Synthetic Procedures

All solvents were dried before use. All chemicals were purchased from Acros, Fluka, Janssen, Lancaster, Merck, Roth or Sigma-Aldrich. The products were purified by flash chromatography on silica gel (silica gel 60, Merck) with the stated solvent mixture as mobile phase unless otherwise noted. Thin layer chromatography was performed on Merck silica gel 60 F-254 TLC plates with the stated solvent mixtures as mobile phase. 1H and 13C NMR were obtained with a Bruker DRX-500 NMR spectrometer at room temperature with the stated solvents as internal standards. Chemical shifts are given in parts per million (δ) coupling constants are given in Hertz (Hz). High-resolution mass spectra were obtained with a 7 T APEX II mass spectrometer or a Finnegan MAT MS 70. Melting points were determined in open capillaries using a Büchi Melting Point B-540 apparatus and are uncorrected.

General Procedures:

a) Benzylation

1.5eq $\mathrm{NaH}\left(60 \%\right.$ suspension in mineral oil) were added at $0^{\circ} \mathrm{C}$ in small portions to a solution of the desired alcohol, tetrabutyl-ammoniumiodide (0.01 eq.) and benzyl bromide (1.5 eq) in DMF. After stirring for additional 4 h excess sodium hydride was quenched by addition of brine and the reaction mixture was extracted three times with ethyl ether. The combined organic layers were washed twice with brine and dried over sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified on silica (hexane/ethyl acetate $2: 1$) to yield the desired benzyl ether.
b) Selective glycol deprotection

A solution of the desired ketal and toluene sulfonic acid (0.05 eq) in ethylene glycole/DMF $1: 1$ was stirred for 2 h at $65^{\circ} \mathrm{C}$. After cooling to room temperature water was added and the reaction mixture was extracted three times with ether. The combined organic layers were washed with brine and dried over sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified on silica (hexane/ethyl acetate 1:10).
c) Saponification

3eq 1 N NaOH were added to a solution of the desired ester in methanol. Saturated NaHCO_{3}-solution was added after stirring for 24 h at room temperature. The aqueous layer was extracted three times with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure to yield the desired alcohol.
d) Chloroacetyl carbamate

2eq chloroacetyl isocyanate were added at $0^{\circ} \mathrm{C}$ to a solution of the desired alcohol in DCM. The reaction mixture was stirred for 1 h and the solvent was removed under reduced pressure. The remaining oil was directly applied on silica and eluted with hexane/ethyl acetate 1:1 to yield the desired carbamate.

e) Diazomethane methylation

A solution of diazomethane (2.6eq, prepared from Diazald) in DCM was carefully added in three portions over 2 minutes at $-78^{\circ} \mathrm{C}$ to a solution of the desired alcohol in DCM (Caution! use glassware that is specifically designed for the use of diazomethane). After addition of the individual portions of diazo methane, $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(8.5 \mu \mathrm{l} / \mathrm{mmol}$ alcohol, 10% in DCM$)$ were added. After complete decolouration of the solvent mixture it was warmed to room temperature and water was added. The organic layer was separated and the aqueous layer was extracted two more times with DCM. The combined organic layers were dried over sodium sulfate. After removal of the solvent under reduced pressure the desired ether was obtained without any further purification.

f) Spiroketal deprotection I

A solution of cerium ammonium nitrate (0.15 eq) in borate buffer $(\mathrm{pH} 8)$ was added to a solution of the desired spiroketal in acetonitrile and stirred for 10 h at $65^{\circ} \mathrm{C}$. After cooling to room temperature water was added and the aqueous layer was extracted three times with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The crude ketone was further purified on silica (hexane/ethyl acetate $1: 2$!, crucial for high yields is to minimize the contact time with silica, the purification process should not last longer than 5 min !) to yield the desired product.

g) Selective benzoylation

$\mathrm{Bu}_{2} \mathrm{SnO}$ (1.14eq) was added to a solution of the desired diol in methanol. The reaction mixture was refluxed for 5 h in a round bottom flask that had been equipped with a Soxlett-extractor (filled with molecular sieves $4 \AA$). After cooling to room temperature the solvent was removed under reduced pressure and the remaining syrup was dissolved in dry THF and cooled to $-30^{\circ} \mathrm{C}$. After addition of benzoyl chloride (1.5eq) the reaction mixture was stirred for 2 h at $-30^{\circ} \mathrm{C}--20^{\circ} \mathrm{C}$ and then warmed to room temperature. Subsequently, NaHCO_{3}-solution was added and the aqueous layer was extracted three times with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered through celite and the solvent was removed under reduced pressure. After purification on silica (hexane/ethyl acetate 2:1) the desired ester was yielded as a white solid.
h) Nysted reaction

To a solution of the desired ketone in THF Nysted's reagent ($3 \mathrm{~mL} / \mathrm{mmol}$ ketone of a 20% suspension in THF, Sigma-Aldrich) were added at $-78^{\circ} \mathrm{C}$. After 5 minutes titanium tetrachloride solution $(1.2 \mathrm{~mL} / \mathrm{mmol}$ ketone, 10% in cyclohexane) were added dropwise. Now the reaction mixture was first stirred for additional 10 min at $-78^{\circ} \mathrm{C}$ and then 3 h at room temperature. Water was added and the reaction mixture was extracted three times with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The crude product is purified on silica (hexane/ethyl acetate 5:1) to yield the desired alkene.

i) Spiroketal deprotection II

A solution of 0.2 eq cerium ammonium nitrate in $5 \% \mathrm{KHSO}_{4}(17 \mathrm{~mL} / \mathrm{mmol}$ spiroketal) was added to a solution of the desired spiroketal in acetonitrile and refluxed for 16 h . After cooling to room temperature water was added and the aqueous layer was extracted three times with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The crude ketone was further purified on silica (hexane/ methyl tert.-butyl ether 1:3!, crucial for high yields is to minimize the contact time with silica, the purification process should not last longer than $5 \mathrm{~min}!$) to yield the desired product.

j) Epoxidation

To a solution of $220 \mathrm{mg}(1 \mathrm{mmol})$ trimethylsulfoxonium iodide in 10 mL DMSO/THF $1: 1$ were added 38 mg $\mathrm{NaH}(0.95 \mathrm{mmol}, 60 \%$ suspension in mineral oil) and the mixture was stirred over night.
Above solution ($19 \mathrm{~mL} / \mathrm{mmol}$ ketone) was added to a solution of the desired ketone in DMSO and stirred at room temperature. After 5 min water was added and the aqueous layer was extracted three times with ether. The combined organic layers were dried over sodium sulfate. After removal of the solvent under reduced pressure the desired product was obtained without further purification.

2-Methoxybenzoic acid ethyl ester 4

178 ml oxalyl chloride $(266.5 \mathrm{~g} ; 2.10 \mathrm{~mol}=1.05 \mathrm{eq})$ were added over 1 h to a solution of $304.3 \mathrm{~g}(2 \mathrm{~mol}) 2$ methoxybenzoic acid in 1500 mL DCM at $0^{\circ} \mathrm{C}$. The solution was stirred for additional 2 h at $0^{\circ} \mathrm{C}$ and 16 h at
room temperature. The solvent was removed under reduced pressure to yield a yellow oil which was redissolved in 1500 mL DCM and cooled in an ice bath to $0^{\circ} \mathrm{C}$. After sequential addition of $600 \mathrm{~mL}(10 \mathrm{~mol})$ ethanol and 195 mL pyridine (2.5 mol) the reaction mixture was stirred additional 2 h at $0^{\circ} \mathrm{C}$ and 16 h at room temperature. The clear solution was washed twice with 500 mL sulfuric acid (5% in water), followed by 500 mL water and 500 mL saturated NaHCO_{3}-solution. The organic layer was dried over sodium sulfate. The desired product was obtained after removal of the solvent under reduced pressure as colourless yellow oil in excellent purity.
Yield: $358.95 \mathrm{~g}, 1.99 \mathrm{~mol}, 99.6 \%$, colourless oil
\mathbf{R}_{F}-Value: 0.25 (hexane/ethyl acetate 10:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.77$ (dd, $\mathrm{J}=1.8,7.8,1 \mathrm{H}, \mathrm{Ar}$), 7.43 (ddd, $\left.\mathrm{J}=1.8,7.4,8.5,1 \mathrm{H}, \mathrm{Ar}\right), 7.95$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}), 4.34\left(\mathrm{q}, \mathrm{J}=7.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.36\left(\mathrm{t}, \mathrm{J}=7.2,3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1(\mathrm{q}) ; 159.0(\mathrm{q}) ; 133.3(\mathrm{t}) ; 131.4(\mathrm{t}) ; 120.4(\mathrm{q}) ; 120.0(\mathrm{t}) ; 112.0(\mathrm{t}) ;$ 60.7(s); 55.9(p); 14.2(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}]^{+}: 180.0786$, found: 180.0790
All compounds described in the following section are synthesized as the racemic mixture. For clarity purpose only one of both enantiomers is shown.

($1 S^{*}$)-2-Methoxy-cyclohexa-2,5-diene carboxylic acid ethyl ester 5

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $71.58 \mathrm{~g}(0.40 \mathrm{~mol}) 2$-methoxybenzoic acid ethyl ester $\mathbf{4}$ in 700 mL THF and 7.5 mL water $(0.41 \mathrm{~mol})$ in a 3 -neck round bottom flask that had been equipped with a mechanic stirrer and a dry ice condenser were added 700 mL ammonia (liquid). After slow addition of diced sodium ($23 \mathrm{~g}, 1 \mathrm{~mol}$) under vigorous stirring, the dry ice bath is removed and the greenish/brown mixture is refluxed $\left(-30^{\circ} \mathrm{C}\right.$!) for 2 h . In order to quench unreacted sodium the reaction mixture is cooled again to $-78^{\circ} \mathrm{C}$ and solid ammonium chloride is added in small portions until complete decolouration is achieved. The cold reaction mixture is poured into a vigorously stirred solution of saturated ammonium chloride (Caution! This can only be done in a well working fume hood set to maximum ventilation capacity to avoid inhaling of ammonia). The aqueous layer is then extracted three times with hexane. The combined organic layers were washed with water and dried over sodium sulfate. The crude product was used for the next step without further purification.
Yield: $61.2 \mathrm{~g}, 0.34 \mathrm{~mol}, 84 \%$, pale yellow oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.55 (hexane/ethyl acetate 5:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.88(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}=\mathrm{CH}), 5.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 4.83(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{COMe}), 4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCOOEt}), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74-3.96(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}$), 1.25 (t, J = 7.2, 3H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.7(\mathrm{q}) ; 150.5(\mathrm{q}) ; 127.1(\mathrm{t}) ; 121.5(\mathrm{t}) ; 93.1(\mathrm{t}) ; 61.0(\mathrm{~s}) ; 54.2(\mathrm{p}) ; 46.1(\mathrm{t}) ;$ 26.2(s); 14.1(p);

HRMS (EI, 70 eV): calc. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}]^{+}: 182.0943$, found: 182.0950

($6 S^{*}$)-1,4-Dioxa-spiro[4.5]dec-7-ene-6-carboxylic acid ethyl ester 6

A solution of $51.34 \mathrm{~g}(282 \mathrm{mmol})$ diene 5 and $2 \mathrm{~g} p$-toluene sulfonic acid in 250 mL ethylene glycol and 70 mL DMF was heated to $80^{\circ} \mathrm{C}$ for 1 h . After cooling to room temperature, the reaction mixture was poured into water and extracted three times with ether. The combined organic layers were washed twice with brine and dried over sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified on silica (hexane/ ethyl acetate $5: 1$) to yield 43.1 g of the desired ketal as pale yellow oil.
Yield: $43.1 \mathrm{~g}, 203 \mathrm{mmol}, 70 \%$, pale yellow oil
\mathbf{R}_{F}-value: 0.4 (hexane/ethyl acetate 5:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8 \mathbf{H}=\mathrm{CH}), 5.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C} 7 \mathrm{H}), 4.16(\mathrm{dq}, \mathrm{J}=2.3,7.1$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right)$, 3.94-4.06 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCOOEt}), 2.20-2.32$ and $1.67(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$), 1.26 ($\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=170.9(\mathrm{q}) ; 129.5(\mathrm{t}) ; 122.4(\mathrm{t}) ; 107.6(\mathrm{q}) ; 64.9(\mathrm{~s}) ; 64.4(\mathrm{~s}) ; 60.8(\mathrm{~s}) ; 50.7(\mathrm{t}) ;$ 28.9(s); 24.2(s); 14.1(p);

HRMS (EI, 70 eV): calc. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}]^{+}: 212.1049$, found: 212.1054

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-7,8-Dihydroxy-1,4-dioxaspiro[4.5]-decane-6-carboxylic acid ethyl ester 39

