Supplementary data

Asymmetrized tris(hydroxymethyl)methane as precursor of N- and O-containing 6-membered heterocycles through ring closing metathesis

Luca Banfi, Giuseppe Guanti, Monica Paravidino and Renata Riva*

Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, I-16146 Genova, Italy; e-mail: riva@chimica.unige.it

Note: the employed analytical instruments as well as analysis conditions and some general experimental procedures are reported in the paper.

General procedure for the protection of primary alcoholic functions as THP-ethers

A solution of alcohol (10.95 mmol) in dry CH₂Cl₂(35 ml) was cooled to 0°C and treated with 3,4-dihydro-2*H*-pyran (2.0 ml, 21.92 mmol) and *p*-TSA (0.1 M sol in THF, 1.1 ml, 110 μmol). After 2 h at 0°C, saturated aq NaHCO₃ solution was added and, after dilution with H₂O/Et₂O, the reaction mixture was extracted with ether. The solvent was removed under reduced pressure and, depending upon the product, the crude was directly submitted to the following reaction, or purified by chromatography.

(R,E)- and (S,E)-5-methyl-2-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]hex-3-enyl acetate

Both enantiomers have been synthesised from (*R*)- or (*S*)-3. Due to the difficulty to separate products from byproducts, the crude was directly submitted to the following tansformations. The structure of them was however confirmed on a not completely purified sample obtained after chromatography with PE/Et₂O 95:5 \rightarrow 8:2. R_f 0.66 (PE/Et₂O 6:4, B). IR: v_{max} 2951, 1727, 1249, 1028. GC-MS: R_f 6.53; m/z 186 (M⁺, 0.015), 109 (6.0), 96 (6. 1), 86 (5.9), 81 (5.9), 67 (14), 57 (7.2), 55 (7.1), 43 (34), 41 (10). ¹H NMR: 0.95 [6H, d, (CH₃)₂CH, J 6.6]; 1.42-1.95 [6H, m, 3 CH₂ of THP]; 2.03 [3H, s, COCH₃]; 2.22 [1H, octuplet, (CH₃)₂CH, J 6.4]; 2.61 [1H, quintuplet, CHCH₂OTHP, J 6.6]; 3.28-3.94 [2H, m, CH₂OTHP]; 4.12 [2H, dd, CH₂OAc, J 2.2, 6.4]; 4.58 [1H, broad dd, OCHO, J 4.2, 7.9]; 5.26 [1H, ddt, CH=CH*i*Pr, J 1.2, 8.0, 15.8]; 5.52 [1H, dd, CH=CH*i*Pr, J 6.6, 15.8].

(S,E)-5-Methyl-2-[(tetrahydro-2H-pyran-2-yloxy)methyl]hex-3-enyl methanesulfonate 11

It was prepared starting from **10**. Chromatography with PE/Et₂O 7:3 \rightarrow 1:1 gave **11** as a colourless oil in 80% yield. R_f 0.36 (PE/Et₂O 6:4, B). Anal. found C, 54.70; H, 8.65. C₁₄H₂₆O₅S requires C, 54.88; H, 8.55. [α]_D = + 5.5 (CHCl₃, c 1.14). IR: ν_{max} 2951, 1356, 1120, 971. GC-MS: R_t 8.08; m/z 291 (M⁺-15, 0.021), 109 (10), 101 (6. 9), 96 (8.0), 93 (5.3), 86 (6.0), 85 (100), 84 (5.8), 81 (11), 79 (7.2), 67 (19), 57 (7.7), 55 (9.5), 43 (9.9), 41 (15). ¹H NMR: 0.97 [6H, d, (CH₃)₂CH, J 6.6]; 1.55-1.88 [6H, m, 3 CH₂ of THP]; 2.27 [1H, octuplet, (CH₃)₂CH, J 6.6]; 2.69 [1H, quintuplet, CHCH₂OTHP, J 6.5]; 3.00 [3H, s, SO₂CH₃]; 3.33-3.56 and 3.69-3.90 [4H, 2 m, 2H each, CH₂OTHP and OCHOCH₂]; 4.20-4.36 [2H, m, CH₂OMs]; 4.58 [1H, broad dd, OCHO, J 4.2, 7.4]; 5.30

[1H, apparent dddd, C*H*=CH*i*Pr, J 1.2, 4.0, 8.2, 15.6]; 5.60 [1H, dd, CH=C*Hi*Pr, J 6.6, 15.4]. ¹³C NMR: 19.28 and 19.40 [CH₂CH₂(CH₂)₂O]; 22.44 and 22.26 [2C, CH(*C*H₃)₂]; 25.33 [(CH₂)₂CH₂CH₂O]; 30.45 [*C*H₂(CH₂)₃O]; 31.10 [*C*H(CH₃)₂]; 37.11 [SO₂CH₃]; 42.06 and 42.16 [*C*HCH₂OTHP]; 62.03 and 62.25, 66.93 and 67.07, 70.32 and 70.35 [3C, *C*H₂OTHP, *C*H₂OMs, (CH₂)₃*C*H₂O]; 98.62 and 99.22 [O*C*HO]; 122.65 and 141.71 [2C, *C*=*C*].

2-[(R,E)-2-(Azidomethyl)-5-methylhex-3-enyloxy]-tetrahydro-2H-pyran 19

It was prepared starting from **18** and it was usually used as such for the following transformation (see paragraph 4.2.1). The structure of it was however confirmed on a not completely purified sample obtained after chromatography with PE/Et₂O 98:2 \rightarrow 8:2. R_f 0.58 (PE/Et₂O 7:3, B). IR: v_{max} 2955, 2099, 1121, 1023. GC-MS: R_t 6.36; m/z 225 (M⁺-28, 0.016), 86 (5.9), 85 (100), 81 (5.6), 67 (13), 57 (9.3), 55 (11), 43 (14), 41 (17), ¹H NMR: 0.98 [6H, d, (CH₃)₂CH, J 6.6]; 1.14-1.92 [6H, m, 3 CH₂ of THP]; 2.28 [1H, octuplet, (CH₃)₂CH, J 6.6]; 2.48-2.64 [1H, m, CHCH₂OTHP]; 3.57-3.97 [6H, m, CH₂OTHP, OCHOCH₂, CH₂N₃]; 4.59 [1H, broad dd, OCHO, J 3.8, 7.0]; 5.29 [1H, apparent ddq, CH=CH*i*Pr, J 1.1, 8.0, 15.4]; 5.59 [1H, dd, CH=CH*i*Pr, J 6.6, 15.4]. ¹³C NMR: 19.22 and 19.35 [CH₂CH₂(CH₂)₂O]; 22.25 [2C, CH(CH₃)₂]; 25.39 [(CH₂)₂CH₂CH₂O]; 30.48 [CH₂(CH₂)₃O]; 31.13 [CH(CH₃)₂]; 42.96 [CHCH₂OTHP]; 53.05 [CH₂N₃]; 61.89 and 62.09, 67.92 and 68.28 [2C, CH₂OTHP, (CH₂)₃CH₂O]; 98.45 and 99.02 [OCHO]; 124.36 and 141.00 [2C, C=C].

(R,E)-[5-Methyl-2-{(tetrahydropyran-2-yloxy)methyl]-hex-3-enyl} carbamic acid tert-butyl ester 20

It was prepared starting from **21**. Chromatography with PE/Et₂O 9:1 \rightarrow 8:2 gave **20** as a gold-brown oil in 95% yield. R_f 0.20 (PE/Et₂O 85:15, B). Anal. found C, 65.90; H, 10.25; N, 4.20. C₁₈H₃₃NO₄ requires C, 66.02; H, 10.16; N, 4.28. [α]_D = + 3.0 (CHCl₃, c 0.97). IR: ν_{max} 3442, 2956, 1697, 1366, 1159, 1120. GC-MS: R_t 8.21; m/z 254 (M⁺-73, 0.11), 170 (5.2), 169 (7.8), 157 (5.8), 114 (11), 109 (7.8), 108 (6.3), 97 (5.1), 96 (45), 86 (6.3), 85 (100), 82 (7.4), 81 (20), 74 (6.0), 67 (11.7), 57 (60), 55 (8.7), 43 (9.8), 41 (18). ¹H NMR: 0.97 [6H, d, (CH₃)₂CH, J 7.0]; 1.12-1.88 [6H, m, 3 CH₂ of THP]; 1.44 [9H, s, C(CH₃)₃]; 2.26 [1H, octuplet, (CH₃)₂CH, J 6.6]; 2.45 [1H, centre of m, CHCH₂OTHP]; 3.09-3.91 [6H, m, CH₂OTHP, OCHOCH₂, CH₂NH]; 4.55-4.61 [1H, m, OCHO]; 4.92 [1H, broad s, NH]; 5.22 [1H, broad ddd, CH=CHiPr, J 1.0, 8.0, 16.4]; 5.53 [1H, dd, CH=CHiPr, J 6.6, 15.8]. ¹³C NMR: 19.11 and 19.33 [CH₂CH₂(CH₂)₂O]; 22.40 and 22.45 [2C, CH(CH₃)₂]; 25.38 [(CH₂)₂CH₂CH₂O]; 28.39 [3C, C(CH₃)₃]; 30.43 and 30.50 [CH₂(CH₂)₃O]; 31.12 [CH(CH₃)₂]; 42.51 [CHCH₂OTHP]; 42.73 and 43.03 [CH₂NHBoc]; 61.80 and 62.13, 69.70 [2C, CH₂OTHP, (CH₂)₃CH₂O]; 78.81 [C(CH₃)₃]; 98.44 and 99.02 [OCHO]; 124.79 and 125.01, 140.62 [2C, C=C]; 156.97 [CO].

