0.05 mm, was mounted on a Nonius CAD4 diffractometer; of the 2511 reflections measured to $\theta_{max} = 25E$, 2146 were unique (Rint = 0.012) and 1263 'observed' with I > 2 σ_{I} . Refinement gave wR₂ = 0.136 and R₁ = 0.081⁻¹ for all 2146 reflections weighted w = $[\sigma^2(F_o^2) + (0.0645P)^2]^{-1}$; for the 'observed' data only, R₁ = 0.047.

Both structures were determined by direct methods procedures in SHELXS¹ and refined by full-matrix least-squares methods, on F^{2} 's, in SHELXL¹. In both structures, the hydroxyl hydrogen atom was located in a difference Fourier map and refined freely. In the final difference maps, the highest peaks were *ca* 0.19 eÅ⁻³ in **22** and *ca* 0.15 eÅ⁻³ in **25**.

⁽¹⁾ G. M. Sheldrick, SHELX-97 - Programs for crystal structure determination (SHELXS) and refinement (SHELXL), University of Göttingen, Germany (1997).