Abstract

A solution of 39 g (288 mmol) N -methylmorpholine- N -oxide monohydrate and $1010 \mathrm{mg} \mathrm{K}_{2} \mathrm{OsO}_{4}$ dihydrate $(2.7 \mathrm{mmol})$ in 500 mL water was added to a solution of $58.30 \mathrm{~g}(275 \mathrm{mmol})$ alkene $\mathbf{6}$ in 500 mL acetone. After stirring over night at room temperature $32 \mathrm{~g} \mathrm{NaHS}_{2} \mathrm{O}_{5}(168 \mathrm{mmol})$ and 32 g Florisil were added and stirred for 30 min . The reaction mixture was filtered to remove the Florisil and concentrated under reduced pressure to yield a yellowish grey syrup which was extracted 5 times with ethyl acetate. The combined organic layers were dried over sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified on silica (hexane/ethyl acetate 1:10) to yield the desired diol as a colourless oil. Yield: $66.1 \mathrm{~g}, 269 \mathrm{mmol}, 98 \%$, colourless oil \mathbf{R}_{F}-value: 0.3 (hexane/ethyl acetate 1:10) ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.18\left(\mathrm{dq}, \mathrm{J}=0.5,7.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{m}$, C8-H), 3.80-3.96 (m, 4H, OCH $\mathbf{H}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.35(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.19(\mathrm{~d}, \mathrm{~J}=10.1,1 \mathrm{H}, \mathrm{CHCOOEt}), 2.90(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{OH}), 1.57,1.70$ and $1.83\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 1.28\left(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3(\mathrm{q}) ; 109.2(\mathrm{q}) ; 71.3(\mathrm{t}) ; 67.8(\mathrm{t}) ; 64.9(\mathrm{~s}) ; 64.5(\mathrm{~s}) ; 60.9(\mathrm{~s}) ; 52.8(\mathrm{t}) ;$ 29.2(s); 26.2(s); 14.1(p);

HRMS (EI, 70 eV): calc. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6}[\mathrm{M}]^{+}: 246.1103$, found: 246.1104

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)-7,8-O-(1-M e t h y l e t h y l i d e n e)-1,4-d i o x a s p i r o[4.5]-d e c a n e-6-c a r b o x y l i c ~ a c i d ~ e t h y l ~ e s t e r ~ 7 ~$

2 g p-toluenesulfonic acid were added to a solution of 70.9 g (288 mmol) ethyl ester 39 and 300 mL (2.4 mol) 2,2-dimethoxypropane in 300 mL DMF and stirred for 1 h at $65^{\circ} \mathrm{C}$. After cooling to room temperature 1 L water was added and the reaction mixture was extracted three times with ethyl ether. The combined organic layers were washed twice with brine and dried with sodium sulfate. After removal of the solvent under reduced pressure, the product was obtained sufficiently pure for the next reaction.
Yield: $69.9 \mathrm{~g}, 244 \mathrm{mmol}, 85 \%$, pale yellow oil
\mathbf{R}_{F}-value: 0.55 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}): 4.57(\mathrm{dd}, \mathrm{J}=4.8,9.4,1 \mathrm{H}, \mathrm{C} 7-\mathbf{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathbf{H}), 4.21(\mathrm{q}, \mathrm{J}=$ 7.2, 2H, CH2Me); $3.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$); 2.89 (d, J=9.4 Hz, 1H, CHCOOEt); 2.11 (ddt, J = 2.6, 2.9, $15.4,1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}_{\mathrm{eq}}$), $2.0\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}_{\mathrm{ax}}\right), 1.80\left(\mathrm{dt}, \mathrm{J}=4.9,13.2,1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{\mathrm{ax}}\right), 1.57(\mathrm{ddd}, \mathrm{J}=3.1,4.9,13.2$, $1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{\mathrm{eq}}$), $1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.30\left(\mathrm{t}, \mathrm{J}=7.2,3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.8(\mathrm{q}) ; 109.1(\mathrm{q}) ; 108.6(\mathrm{q}) ; 76.6(\mathrm{t}) ; 72.1(\mathrm{t}) ; 65.2(\mathrm{~S}) ; 64.6(\mathrm{~S}) ; 60.8(\mathrm{~S}) ;$ 53.9(t); 30.1(S); 28.3(p); 26.2(p); 23.2(S); 14.28(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}]^{+}: 286.1416$, found: 286.1411

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-6-Hydroxymethyl-7,8-O-(1-methylethylidene)-1,4-dioxa-spiro[4.5]decane 8

$42 \mathrm{~mL}(147 \mathrm{mmol})$ lithium aluminium hydride (3.5 M in toluene) were carefully added to a solution of 42.0 g $(147 \mathrm{mmol})$ ester 7 in 700 mL THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for additional 30 min at $0^{\circ} \mathrm{C}$ and 2 h at room temperature. Excess lithium aluminium hydride was quenched by the addition of sat. ammonium chloride solution until gas evolution had ceased. Subsequently saturated ammonium chloride solution was slowly added with vigorous stirring until the suspension suddenly forms a solid gel that collapses after addition of little more ammonium chloride solution to form a compact white solid. The THF layer was decanted and the solid precipitate was washed twice with ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure to yield the desired alcohol as a pale yellow to colourless oil, which crystallizes after several days.
Yield: $34.1 \mathrm{~g}, 140 \mathrm{mmol}, 95 \%$, white solid
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 (hexane/ethyl acetate 1:10); 0.15 (hexane/ethyl acetate 2:1)
$\mathrm{T}_{\mathrm{M}}: 35^{\circ} \mathrm{C}$

```
\({ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathbf{H}) .4 .02(\mathrm{dd}, \mathrm{J}=4.9 ; 9.7,1 \mathrm{H}, \mathrm{C} 7-\mathbf{H}) ; 3.95(\mathrm{~m}, 4 \mathrm{H}\),
\(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\) ); \(3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 2.85(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}) ; 2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right)\);
\(1.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCHOR}) ; 1.72(\mathrm{dt}, \mathrm{J}=4.7 ; 13.3,1 \mathrm{H}, \mathrm{CHaHbCHOR}) ; 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.58(\mathrm{ddd}, \mathrm{J}=\)
2.9; 5.0; 13.4, 1H, \(\left.\mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right) ; 1.34\) (s, \(3 \mathrm{H}, \mathrm{CH}_{3}\) );
\({ }^{13}\) C-NMR (125.8 MHz, \(\mathrm{CDCl}_{3}\) ): \(\delta=110.9(\mathrm{q}) ; 108.5(\mathrm{q}) ; 76.3(\mathrm{t}) ; 72.3(\mathrm{t}) ; 64.8(\mathrm{~s}) ; 64.0(\mathrm{~s}) ; 60.4(\mathrm{~s}) ; 48.0(\mathrm{t}) ;\)
28.5(s); 28.4(p); 26.3(p); 23.1(s).
HRMS (EI, 70 eV ): calc. \(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}]^{+}: 244.1311\), found: 244.1302
```


$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-7,8-O-(1-Methylethylidene-1,4-dioxa-spiro[4.5]decane 6-carbaldehyde 9

$6.1 \mathrm{~g}(21.9 \mathrm{mmol})$ IBX were added to a solution of $3.79 \mathrm{~g}(15.5 \mathrm{mmol})$ alcohol $\mathbf{8} \mathrm{in} 50 \mathrm{~mL}$ acetone. The suspension was refluxed for 2 h and cooled to $0^{\circ} \mathrm{C}$. The precipitate was filtered off and rinsed with ice-cold acetone. After removal of the solvent under reduced pressure the aldehyde was yielded as pale yellow oil that crystallizes over time.
Yield: $3.72 \mathrm{~g}, 15.4 \mathrm{mmol}, 99 \%$, pale yellow solid
$\mathbf{R}_{\mathbf{F}}$-value: 0.70 (hexane/ethyl acetate 1:2)
$\mathrm{T}_{\mathrm{M}}: 103^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.87(\mathrm{~d}, \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{CHO}) 4.58(\mathrm{dd}, \mathrm{J}=4.8,8.7,1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}) ; 4.28(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}) ; 3.87-4.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 2.84(\mathrm{dd}, \mathrm{J}=1.6,8.7,1 \mathrm{H}, \mathrm{CHCHO}) ; 2.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}_{\mathrm{eq}}\right)$; 1.92 (ddt, J = 4.1, 13.4, 15, 1H, C9-H ${ }_{\mathrm{ax}}$); $1.81\left(\mathrm{dt}, \mathrm{J}=4.4,13.3,1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{\mathrm{ax}}\right) ; 1.58$ (ddd, J = 3.2, 4.37, $13.3,1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{\mathrm{eq}}$); $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3} \mathrm{Me}\right) ; 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMeCH}_{3}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=200.9(\mathrm{t}) ; 109.8(\mathrm{q}) ; 108.8(\mathrm{q}) ; 73.1(\mathrm{t}) ; 71.9(\mathrm{t}) ; 65.1(\mathrm{~s}) ; 64.5(\mathrm{~s}) ; 59.5(\mathrm{t}) ;$ 28.3(p); 28.8(s); 26.1(p); 23.0(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}]^{+}: 242.1154$, found: 242.1159

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)-6-\left(\left(S^{*}\right)-1-H y d r o x y e t h y l\right)-7,8-O-(1-M e t h y l e t h y l i d e n e)-1,4-d i o x a-s p i r o[4.5]$ decane 10

$20 \mathrm{~mL}(60 \mathrm{mmol})$ methyl magnesium bromide (3 M in $\mathrm{Et}_{2} \mathrm{O}$) were added dropwise to a solution of 12.11 g (50 mmol) of aldehyde 9 in 300 mL THF at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred 30 min at $-78^{\circ} \mathrm{C}$ and slowly warmed to room temperature. After 3 h 100 mL water were added and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. After purification on silica gel, the desired alcohol is obtained as white solid.
Yield: $12.22 \mathrm{~g}, 47.3 \mathrm{mmol}, 96 \%$, white solid
$\mathbf{R}_{\mathbf{F}}$-value: 0.55 (hexane/ethyl acetate 2:1)
$\mathrm{T}_{\mathrm{M}}: 45^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.52(\mathrm{dd}, \mathrm{J}=5.2,8.9,1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 4.32(\mathrm{tq}, \mathrm{J}=1.6,6.7,1 \mathrm{H}, \mathrm{CHMe}), 4.22$ (m, 1H, C8-H), 3.82-4.05 (m, 4H, OCH $\mathrm{OH}_{2} \mathrm{O}$), $3.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.01$ (ddd, 3.2, 6.8, 14.7, 1H, C10-Ha), $1.85(\mathrm{dd}, \mathrm{J}=1.2,8.8,1 \mathrm{H}, \mathrm{CHCHOH}), 1.73-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 1.66(\mathrm{dt}, \mathrm{J}=4.3,13.5,1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 1.56$ $(\mathrm{ddd}, \mathrm{J}=3.2,4.4,13.5,1 \mathrm{H}, \mathrm{C} 10-\mathrm{Hb}), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMeCH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3} \mathrm{Me}\right), 1.24(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}$, CHCH_{3}).
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=111.6(\mathrm{q}) ; 108.1(\mathrm{q}) ; 73.6(\mathrm{t}) ; 72.6(\mathrm{t}) ; 64.8(\mathrm{t}) ; 64.2(\mathrm{~s}) ; 64.0(\mathrm{~s}) ; 50.4(\mathrm{t}) ;$ 28.3(p); 27.7(s); 26.4(p); 23.1(s); 21.6(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}]^{+}: 258.1467$, found: 258.1476
$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-6-Benzyloxymethyl-7,8-O-(1-methylethylidene)-1,4-dioxa-spiro[4.5]decane 11a
See general procedure a)
Starting material: alcohol 8 ($19.6 \mathrm{~g}, 80 \mathrm{mmol}$)
Yield: $26.31 \mathrm{~g}, 79 \mathrm{mmol}, 98 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.55 (hexane/ethyl acetate 2:1)

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.55(\mathrm{~d}, \mathrm{~J}=12.3,1 \mathrm{H}, \mathrm{CHaHbPh}) ; 4.51(\mathrm{~d}, \mathrm{~J}=$ 12.3, 1H, CHaHbPh); 4.22 (m, 1H, C8-H); 4.10 (dd, J = 4.8, 9.2, 1H, C7-H); $3.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$); $3.67(\mathrm{dd}, \mathrm{J}=5.5,9.9,1 \mathrm{H}, \mathrm{CHaHbOBn}) ; 3.63(\mathrm{dd}, \mathrm{J}=3.5,9.9,1 \mathrm{H}, \mathrm{CHaHbOBn}) ; 2.09(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{OBn}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right) ; 1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCHOR}) ; 1.77(\mathrm{dt}, \mathrm{J}=4.6,13.1,1 \mathrm{H}, \mathrm{CHaHbCHOR}) ;$ $1.58\left(\mathrm{ddd}, \mathrm{J}=3.9,4.6,13.4,1 \mathrm{H}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right) ; 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
 ${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.7(\mathrm{q}) ; 128.2(\mathrm{t}) ; 127.7(\mathrm{t}) ; 127.3(\mathrm{t}) ; 109.6(\mathrm{q}) ; 108.1(\mathrm{q}) ; 76.4(\mathrm{t}) ;$ 73.1(s); 72.6(t); 66.7(s); 65.0(s); 64.4(s); 47.2(t); 29.7(s); 28.5(p); 26.4(p); 23.5(s).
 HRMS (EI, 70 eV): calc. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}: 334.1780$, found: 334.1776