General procedure for basic hydrolysis of the acetyl group

A solution of acetate (11.95 mmol) was dissolved in MeOH (30 ml) and, after cooling to 0°C, KOH (1 N sol. in MeOH, 17.5 ml, 17.52 mmol) was added. After 2.5 h at 0°C, the pH was adjusted to 7 by addition of 5% aq $(NH_4)H_2PO_4$. After concentration under reduced pressure, the residue was diluted with water and extracted with Et_2O .

It was obtained starting from crude THP ether prepared from (R)- or (S)-3. Chromatography with PE/Et₂O 9:1 \rightarrow 1:1 gave 4 [(S)- from (R)-3 and (R)- from (S)-3] as a colourless oil in 84% overall yield. R_f 0.29 (PE/Et₂O 6:4, B). Anal. found C, 68.55; H, 10.63. C₁₃H₂₄O₃ requires C, 68.38; H, 10.59. [α]_D (2S-4) = - 22.2 (CHCl₃, c 1.22); [α]_D (2S-4) = + 23.0 (CHCl₃, c 1.05). IR: ν _{max} 3514, 2950, 1120, 1021. GC-MS: R_t 5.96; m/z 213 (M⁺-15, 0.021), 101 (7.4), 96 (26), 86 (5.8), 85 (100), 81 (11), 67 (15), 57 (19), 55 (11), 43 (14), 41 (14). ¹H NMR: 0.97 [6H, d, (CH₃)₂CH, J 7.0]; 1.48-1.85 [6H, m, 3 CH₂ of THP]; 2.26 [1H, octuplet, (CH₃)₂CH, J 6.8]; 2.45-2.65 [2H, m, CHCH₂OH]; 3.38-3.92 [6H, m, CH₂OTHP, OCHOCH₂, CH₂OH]; 4.56-4.62 [1H, m, OCHO]; 5.24 [1H, apparent ddt, CH=CHiPr, J 1.2, 8.0, 15.6]; 5.56 [1H, apparent ddd, CH=CHiPr, J 0.8, 6.6, 15.8]. ¹³C NMR: 19.46 [CH₂CH₂(CH₂)₂O]; 22.39 and 22.44 [2C, CH(CH₃)₂]; 25.25 and 25.28 [(CH₂)₂CH₂CH₂O]; 30.50 [CH₂(CH₂)₃O]; 31.16 [CH(CH₃)₂]; 44.34 and 44.56 [CHCH₂OTHP]; 62.37, 65.10 and 65.23, 69.80 and 69.94 [3C, CH₂OTHP, (CH₂)₃CH₂O, CH₂OH]; 98.87 and 99.17 [OCHO]; 123.72 and 123.93, 140.82 [2C, C=C].

(2S,E)-2-(Hydroxy)methyl-5-methylhex-3-enyl methanesulfonate 10

It was prepared starting from **8**. Chromatography with PE/Et₂O 2:8 gave **10** as a colourless oil in 87% yield. R_f 0.42 (PE/Et₂O 1:9, B). Anal. found C, 48.50; H, 8.20. $C_9H_{18}O_4S$ requires C, 48.63; H, 8.16. $[\alpha]_D = -13.6$ (CHCl₃, c 1.73). IR: ν_{max} 3603, 2955, 1354, 1167, 972. GC-MS: R_t 5.83; m/z 126 (M⁺-96, 6.7), 108 (5.7), 97 (7. 8), 96 (58), 95 (49), 93 (21), 83 (6.4), 82 (17), 81 (100), 79 (26), 70 (5.5), 69 (21), 68 (8.8), 67 (24), 57 (9.4), 56 (10), 55 (28), 54 (7.0), 53 (9.3), 43 (17), 41 (35), 39 (12). H NMR: 0.99 [6H, d, (CH₃)₂CH, J 6.8]; 1.71 [1H, broad s, OH]; 2.30 [1H, d of octuplets, (CH₃)₂CH, J 1.0, 6.7]; 2.61 [1H, centre of m, CHCH₂OH]; 3.03 [3H, s, SO₂CH₃]; 3.68 [2H, broad d, CH₂OH, J 5.4]; 4.26 and 4.30 [2H, AB part of ABX system, CH₂OMs, J_{AB} 10.0, J_{AX} 6.8, J_{BX} 5.3]; 5.27 [1H, ddd, CH=CH*i*Pr, J 1.2, 8.0, 15.8]; 5.65 [1H, ddd, CH=CH*i*Pr, J 0.8, 6.6, 15.8]. ¹³C NMR: 22.28 [2C, CH(CH₃)₂]; 31.20 [CH(CH₃)₂]; 37.21 [SO₂CH₃]; 44.25 [CHCH₂OH]; 62.11 and 69.80 [2C, CH₂OH, CH₂OMs]; 121.99 and 142.76 [2C, C=C].

General procedure for *O*- and *N*-allylation

Sodium hydride (60% in mineral oil, 552 mg, 13.80 mmol) was poured into the reaction flask and washed twice with dry pentane (10 ml). After addition of dry DMF (10 ml) the suspension was cooled to 0°C and treated with a solution of substrate (9.20 mmol) in dry DMF (5 ml) and allyl bromide (1.3 ml, 13.80 mmol). After 10 min the reaction was allowed to stir at rt untile complete (3-4 h). On nitrogen derivatives sometimes an addition of both reagents was required in order the reaction to go to completion. Quenching with sat. aq NH₄Cl solution, was followed by extractive work-up with water and ether.

(S,E)- and (R,E)-2-(2-Allyloxymethyl-5-methylhex-3-enyloxy)tetrahydro-2H-pyran 5

It was prepared starting from both enantiomers of **4**. Chromatography with PE/Et₂O 9:1 \rightarrow 8:2 gave **5** [(*S*)-from (*S*)-**4** and (*R*)- from (*R*)-**4**] as a colourless oil in 98% yield. R_f 0.57 (PE/Et₂O 8:2, B). Anal. found C, 71.10; H, 10.58. C₁₆H₂₈O₃ requires C, 71.60; H, 10.52. [α]_D \cong 0. IR: ν _{max} 2951, 2869, 1382, 1190, 1073, 1019. GC-MS: R_t 6.41; m/z 253 (M⁺-15, 0.030), 101 (5.2), 96 (18), 86 (5.6), 85 (100), 84 (11), 81 (12), 69 (3.3), 67 (12), 57 (7.2), 55 (9.1), 43 (9.8), 41 (20). H NMR: 0.96 [6H, d, (CH₃)₂CH, J 7.0]; 1.45-1.95 [6H, m, 3 CH₂ of THP]; 2.26 [1H, octuplet, (CH₃)₂CH, J 6.9]; 2.56 [2H, centre of m, CHCH₂OH]; 3.50-3.90 [6H, m, CH₂OTHP,

OCHOC*H*₂, C*H*₂OAllyl]; 3.97 [2H, dt, C*H*₂CH=CH₂, J 1.2, 5.4]; 4.58 [1H, broad t, OC*H*O, J 3.1]; 5.11-5.40 [3H, m, C*H*=CH*i*Pr, OCH₂CH=C*H*₂]; 5.53 [1H, dd, CH=C*Hi*Pr, J 6.2, 15.8]; 5.90 [1H, ddt, OCH₂C*H*=CH₂, J 5.4, 10.3, 17.3]. ¹³C NMR: 19.27 and 19.31 [CH₂CH₂(CH₂)₂O]; 22.46 and 22.52 [2C, CH(*C*H₃)₂]; 25.49 [(CH₂)₂CH₂CH₂O]; 30.53 [*C*H₂(CH₂)₃O]; 31.13 [*C*H(CH₃)₂]; 42.90 [*C*HCH₂OTHP]; 61.77 and 61.82, 68.11 and 68.24 [2C, *C*H₂OTHP, (CH₂)₃*C*H₂O]; 71.14 and 71.18, 71.92 [2C, *C*H₂O*C*H₂CH=CH₂]; 98.61 [O*C*HO]; 116.44 [OCH₂CH=*C*H₂]; 125.43 and 139.68 [2C, *C*=*C*]; 135.01 [OCH₂*C*H=CH₂].

(*R,E*)-Allyl-{5-methyl-2-[(tetrahydropyran-2-yloxy)methyl]hex-3-enyl} carbamic acid *tert*-butyl ester 15 It was prepared starting from 20. Chromatography with PE/Et₂O 85:15 → 7:3 gave 15 as a colourless oil in 22% yield. R_f (two diast. slightly separated) 0.47 and 0.51 (PE/Et₂O 7:3, B). Anal. found C, 68.60; H, 10.20; N, 3.85. C₂₁H₃₇NO₄ requires C, 68.63; H, 10.15; N, 3.81. [α]_D = + 14.2 (CHCl₃, c 1.69). IR: ν _{max} 2952, 2867, 1678, 1409, 1366, 1192, 1157, 1019. GC-MS: R_f 8.48; *m/z* 294 (M⁺-73, 0.062), 170 (19), 114 (24), 96 (15), 85 (28), 81 (11), 71 (5.0), 70 (100), 67 (7.0), 57 (79), 55 (6.4), 43 (8.2), 41 (25). ¹H NMR: 0.96 [6H, d, (CH₃)₂CH, J 6.6]; 1.43 [9H, s, C(CH₃)₃]; 1.14-1.83 [6H, m, 3 CH₂ of THP]; 2.24 [1H, octuplet, (CH₃)₂CH, J 6.6]; 2.62 [1H, centre of m, CHCH₂OTHP]; 3.02-3.88 [8H, m, CH₂OTHP, OCHOCH₂, CH₂N(Boc)CH₂C=CH₂]; 4.57 [1H, apparent broad d, OCHO, J 3.0]; 5.01-5.89 [5H, m, CH=CHiPr, NCH₂CH=CH₂]. ¹³C NMR: 19.29 [CH₂CH₂(CH₂)₂O]; 22.45 [2C, CH(CH₃)₂]; 25.48 [(CH₂)₂CH₂CH₂O]; 28.42 [3C, C(CH₃)₃]; 30.54 [CH₂(CH₂)₃O]; 31.11 [CH(CH₃)₂]; 42.03 and 42.62 [2C, CHCH₂OTHP, CHCH₂N]; 48.56, 50.05 and 50.26 [2C, CH₂NCH₂CH=CH₂]; 61.92 [CH₂OTHP]; 68.99 and 69.29 [(CH₂)₃CH₂O]; 79.19 [C(CH₃)₃]; 98.66 and 98.75 [OCHO]; 115.69 and 116.11 [NCH₂CH=CH₂]; 125.82 and 125.93, and 140.14 [2C, C=C]; 134.20 [NCH₂CH=CH₂]; 155.65 [CO].

(*R,E*)-Allyl-{2-[(*tert*-butyldimethylsilyloxy)methyl]-5-methylhex-3-enyl} carbamic acid *tert*-butyl ester 24 It was prepared starting from 22. Chromatography with PE \rightarrow PE/Et₂O 95:5 gave 24 as a pale yellow oil in 53% yield. R_f 0.33 (PE/Et₂O 97:3, B). Anal. found C, 66.55; H, 10.80; N, 3.45. C₂₂H₄₃NO₃Si requires C, 66.45; H, 10.90; N, 3.52. [α]_D = + 6.3 (CHCl₃, c 1.41). IR: ν_{max} 2955, 2924, 1675, 1154, 1104. GC-MS: R_t 7.90; *m/z* 34 1 (M⁺-56, 0.036), 284 (16), 170 (15), 114 (23), 81 (5.1), 75 (24), 73 (19), 71 (5.2), 70 (100), 57 (74), 41 (21). ¹H NMR (DMSO-d₆; temp=100°C): 0.039 [6H, s, Si(CH₃)₂tBu]; 0.89 [9H, s, SiMe₂C(CH₃)₃]; 0.96 [6H, d, (CH₃)₂CH, J 7.0]; 1.40 [9H, s, OC(CH₃)₃]; 2.40 [1H, octuplet, (CH₃)₂CH, J 6.7]; 2.45 [1H, centre of m, CHCH₂O]; 3.19 [2H, broad d, CH₂N, J 7.4]; 3.53 [2H, broad d, CH₂OSi, J 5.0]; 3.76 [2H, broad s, CH₂CH=CH₂]; 5.04-5.13 [2H, m, NCH₂CH=CH₂]; 5.27 and 5.45 [2H, AB part of ABX system, CH=CHiPr, J_{AB} 15.4, J_{AX} 8.2, J_{BX} 6.1]; 5.68-5.87 [1H, m, NCH₂CH=CH₂]. ¹³C NMR: -5.45 and -5.37 [2C, Si(CH₃)₂C(CH₃)₃]; 18.28 [Si(CH₃)₂C(CH₃)₃]; 22.43 [2C, CH(CH₃)₂]; 25.88 [3C, Si(CH₃)₂C(CH₃)₃]; 28.44 [3C, OC(CH₃)₃]; 31.09 [CH(CH₃)₂]; 44.33 and 44.84 [CHCH₂N]; 48.17, 49.83 and 50.31 [2C, CH₂NCH₂CH=CH₂]; 64.83 [CH₂OSi]; 79.17 [C(CH₃)₃]; 115.68 and 116.02 [NCH₂CH=CH₂]; 126.04 and 139.95 [2C, C=C]; 134.25 [NCH₂CH=CH₂]; 155.70 [CO].

(R,E)-Allyl-5-methyl-2-[(triisopropylsilyloxy)methyl]hex-3-enyl carbamic acid tert-butyl ester 25

It was prepared starting from 23. Chromatography with PE \rightarrow PE/Et₂O 9:1 gave 25 as a pale yellow oil in 93% yield. R_f 0.61 (PE/Et₂O 9:1, B). Anal. found C, 68.35; H, 11.20; N, 3.25. C₂₅H₄₉NO₃Si requires C, 68.28; H,

11.23; N, 3.19. $[\alpha]_D = + 8.6$ (CHCl₃, c 1.44). IR: ν_{max} 2955, 2863, 1677, 1206, 1101. GC-MS: R_t 9.22; m/z 396 (M⁺-43, 0.038), 340 (67), 170 (19), 131 (5.4), 114 (26), 103 (8.3), 81 (6.3), 75 (22), 73 (8.0), 71 (5.9), 70 (100.), 61 (15), 59 (15), 57 (84), 55 (7.7), 45 (5.5), 43 (6.7), 41 (32). HNMR (DMSO-d₆; temp=100°C): 0.96 [6H, d, (CH₃)₂CH, J 7.0]; 1.03-1.06 [21H, m, TIPS]; 1.41 [9H, s, OC(CH₃)₃]; 2.32 [1H, octuplet, (CH₃)₂CH, J 6.7]; 2.50 [1H, centre of m, CHCH₂O]; 3.22 [2H, d, CH₂N, J 6.8]; 3.65 [2H, broad d, CH₂OSi, J 5.6]; 3.76 [2H, broad d, CH₂CH=CH₂, J 4.4]; 5.00 [2H, apparent broad d, NCH₂CH=CH₂, J 12.0]; 5.32 and 5.47 [2H, AB part of ABX system, CH=CHiPr, J_{AB} 15.4, J_{AX} 8.2, J_{BX} 5.4]; 5.68-5.90 [1H, m, NCH₂CH=CH₂]. ¹³C NMR: 11.96 [3C, Si(CH(CH₃)₂)₃]; 18.02 [6C, Si(CH(CH₃)₂)₃]; 22.40 [2C, CH(CH₃)₂]; 28.44 [3C, OC(CH₃)₃]; 31.08 [CH(CH₃)₂]; 44.68 and 45.21 [CHCH₂N]; 48.29, 49.88 and 50.35 [2C, CH₂NCH₂CH=CH₂]; 65.43 [CH₂OSi]; 79.20 [C(CH₃)₃]; 115.69 and 116.02 [NCH₂CH=CH₂]; 126.20 and 139.82 [2C, C=C]; 134.31 [NCH₂CH=CH₂]; 155.70 [CO].

(R,E)-Allyl-5-methyl-2-[(triisopropylsilyloxy)methyl]hex-3-enyl carbamic acid benzyl ester 31

It was prepared starting from **30**. Chromatography with PE/Et₂O 98:2 \rightarrow PE/Et₂O 95:5 gave **31** as a pale yellow oil in 81% yield. R_f 0.39 (PE/Et₂O 9:1, A, B). Anal. found C, 70.75; H, 10.15; N, 3.05. C₂₈H₄₇NO₃Si requires C, 70.98; H, 10.00; N, 2.96. [α]_D = + 17.3 (CHCl₃, c 1.17). IR: ν _{max} 2946, 2962, 1686, 1459, 1108. GC-MS: R_t 11.53; m/z 446 (M⁺-27, 0.062), 431 (6.7), 430 (21), 160 (17), 100 (5.0), 92 (7.8), 91 (100), 75 (7.7), 59 (5.2). ¹H NMR (DMSO-d₆; temp=100°C): 0.92 [6H, d, (CH₃)₂CH, J 7.0]; 1.03-1.06 [21H, m, TIPS]; 2.20 [1H, octuplet, (CH₃)₂CH, J 6.6]; 2.54 [1H, centre of m, CHCH₂O]; 3.31 [2H, d, CH₂N, J 7.8]; 3.64 [2H, d, CH₂OSi, J 5.4]; 3.85 [2H, broad d, CH₂CH=CH₂, J 5.6]; 5.07-5.18 [4H, m, NCH₂CH=CH₂ and OCH₂Ph]; 5.30 and 5.43 [2H, AB part of ABX system, CH=CHiPr, J_{AB} 15.7, J_{AX} 8.1, J_{BX} 5.5]; 5.67-5.89 [1H, m, NCH₂CH=CH₂]; 7.21-7.47 [5H, m, Ph]. ¹³C NMR: 11.91 [3C, Si(CH(CH₃)₂)₃]; 18.00 [6C, Si(CH(CH₃)₂)₃]; 22.37 [2C, CH(CH₃)₂]; 31.04 [CH(CH₃)₂]; 44.56 and 45.12 [CHCH₂N]; 47.95 and 48.69, 50.01 and 50.39 [2C, CH₂NCH₂CH=CH₂]; 65.25 [CH₂OSi]; 66.92 [OCH₂Ph]; 116.24 and 116.65 [NCH₂CH=CH₂]; 125.75 and 125.93, 140.08 and 140.18 [3C, C=C and C ipso of Ph]; 127.64 [C para of Ph]; 127.78 [2C, C para of Ph]; 128.38 [2C, C meta of Ph]; 133.72 and 133.89 [NCH₂CH=CH₂]; 156.25 and 156.34 [CO].