($6 S^{*}, 7 S^{*}, 8 R^{*}$)-6-Benzyloxymethyl-7, 8-dihydroxy-1.4-dioxa-spiro[4, 5]decane 12a
See general procedure b)
Starting material: ketal $11 \mathrm{a}(24.0 \mathrm{~g}, 71.7 \mathrm{mmol})$
Yield: $20.27 \mathrm{~g}, 68.9 \mathrm{mmol}, 100 \%$, (based on converted starting material), colourless oil. $890 \mathrm{mg}, 2.67 \mathrm{mmol}$ starting material reisolated.
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 1:10)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.55(\mathrm{~d}, \mathrm{~J}=11.7,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.51(\mathrm{~d}, \mathrm{~J}=$ 11.7, $1 \mathrm{H}, \mathrm{CHaHbPh}$), $4.48(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.78-3.98\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}, \mathrm{CHaHbOBn}, \mathrm{CH}_{2} \mathrm{CHOH}\right.$, C7-H), $3.71(\mathrm{dd}, \mathrm{J}=9.0,9.9,1 \mathrm{H}, \mathrm{CHaHbOBn}), 2.72(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.46(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=3.2,9.5,10.0$, $\left.\mathrm{CHCH}_{2} \mathrm{OBn}\right), 1.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCHOH}), 1.81\left(\mathrm{dd}, \mathrm{J}=4.2,13.1,1 \mathrm{H}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right), 1.62(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHaHbCHOH}), 1.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.3(\mathrm{q}) ; 128.5(\mathrm{t}) ; 127.9(\mathrm{t}) ; 127.6(\mathrm{t}) ; 109.7(\mathrm{q}) ; 75.7(\mathrm{t}) ; 73.7(\mathrm{~s}) ;$ 70.5(s); 67.4(t); 64.6(s); 64.4(s); 44.4(t); 28.0(s); 25.6(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}]^{+}: 294.1467$, found: 294.1444

($6 S^{*}, 7 S^{*}, 8 R^{*}$)-Benzoic acid-6-benzyloxymethyl-7-hydroxy-1,4-dioxa-spiro[4.5]dec-8-yl-ester 13a

See general procedure g)
Starting material: ketal 12a ($4.1 \mathrm{~g}, 14 \mathrm{mmol}$)
Yield: $5.08 \mathrm{~g}, 12.7 \mathrm{mmol}, 92 \%$, white solid
$\mathbf{R}_{\mathbf{F}}$-value: 0.65(hexane/ethyl acetate 1:1)
T_{M} : $98^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.26-7.59(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 5.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 4.58(\mathrm{~d}$, $\mathrm{J}=11.8,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.55(\mathrm{~d}, \mathrm{~J}=11.8,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.14(\mathrm{dt}, \mathrm{J}=2.4,10.2,1 \mathrm{H}, \mathrm{CHOH}), 3.85-4.04$ (m, 6H, CHaHbOBn, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}\right), 3.78(\mathrm{t}, \mathrm{J}=8.9,1 \mathrm{H}, \mathrm{CHaHbOBn}), 2.63(\mathrm{dt}, \mathrm{J}=3.2,10.1,1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 10-\mathrm{Ha}), 1.65-1.86(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 10-\mathrm{Hb}, \mathrm{C} 9-\mathrm{Ha}, \mathrm{C} 9-\mathrm{Hb})$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.0(\mathrm{q}) ; 137.4(\mathrm{q}) ; 132.8(\mathrm{t}) ; 130.6(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.4(\mathrm{t}) ; 128.3(\mathrm{t}) ;$ $127.8(\mathrm{t}) ; 127.7(\mathrm{t}) ; 109.5(\mathrm{q}) ; 73.7(\mathrm{~s}) ; 73.7(\mathrm{t}) ; 71.2(\mathrm{t}) ; 69.6(\mathrm{~s}) ; 64.7(\mathrm{~s}) ; 64.6(\mathrm{~s}) ; 46.1(\mathrm{t}) ; 29.2(\mathrm{~s}) ; 24.5(\mathrm{~s})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}]^{+}: 398.1729$, found: 398.1722
As side product $\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-benzoic acid-6-benzyloxymethyl-8-hydroxy-1.4-dioxa-spiro[4.5]dec-7-ylester is isolated.

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-Benzoic acid-6-benzyloxymethyl-8-hydroxy-1,4-dioxa-spiro[4.5]dec-7-yl-ester

Yield: $220 \mathrm{mg}, 0.55 \mathrm{mmol}, 4 \%$, colourless oil
\mathbf{R}_{F}-value: 0.55 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.15-7.59(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 5.39(\mathrm{dd}, \mathrm{J}=2.8,11.0,1 \mathrm{H}$, CHOBz), $4.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.87-4.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.71(\mathrm{dd}, \mathrm{J}=3.8$, $9.8,1 \mathrm{H}, \mathrm{CHaHbOBn}$), 3.58 (dd, $\mathrm{J}=4.9,9.8,1 \mathrm{H}, \mathrm{CHaHbOBn}), 2.75\left(\mathrm{dt}, \mathrm{J}=4.3,10.9,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right)$, 2.15 (br, 1H, OH), 1.60-2.0 (m, 4H, CH2 CH_{2}).
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=165.7(\mathrm{q}) ; 138.1(\mathrm{q}) ; 132.9(\mathrm{t}) ; 130.1(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.3(\mathrm{t}) ; 128.0(\mathrm{t}) ;$ $127.6(\mathrm{t}) ; 127.2(\mathrm{t}) ; 109.9(\mathrm{q}) ; 75.9(\mathrm{t}) ; 73.2(\mathrm{~s}) ; 67.0(\mathrm{t}) ; 67.0(\mathrm{~s}) ; 64.8(\mathrm{~s}) ; 64.7(\mathrm{~s}) ; 44.0(\mathrm{t}) ; 28.7(\mathrm{~s}) ; 26.3(\mathrm{~s}) ;$

HRMS (EI, 70 eV): calc. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}]^{+}: 398.1729$, found: 398.1612
($6 S^{*}, 7 S^{*}, 8 R^{*}$)-Benzoic acid-6-benzyloxymethyl-7-methoxy-1,4-dioxa-spiro[4.5]dec-8-yl ester 14a
See general procedure e)
Starting material: alcohol $\mathbf{1 3 a}(4.69 \mathrm{~g}, 11.7 \mathrm{mmol})$
Yield: $4.77 \mathrm{~g}, 11.6 \mathrm{mmol}, 99 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 2:1)
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.26-7.46(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 5.76(\mathrm{~m}, 1 \mathrm{H}$, CHOBz), $4.58(\mathrm{~d}, \mathrm{~J}=12.4,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.53(\mathrm{~d}, \mathrm{~J}=12.4,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.88-4.02(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.71 (dd, $\mathrm{J}=2.1,9.8,1 \mathrm{H}, \mathrm{CHaHbOBn}$), 3.64 (dd, $\mathrm{J}=4.9,9.8,1 \mathrm{H}, \mathrm{CHaHbOBn}$), 3.55 (dd, J $=2.9,11.4,1 \mathrm{H}, \mathrm{CHOMe}), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.46\left(\mathrm{ddd}, \mathrm{J}=2.1,4.8,11.4,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.02(\mathrm{dq}, \mathrm{J}$ $\left.=3.6,13.9,1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{\mathrm{eq}}\right), 1.65-1.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{\mathrm{ax}}, \mathrm{C} 9-\mathrm{Ha}, \mathrm{C} 9-\mathrm{Hb}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.9(\mathrm{q}) ; 138.6(\mathrm{q}) ; 132.9(\mathrm{t}) ; 130.4(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.3(\mathrm{t}) ; 128.2(\mathrm{t}) ;$ $127.8(\mathrm{t}) ; 127.4(\mathrm{t}) ; 109.9(\mathrm{q}) ; 78.9(\mathrm{t}) ; 73.3(\mathrm{~s}) ; 66.9(\mathrm{t}) ; 65.4(\mathrm{~s}) ; 64.9(\mathrm{~s}) ; 64.8(\mathrm{~s}) ; 57.5(\mathrm{p}) ; 46.3(\mathrm{t}) ; 30.0(\mathrm{~s}) ;$ 24.8(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6}[\mathrm{M}]^{+}: 412.1886$, found: 412.1881

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-Benzoic acid-3-benzyloxymethyl-2-methoxy-4-oxo-cyclohexyl ester 15a

See general procedure f)
Starting material: spiroketal $\mathbf{1 4 a}$ ($2.14 \mathrm{~g}, 5.2 \mathrm{mmol}$)
Yield: $1.85 \mathrm{~g}, 5 \mathrm{mmol}, 96 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.25-7.35(\mathrm{~m}, 5 \mathrm{H}$, Ar), $5.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 4.62(\mathrm{~d}, \mathrm{~J}=11.9,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.57(\mathrm{~d}, \mathrm{~J}=11.9,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.03$ (dd, J $=2.1,8.9,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.75(\mathrm{dd}, \mathrm{J}=2.7,10.6,1 \mathrm{H}, \mathrm{CHOMe}), 3.70(\mathrm{dd}, \mathrm{J}=4.1,8.9,1 \mathrm{H} \mathrm{CHaHbOBn})$, $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.88\left(\mathrm{ddd}, \mathrm{J}=2.1,4.1,10.5,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.64(\mathrm{ddd}, \mathrm{J}=6.7,13.0,15.8,1 \mathrm{H}, \mathrm{C} 6-$ \mathbf{H}_{ax}), $2.44\left(\mathrm{ddd}, \mathrm{J}=3.1,5.5,15.8,1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}_{\mathrm{eq}}\right), 2.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{eq}}\right), 1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{ax}}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=207.0 ;(\mathrm{q}) 165.7 ;(\mathrm{q}) 138.3 ;(\mathrm{q}) 133.2 ;(\mathrm{t}) 130.0 ;(\mathrm{q}) 129.6 ;(\mathrm{t}) 128.4 ;(\mathrm{t})$ 128.2;(t) 127.6;(t) 127.5;(t) 78.8;(t) 73.4;(s) 66.8;(t) 64.2;(s) 57.6;(p) 53.2;(t) 35.7;(s) 24.5;(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+}: 368.1624$, found: 368.1620

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-Benzoic acid-3-benzyloxymethyl-2-methoxy-4-methylene-cyclohexyl-ester 16a

See general procedure h)
Starting material: ketone 15a ($206 \mathrm{mg}, 0.5 \mathrm{mmol}$)
Yield: $120 \mathrm{mg}, 0.33 \mathrm{mmol}, 65 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.7 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ar}), 5.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 4.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.59(\mathrm{~d}, \mathrm{~J}=12.1,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.54(\mathrm{~d}, \mathrm{~J}=12.1,1 \mathrm{H}$, СНаНbPh), $4.03(\mathrm{dd}, \mathrm{J}=3.8,9.4,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.70(\mathrm{dd}, \mathrm{J}=6.1,9.4,1 \mathrm{H} \mathrm{CHaHbOBn}), 3.46(\mathrm{dd}, \mathrm{J}=$ $2.7,8.8,1 \mathrm{H}, \mathrm{CHOMe}), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}_{\mathrm{ax}}\right), 2.25(\mathrm{dt}, \mathrm{J}=$ $\left.5.2,13.8,1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}_{\mathrm{eq}}\right), 2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{eq}}\right), 1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{ax}}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, CDCl ${ }_{3}$): $\delta=165.9(\mathrm{q}) ; 145.0(\mathrm{q}) ; 138.3(\mathrm{q}) ; 132.9(\mathrm{t}) ; 130.5(\mathrm{q}) ; 129.7(\mathrm{t}) ; 2 \mathrm{x} 128.3(2 \mathrm{x}$ $\mathrm{t}) ; 127.8(\mathrm{t}) ; 127.6(\mathrm{t}) ; 110.6(\mathrm{~s}) ; 79.9(\mathrm{t}) ; 73.4(\mathrm{~s}) ; 69.0(\mathrm{t}) ; 68.1(\mathrm{~s}) ; 57.6(\mathrm{p}) ; 45.6(\mathrm{t}) ; 30.3(\mathrm{~s}) ; 28.3(\mathrm{~s})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}]^{+}: 366.1831$, found: 366.1827

24 mg NaH were added to $176 \mathrm{mg}(0.8 \mathrm{mmol})$ trimethylsulfoxonium iodide in 2 ml DMSO/THF $1: 1$ and stirred over night. After addition of $55 \mathrm{mg}(0.42 \mathrm{mmol})$ anhydrous LiI the solution is stirred for 1 h and added dropwise at $-10^{\circ} \mathrm{C}$ to a solution of $80 \mathrm{mg}(0.21 \mathrm{mmol})$ of ketone $\mathbf{1 5 a}$. The reaction mixture was quenched by addition of $20 \mathrm{~mL} \mathrm{NaHCO}_{3}$-solution. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The epoxide is obtained after purification on silica as colourless oil.

Yield: $35 \mathrm{mg}, 0.092 \mathrm{mmol}, 22 \%$, colourless oil
Alternative procedure:
A solution of $135 \mathrm{mg}(0.55 \mathrm{mmol}) 3$-chloroperbenzoic acid in 3 mL DCM was added to a solution of 170 mg $(0.46 \mathrm{mmol})$ alkene 16 a in 5 mL DCM. The reaction mixture was stirred for one hour at room temperature and 20 mL NaHCO 3 -solution were added. The aqueous layer was extracted twice with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The epoxide was yielded without any further purification.