(S,E)-2-(methanesulfonyloxy)methyl-5-methylhex-3-enyl acetate 8

A solution of (*R*)-3 (1.00 g, 53.69 mmol) in dry CH₂Cl₂ (16 ml) was cooled to -30° C and treated with triethyl amine (1.0 ml, 7.3 mmol) and MsCl (500 μl, 6.46 mmol). After 1 h quenching with sat. aq NH₄Cl was followed by dilution with H₂O/Et₂O and extraction with ether. Chromatography with PE/CH₂Cl₂/Et₂O 2:2:1 gave **8** (1.31 g, 92%) as a pale yellow oil. R_f 0.54 (PE/CH₂Cl₂/Et₂O 2:2:1, B). Anal. found C, 49.80; H, 7.65. C₁₁H₂₀O₅S requires C, 49.98; H, 7.63. [α]_D = - 0.45 (CHCl₃, c 1.22). IR: ν_{max} 2955, 2867, 1736, 1359, 1220, 1170, 973. GC-MS: R_t 6.42; m/z 205 (M⁺-59, 0.092), 109 (10), 108 (49), 96 (7.8), 95 (17), 94 (8.0), 93 (100), 91 (6.7), 82 (6.2), 81 (34), 79 (22), 77 (6.5), 69 (8.0), 68 (5.5), 67 (15), 55 (14), 53 (5.8), 43 (95), 41 (19), 39 (6.9). ¹H NMR: 0.98 [6H, d, (CH₃)₂CH, J 6.6]; 2.07 [3H, s, COCH₃]; 2.30 [1H, d of octuplets, (CH₃)₂CH, J 0.8, 7.4]; 2.61 [1H, hexuplet, CHCH₂OAc, J 6.4]; 3.02 [3H, s, SO₂CH₃]; 4.07 and 4.16 [2H, AB part of ABX system, CH₂OMs or CH₂OAc, J_{AB} 11.0, J_{AX} 6.5, J_{BX} 5.6]; 4.21 and 4.24 [2H, AB part of ABX system, CH₂OMs or CH₂OAc, J_{AB} 9.6, J_{AX} 6.1, J_{BX} 5.5]; 5.24 [1H, ddd, CH=CH*i*Pr, J 1.2, 8.0, 15.8]; 5.63 [1H, dd, CH=CH*i*Pr, J 6.6, 15.8]. ¹³C NMR:

20.71 [COCH₃]; 22.13 and 22.15 [2C, CH(CH₃)₂]; 31.11 [CH(CH₃)₂]; 37.26 [SO₂CH₃]; 41.15 [CHCH₂OAc]; 63.48 and 69.27 [2C, CH₂OH, CH₂OMs]; 121.33 and 142.70 [2C, C=C]; 170.67 [CO].

General procedure for the nucleophilic displacement of the mesylate by means of allyl amine

A 0.2-0.4 M solution of **8**, **11** or **12** in allylamine was heated at 80°C in sealed tube (8, 11) for 20-24 h and 120°C (12) for 2 h. Excess amine was removed under vacuo and the crude was directly purified by chromatography.

(R,E)-2-[(Allylamino)methyl]-5-methylhex-3-enyl acetate 9

It was prepared starting from **8**. Chromatography with PE/AcOEt 1:1 \rightarrow AcOEtMeOH 1:1 gave **9** as a yellow oil (42%). R_f 0.36 (AcOEt, B). Anal. found C, 69.50; H, 10.20; N, 6.20. C₁₃H₂₃NO₂ requires C, 69.29; H, 10.29; N, 6.22. [α]_D = -9.0 (CHCl₃, c 1.74). IR: ν_{max} 2997, 2953, 1621, 1245. GC-MS: R_t 6.43; m/z 205 (M⁺, 0.21), 11 2 (32), 81 (6.3), 70 (100), 43 (18), 41 (17). ¹H NMR: 0.98 [6H, d, (CH₃)₂CH, J 7.0]; 2.12 [3H, s, COCH₃]; 2.18-2.40 [2H, m, (CH₃)₂CH and CHCH₂OAc]; 3.11 and 3.72 [2H, AB part of ABX system, CH₂NHAllyl, J_{AB} 12.7, J_{AX} 4.9, J_{BX} 6.5]; 3.38-3.58 [2H, m, NHCH₂CH=CH₂]; 3.86-4.01 [2H, m, CH₂OAc]; 5.07-5.87 [5H, m, H on sp² C]; ¹³C NMR: 21.23 [COCH₃]; 22.27 and 22.40 [2C, CH(CH₃)₂]; 31.09 [CH(CH₃)₂]; 43.59 [CHCH₂OAc]; 47.05 and 51.85 [2C, 2 CH₂N]; 62.37 [CH₂OAc]; 116.85 [CH=CH₂]; 125.49 and 140.09 [2C, CH=CH]; 132.15 [CH=CH₂]; 172.52 [CO].

(R,E)-Allyl-5-methyl-2-[(tetrahydro-2H-pyran-2-vloxy)methyl]hex-3-enyl amine 13

It was prepared starting from **11**. Chromatography with Et₂O + 2% Et₃N gave **13** as a yellow oil (92%). R_f 0.41 (Et₂O + 2% Et₃N, B). Anal. found C, 71.95; H, 10.85; N, 5.15. $C_{16}H_{29}NO_2$ requires C, 71.86; H, 10.93; N, 5.24. [α]_D = + 18.19 (CHCl₃, c 1.41). IR: ν_{max} 3079, 2952, 2865, 1451, 1118, 1072, 1019. GC-MS: R_t 5.28; m/z 2267 (M⁺, 0.092), 96 (10), 85 (20), 81 (12), 71 (5.3), 70 (100), 67 (5.1), 43 (5.0), 41 (17). ¹H NMR: 0.97 [6H, d, (CH₃)₂CH, J 6.6]; 1.38-1.85 [6H, m, 3 CH₂ of THP]; 2.18-2.35 [1H, m, (CH₃)₂CH]; 2.48-2.58 [2H, m, CH₂NHAllyl]; 2.70-2.85 [1H, m, CHCH₂OTHP]; 3.23-3.91 [6H, m, 2 CH₂O and NCH₂CH=CH₂]; 4.58 [1H, broad apparent s, OCHO]; 5.01-5.26 [3H, m, CH=CH₂ and CH=CH]; 5.55 [1H, dd, CH=CH, J 6.6, 15.4]; 5.81-6.00 [1H, m, CH=CH₂]. ¹³C NMR: 19.31 and 19.38 [CH₂CH₂(CH₂)₂O]; 22.63 and 22.53 [2C, CHCH₃)₂]; 25.49 [(CH₂)₂CH₂CH₂O]; 30.57 [CH₂(CH₂)₃O]; 31.17 [CH(CH₃)₂]; 42.89 and 42.95 [CHCH₂OTHP]; 51.22, 51.48, 52.35 and 52.42 [2C, 2 CH₂N]; 61.95, 61.99 and 70.02 [2C, 2 CH₂O]; 98.56 and 98.73 [OCHO]; 115.54 [CH=CH₂]; 126.05, 126.28, 140.49 and 140.56 [2C, CH=CH]; 136.99 [CH=CH₂].

(R,E)-Allyl-5-methyl-2-[(triisopropylsilyloxy)methyl]hex-3-enylamine 14

It was prepared starting from **12**. Chromatography with PE/AcOEt 1:1 + 2% Et₃N \rightarrow AcOEt/Et₃N 9:1 gave **14** as a yellow oil (54%). R_f 0.55 (PE/AcOEt 1:1 + 2% Et₃N, B). Anal. found C, 70.50; H, 12.25; N, 4.25. C₂₀H₄₁NOSi requires C, 70.73; H, 12.17; N, 4.12. [α]_D = + 5.1 (CHCl₃, c 0.82). IR: ν _{max} 2927, 2862, 1458, 1222, 1096. GC-MS: R_t 7.70; m/z 339 (M⁺, 0.66), 296 (11), 131 (5.3), 75 (6.5), 71 (5.2), 70 (100), 41 (5.6). ¹H NMR: 0.97 [6H, d, (CH₃)₂CH, J 6.6]; 1.04-1.10 [21H, m, TIPS]; 2.17-2.61 [2H, m, (CH₃)₂CH and CHCH₂OSi]; 2.53 and 2.80 [2H, AB part of ABX system, CH₂NHAllyl, J_{AB} 11.0, J_{AX} 8.0, J_{BX} 4.8]; 3.24 [2H, centre of m,

NHC H_2 CH=CH₂]; 3.60 and 3.68 [2H, AB part of ABX system, C H_2 OTIPS, J_{AB} 9.5, J_{AX} 6.8, J_{BX} 5.0]; 5.05-5.26 [2H, m, CH=C H_2]; 5.36 [1H, dd, CH=CHiPr, J 6.0, 11.4]; 5.53 [1H, dd, CH=CHiPr, J 6.2, 15.4]; 5.90 [1H, centre of m, CH=CH₂]. ¹³C NMR: 11.96 [3C, Si(CH(CH₃)₂)₃]; 18.04 [6C, Si(CH(CH₃)₂)₃]; 22.52 and 22.63 [2C, CH(CH₃)₂]; 29.71 [CH(CH₃)₂]; 45.56 [CHCH₂OSi]; 51.18 and 52.51 [2C, 2 CH_2 N]; 66.38 [CH₂OSi]; 115.58 [CH= CH_2]; 126.43 and 140.37 [2C, CH=CH]; 137.06 [CH=CH₂].

General procedure for the introduction of silylated (TBDMS or TIPS) protecting groups on primary alcohols using $R^1_2R^2SiCl$

A solution of alcohol (7.76 mmol) in dry DMF (10 ml) was treated with imidazole (13.19 mmol, 898 mg) and the appropriate $R^{1}_{2}R^{2}SiCl$ (10.10 mmol). The solution was stirred at rt for 1-2 h and then diluted with water. After extraction with ether, the organic layers were washed with water and finally with brine. After solvent removal the crude was purified by chromatography as reported for each compound.

(S,E)-5-Methyl-2-[(triisopropylsilyloxy)methyl]hex-3-enyl methanesulfonate 12

It was prepared starting from **10** using TIPS-Cl. Chromatography with PE/Et₂O 8:2 gave **32** as a colourless oil in 73% yield. R_f 0.54 (PE/Et₂O 8:2, B). Anal. found C, 57.25; H, 10.10. $C_{18}H_{38}O_4SSi$ requires C, 57.10; H, 10.12. $[\alpha]_D = +$ 3.2 (CHCl₃, c 1.02). IR: v_{max} 2952, 2866, 1356, 1198, 1167. GC-MS: R_t 8.88; m/z 283 (M⁺-95, 0 .21), 211 (8.7), 210 (13), 209 (94), 181 (11), 153 (10), 139 (6.5), 110 (8.8), 109 (100), 81 (11), 79 (6.9), 77 (5.5), 75 (17), 73 (7.2), 67 (32), 61 (13), 59 (16), 55 (14), 45 (8.9), 43 (15), 41 (14). ¹H NMR: 0.97 [6H, d, (CH₃)₂CH, J 6.6]; 1.02-1.12 [21H, m, TIPS]; 2.64 [1H, centre of m, (CH₃)₂CH]; 2.56 [1H, centre of m, CHCH₂Si]; 2.99 [3H, s, SO₂CH₃]; 3.67 and 3.77 [2H, AB part of ABX system, CH₂OTIPS, J_{AB} 9.7, J_{AX} 6.5, J_{BX} 4.3]; 4.27 and 4.33 [2H, AB part of ABX system, CH₂OMs, J_{AB} 9.3, J_{AX} 5.2, J_{BX} 6.6]; 5.31 [1H, ddd, CH=CHiPr, J 1.0, 8.0, 15.8]; 5.59 [1H, dd, CH=CHiPr, J 6.6, 15.8]. ¹³C NMR: 11.90 [3C, Si(CH(CH₃)₂)₃]; 17.98 [6C, Si(CH(CH₃)₂)₃]; 22.28 [2C, CH(CH₃)₂]; 31.16 [CH(CH₃)₂]; 37.09 [SO₂CH₃]; 44.68 [CHCH₂OTIPS]; 63.12 and 70.25 [2C, CH₂OSi, CH₂OMs]; 122.86 and 141.64 [2C, C=C].

(R,E)-{2-[(tert-Butyldimethylsilyloxy)methyl]-5-methylhex-3-enyl} carbamic acid tert-butyl ester 22

It was prepared starting from **21** using TBDMS-Cl. Chromatography with PE/Et₂O 95:5 \rightarrow 9:1 gave **22** as a pale yellow oil in 84% yield. R_f 0.50 (PE/Et₂O 9:1, B). Anal. found C, 63.85; H, 10.95; N, 3.85. C₁₉H₃₉NO₃Si requires C, 63.81; H, 10.99; N, 3.92. [α]_D = + 13.5 (CHCl₃, c 1.41). IR: ν _{max} 3441, 2955, 2858, 1699, 1462, 1388, 1365, 1160, 1103. GC-MS: R_t 7.62; m/z 341 (M⁺-57, 0.14), 284 (5.0), 246 (5.5), 245 (18), 244 (100), 200 (5.7), 169 (5.4), 118 (15), 109 (11), 108 (5.8), 104 (9.7), 100 (5.6), 96 (25), 95 (8.2), 89 (12), 82 (8.9), 81 (17), 75 (53), 74 (14), 73 (37), 67 (12), 59 (10), 58 (5.2), 57 (71), 55 (13), 41 (17). ¹H NMR: 0.049 [6H, s, Si(CH₃)₂tBu]; 0.90 [9H, s, SiMe₂C(CH₃)₃]; 0.96 [6H, d, (CH₃)₂CH, J 7.0]; 1.43 [9H, s, OC(CH₃)₃]; 2.13-2.40 [2H, m, (CH₃)₂CH, CHCH₂O]; 3.19 [2H, broad t, CH₂N, J 6.1]; 3.52 and 3.63 [2H, AB part of ABX system, CH₂OSi, J_{AB} 10.0, J_{AX} 7.4, J_{BX} 4.5]; 5.06 [1H, broad s, NH];]; 5.18 [1H, dd, CH=CHiPr, J 8.0, 15.8]; 5.51 [1H, dd, CH=CHiPr, J 6.2, 15.4]. ¹³C NMR: -5.57 and -5.51 [2C, Si(CH₃)₂C(CH₃)₃]; 18.16 [Si(CH₃)₂C(CH₃)₃]; 22.40 and 22.46 [2C, CH(CH₃)₂]; 25.84 [3C, Si(CH₃)₂C(CH₃)₃]; 28.39 [3C, OC(CH₃)₃]; 31.13 [CH(CH₃)₂]; 44.35 [CHCH₂N]; 44.48 [CHCH₂N]; 66.29 [CH₂OSi]; 78.67 [C(CH₃)₃]; 124.93 and 140.40 [2C, C=C]; 155.98

[*C*O].

(R,E)-5-Methyl-2-[(triisopropylsilyloxy)methyl]hex-3-enyl carbamic acid tert-butyl ester 23

It was prepared starting from **21** using TIPS-Cl. Chromatography with PE/Et₂O 95:5 \rightarrow 9:1 gave **23** as a pale yellow oil in 88% yield. R_f 0.51 (PE/Et₂O 9:1, B). Anal. found C, 66.25; H, 11.40; N, 3.45. C₂₂H₄₅NO₃Si requires C, 66.11; H, 11.35; N, 3.50. [α]_D = + 21.3 (CHCl₃, c 1.08). IR: ν _{max} 3443, 2937, 2863, 1694, 1365, 1199, 1161, 1111. GC-MS: R_t 8.99; m/z 326 (M⁺-57, 3.3), 302 (6.1), 301 (22), 300 (100), 131 (9.6), 130 (5.9), 1 09 (10), 96 (5.1), 81 (5.2), 75 (13), 67 (6.8), 61 (7.4), 59 (9.3), 57 (21), 55 (7.4), 41 (6.3). ¹H NMR: 0.96 [6H, d, (CH₃)₂CH, J 7.0]; 1.04-1.28 [21H, m, TIPS]; 1.43 [9H, s, OC(CH₃)₃]; 2.16-2.42 [2H, m, (CH₃)₂CH, CHCH₂O]; 3.23 [2H, broad t, CH₂N, J 5.9]; 3.62 and 3.74 [2H, AB part of ABX system, CH₂OSi, J_{AB} 9.8, J_{AX} 7.2, J_{BX} 4.6]; 5.16 [1H, broad s, NH];]; 5.22 [1H, dd, CH=CHiPr, J 7.6, 15.6]; 5.51 [1H, dd, CH=CHiPr, J 6.6, 15.4]. ¹³C NMR: 11.82 [3C, Si(CH(CH₃)₂)₃]; 17.98 [6C, Si(CH(CH₃)₂)₃]; 22.35 and 22.43 [2C, CH(CH₃)₂]; 28.39 [3C, OC(CH₃)₃]; 31.11 [CH(CH₃)₂]; 43.59 [CHCH₂N]; 44.65 [CHCH₂N]; 67.01 [CH₂OSi]; 78.63 [C(CH₃)₃]; 125.03 and 140.28 [2C, C=C]; 156.02 [CO].