Yield: $168 \mathrm{mg}, 0.44 \mathrm{mmol}, 96 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 3:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right.$, assignment supported by NOESY): $\delta=7.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{~m}, 1 \mathrm{H}$, Ar), 7.47 (m, 2H, Ar), 7.20-7.31 (m, 5H, Ar), $5.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}) ; 4.39(\mathrm{~d}, \mathrm{~J}=11.8,1 \mathrm{H}, \mathrm{CHaHbPh})$, $4.34(\mathrm{~d}, \mathrm{~J}=11.8,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.53(\mathrm{dd}, \mathrm{J}=3.4,9.5,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.30(\mathrm{dd}, \mathrm{J}=2.5,9.7,1 \mathrm{H}$, CHOMe), $3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.22(\mathrm{dd}, \mathrm{J}=8.1,9.4,1 \mathrm{H}, \mathrm{CHaHbOBn}), 2.87(\mathrm{~d}, \mathrm{~J}=5.0,1 \mathrm{H}$, epoxide-H(S)), $2.57(\mathrm{~d}, \mathrm{~J}=5.0,1 \mathrm{H}$, epoxide- $\mathbf{H}(R)), 2.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathbf{H}_{\mathrm{eq}} \mathrm{CHOBz}\right.$ and C 8 $\left.\mathbf{H}_{\mathrm{ax}}\right), 1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{CHOBz}\right), 1.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{eq}}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H}$, Ar), 5.75 (m, 1H, CHOBz); 4.50 (d, J = 11.6, 1H, CHaHbPh), 4.43 (d, J = 11.6, 1H, CHaHbPh), 3.68 (dd, J $=3.2,9.5,1 \mathrm{H}, \mathrm{CHOMe}), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.32-3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.11(\mathrm{~d}, \mathrm{~J}=4.8,1 \mathrm{H}$, epoxide$\mathbf{H}(S)), 2.66\left(\mathrm{~d}, \mathrm{~J}=4.8,1 \mathrm{H}\right.$, epoxide- $\mathrm{H}(R)$), $2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.07-2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathbf{H}_{\mathrm{eq}} \mathrm{CHOBz}\right.$ and C8-Hax $), 1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{CHOBz}\right), 1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{eq}}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=165.9(\mathrm{q}) ; 138.0(\mathrm{q}) ; 133.0(\mathrm{t}) ; 130.3(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.4(\mathrm{t}) ; 128.3(\mathrm{t}) ;$ $127.9(\mathrm{t}) ; 127.7(\mathrm{t}) ; 78.8(\mathrm{t}) ; 73.3(\mathrm{~s}) ; 67.6(\mathrm{t}) ; 65.8(\mathrm{~s}) ; 57.8(\mathrm{q}) ; 57.5(\mathrm{p}) ; 53.4(\mathrm{~s}) ; 42.2(\mathrm{t}) ; 28.6(\mathrm{~s}) ; 25.6(\mathrm{~s})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}: 382.1780$, found: 382.1786

$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)$-4-Benzyloxymethyl-5-methoxy-1-oxa-spiro[2.5]octan-6-ol 41

See general procedure c)
Starting material: ester $\mathbf{1 7 a}$ ($148 \mathrm{mg}, 0.39 \mathrm{mmol}$)
Yield: $109 \mathrm{mg}, 0.39 \mathrm{mmol}, 100 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 1:2)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.27-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.47(\mathrm{~d}, \mathrm{~J}=11.7,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.43(\mathrm{~d}, \mathrm{~J}=$ $11.7,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}) ; 3.54(\mathrm{dd}, \mathrm{J}=3.5,9.5,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.34 (dd, $\mathrm{J}=8.0,9.5,1 \mathrm{H}, \mathrm{CHaHbOBn}$), 3.19 (dd, $\mathrm{J}=2.9,9.5,1 \mathrm{H}, \mathrm{CHOMe}$), $2.96(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H}$, epoxide$\mathbf{H}(S)), 2.58(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H}$, epoxide- $\mathbf{H}(R)), 2.42\left(\mathrm{ddd}, \mathrm{J}=3.5,8.1,9.5,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.37(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OH}), 2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathbf{H}_{\mathrm{eq}} \mathrm{CHOH}\right), 1.95\left(\mathrm{ddd}, \mathrm{J}=4.9,9.6,13.8,1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{ax}}\right), 1.75(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{CHOH}\right) ; 1.22\left(\mathrm{dt}, \mathrm{J}=4.6,13.5,1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{eq}}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=138.1(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.7(\mathrm{t}) ; 127.6(\mathrm{t}) ; 80.5(\mathrm{t}) ; \mathrm{b} 73.0(\mathrm{~s}) ; 66.0(\mathrm{~s}) ; 64.7(\mathrm{t}) ;$ 57.9(q); 57.1(p); 53.2(s); 40.8(t); 27.7(s); 27.0(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}]^{+}: 278.1518$, found: 278.1521
($3 S^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}$)-(2-Chloroacetyl)-carbamic acid-4-[(benzyloxy)methyl]-5-methoxy-1-oxaspiro[2.5]oct-6-yl ester 18a

See general procedure d)

Starting material: alcohol 41 ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$)
Yield: $41 \mathrm{mg}, 0.103 \mathrm{mmol}, 94 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOC}(\mathrm{O}) \mathrm{N})$, $4.49(\mathrm{~d}, \mathrm{~J}=11.6,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.43(\mathrm{~d}, \mathrm{~J}=11.6,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.60(\mathrm{dd}, \mathrm{J}=3.1$, $9.6,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOMe}, \mathrm{CHaHbOBn}), 3.04(\mathrm{~d}, \mathrm{~J}=4.6,1 \mathrm{H}$, epoxide-H(S)), $2.64(\mathrm{~d}, \mathrm{~J}=4.6,1 \mathrm{H}$, epoxide- $\mathrm{H}(R)), 2.45\left(\mathrm{ddd}, \mathrm{J}=3.0,8.5,10.6,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 1.85-$ $2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 7-\mathrm{H}_{\mathrm{eq}}\right.$ and $\left.\mathrm{C} 8-\mathrm{H}_{\mathrm{ax}}\right), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}_{\mathrm{ax}}\right), 1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{eq}}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5(\mathrm{q}) ; 150.7(\mathrm{q}) ; 137.9(\mathrm{q}) ; 128.4(\mathrm{t}) ; 128.3(\mathrm{t}) ; 127.8(\mathrm{t}) ; 78.6(\mathrm{t}) ;$ 73.2(s); 70.4(t); 65.5(s); 57.6(p); 57.5(q); 53.3(s); 43.6(s); 41.8(t); 28.2(s); 25.2(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNO}_{6}[\mathrm{M}]^{+}: 397.1292$, found: 397.1297

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)-3-[($ Benzyloxy $)$ methyl $]-2-m e t h o x y-4-m e t h y l e n e ~ c y c l o h e x a n o l ~ 42$

See general procedure c)
Starting material: ester $\mathbf{1 6 a}(124 \mathrm{mg}, 0.34 \mathrm{mmol})$
Yield: $90 \mathrm{mg}, 0.34 \mathrm{mmol}, 100 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 1:1)
${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 4.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb})$, $4.55(\mathrm{~d}, \mathrm{~J}=12.1,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.51(\mathrm{~d}, \mathrm{~J}=12.1,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.05(\mathrm{dt}, \mathrm{J}=3.3,6.5,1 \mathrm{H}, \mathrm{CHOH}), 3.69$ (dd, J = 4.3, 9.4, 1H, СНаНbOBn), $3.63(\mathrm{dd}, \mathrm{J}=5.9,9.4,1 \mathrm{HCHaHbOBn}), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.32(\mathrm{dd}, \mathrm{J}$ $=3.1,7.9,1 \mathrm{H}, \mathrm{CHOMe}), 2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.35\left(\mathrm{ddd}, \mathrm{J}=4.7,9.9,13.5,1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}_{\mathrm{ax}}\right), 2.20(\mathrm{br}$, $1 \mathrm{H}, \mathrm{OH}$), $2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{eq}}\right), 2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}_{\mathrm{eq}}\right), 1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}_{\mathrm{ax}}\right)$.
${ }^{13}$ C-NMR ($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=145.7(\mathrm{q}) ; 138.3(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.7(\mathrm{t}) ; 127.5(\mathrm{t}) ; 110.1(\mathrm{~s}) ; 81.5(\mathrm{t}) ;$ 73.2(s); 68.4(s); 65.9(t); 57.0(p); 44.1(t); 30.4(s); 29.7(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}]^{+}: 262.1569$, found: 262.1576
$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-(2-Chloroacetyl)-carbamic acid-3-[(benzyloxy)methyl]-2-methoxy-4-methylenecyclohexylester 19a

See general procedure d)
Starting material: alcohol 42 ($0.15 \mathrm{mmol}, 38 \mathrm{mg}$)
Yield: $48 \mathrm{mg}, 0.125 \mathrm{mmol}, 86 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.55 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.15(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.44(\mathrm{dt}, \mathrm{J}=3.0,6.3,1 \mathrm{H}$, CHOC=O), $4.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.55(\mathrm{~d}, \mathrm{~J}=12.0,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.53(\mathrm{~d}, \mathrm{~J}=12.0,1 \mathrm{H}, \mathrm{CHaHbPh})$, $4.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.72(\mathrm{dd}, \mathrm{J}=3.9,9.4,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.36(\mathrm{dd}, \mathrm{J}=5.6,9.4,1 \mathrm{H} \mathrm{CHaHbOBn}), 3.41$ (dd, J = 2.8, 8.7, 1H, CHOMe), $3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.28$ (ddd, J = 4.5, 10.4, $\left.13.9,1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{ax}}\right), 2.19\left(\mathrm{dt}, \mathrm{J}=5.4,13.9,1 \mathrm{H}, \mathrm{C} 5-\mathbf{H}_{\mathrm{eq}}\right), 2.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}_{\mathrm{eq}}\right), 1.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}_{\mathrm{ax}}\right)$.
${ }^{13}$ C-NMR ($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.6(\mathrm{q}) ; 150.8(\mathrm{q}) ; 144.2(\mathrm{q}) ; 138.2(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.7(\mathrm{t}) ; 127.6(\mathrm{t}) ;$ $111.0(\mathrm{~s}) ; 79.4(\mathrm{t}) ; 73.4(\mathrm{~s}) ; 71.9(\mathrm{t}) ; 67.9(\mathrm{~s}) ; 57.6(\mathrm{p}) ; 45.0(\mathrm{t}) ; 43.6(\mathrm{~s}) ; 30.0(\mathrm{~s}) ; 28.0(\mathrm{~s})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNO}_{5}[\mathrm{M}]^{+}: 381.1343$, found: 381.1329

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-6-Benzyloxymethyl-8-hydroxy-7-methoxy-1,4-dioxa-spiro[4.5]decan 20

870 mg (3.5 mmol) $\mathrm{Bu}_{2} \mathrm{SnO}$ were added to a solution of 940 mg (3.2 mmol) diol 12a in 20 mL methanol. The reaction mixture was refluxed for 5 h in a round bottom flask that had been equipped with a Soxlettextractor (filled with molecular sieves $4 \AA$). The solvent was removed under reduced pressure and the remaining syrup was dissolved in dry DMF. $2 \mathrm{~mL}(4.5 \mathrm{~g}, 32 \mathrm{mmol}, 10 \mathrm{eq})$ methyl iodide were added and the reaction mixture was stirred for 16 h at room temperature. Subsequently, $200 \mathrm{~mL} \mathrm{NaHCO}_{3}$-solution were added and the aqueous layer was extracted three times with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered through celite and the solvent was removed under reduced pressure.

After purification on silica (hexane/methyl-tert.-butyl ether 5:1) the desired ester was yielded as a white solid.
Yield: $520 \mathrm{mg}, 1.7 \mathrm{mmol}, 53 \%$, white crystals
$\mathbf{R}_{\mathbf{F}}$-value: 0.45 (hexane/methyl-tert.-butylether 1:5)
$\mathrm{T}_{\mathrm{M}}: 93^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.53(\mathrm{~d}, \mathrm{~J}=12.4,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.47(\mathrm{~d}, \mathrm{~J}=$ $12.4,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.80-3.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHaHbOBn}$, CHOMe), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbOBn}), 2.37(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.75(\mathrm{dt}, \mathrm{J}=3.5,11.0,1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{OBn}$), 1.45-1.94 (m, 4H, $\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.6(\mathrm{q}) ; 128.1(\mathrm{t}) ; 127.8(\mathrm{t}) ; 127.3(\mathrm{t}) ; 110.0(\mathrm{q}) ; 80.9(\mathrm{t}) ; 73.1(\mathrm{~s}) ;$ 65.8(s); 2x 64.6(s); 63.9(t); 57.2(p); 44.8(t); 28.7(s); 25.6(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+}: 308.1624$, found: 308.1617

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)-(2-C h l o r o a c e t y l)-c a r b a m i c ~ a c i d-6-[(b e n z y l o x y) m e t h y l]-7-m e t h o x y-1.4-$ dioxaspiro[4.5]dec-8-yl ester 43

See general procedure d)
Starting material: alcohol 20 ($46 \mathrm{mg}, 0.15 \mathrm{mmol}$)
Yield: $60 \mathrm{mg}, 0.14 \mathrm{mmol}, 94 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.29$ (br, $1 \mathrm{H}, \mathrm{NH}$), 7.23-7.35 (m, 5H, Ar), $5.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{O}), 4.50$ (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.43 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$), 3.82-3.95 (m, 4H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.61 (dd, J = 2.5, 9.8, 1 H , CHaHbOBn), 3.58 (dd, J =4.4, 9.8, 1H, CHaHbOBn), 3.45 (dd, J = 2.9, 11.4, 1H, CHOMe), 3.37 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), 2.21 (ddd, $\left.\mathrm{J}=2.5,4.3,11.4,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 1.58-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.3(\mathrm{q}) ; 150.8(\mathrm{q}) ; 138.4(\mathrm{q}) ; 128.2(\mathrm{t}) ; 127.8(\mathrm{t}) ; 127.4(\mathrm{t}) ; 109.5(\mathrm{q}) ;$ $78.9(\mathrm{t}) ; 73.2(\mathrm{~s}) ; 69.7(\mathrm{t}) ; 65.3(\mathrm{~s}) ; 64.8(\mathrm{~s}) ; 57.7(\mathrm{p}) ; 46.0(\mathrm{t}) ; 43.6(\mathrm{~s}) ; 29.6(\mathrm{~s}) ; 24.4(\mathrm{~s}) ; 21.0(\mathrm{~s})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClNO}_{7}[\mathrm{M}]^{+}: 427.1398$, found: 427.1393

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-(2-Chloroacetyl)-carbamic acid-3-[(benzyloxy)methyl]-2-methoxy-4-oxo

cyclohexyl ester 21

A solution of $10 \mathrm{mg}(0.018 \mathrm{mmol})$ cerium ammonium nitrate in 2 mL borate buffer (pH 8) was added to a solution of $33 \mathrm{mg}(0.077 \mathrm{mmol})$ spiroketal 43 in 2 mL acetonitrile and stirred for 2 h at $65^{\circ} \mathrm{C}$. After cooling to room temperature 100 mL water were added and the aqueous layer was extracted three times with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The crude ketone was further purified on silica (hexane/ethyl acetate 1:1!, crucial for high yields is to minimize the contact time with silica, the purification process should not last longer than 5 min !) to yield the desired product as colourless oil.
Yield: $14 \mathrm{mg} ; 0.034 \mathrm{mmol}, 44 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOC}(\mathrm{O}) \mathrm{N})$, 4.58 (d, J = 12.1, 1H, CHaHbPh), 4.48 (d, J = 12.1, 1H, CHaHbPh), 4.43 (s, 2H, CH2Cl), 3.99 (dd, J = 2.0, $9.0,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.68$ (dd, $\mathrm{J}=2.4,10.5,1 \mathrm{H}, \mathrm{CHaHbOBn}$), 3.31 (dd, J = 3.9, 9.0, 1H, CHOMe), 3.38 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 2.52\left(\mathrm{ddd}, \mathrm{J}=6.3,12.9,15.6,1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{C}=\mathrm{O}\right), 2.39(\mathrm{ddd}, \mathrm{J}=$ $\left.3.2,5.4,15.6,1 \mathrm{H}, \mathrm{CH}_{\mathrm{eq}} \mathrm{C}=\mathrm{O}\right), 2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{eq}} \mathrm{CHOC}\right), 1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{CHOC}\right)$.
${ }^{13}$ C-NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=206.2(\mathrm{q}) ; 166.1(\mathrm{q}) ; 150.5(\mathrm{q}) ; 138.2(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.6(\mathrm{t}) ; 127.5(\mathrm{t}) ;$ 78.6(t); 73.4(s); 69.5(t); 64.0(s); 57.8(p); 52.8(t); 43.4(s); 35.3(s); 24.2(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClNO}_{6}[\mathrm{M}]^{+}: 383.1136$, found: 383.1138

(E)-3, 4, 5-Trimethoxy cinnamic acid chloride 44

2.38 g (10 mmol) (E)-3,4,5-trimethoxy cinnamic acid were dissolved in 10 mL (140 mmol) thionyl chloride under nitrogen and stirred over night (pressure release!). After removal of excess thionyl chloride under reduced pressure, the acid chloride was obtained as reddish solid.
Yield: $2.56 \mathrm{~g}, 10 \mathrm{mmol}, 100 \%$, reddish solid
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74(\mathrm{~d}, \mathrm{~J}=15.4,1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 6.78(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 6.54(\mathrm{~d}, \mathrm{~J}=15.4,1 \mathrm{H}$, $\mathrm{ArCH}=\mathrm{CH}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{OCH} 3)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.9(\mathrm{q}) ; 153.5(\mathrm{q}) ; 150.7(\mathrm{t}) ; 141.6(\mathrm{q}) ; 128.3(\mathrm{q}) ; 121.2(\mathrm{t}) ; 106.3(\mathrm{t}) ;$ 61.0(p); 56.2(p).

($6 S^{*}, 7 S^{*}, 8 R^{*}$)-(E-3,4,5-Trimethoxy cinnamic acid)-6-benzyloxymethyl-7-methoxy-1,4-dioxa-spiro[4.5]dec-8-yl ester 45

453 mg (2 mmol) (E)-3,4,5-trimethoxy cinnamic acid 44 and 360 mg (3 mmol) DMAP were added to a solution of alcohol $20(306 \mathrm{mg}, 1 \mathrm{mmol})$ in 20 mL DCM. The reaction mixture was stirred for 5 h at room temperature, hydrolyzed with water and extracted three times with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The crude product was further purified on silica (hexane/ethyl acetate 2:1) to yield the ester as colourless oil.
Yield: $290 \mathrm{mg}, 0.55 \mathrm{mmol}, 55 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.56(\mathrm{~d}, \mathrm{~J}=15.9,1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 7.22-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.73(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ar}), 6.37$ ($\mathrm{d}, \mathrm{J}=15.9,1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 5.56(\mathrm{br}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{O}), 4.54(\mathrm{~d}, \mathrm{~J}=12.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.49(\mathrm{~d}$, $\mathrm{J}=12.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.87-3.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{OCH}_{3}\right), 3.66$ (dd, $\mathrm{J}=2.4,9.5,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.62(\mathrm{dd}, \mathrm{J}=4.6,9.5,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.46(\mathrm{dd}, \mathrm{J}=2.9,11.2,1 \mathrm{H}$, CHOMe), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.39\left(\mathrm{ddd}, \mathrm{J}=2.4,4.6,11.4,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}\right), 1.58-1.98(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.3(\mathrm{q}) ; 153.3(\mathrm{q}) ; 144.5(\mathrm{t}) ; 139.8(\mathrm{q}) ; 138.5(\mathrm{q}) ; 129.8(\mathrm{q}) ; 128.1(\mathrm{t}) ;$ $127.8(\mathrm{t}) ; 127.3(\mathrm{t}) ; 117.7(\mathrm{t}) ; 109.8(\mathrm{q}) ; 105.1(\mathrm{t}) ; 78.9(\mathrm{t}) ; 73.3(\mathrm{~s}) ; 66.5(\mathrm{t}) ; 65.4(\mathrm{~s}) ; 64.8(\mathrm{~s}) ; 64.8(\mathrm{~s}) ; 60.8(\mathrm{p}) ;$ 57.4(p); 56.0(p); 46.2(t); 29.7(s); 24.6(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{9}[\mathrm{M}]^{+}: 528.2359$, found: 528.2344

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-(E-3,4,5-Trimethoxy cinnamic acid)-3-benzyloxymethyl-2-methoxy-4-oxocyclohexylester 22

See general procedure f)
Starting material: spiroketal 45 ($264 \mathrm{mg}, 0.5 \mathrm{mmol}$)
Yield: $205 \mathrm{mg}, 0.42 \mathrm{mmol}, 84 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.61(\mathrm{~d}, \mathrm{~J}=15.9,1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.74(\mathrm{~s}, 2 \mathrm{H}$, Ar), $6.38(\mathrm{~d}, \mathrm{~J}=15.9,1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CH}), 5.74(\mathrm{br}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{O}), 4.59(\mathrm{~d}, \mathrm{~J}=12.1,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.50(\mathrm{~d}$, $\mathrm{J}=12.1,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.99(\mathrm{dd}, \mathrm{J}=2.1,8.9,1 \mathrm{H}, \mathrm{CHaHbOBn}), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{OCH}_{3}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.66 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHaHbOBn}, \mathrm{CHOMe}$), $3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.39 (ddd, J = 2.0, 3.7, 10.5, 1 H , $\mathrm{CHCH}_{2} \mathrm{OBn}$), 2.59 (ddd, $\mathrm{J}=6.3,12.9,15.4,1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{\mathrm{ax}}$), 2.39 (ddd, $\mathrm{J}=3.2,5.415 .6,1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{\mathrm{eq}}$), $2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{eq}}\right), 1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}_{\mathrm{ax}}\right)$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.0(\mathrm{q}) ; 166.1(\mathrm{q}) ; 153.3(\mathrm{q}) ; 145.3(\mathrm{t}) ; 140.1(\mathrm{q}) ; 138.2(\mathrm{q}) ; 129.6(\mathrm{q}) ;$ $128.2(\mathrm{t}) ; 127.6(\mathrm{t}) ; 127.5(\mathrm{t}) ; 116.9(\mathrm{t}) ; 105.2(\mathrm{t}) ; 78.8(\mathrm{t}) ; 73.4(\mathrm{~s}) ; 66.3(\mathrm{t}) ; 64.2(\mathrm{~s}) ; 60.9(\mathrm{p}) ; 57.5(\mathrm{p}) ; 56.1(\mathrm{p}) ;$ 53.0(t); 35.6(s); 24.4(s).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{8}[\mathrm{M}]^{+}: 484.2097$, found: 484.2108

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)-6-\left(\left(S^{*}\right)\right.$-1-Benzyloxy-ethyl)-7,8-O-(1-methylethyliden)-1,4-dioxa-spiro[4.5]decan 11b

See general procedure a)
Starting material: alcohol 10 ($2.42 \mathrm{~g}, 9.37 \mathrm{mmol}$)

Yield: $3.1 \mathrm{~g}, 8.9 \mathrm{mmol}, 95 \%$, white solid
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 (hexane/ethyl acetate 3:1)
$\mathrm{T}_{\mathrm{M}}: 53^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.2-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.63(\mathrm{~d}, \mathrm{~J}=12.0,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-$ H), $4.48(\mathrm{~d}, \mathrm{~J}=12.0,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.23(\mathrm{q}, \mathrm{J}=4.3,1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 3.95(\mathrm{dq}, \mathrm{J}=1.1,6.6,1 \mathrm{H}, \mathrm{CHMe}), 3.70-$ $3.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.02\left(\mathrm{dq}, \mathrm{J}=4.0,14.7,1 \mathrm{H}, \mathrm{C} 9-\mathbf{H}_{\mathrm{eq}}\right), 1.98(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{CHCHOBn}), 1.85-$ $1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathbf{H}_{\mathrm{ax}}\right), 1.56-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{2}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMeCH}_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3} \mathrm{Me}\right), 1.34(\mathrm{~d}$, $\left.\mathrm{J}=6.6,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=139.1(\mathrm{q}) ; 127.9(\mathrm{t}) ; 127.5(\mathrm{t}) ; 127.0(\mathrm{t}) ; 109.8(\mathrm{q}) ; 107.7(\mathrm{q}) ; 75.1(\mathrm{t}) ;$ 72.8(t); 70.8(t); 70.7(s); 64.3(s); 64.0(s); 51.1(t); 28.7(s); 28.4(p); 26.4(p); 23.6(s); 20.7(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 348.1937$, found: 348.1930

$\left(6 R^{*}, 7 S^{*}, 8 R^{*}\right)-6-\left[\left(1 S^{*}\right)-1-(\right.$ Benzyloxy $)$ ethyl $]$-1,4-dioxaspiro[4.5]decane-7,8-diol 12b

See general procedure b)
Starting material: ketal 11b ($2.99 \mathrm{~g}, 8.57 \mathrm{mmol}$)
Yield: $2.60 \mathrm{~g}, 8.4 \mathrm{mmol}, 98 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 1:10)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.64(\mathrm{~d}, \mathrm{~J}=11.6,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.52(\mathrm{~d}, \mathrm{~J}=$ 11.6, $1 \mathrm{H}, \mathrm{CHaHbPh}$), 4.18 (br, $1 \mathrm{H}, \mathrm{OH}$), 3.79-4.05 (m, 7H, C7-H, C8-H, OCH $\mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHMe}$), 2.62 (br, $1 \mathrm{H}, \mathrm{OH}$), $2.21(\mathrm{dd}, \mathrm{J}=4.8,8.9,1 \mathrm{H}, \mathrm{CHCHOBn}), 1.58-1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 1.35(\mathrm{~d}, \mathrm{~J}=6.4,3 \mathrm{H}$, CH_{3}).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.1(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.6(\mathrm{t}) ; 127.6(\mathrm{t}) ; 110.2(\mathrm{q}) ; 73.9(\mathrm{t}) ; 72.3(\mathrm{t}) ;$ 71.5(s); 68.1(t); 64.4(s); 63.8(s); 51.4(t); 28.0(s); 25.8(s); 22.7(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+}: 308.1624$, found: 308.1619
$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-Benzoic acid-6-((1 $\left.S^{*}\right)$-1-benzyloxy-ethyl)-7-hydroxy-1,4-dioxa-spiro[4.5]dec-8-yl ester 13b

See general procedure g)
Starting material: ketal 12b ($3.1 \mathrm{~g}, 10 \mathrm{mmol}$)
Yield: 3.74 g ; $9.1 \mathrm{mmol}, 91 \%$, white solid
\mathbf{R}_{F}-value: 0.55 (hexane/ethyl acetate 2:1)
$\mathrm{T}_{\mathrm{M}}: 101^{\circ} \mathrm{C}$
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.25-7.38(\mathrm{~m}, 6 \mathrm{H}$, Ar), $5.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOBz}), 4.67(\mathrm{~d}, \mathrm{~J}=11.7,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.55(\mathrm{~d}, \mathrm{~J}=11.7,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.30(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHOH}), 3.83-4.01\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$ and CHMe$), 3.79(\mathrm{~d}, \mathrm{~J}=4.2,1 \mathrm{H}, \mathrm{OH}), 2.35(\mathrm{dd}, \mathrm{J}=3.6,9.6$, $1 \mathrm{H}, \mathrm{CHCHMe}), 2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right), 1.65-1.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right.$, and CHaHbCOBz$)$, $1.39\left(\mathrm{~d}, \mathrm{~J}=6.5,3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0(\mathrm{q}) ; 138.2(\mathrm{q}) ; 132.7(\mathrm{t}) ; 130.7(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.3(\mathrm{t}) ; 128.2(\mathrm{t}) ;$ $127.6(\mathrm{t}) ; 127.5(\mathrm{t}) ; 110.0(\mathrm{q}) ; 73.2(\mathrm{t}) ; 71.8(\mathrm{t}) ; 71.5(\mathrm{~s}) ; 70.6(\mathrm{t}) ; 64.5(\mathrm{~s}) ; 64.1(\mathrm{~s}) ; 52.8(\mathrm{t}) ; 29.0(\mathrm{~s}) ; 24.5(\mathrm{~s}) ;$ 22.7(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6}[\mathrm{M}]^{+}$: 412.1886, found: 412.1897
$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-Benzoic acid-6-(($1 S^{*}$)-1-benzyloxy-ethyl)-7-methoxy-1,4-dioxa-spiro[4.5]dec-8-ylester 14b