(R,E)-5-Methyl-2-[(triisopropylsilyloxy)methyl]hex-3-enyl carbamic acid benzyl ester 30

It was prepared starting from **29** using TIPS-Cl. Chromatography with PE/CH₂Cl₂ 6:4 \rightarrow 3:7 gave **23** as a pale yellow oil in 89% yield. R_f 0.33 (PE/Et₂O 9:1, A, B). Anal. found C, 69.30; H, 9.85; N, 3.25. C₂₅H₄₃NO₃Si requires C, 69.23; H, 9.99; N, 3.23. [α]_D = + 15.3 (CHCl₃, c 0.89). IR: v_{max} 3439, 2949, 2862, 1708, 1497, 1458, 1197, 1108, 1011. GC-MS: R_t 11.30; *m/z* 390 (M⁺-43, 1.42), 282 (5.4), 156 (9.7), 145 (8.2), 144 (16), 131 (6.9), 128 (20), 110 (8.6), 109 (100), 108 (25), 107 (19), 103 (7.8), 102 (7.7), 100 (37), 91 (9.5), 87 (5.1), 86 (13), 83 (39), 81 (9.2), 79 (31), 77 (22), 75 (19), 73 (7.0), 67 (28), 61 (13), 59 (11), 56 (5.8), 55 (36), 51 (83), 45 (8.1), 43 (9.4), 41 (10), 39 (5.3). ¹H NMR: 0.95 [6H, d, (CH₃)₂CH, J 7.0]; 1.04-1.20 [21H, m, TIPS]; 2.15-2.44 [2H, m, (CH₃)₂CH, CHCH₂O]; 3.25 and 3.37 [2H, ABX system, CH₂N, J_{AB} 13.5, J_{AX} 6.7, J_{BX} 6.6]; 3.62 and 3.74 [2H, AB part of ABX system, CH₂OSi, J_{AB} 9.7, J_{AX} 7.6, J_{BX} 4.5]; 5.09 [2H, s, OCH₂Ph]; 5.22 [1H, dd, CH=CH*i*Pr, J 8.4, 15.4]; 5.28 [1H, broad s, N*H*]; 5.51 [1H, dd, CH=C*Hi*Pr, J 6.4, 15.4]; 7.34 [5H, apparent broad s, Ph]. ¹³C NMR: 11.84 [3C, Si(CH(CH₃)₂)₃]; 18.00 [6C, Si(CH(CH₃)₂)₃]; 22.35 and 22.45 [2C, CH(CH₃)₂]; 31.13 [CH(CH₃)₂]; 43.85 [CHCH₂N]; 44.80 [CHCH₂N]; 66.40 and 66.76 [2C, CH₂O]; 124.82 and 140.63 [2C, C=C]; 127.92 and 128.43 [5C, CH of Ph]; 136.86 [C *ipso* of Ph]; 156.41 [CO].

(R,E)-Allyl-{5-methyl-2-[(tetrahydropyran-2-yloxy)methyl]-hex-3-enyl} carbamic acid tert-butyl ester 15 from 14

A solution of **14** (109 mg, 407 μ mol) in dry 1,2-dichloroethane (2 ml) was treated with di-*t*-butyl dicarbonate (103 μ l, 448 μ mol) and refluxed for 2.5 h. Chromatography was directly performed after solvent removal, using PE/Et₂O 8:2 \rightarrow 7:3 as eluent, to give **15** (141 mg) in 94% yield. (Spectroscopic data have already been reported above).

(R,E)-2-azidomethyl-5-methylhex-3-enyl ester acetate 16

A solution of crude mesylate **8** (\leq 23.50 mmol) in dry DMF (25 ml) was treated with sodium azide (3.06 g, 47.07 mmol) and stirred at 50°C for 15-20 h. The reaction was partitioned between water/ether and extracted with ether. The organic layers were washed with water and finally with brine. After solvent removal chromatography with PE/Et₂O 95:5 \rightarrow 9:1 gave **16** as colourless oil (4.43 g) in 90% overall yield from ($\it R$)-3. R_f 0.71 (PE/Et₂O 7:3, B). Anal. found C, 56.75; H, 8.15; N, 19.75. C₁₀H₁₇N₃O₂ requires C, 56.85; H, 8.11; N, 19.89. [α]_D = + 4.6 (CHCl₃, c 1.00). IR: ν_{max} 2956, 2100, 1731, 1598, 1451, 1382, 1364, 1233, 1031. GC-MS: R_f 4.39; $\it m/z$ 182 (M⁺-28, 0.14), 96 (6.8), 95 (29), 81 (17), 80 (8.4), 68 (9.6), 67 (11), 55 (12), 53 (5.1), 43 (100), 41 (16), 39 (8.0). ¹H NMR: 0.97 [6H, d, ($\it CH_3$)₂CH, J 6.2]; 2.06 [3H, s, COC $\it H_3$]; 2.28 [1H, d of octuplets, (CH₃)₂CH, J 0.8, 6.6]; 2.60 [1H, hexuplet, C $\it HCH_2$ OAc, J 7.0]; 3.33 [2H, d, C $\it H_2$ N₃, J 6.2]; 4.00 and 4.11 [2H, AB part of ABX system, C $\it H_2$ OAc, J_{AB} 11.1, J_{AX} 7.3, J_{BX} 5.7]; 5.23 [1H, ddd, C $\it H$ =C $\it Hi$ Pr, J 1.2, 8.2, 15.8]; 5.60 [1H, dd, CH=C $\it Hi$ Pr, J 6.6, 15.4]. ¹³C NMR: 20.77 [COCH₃]; 22.16 [2C, CH($\it CH_3$)₂]; 31.13 [CH(CH₃)₂]; 41.95 [CHCH₂OAc]; 52.76 [CH₂N₃]; 64.73 [CH₂OAc]; 123.19 and 142.00 [2C, $\it C$ =C]; 170.75 [CO].

(R,E)-N-(2-Hydroxymethyl-5-methylhex-3-enyl)acetamide 17

A solution of **16** (50 mg, 237 μmol) in THF/H₂O 9:1 (3 ml) was treated with triphenylphosphine (93 mg, 355 μmol) and heated at 55°C for 11 h. The solution was partitioned between water/Et₂O and extracted with ether. Chromatography with AcOEt \rightarrow AcOEt/MeOH 8:2 gave **17** (23 mg) as a pale yellow oil in 52% yield. R_f 0.55 (AcOEt/MeOH 9:1, B). Anal. found C, 64.80; H, 10.40; N, 7.55. C₁₀H₁₉NO₂ requires C, 64.83; H, 10.34; N, 7.56. [α]_D = - 21.0 (CHCl₃, c 1.08). IR: v_{max} 3449, 2956, 2923, 2868, 1657, 1506, 1193. GC-MS: R_t 5.59; *m/z* 1 85 (M⁺, 0.42), 155 (17), 110 (6.8), 108 (19), 98 (5.5), 97 (6.4), 96 (65), 95 (12), 93 (17), 90 (8.8), 82 (11), 81 (1 00), 79 (8.5), 73 (16), 72 (59), 69 (9.0), 68 (5.3), 67 (11), 60 (27), 57 (6.0), 56 (9.1), 55 (13), 54 (6.3), 53 (6.8), 43 (60), 42 (6.2), 41 (25), 39 (9.8). ¹H NMR: 0.90 [6H, d, (CH₃)₂CH, J 6.6]; 1.94 [3H, s, COCH₃]; 2.11-2.33 [2H, m, (CH₃)₂CH, CHCH₂OAc]; 3.18 and 3.33 [2H, AB part of ABX system, CH₂O or CH₂N, J_{AB} 13.3, J_{AX} 5.8, J_{BX} 14.2]; 3.34-3.54 [3H, CH₂O or CH₂N, OH]; 5.17 [1H, ddd, CH=CH*i*Pr, J 1.0, 7.6, 15.4]; 5.46 [1H, dd, CH=CH*i*Pr, J 0.8, 6.6, 15.4]; 5.94 [1H, broad s, NH]. ¹³C NMR: 22.46 [2C, CH(CH₃)₂]; 23.07 [COCH₃]; 31.17 [CH(CH₃)₂]; 40.80 [CHCH₂N]; 44.82 [CHCH₂O]; 63.19 [CH₂O]; 124.79 and 140.83 [2C, C=C]; 171.38 [CO].

(R,E)-2-Azidomethyl-5-methylhex-3-en-1-ol 18

A solution of **16** (4.43 g, 20.97 mmol) in THF/0.079 M pH 7 phosphate buffer 3:1 (200 ml) was treated with lipase from *Pseudomonas cepacia* (PCL, 1.67 g) and stirred at rt for 19 h. The pH was maintained at 7 by constant addition of 1 N NaOH. The mixture was filtered over a celite pad and extracted with ether. Chromatography with PE/Et₂O 7:3: \rightarrow 1:1 furnished **17** (3.45 g) as a yellow oil in 97% yield. R_f 0.41 (PE/Et₂O 6:4, B). Anal. found C, 56.70; H, 8.90; N, 25.00. C₈H₁₅N₃O requires C, 56.78; H, 8.93; N, 24.83. [α]_D = - 21.0 (CHCl₃, c 1.08). IR: ν_{max} 3620, 2922, 3102, 1457, 1195, 1023. GC-MS: R_f 3.81; m/z 141 (M⁺-28, 0.26), 126 (9. 9), 110 (10), 97 (5.0), 96 (25), 95 (56), 93 (6.3), 83 (16), 82 (6.1), 81 (41), 80 (8.0), 79 (10), 77 (5.7), 71 (5.0), 7 0 (14), 69 (78), 68 (41), 67 (31), 65 (5.2), 57 (32), 56 (16), 55 (49), 54 (7.4), 53 (18), 44 (5.0), 43 (66), 42 (11), 41 (100), 40 (83), 39 (31). ¹H NMR: 0.93 [6H, d, (CH₃)₂CH, J 7.0]; 2.33 [1H, d of octuplets, (CH₃)₂CH, J 0.8, 6.4]; 2.41 [1H, hexuplet, CHCH₂O, J 6.2]; 3.30 [2H, d, CH₂N₃, J 6.6]; 3.51 and 3.57 [2H, AB part of ABX system, CH₂O, J_{AB} 9.3, J_{AX} 4.9, J_{BX} 4.9]; 5.17 [1H, ddd, CH=CH*i*Pr, J 1.2, 8.0, 15.4]; 5.57 [1H, dd, CH=CH*i*Pr, J 6.6, 15.4]. ¹³C NMR: 22.27 and 22.35 [2C, CH(CH₃)₂]; 31.22 [CH(CH₃)₂]; 45.08 [CHCH₂O]; 52.83 [CH₂N₃];

63.74 [CH₂O]; 123.88 and 142.43 [2C, C=C].