See general procedure e)
Starting material: alcohol 13b ($2.14 \mathrm{~g}, 5.2 \mathrm{mmol}$)
Yield: $2.02 \mathrm{~g}, 4.89 \mathrm{mmol}, 94 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.25-7.57(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 5.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}$ $=11.8,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.53(\mathrm{~d}, \mathrm{~J}=11.8,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.88-4.02\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CHMe}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $3.86(\mathrm{dd}, \mathrm{J}=3.1,10.7,1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}), 2.30(\mathrm{dd}, \mathrm{J}=0.5,10.7,1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}$, C10-Ha), $1.70-1.79(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 10-\mathrm{Hb}, \mathrm{C} 9-\mathrm{Ha}, \mathrm{C} 9-\mathrm{Hb}), 1.36\left(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0(\mathrm{q}) ; 139.7(\mathrm{q}) ; 132.7(\mathrm{t}) ; 130.7(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.2(\mathrm{t}) ; 128.0(\mathrm{t}) ;$ $127.4(\mathrm{t}) ; 127.0(\mathrm{t}) ; 110.4(\mathrm{q}) ; 79.0(\mathrm{t}) ; 71.8(\mathrm{t}) ; 71.1(\mathrm{~s}) ; 68.2(\mathrm{t}) ; 64.5(\mathrm{~s}) ; 64.4(\mathrm{~s}) ; 57.0(\mathrm{p}) ; 50.4(\mathrm{t}) ; 29.0(\mathrm{~s}) ;$ 24.6(s); 21.3 (p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6}[\mathrm{M}]^{+}: 426.2042$, found: 426.2035

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-Benzoic acid-3-((1S)-1-benzyloxy-ethyl)-2-methoxy-4-oxo-cyclohexyl ester 15b

See general procedure f)
Starting material: spiroketal 14b ($496 \mathrm{mg}, 1.20 \mathrm{mmol}$)
Yield: $458 \mathrm{mg}, 1.20 \mathrm{mmol}, 100 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.7 (hexane/ethyl acetate 2:1)
${ }^{1}$ H-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.25-7.35(\mathrm{~m}, 5 \mathrm{H}$, Ar), $5.78(\mathrm{dt}, \mathrm{J}=2.9,7.7,1 \mathrm{H}, \mathrm{CHOBz}), 4.64(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.44(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}$, CHaHbPh), $4.21(\mathrm{dq}, \mathrm{J}=4.8,6.4,1 \mathrm{H}, \mathrm{CHMe}), 4.03(\mathrm{dd}, \mathrm{J}=2.5,6.4,1 \mathrm{H}, \mathrm{CHOMe}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.70 (ddd, $\mathrm{J}=1.2,4.8,6.1,1 \mathrm{H}, \mathrm{CHCHMeOBn}$), 2.29-2.55 (m, 2H, СНаНbCO and СНаНbСНОBz), 2.32 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHaHbCHOBz}$), $1.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCO}), 1.30\left(\mathrm{~d}, \mathrm{~J}=6.4,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.5$ (q); 165.8 (q); 138.4 (q); 133.1 (t); 130.1 (q); 129.6 (t); 128.4 (t); $128.3(\mathrm{t}) ; 127.6(\mathrm{t}) ; 127.6(\mathrm{t}) ; 78.7(\mathrm{t}) ; 73.4(\mathrm{t}) ; 71.2(\mathrm{~s}) ; 68.9(\mathrm{t}) ; 59.4(\mathrm{t}) ; 57.3(\mathrm{p}) ; 36.2(\mathrm{~s}) ; 23.8(\mathrm{~s}) ;$ 17.9 (p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}: 382.1780$, found: 382.1760

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-Benzoic acid-3-[(1S*)-1-(benzyloxy)ethyl]-2-methoxy-4-methylen-cyclohexyl ester 16b

See general procedure h)
Starting material: ketone $\mathbf{1 5 b}$ ($358 \mathrm{mg}, 0.94 \mathrm{mmol}$)
Yield: $230 \mathrm{mg}, 0.61 \mathrm{mmol}, 65 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.4 (hexanes/ethyl acetate 5:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 5.33$ (ddd, $\mathrm{J}=2.6,4.7,11.7,1 \mathrm{H}, \mathrm{CHOBz}), 4.96(\mathrm{t}, \mathrm{J}=1.9,1 \mathrm{H}$, $\mathrm{C}=\mathrm{CHaHb}), 4.87(\mathrm{t}, \mathrm{J}=1.6,1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 4.70(\mathrm{~d}, \mathrm{~J}=11.3,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.56(\mathrm{~d}, \mathrm{~J}=11.3,1 \mathrm{H}$, $\mathrm{CHaHbPh}), 4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOMe}), 3.74(\mathrm{dq}, \mathrm{J}=6.0,9.9,1 \mathrm{H}, \mathrm{CHMe}), 3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.66(\mathrm{dd}, \mathrm{J}=$ 2.8, 10.0, 1H, CHCHMeOBn), $2.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{eq}} \mathrm{H}_{\mathrm{ax}} \mathrm{C}=\mathrm{CH}_{2}\right), 2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCHOBz}), 2.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{eq}} \mathbf{H}_{\mathrm{ax}} \mathrm{C}=\mathrm{CH}_{2}\right), 1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCHOBz}), 1.30\left(\mathrm{~d}, \mathrm{~J}=6.0,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0(\mathrm{q}) ; 143.7(\mathrm{q}) ; 138.3(\mathrm{q}) ; 132.8(\mathrm{t}) ; 130.6(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.4(\mathrm{t})$; $128.3(\mathrm{t}) ; 128.0(\mathrm{t}) ; 127.6(\mathrm{t}) ; 114.2(\mathrm{~s}) ; 78.3(\mathrm{t}) ; 73.4(\mathrm{t}) ; 72.4(\mathrm{t}) ; 71.3(\mathrm{~s}) ; 58.6(\mathrm{p}) ; 55.3(\mathrm{t}) ; 30.1(\mathrm{~s}) ; 26.5(\mathrm{~s}) ;$ 17.9(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}]^{+}: 380.1988$, found: 380.1978

$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)$-Benzoic acid-4-[(1S*)-1-(benzyloxy)ethyl]-5-methoxy-1-oxaspiro[2.5]oct-6-ylester 17b

A solution of $124 \mathrm{mg}(0.5 \mathrm{mmol}) 3$-chloroperbenzoic acid in 4 mL DCM was added to a solution of 145 mg $(0.38 \mathrm{mmol})$ alkene $\mathbf{1 6 b}$ in 2 mL DCM. The reaction mixture was stirred for 3 h at room temperature and 20 mL NaHCO 3 -solution were added. The aqueous layer was extracted twice with DCM. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The product is obtained as a diastereomeric mixture (ratio 13:1) of both epoxides, that could easily be seperated by chromatography on silica (hexane/ethyl acetate $3: 1$)
$\mathbf{R}_{\mathbf{F}}$-value (hexane/ethyl acetate 3:1) $=0.5$

Yield: $9 \mathrm{mg}, 0.023 \mathrm{mmol}, 6 \%$, colourless oil
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 5.43(\mathrm{dt}, \mathrm{J}=3.3,10.2,1 \mathrm{H}, \mathrm{CHOBz}), 4.77(\mathrm{~d}, \mathrm{~J}=11.4,1 \mathrm{H}, \mathrm{CHaHbPh})$, $4.51(\mathrm{~d}, \mathrm{~J}=11.4,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOMe}), 3.94(\mathrm{dq}, \mathrm{J}=6.2,7.6,1 \mathrm{H}, \mathrm{CHMe}), 3.43(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.81(\mathrm{~d}, \mathrm{~J}=4.8,1 \mathrm{H}$, epoxide-Ha), $2.61(\mathrm{~d}, \mathrm{~J}=5.0,1 \mathrm{H}$, epoxide -Hb$), 1.82-2.20(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CHCHMeOBn}, \mathrm{CH}_{2} \mathrm{CHaHb}$), 1.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHaHb}$), 1.34 ($\mathrm{d}, \mathrm{J}=6.2,3 \mathrm{H}, \mathrm{CHCH}_{3}$). Supported by NOESY
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=165.7(\mathrm{q}) ; 138.3(\mathrm{q}) ; 132.7(\mathrm{t}) ; 130.3(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.2(\mathrm{t}) ; 128.2(\mathrm{t}) ;$ $127.7(\mathrm{t}) ; 127.4(\mathrm{t}) ; 78.8(\mathrm{t}) ; 73.4(\mathrm{t}) ; 71.0(\mathrm{t}) ; 70.8(\mathrm{~s}) ; 58.3(\mathrm{p}) ; 57.4(\mathrm{q}) ; 54.8(\mathrm{~s}) ; 49.5(\mathrm{t}) ; 28.9(\mathrm{~s}) ; 24.8(\mathrm{~s}) ;$ 17.6(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 396.1937$, found: 396.1927

$\left(3 S^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)$-Benzoic acid-4-[($1 S^{*}$)-1-(benzyloxy)ethyl]-5-methoxy-1-oxaspiro[2.5]oct-6-yl ester

$\mathbf{R}_{\mathbf{F}}$-value (hexane/ethyl acetate 3:1) $=0.3$
Yield: $115 \mathrm{mg}, 0.290 \mathrm{mmol}, 76 \%$, colourless oil
${ }^{1} \mathbf{H}$-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.24-7.37(\mathrm{~m}, 5 \mathrm{H}$, Ar), $5.22(\mathrm{dt}, \mathrm{J}=3.1,9.2,1 \mathrm{H}, \mathrm{CHOBz}), 4.69(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.33(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}$, CHaHbPh), 3.97 (dd, J = 2.8, 5.7, 1H, CHOMe), 3.70 (quint, $\mathrm{J}=6.2,1 \mathrm{H}, \mathrm{CHMeOBn}$), 3.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.73(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H}$, epoxide-Ha), $2.55(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H}$, epoxide-Hb), $2.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{Ha}), 1.87(\mathrm{t}, \mathrm{J}=5.6$, $1 \mathrm{H}, \mathrm{CHCHMeOBn}$), $1.60-1.83\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{Hb}, \mathrm{C} 6-\mathrm{H}_{2}\right), 1.34\left(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR ($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0(\mathrm{q}) ; 138.4(\mathrm{q}) ; 132.9(\mathrm{t}) ; 130.5(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.3(\mathrm{t}) ; 128.3(\mathrm{t}) ;$ $127.6(\mathrm{t}) ; 127.5(\mathrm{t}) ; 78.6(\mathrm{t}) ; 72.3(\mathrm{t}) ; 70.7(\mathrm{t}) ; 70.6(\mathrm{~s}) ; 58.1(\mathrm{p}) ; 57.0(\mathrm{q}) ; 50.9(\mathrm{~s}) ; 49.8(\mathrm{t}) ; 29.5(\mathrm{~s}) ; 24.2(\mathrm{~s}) ;$ 18.8(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 396.1937$, found: 396.1946
$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)-4-\left[\left(1 S^{*}\right)-1-(\right.$ Benzyloxy $)$ ethyl $]-5-m e t h o x y-1-o x a s p i r o[2.5]$ octan-6-ol 47
See general procedure c)
Starting material: ester $\mathbf{1 7 b}(8.9 \mathrm{mg}, 0.0228 \mathrm{mmol})$
Yield: $8.5 \mathrm{mg}, 0.0214 \mathrm{mmol}, 94 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 (hexane/ethyl acetate 1:2)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.63(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.42(\mathrm{~d}, \mathrm{~J}=$ $11.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.80-3.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHOH}, \mathrm{CHOMe}, \mathrm{CHMeOBn}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.67(\mathrm{dd}, \mathrm{J}=$ $1.0,5.0,1 \mathrm{H}$, epoxide-Ha), $2.55(\mathrm{~d}, \mathrm{~J}=5.0,1 \mathrm{H}$, epoxide-Hb), $2.50(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.70-1.95(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHaHb}, \mathrm{CHCHMeOBn}\right), 1.32\left(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHaHb}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.3(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.7(\mathrm{t}) ; 127.6(\mathrm{t}) ; 80.8(\mathrm{t}) ; 73.3(\mathrm{t}) ; 70.6(\mathrm{~s}) ; 67.3(\mathrm{t}) ;$ 57.8(q); 57.3(p); 54.6(s); 47.3(t); 28.8(s); 28.7(s); 17.7(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}]^{+}: 292.1675$, found: 292.1682

$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)-\left(2-\right.$ Chloroacetyl)-carbamic acid-4-[($1 S^{*}$)-1-(benzyloxy)ethyl]-5-methoxy-1-oxaspiro[2.5]oct-6-yl ester 18b