General procedure for the Staudinger reaction followed by protection of nitrogen as carbamate

a) <u>Transformation of N₃ into NH₂</u>: the same procedure described above for the preparation of **17** was employed, using 12 ml solvent/10 mmol substrate and stirring at rt for 8 h. In this case the crude mixture was directly N-protected, without performing an extractive work-up before. b) <u>Protection as Boc (to give **20** and **21**): the solution was cooled to 0°C and treated with Et₃N (5 molar eq) and Boc-ON [(2-*t*-butoxycarbonyloxyimino)-2-phentlacetonitrile, 1.5 molar eq]. After 15 min the suspension was allowed to stirr a rt overnight. Dilution with water was followed by extraction with Et₂O. c) <u>Protection as Cbz (to give **29**)</u>: the solution was cooled to 0°C and treated with benzyl chloroformate (1.5 molar eq), while pH was maintained at 9-10 by addition of 1N NaOH. Dilution with water was followed by extraction with Et₂O.</u>

(R,E)-[5-Methyl-2-{(tetrahydropyran-2-yloxy)methyl]hex-3-enyl} carbamic acid *tert*-butyl ester 20 from 19

It was prepared starting from 19 in 74% overall yield. (Spectroscopic data have already been reported above).

(R,E)-(2-Hydroxymethyl-5-methylhex-3-enyl) carbamic acid tert-butyl ester 21

It was prepared starting from **18**. Chromatography with PE/Et₂O 9:1 \rightarrow 4:6 gave **21** (usually a second chromatography was necessary in order to completely separate **21** from the oxime derived from Boc-ON) as a pale yellow oil in 96% yield. R_f 0.55 (PE/AcOEt 7:3, B). Anal. found C, 64.10; H, 10.30; N, 5.75. C₁₃H₂₅NO₃ requires C, 64.16; H, 10.36; N, 5.76. [α]_D = -10.8 (CHCl₃, c 1.27). GC-MS: R_t 6.14; m/z 213 (M⁺-30, 0.042), 1 70 (18), 169 (15), 157 (27), 130 (12), 109 (6.7), 108 (14), 97 (8.5), 96 (100.0), 95 (14), 93 (6.0), 92 (28), 82 (8. 5), 81 (50), 74 (9.6), 69 (5.5), 67 (6.0), 59 (12), 57 (88), 56 (5.9), 55 (7.8), 43 (5.4), 41 (19). ¹H NMR: 0.98 [6H, d, (CH₃)₂CH, J 6.6]; 1.45 [9H, s, C(CH₃)₃]; 2.16-2.38 [2H, m, (CH₃)₂CH, CHCH₂NHBoc]; 3.05-3.58 [5H, m, CH₂OH, CH₂NHBoc]; 4.74 [1H, broad s, NH]; 5.23 [1H, dd, CH=CHiPr, J 8.0, 15.8]; 5.54 [1H, dd, CH=CHiPr, J 6.2, 15.4]. ¹³C NMR: 22.44 [2C, CHCH₃)₂]; 28.32 [3C, C(CH₃)₃]; 31.15 [CH(CH₃)₂]; 41.37 [CH₂NHBoc]; 45.42 [CHCH₂NHBoc] 63.04 [CH₂OH]; 79.66 [C(CH₃)₃]; 124.82 and 140.94 [2C, C=C]; 157.10 [CO].

(R,E)-(2-Hydroxymethyl-5-methylhex-3-enyl) carbamic acid benzyl ester 29

It was prepared starting from **18**. Chromatography with PE/Et₂O 9:1 \rightarrow 4:6 gave **29** as a pale yellow oil in 44% yield. R_f 0.26 (PE/Et₂O 4:6, A, B). Anal. found C, 69.35; H, 8.30; N, 5.15. C₁₆H₂₃NO₃ requires C, 69.29; H, 8.36; N, 5.05. [α]_D = - 11.2 (CHCl₃, c 1.54). IR: ν_{max} 3449, 2952, 2871, 1705, 1502, 1454, 1211. GC-MS: R_t 8.75; m/z 259 (M⁺-18, 0.070), 168 (6.7), 108 (13), 107 (12), 96 (29), 95 (18), 92 (8.7), 91 (100), 81 (32), 79 (16), 77 (10), 67 (5.1), 65 (9.2), 41 (7.2). ¹H NMR: 0.97 [6H, d, (CH₃)₂CH, J 6.8]; 2.29 [2H, centre of m, (CH₃)₂CH, CHCH₂O]; 2.66 [1H, broad t, OH, J 6.8]; 3.24 and 3.36 [2H, ABX system, CH₂N, J_{AB} 14.0, J_{AX} 6.2, J_{BX} 6.2]; 3.46-3.60 [2H, m, CH₂O]; 4.97 [1H, broad s, NH]; 5.11 [2H, s, OCH₂Ph]; 5.21 [1H, dd, CH=CHiPr, J 8.0, 15.8]; 5.55 [1H, dd, CH=CHiPr, J 6.2, 15.6]; 7.34-7.38 [5H, m, Ph]. ¹³C NMR: 22.37 [2C, CH(CH₃)₂]; 31.11 [CH(CH₃)₂]; 41.98 [CHCH₂N]; 45.16 [CHCH₂N]; 63.24 and 66.85 [2C, CH₂O]; 124.50 and 141.23 [2C, C=C]; 128.05, 128.12 and 128.47 [5C, CH of Ph]; 136.34 [C ipso of Ph]; 157.28 [CO].

(R)-3-[(Triisopropylsilyloxy)methyl]-3,6-dihydro-2H-pyridine-1-carboxylic acid 2,2,2-trichloroethyl ester 41

a) Boc removal: a solution of 28 (94 mg, 261 µmol) in dry CH₂Cl₂ (1 ml) was cooled at 0°C and treated with CF₃CO₂H (1 ml). After 30 min the solvent was evaporated and all TFA was azeotropically removed with toluene. b) Troc introduction: the crude of the previuos reaction was dissolved in water (4 ml) and the pH was adjusted to 10 by addition of 1 N NaOH. 2,2,2-trichloroethyl chloroformate (72 µl, 522 µmol) was added and the mixture was stirred et rt for 3 h, maintaining the pH at 9-10 by additional introduction of 1 N NaOH. Extraction with Et₂O was followed by solvent removal. Chromatography with PE/Et₂O 95:5 gave 41 as a yellow oil. R_f 0.56 (PE/Et₂O 9:1, B). Anal. found C, 48.45; H, 7.15; N, 3.25. C₁₈H₃₂Cl₃NO₃Si requires C, 48.59; H, 7.25; N, 3.15. $[\alpha]_D = -19.4$ (CHCl₃, c 1.05). IR: v_{max} 2940, 2862, 2395, 1709, 1423, 1186, 1125. GC-MS: R_t 10.34; m/z 402 [M⁺-43 (2 ³⁶Cl and 1 ³⁵Cl, 97)], 400 [M⁺-43 (3 ³⁵Cl, 98)], 296 (13), 288 (7.4), 270 (5.8), 252 (9. 7), 244 (5.9), 236 (23), 234 (36), 226 (6.6), 182 (12), 226 (6.6), 182 (12), 179 (12), 177 (11), 157 (10), 151 (6.6) , 149 (18), 145 (25), 140 (9.0), 139 (10), 138 (5.6), 137 (19), 133 (13), 131 (30), 127 (7.9), 125 (8.4), 123 (9.9), 122 (11), 121 (83), 119 (14),115 (18), 113 (8.3), 111 (8.5), 109 (7.7), 103 (24), 101 (6.0), 99 (12), 97 (20), 96 (2 4), 95 (32), 94 (17), 93 (23), 89 (6.5), 88 (5.7), 87 (18), 85 (6.3), 82 (5.0), 81 (7.1), 80 (16), 79 (29), 77 (8.9), 75 (57), 73(31), 71(7.1), 69(5.5), 68(9.4), 67(100), 65(8.6), 61(36), 60(6.6), 59(57), 56(9.2), 45(25), 44(12), 43 (15), 42 (6.8), 41 (27), 39 (5.3). ¹H NMR: 0.95-2.20 [21H, m, TIPS]; 2.51 [1H, apparent broad s, CHCH₂O]; 3.31-4.32 [6H, m, CH₂O, CH₂NCH₂]; 4.77 [2H, centre of m, CO₂CH₂]; 5.68-5.84 [2H, m, CH=CH]. 13 C NMR (two rotamers): 11.94 [3C, Si(CH(CH₃)₂)₃]; 18.01 [6C, Si(CH(CH₃)₂)₃]; 38.15 and 38.56 [CHCH₂O]; 43.05, 43.56 and 44.05 [2C, CH₂NCH₂CH=CH]; 64.71 and 64.90 [CH₂OSi]; 75.02 [CO₂CH₂]; 95.72 [CCl₃]; 124.32 and 124.94, 126.60 and 126.94 [2C, C=C]; 153.79 [CO].

General procedure for TIPS removal

A solution of substrate (1.00 mmol for 41 and 28; 36 μ mol for 49 and 50) in dry THF (7 ml for 41 and 28; 1 ml for 49 and 50) was treated with n-Bu₄NF (0.5 M in THF, 6 ml for 41 and 28; 216 μ l for 49 and 50) and stirred at rt for 2.5-3 h. The solution was partitioned between water/ether and extracted with ether.

(R)-3-Hydroxymethyl-3,6-dihydro-2H-pyridine-1-carboxylic acid 2,2,2-trichloroethyl ester 42

It was prepared starting from **41**. Chromatography with PE/Et₂O 1:1 \rightarrow 1:9 gave **42** as a colourless oil in 74% yield. R_f 0.57 (PE/Et₂O 1:9, B, D). Anal. found C, 37.55; H, 4.10; N, 4.90; N, 3.25. C₉H₁₂Cl₃NO₃ requires C, 37.46; H, 4.19; N, 4.85. [α]_D = - 44.2 (CHCl₃, c 1.04). IR: ν_{max} 3459, 2920, 2851, 1706, 1428, 1238, 1127, 1030. GC-MS: R_t 7.38; m/z 289 [M⁺ (2 ³⁶Cl and 1 ³⁵Cl, 2.4)], 287 [M⁺ (3 ³⁵Cl, 2.6)], 271 (12), 270 (12), 269 (13), 268 (12), 261 (11), 260 (7.5), 259 (32), 258 (16), 257 (34), 256 (18), 254 (11), 206 (9.6), 204 (9.6), 156 (6.6), 141 (6 .8), 140 (78), 139 (7.9), 138 (61), 135 (22), 133 (72), 131 (73), 127 (13), 126 (53), 125 (6.3), 124 (18), 113 (7.0), 112 (74), 111 (83), 110 (9.6), 109 (9.0), 108 (5.6), 99 (7.3), 98 (11), 97 (41), 96 (22), 95 (64), 94 (39), 84 (32), 83 (57), 82 (81), 81 (27), 80 (90), 79 (10), 78 (9.7), 74 (18), 69 (18), 68 (20), 67 (100), 66 (20), 65 (15), 63 (8.3), 62 (5.1), 61 (20), 57 (13), 56 (73), 55 (86), 54 (38), 53 (33), 52 (8.1), 51 (7.2), 44 (8.7), 43 (22), 42 (21), 41 (57), 40 (7.8), 39 (35). ¹H NMR (DMSO-d₆; temp=100°C); 2.38 [1H, centre of m, CHCH₂O]; 3.31 [1H, dd,

NC*H*HCHCH₂OH, J 7.0, 12.8]; 3.33 and 3.44 [2H, ABX system, NC*H*₂CH=CH, J_{AB} 10.4, J_{AX} 13.5, J_{BX} 5.1]; 3.76 [1H, dd, NCH*H*CHCH₂OH, J 5.2, 13.2]; 3.83-4.07 [2H, m, C*H*₂OH]; 4.34 [1H, broad t, O*H*, J 5.3]; 4.85 [2H, s, CO₂C*H*₂]; 5.73-5.84 [2H, m, C*H*=C*H*]. ¹³C NMR (DMSO-d₆; two rotamers): 37.61 and 37.81 [CHCH₂O]; 42.78, 43.09 and 43.54 [2C, $CH_2NCH_2CH=CH$]; 62.27 and 62.45 [CH_2OSi]; 73.99 [CO_2CH_2]; 95.95 [CCl_3]; 124.42 and 124.71, 126.78 [2C, C=C]; 152.90 and 153.16 [CO].

(R)-3-Hydroxymethyl-3,6-dihydro-2H-pyridine-1-carboxylic acid tert-butyl ester 43

It was prepared starting from **28**. Chromatography with PE/Et₂O 6:4 \rightarrow 2:8 gave **43** as a yellow oil in 97% yield. R_f 0.57 (PE/Et₂O 1:9, C, D). Anal. found C, 62.05; H, 8.95; N, 6.50. C₁₁H₁₉NO₃ requires C, 61.95; H, 8.98; N, 6.57. [α]_D = -38.1 (CHCl₃, c 0.55). IR: ν_{max} 3436, 2971, 1664, 1425, 1366, 1256, 1161, 1119. GC-MS: R_t 5.37; m/z 289 (M⁺ -30, 1.2), 157 (10), 140 (8.7), 139 (6.7), 127 (19), 112 (11), 84 (6.9), 83 (6.1), 82 (23), 80 (8.0), 67 (12), 57 (100), 56 (13), 55 (7.6), 43 (6.3), 41 (26), 39 (6.4). ¹H NMR (DMSO-d₆; temp=100°C): 1.43 [9H, s, OC(CH₃)₃]; 2.30 [1H, centre of m, CHCH₂O]; 3.18 [1H, dd, NCHHCHCH₂OH, J 6.6, 13.0]; 3.30 and 3.40 [2H, ABX system, NCH₂CH=CH, J_{AB} 10.4, J_{AX} 8.2, J_{BX} 5.2]; 3.60 [1H, dd, NCHHCHCH₂OH, J 5.2, 12.8]; 3.39-3.93 [2H, m, CH₂OH]; 4.24-4.34 [1H, m, OH]; 5.68-5.79 [2H, m, CH=CH]. ¹³C NMR (DMSO-d₆; temp=100°C): 28.00 [3C, OC(CH₃)₃]; 37.94 [CHCH₂O]; 42.87 [2C, CH₂NCH₂CH=CH]; 62.40 [CH₂OSi]; 78.57 [C(CH₃)₃]; 125.29 and 126.67 [2C, C=C]; 154.06 [CO].

(3R,4R,5R)-3,4-Dihydroxy-5-(hydroxymethyl)piperidine-1-carboxylic acid tert-butyl ester 51

It was prepared starting from 49 (36 μ mol). Chromatography on preparative TLC with AcOEt/MeOH 9:1 gave 51 as a white foam in 44% yield. (Spectroscopic data have already been reported in the paper).

(3S,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)piperidine-1-carboxylic acid tert-butyl ester 52

It was prepared starting from **50** (38 μmol). Chromatography on preparative TLC with AcOEt/MeOH 9:1 gave **52** as a white foam in 72% yield. (Spectroscopic data have already been reported in the paper).

(S)-(3,6-dihydro-2H-pyran-3-yl)methanol 48

A solution of **6** (240 mg, 1.21 mmol) in dry MeOH (5 ml) was cooled to 0°C. After *p*-TSA addition (16 mg, 84 μmol) the solution was allowed to stir at rt for 4 h. After addition of solid NaHCO₃ (10 mg, 119 μmol) the mixture was concentrated and the residue was partitioned between brine/AcOEt and extracted with AcOEt. Chromatography with PE/Et₂O 1:9 gave **48** (112 mg) in 81% yield as a colourless oil. R_f 0.46 (PE/Et₂O 1:9, B). Anal. found C, 63.20; H, 8.85. C₆H₁₀O₂ requires C, 63.14; H, 8.83. [α]_D = - 112.9 (CHCl₃, c 1.19). IR: v_{max} 3451, 2935, 2873, 2834, 1602, 1114, 1084, 1018. GC-MS: R_f 1.30; *m/z* 114 (M⁺, 0.38), 96 (38), 95 (28), 84 (31), 83 (78), 82 (7.5), 81 (48), 71 (6.6), 70 (34), 69 (12), 68 (14), 67 (23), 66 (11), 65 (7.0), 57 (25), 56 (25), 55 (10 0), 54 (8.7), 53 (23), 51 (7.1), 50 (5.2), 43 (12), 42 (6.7), 41 (23), 40 (5.9), 39 (30). ¹H NMR: 1.96 [1H, broad s, OH]; 2.30-2.36 [1H, m, CHCH₂O]; 3.68 [2H, apparent broad s, CH₂OH]; 3.84 [2H, d, CH₂O, J 4.0]; 4.13 [2H, dd, CH₂O, J 2.4, 4.2]; 5.74-5.92 [2H, m, CH=CH]. ¹³C NMR: 37.33 [CHCH₂O]; 63.42, 65.45 and 66.19 [3C, CH₂O]; 124.98 and 127.99 [2C, C=C].

(3R,4R,5R)- and (3S,4R,5R)-3,4-Dihydroxy-5-[(triisopropylsilyloxy)methyl]piperidine-1-carboxylic acid *tert*-butyl ester 49 and 50 from 51,52

Diastereomeric mixture **51,52** (6.8 mg, 27 μmol), prepared above, was dissolved in dry CH₂Cl₂ (1 ml) and cooled to 0°C. 2,6-Lutidine (8 μl, 69 μmol) and triisopropylsilyl triflate (12 μl, 45 μmol) were added and the solution was allowed to stir at 0°C for 5 h. After dilution with water/AcOEt, the reaction was extracted with AcOEt. Excess 2,6-lutidine was azeotropically removed with *n*-octane. After solvent removal, chromatography on preparative TLC with PE/Et₂O 25:75 gave the diastereomeric mixture **49,50** (6.5 mg, 59% yield) having the same d.r. of the starting epoxides **36,40** (by GC-MS).