See general procedure d)
Starting material: alcohol 47 ($9.1 \mathrm{mg}, 0.023 \mathrm{mmol}$)
Yield: $8 \mathrm{mg}, 0.0194 \mathrm{mmol}, 86 \%$, colourless oil
\mathbf{R}_{F}-value: 0.55 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOC}(\mathrm{O}) \mathrm{N})$, $4.66(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.46(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.94(\mathrm{~m}, 1 \mathrm{H}$, CHOMe), 3.90 (quint, $\mathrm{J}=6.2,1 \mathrm{H}, \mathrm{CHMeOBn}$), $3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.75(\mathrm{br} \mathrm{d}, \mathrm{J}=5.1,1 \mathrm{H}$, epoxide$\mathbf{H}(\boldsymbol{S})$), $2.60(\mathrm{~d}, \mathrm{~J}=4.9,1 \mathrm{H}$, epoxide- $\mathbf{H}(\boldsymbol{R})), 1.86-2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCHMeOBn}, \mathrm{C} 7-\mathbf{H}_{2}\right), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}$, C8-Ha), 1.78 (m, 1H, C7-Hb), $1.33\left(\mathrm{~d}, \mathrm{~J}=6.1,3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{b}}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.4(\mathrm{q}) ; 150.5(\mathrm{q}) ; 138.3(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.7(\mathrm{t}) ; 127.6(\mathrm{t}) ;$ $78.2(\mathrm{t}) ; 73.6(\mathrm{t}) ; 73.3(\mathrm{t}) ; 70.9(\mathrm{~s}) ; 57.8(\mathrm{p}) ; 57.3(\mathrm{q}) ; 55.1(\mathrm{~s}) ; 48.7(\mathrm{t}) ; 43.5(\mathrm{~s}) ; 28.8(\mathrm{~s}) ; 24.6(\mathrm{~s}) ; 17.7(\mathrm{p})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClNO}_{6}[\mathrm{M}]^{+}: 411.1449$, found: 411.1438

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-3-[(1S*)-1-(Benzyloxy)ethyl]-2-methoxy-4-methylene cyclohexanol 48

See general procedure c)
Starting material: ester $\mathbf{1 6 b}(52.8 \mathrm{mg}, 0.14 \mathrm{mmol})$
Yield: $38 \mathrm{mg}, 0.14 \mathrm{mmol}, 100 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 2:1)
${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 4.78(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CHaHb}), 4.66(\mathrm{~d}, \mathrm{~J}=11.6,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.39(\mathrm{~d}, \mathrm{~J}=11.6,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOMe})$, $3.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.58(\mathrm{dq}, \mathrm{J}=6.0,9.8,1 \mathrm{H}, \mathrm{CHMe}), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.62(\mathrm{dm}, \mathrm{J}=9.5,1 \mathrm{H}$, CHCHMe), $2.25(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{Ha}), 1.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{Hb}), 1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{Ha}), 1.58(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{Hb}), 1.17\left(\mathrm{~d}, \mathrm{~J}=5.9,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=144.2(\mathrm{q}) ; 138.3(\mathrm{q}), 128.4(\mathrm{t}) ; 127.8(\mathrm{t}) ; 127.7(\mathrm{t}) ; 113.7(\mathrm{~s}) ; 80.4(\mathrm{t})$; $72.9(\mathrm{t}), 70.8(\mathrm{~s}) ; 67.8(\mathrm{t}) ; 56.9(\mathrm{p}) ; 52.5(\mathrm{t}) ; 30.9(\mathrm{~s}) ; 30.0(\mathrm{~s}) ; 17.7(\mathrm{p})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}]^{+}: 276.1725$, found: 276.1737

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-2-Chloroacetyl)-carbamic acid-3-[(1S*)-1-(benzyloxy)ethyl]-2-methoxy-4methylencyclohexyl ester 19b

See general procedure d)
Starting material: alcohol 48 ($20.1 \mathrm{mg}, 0.074 \mathrm{mmol}$)
Yield: $27 \mathrm{mg}, 0.068 \mathrm{mmol}, 92 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.4 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.00(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.00(\mathrm{ddd}, \mathrm{J}=2.6,4.7,11.7$, $1 \mathrm{H}, \mathrm{CHOC}=\mathrm{O}), 4.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 4.66(\mathrm{~d}, \mathrm{~J}=11.4,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.49$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.45(\mathrm{~d}, \mathrm{~J}=11.4,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOMe}), 3.63(\mathrm{dq}, \mathrm{J}=6.0,9.7,1 \mathrm{H}$, CHMeOBn), $3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.62(\mathrm{dd}, \mathrm{J}=2.8,9.7,1 \mathrm{H}, \mathrm{CHCHMeOBn}), 2.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{Ha}), 2.09(\mathrm{dt}$, $\mathrm{J}=5.4,13.9,1 \mathrm{H}, \mathrm{C} 5-\mathrm{Hb}), 1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{Ha}), 1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{Hb}), 1.18\left(\mathrm{~d}, \mathrm{~J}=6.0,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR ($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.6(\mathrm{q}) ; 150.6(\mathrm{q}) ; 143.0(\mathrm{q}) ; 138.2(\mathrm{q}) ; 128.4(\mathrm{t}) ; 127.9(\mathrm{t}) ; 127.6(\mathrm{t}) ;$ $114.7(\mathrm{~s}) ; 77.5(\mathrm{t}) ; 74.5(\mathrm{t}) ; 73.2(\mathrm{t}) ; 71.1(\mathrm{~s}) ; 57.4(\mathrm{p}) ; 53.8(\mathrm{t}) ; 43.6(\mathrm{~s}) ; 29.8(\mathrm{~s}) ; 26.2(\mathrm{~s}) ; 17.9(\mathrm{p})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}: 395.1500$, found: 395.1516
Assignment of relative conformation of compound 10:

$\left(6 R^{*}, 7 S^{*}, 8 R^{*}\right)-6-\left[\left(1 S^{*}\right)\right.$-1-(Benzyloxy)ethyl]-7,8-dimethoxy-1,4-dioxaspiro[4.5] decane 49

$20 \mathrm{mg} \mathrm{NaH}(60 \%$ suspension in mineral oil, 0.5 mm$)$ were added at $0^{\circ} \mathrm{C}$ to a solution of $80 \mathrm{mg}(0.26 \mathrm{mmol})$ diol 12b in DMF, followed by $200 \mu \mathrm{~L}$ methyl iodide. The reaction mixture was stirred for 2 h at room temperature and hydrolyzed by addition of 50 mL water. The aqueous layer was extracted twice with ether and the combined organic layers were washed twice with water and dried over sodium sulfate. The desired product is obtained after purification on silica (hexane/ethyl acetate 2:1) as white solid.
Yield: $70 \mathrm{mg}, 0.21 \mathrm{mmol}, 80 \%$ white solid.
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 1:10)
$\mathrm{T}_{\mathrm{M}}: 63^{\circ} \mathrm{C}$
${ }^{1}$ H-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.22-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.61(\mathrm{~d}, \mathrm{~J}=11.8,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.49(\mathrm{~d}, \mathrm{~J}=$ $11.8,1 \mathrm{H}, \mathrm{CHaHbPh}), 3.80-3.98\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHMe}\right), 4.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 4.68$ (dd, J = 2.8, 10.6, $1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 3.38\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 2.21(\mathrm{~d}, \mathrm{~J}=10.5,1 \mathrm{H}, \mathrm{CHCHMe}), 1.95\left(\mathrm{dq}, \mathrm{J}=4.2,14.1,1 \mathrm{H} \mathrm{C} 9-\mathrm{H}_{\mathrm{eq}}\right)$, $1.62(\mathrm{dd}, \mathrm{J}=3.8,13.2,1 \mathrm{H}, \mathrm{C} 10-\mathrm{Ha}), 1.53(\mathrm{dt}, \mathrm{J}=3.8,13.4,1 \mathrm{H}, \mathrm{C} 10-\mathrm{Hb}), 1.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}_{\mathrm{ax}}\right), 1.35(\mathrm{~d}$, $\left.\mathrm{J}=6.6,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.8(\mathrm{q}) ; 128.0(\mathrm{t}) ; 127.4(\mathrm{t}) ; 126.9(\mathrm{t}) ; 110.7(\mathrm{q}) ; 80.3(\mathrm{t}) ; 74.2(\mathrm{t}) ;$ 72.1(t); 71.0(s); 64.3(s); 64.3(s); 56.8(p); 56.5(p); 49.4(t); 28.1(s); 22.2(s); 21.3(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 336.1937$, found: 336.1932

$\left(2 S^{*}, 3 S^{*}, 4 R^{*}\right)$-2-[(1S*)-1-(Benzyloxy)ethyl]-3,4-dimethoxycyclohexanone 34

See general procedure f)
Starting material: spiroketal 49 ($1.67 \mathrm{~g}, 5 \mathrm{mmol}$)
Yield: $1.20 \mathrm{~g}, 4.1 \mathrm{mmol}, 82 \%$, colourless oil
\mathbf{R}_{F}-value: 0.55 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.61(\mathrm{~d}, \mathrm{~J}=11.7,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.34(\mathrm{~d}, \mathrm{~J}=$ $11.7,1 \mathrm{H}, \mathrm{CHaHbPh}), 4.14(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=4.8,6.4,1 \mathrm{H}, \mathrm{CHMe}), 3.88(\mathrm{dd}, \mathrm{J}=2.4,6.7,1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 3.81(\mathrm{dt}, \mathrm{J}$ $=2.7,7.6,1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCHMe}), 2.42(\mathrm{~m}, 1 \mathrm{H}$, C10-Ha), 2.13-2.28 (m, С9-Ha, C10-Hb), 1.74 (m, 1H C9-Hb), 1.27 (d, J = 6.4, 3H, CHCH $)_{3}$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=209.9(\mathrm{q}) ; 138.5(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.5(\mathrm{t}) ; 127.5(\mathrm{t}) ; 79.2(\mathrm{t}) ; 74.7(\mathrm{t}) ;$ 72.8(t); 70.8(s); 58.3(t); 56.9(p); 56.7(p); 35.8(s); 22.9(s); 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}]^{+}: 292.1675$, found: 292.1668

$\left(1 S^{*}, 2 S^{*}, 3 S^{*}, 4 R^{*}\right)$-2-[(1 $\left.S^{*}\right)$-1-(Benzyloxy)ethyl]-3, 4-dimethoxycyclohexanol 50

1.5 mL (3.5 mmol) lithium aluminum hydride solution (2.3 M in ether) were slowly added at $-78^{\circ} \mathrm{C}$ to a solution of 885 mg (3 mmol) ketone 34 in 20 mL dry THF. The reaction mixture was stirred for 30 min at $78^{\circ} \mathrm{C}$ and 1 h at room temperature. The reaction mixture was diluted with 50 mL ethyl acetate after addition of $100 \mu \mathrm{~L}$ saturated ammonium chloride solution and dried over sodium sulfate. The solvent was removed under reduced pressure and the crude alcohol was purified on silica (hexane/ethyl acetate 1:1) to yield the desired product as colourless oil.
Yield: $690 \mathrm{mg}, 2.35 \mathrm{mmol}, 78 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 (hexane/ethyl acetate 1:2)
${ }^{1}$ H-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 4.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.59(\mathrm{~d}, \mathrm{~J}=11.5,1 \mathrm{H}$, СНаНbPh), 4.55 (d, J = 11.5, 1H, СНаНbPh), 4.17 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), 3.76 (dt, J = 4.7, $9.9,1 \mathrm{H}, \mathrm{CHOH}$), $3.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOMe}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.90(\mathrm{dd}, \mathrm{J}=2.2,10.7,1 \mathrm{H}$, CHCHOMe), 2.46 (ddd, J = 3.8, 9.9, 10.5, 1H, CHCHMe), 2.06 (dq, J = 3.9, 14.6, 1H, CH $\mathbf{C q}_{\text {eq }} \mathrm{HCOMe}$), $1.60-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOHCH}_{2}\right) \cdot 1.28\left(\mathrm{~d}, \mathrm{~J}=6.5,3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.17(\mathrm{ddt}, \mathrm{J}=2.0,4.2,13.9,1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{ax}} \mathrm{HCOMe}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.0(\mathrm{q}) ; 128.3(\mathrm{t}) ; 127.5(\mathrm{t}) ; 127.5(\mathrm{t}) ; 80.5(\mathrm{t}) ; 76.0(\mathrm{t}) ; 72.7(\mathrm{t}) ; 71.2(\mathrm{~s}) ;$ 69.0(t); 56.6(p); 56.3(p); 45.3(t); 27.6(s); 22.6(s); 14.0(p);

HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}]^{+}: 294.1831$, found: 294.1842

$\left(1 S^{*}, 2 R^{*}, 3 S^{*}, 4 R^{*}\right)-2-\left[\left(1 S^{*}\right)\right.$-1-Hydroxyethyl]-3,4-dimethoxycyclohexanol 35

600 mg (2 mmol) of alcohol $\mathbf{5 0}$ were dissolved in 10 mL methanol and flushed with nitrogen. After addition of $100 \mathrm{mg} \mathrm{Pd} / \mathrm{C}$ the atmosphere was replaced by hydrogen and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was filtered through a plug of silica and the solvent was removed under reduced pressure to yield the diol as colourless oil.
Yield: $362 \mathrm{mg}, 1.77 \mathrm{mmol}, 88 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.3 (hexane/ethyl acetate 1:5)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 4.12(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.75(\mathrm{dt}, \mathrm{J}=5.0,9.9,1 \mathrm{H}$, $\mathrm{CHOH}), 3.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOMe}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.88(\mathrm{dd}, \mathrm{J}=2.5,10.6,1 \mathrm{H}$, CHCHOMe), 2.24 (dt, J = 3.7, 10.2, 1H, CHCHMe), 2.06 (dq, J = 4.0, 14.6, $1 \mathrm{H}, \mathrm{CH}_{\text {eq }} \mathrm{HCOMe}$), $1.60-1.75$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CHOHCH}_{2}, \mathrm{OH}\right) .1 .26\left(\mathrm{~d}, \mathrm{~J}=6.5,3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.17(\mathrm{dddd}, \mathrm{J}=2.0,4.7,12.8,15.5,1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{ax}} \mathrm{HCOMe}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=80.8(\mathrm{t}) ; 72.8(\mathrm{t}) ; 69.6(\mathrm{t}) ; 67.9(\mathrm{t}) ; 56.7(\mathrm{p}) ; 56.4(\mathrm{p}) ; 48.1(\mathrm{t}) ; 28.1(\mathrm{~s}) ;$ 22.8(s); 17.3(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{+}: 204.1362$, found: 204.1377
$\left(4 S^{*}, 4 \mathrm{a} R^{*}, 5 S^{*}, 6 R^{*}, 8 \mathrm{a} S^{*}\right)-5,6-$ Dimethoxy-2,2,4-trimethylhexahydro-4H-1,3-benzodioxine 36
A solution of diol $35,20 \mu \mathrm{~L}(26 \mathrm{mg}, 0.4 \mathrm{mmol}) 3,3$-dimethoxypropane and catalytic amounts of p-toluene sulfonic acid in 1 mL DMF was stirred 1 h at $0^{\circ} \mathrm{C}$, before 20 mL of water were added. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure to yield the desired compound as colourless oil.
Yield: $10 \mathrm{mg}, 0.041 \mathrm{mmol}, 83 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.75 (hexane/ethyl acetate 1:5)
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.31$ (quintett, $\mathrm{J}=6.8,1 \mathrm{H}, \mathrm{CHMe}$), $3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOMe}\right), 3.68(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHOCMe}_{2}$), $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.88(\mathrm{dd}, \mathrm{J}=2.8,11.6,1 \mathrm{H}, \mathrm{CHCHOMe}), 2.37$ (ddd, $\mathrm{J}=6.6,11.0,11.2,1 \mathrm{H}, \mathrm{CHCHMe}), 2.11\left(\mathrm{dq}, \mathrm{J}=3.5,14.7,1 \mathrm{H}, \mathrm{CH}_{\mathrm{eq}} \mathrm{HCOMe}\right), 1.59-1.67(\mathrm{~m}, 2 \mathrm{H}$, CHOHCH_{2}), $1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3} \mathrm{Me}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMeCH}_{3}\right), 1.30\left(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.17(\mathrm{~m}, \mathrm{~J}=$ 2.0, 4.7, 12.8, 15.5, 1H, $\mathrm{CH}_{\mathrm{ax}} \mathrm{HCOMe}$).
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=98.0(\mathrm{q}) ; 79.9(\mathrm{t}) ; 72.4(\mathrm{t}) ; 67.6(\mathrm{t}) ; 65.8(\mathrm{t}) ; 56.6(\mathrm{p}) ; 55.8(\mathrm{p}) ; 41.2(\mathrm{t}) ;$ 29.9(p); 26.4(p); 25.2(s); 23.0(s); 17.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}]^{+}: 244.1675$, found: 244.1668

($6 S^{*}, 7 S^{*}, 8 R^{*}$)-6-(3-Methyl-but-2-enyloxymethyl)-7,8-O-(1-methylethylidene)-1,4-dioxaspiro[4.5]decane 51

$3.1 \mathrm{~g} \mathrm{NaH}(60 \%$ suspension in mineral oil, 78 mmol$)$ were added at $0^{\circ} \mathrm{C}$ in small portions to a solution of $11.2 \mathrm{~g}(46 \mathrm{mmol})$ alcohol 8 and 14 g allylbromide (94 mmol). After stirring for 16 h excess sodium hydride was quenched by addition of 200 mL brine and the reaction mixture was extracted three times with ethyl ether. The combined organic layers were washed twice with brine and dried over sodium sulfate. After removal of the solvent under reduced pressure the crude product was purified on silica (hexane/ethyl acetate 2:1) to yield the desired allyl ether as colourless oil.
Yield: $11.9 \mathrm{~g}, 38 \mathrm{mmol}, 82 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate $2: 1$)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathbf{H}), 4.05(\mathrm{dd}, \mathrm{J}=4.9,9.2,1 \mathrm{H}$, $\mathrm{CHaHbCH}=\mathrm{CMe}_{2}$), 3.85-4.00 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}, \mathrm{C} 7-\mathrm{H}$), 3.61 ($\mathrm{dd}, \mathrm{J}=3.3,10.0$, $1 \mathrm{H}, \mathrm{CHaHbOCH}=\mathrm{CMe}_{2}$), $3.57\left(\mathrm{dd}, \mathrm{J}=5.8,10.0,1 \mathrm{H}, \mathrm{CHaHbOCH}=\mathrm{CMe}_{2}\right.$), 2.02-2.09 ($\mathrm{m}, 2 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{OCH}$ and CHaHbCOBz), $1.88-1.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCOBz}), 1.77(\mathrm{td}, \mathrm{J}=4.7,13.2,1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{C}\left(\mathrm{OCH}_{2}\right)_{2}\right), 1.72$ and $1.65\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.55(\mathrm{ddd}, \mathrm{J}=3.8,4.6,13.2,1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{C}\left(\mathrm{OCH}_{2}\right)_{2}\right), 1.50\left(1 \mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3} \mathrm{Me}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMeCH}_{3}\right)$,
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.0(\mathrm{q}) ; 121.5(\mathrm{t}) ; 109.6(\mathrm{q}) ; 108.1(\mathrm{q}) ; 76.4(\mathrm{t}) ; 72.5(\mathrm{t}) ; 67.5(\mathrm{~s}) ;$ 66.4(s); 65.0(s); 64.5(s); 47.2(t); 29.8(s); 28.4(p); 26.4(p); 25.7(p); 23.5(s); 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 312.1937$, found: 312.1932

($6 S^{*}, 7 S^{*}, 8 R^{*}$)-6-(3-Methyl-but-2-enyloxymethyl)-1,4-dioxa-spiro[4.5]decane-7,8-diol 52

See general procedure b)
Starting material: ketal 51 ($11.9 \mathrm{~g}, 38 \mathrm{mmol}$)
Yield: $9.2 \mathrm{~g}, 34 \mathrm{mmol}, 89 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 1:10)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}=\mathrm{CMe}_{2}\right), 4.63(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.77-3.98(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}, \mathrm{C} 7-\mathrm{H}, \mathrm{C} 8-\mathrm{H}\right), 3.60\left(\mathrm{~d}, \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{CHaHbOCH}=\mathrm{CMe}_{2}\right), 3.58(\mathrm{~d}, \mathrm{~J}=9.0,1 \mathrm{H}$, $\mathrm{CHaHbOCH}=\mathrm{CMe}_{2}$), $2.75(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.37\left(\mathrm{dt}, \mathrm{J}=3.1,9.9,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OCH}\right), 1.85(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHaHbCHOH}), 1.73(\mathrm{dd}, 4.2,13.4,1 \mathrm{H}, \mathrm{CHaHbCHOH}), 1.72$ and $1.64\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.59(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{C}\left(\mathrm{OCH}_{2}\right)_{2}\right) \cdot 1.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{C}\left(\mathrm{OCH}_{2}\right)_{2}\right)$,
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=137.8(\mathrm{q}) ; 120.2(\mathrm{t}) ; 109.7(\mathrm{q}) ; 75.9(\mathrm{t}) ; 70.1(\mathrm{~s}) ; 67.9(\mathrm{~s}) ; 67.3(\mathrm{t}) ; 64.6(\mathrm{~s}) ;$ 64.4(s); 44.1(t); 28.0(s); 25.7(p); 25.5(s); 17.9(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}]^{+}: 272.1624$, found: 272.1629
$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-Benzoic acid-6-(3-methyl-but-2-enyloxymethyl)-7-hydroxy-1,4-dioxaspiro[4.5]dec-8-yl ester 53

See general procedure g)
Starting material: ketal $52(5.5 \mathrm{~g}, 20 \mathrm{mmol})$
Yield: 5.2 g ; $13.8 \mathrm{mmol}, 68 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 (hexane/ethyl acetate $2: 1$)
${ }^{1}$ H-NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=\delta=8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.43(\mathrm{~m}, 1 \mathrm{H}$, CHOBz), $5.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 4.18(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.09(\mathrm{dd}, \mathrm{J}=3.1,10.5,1 \mathrm{H}, \mathrm{CHOH}), 3.87-4.03(\mathrm{~m}$, $7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHaHbOCH} 2 \mathrm{CH}=\mathrm{CMe}_{2}$), $3.66\left(\mathrm{t}, \mathrm{J}=9.6,1 \mathrm{H}, \mathrm{CHaHbOCH} 2 \mathrm{CH}=\mathrm{CMe}_{2}\right)$, $2.58(\mathrm{dt}, \mathrm{J}=3.2,9.6,1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 1.60-2.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.72$ and $1.64\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.0(\mathrm{q}) ; 137.7(\mathrm{q}) ; 132.8(\mathrm{t}) ; 130.6(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.2(\mathrm{t}) ; 120.3(\mathrm{t}) ;$ 109.5(q); 74.1(t); 71.1(t); 69.5(s); 67.9(s); 64.7(s); 64.7(s); 45.8(t); 29.1(s); 25.7(p); 24.5(s); 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6}[\mathrm{M}]^{+}: 376.1886$, found: 376.1891
($6 S^{*}, 7 S^{*}, 8 R^{*}$)-Benzoic acid-6-(3-methyl-but-2-enyloxymethyl)-7-methoxy-1,4-dioxaspiro[4.5]dec-8-yl ester 54
$520 \mathrm{mg} \mathrm{NaH}\left(60 \%\right.$ suspension in mineral oil, 13 mmol) were added at $20^{\circ} \mathrm{C}$ in small portions to a solution of $3.76 \mathrm{~g}(10 \mathrm{mmol})$ alcohol $\mathbf{5 3}, 6.1 \mathrm{~mL}$ methyl iodide (100 mmol). After stirring for 2 h excess sodium hydride was quenched by addition of 200 mL brine and the reaction mixture was extracted three times with ethyl ether. The combined organic layers were washed twice with brine and dried over sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified on silica (hexane/ethyl acetate $2: 1$) to yield the desired methyl ether as colourless oil.
Yield: $3.4 \mathrm{~g}, 8.7 \mathrm{mmol}, 87 \%$, colourless oil
\mathbf{R}_{F}-value: 0.65 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.70(\mathrm{~m}, 1 \mathrm{H}$, CHOBz), $5.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 3.88-4.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.65(\mathrm{dd}, \mathrm{J}=3.1,9.8$, $1 \mathrm{H}, \mathrm{CHaHbOCH} 2 \mathrm{CH}=\mathrm{CMe}_{2}$), $3.59\left(\mathrm{dd}, \mathrm{J}=5.1,9.8,1 \mathrm{H}, \mathrm{CHaHbOCH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\right), 3.47(\mathrm{dd}, \mathrm{J}=2.9,11.5$, $1 \mathrm{H}, \mathrm{CHOMe}), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37$ (ddd, $\left.\mathrm{J}=2.2,5.1,11.5,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}\right), 1.60-2.02(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.72$ and $1.64\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.9(\mathrm{q}) ; 136.0(\mathrm{q}) ; 132.9(\mathrm{t}) ; 130.4(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.2(\mathrm{t}) ; 121.6(\mathrm{t}) ;$ $109.9(\mathrm{q}) ; 78.9(\mathrm{t}) ; 67.6(\mathrm{~s}) ; 67.1(\mathrm{t}) ; 65.1(\mathrm{~s}) ; 65.0(\mathrm{~s}) ; 64.9(\mathrm{~s}) ; 57.6(\mathrm{p}) ; 46.4(\mathrm{t}) ; 30.2(\mathrm{~s}) ; 25.8(\mathrm{p}) ; 24.8(\mathrm{~s}) ;$ 19.9(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{6}[\mathrm{M}]^{+}: 390.2042$, found: 390.2047

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-Benzoic acid-3-(3-methyl-but-2-enyloxymethyl)-2-methoxy-4-oxo cyclohexyl ester 55

See general procedure f)
Starting material: spiroketal 54 ($3.4 \mathrm{~g}, 8.7 \mathrm{mmol}$)
Yield: $2.80 \mathrm{~g}, 8.1 \mathrm{mmol}, 93 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.65 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.87(\mathrm{~m}, 1 \mathrm{H}$, CHOBz); $5.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right) ; 4.03\left(\mathrm{dd} ; \mathrm{J}=6.8,11.5,1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}\right) ; 3.98(\mathrm{dd}, \mathrm{J}=7.2,11.5$, $1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}$), $3.94\left(\mathrm{dd}, \mathrm{J}=2.2,9.0,1 \mathrm{H}, \mathrm{CHaHbOCH}=\mathrm{CMe}_{2}\right.$), $3.71(\mathrm{dd}, \mathrm{J}=10.5,2.6,1 \mathrm{H}, \mathrm{C} 7-$
H), $3.62\left(\mathrm{dd}, \mathrm{J}=4.4,9.0,1 \mathrm{H}, \mathrm{CHaHbOCH}=\mathrm{CMe}_{2}\right), 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.87(\mathrm{ddd}, \mathrm{J}=2.1,4.2,10.5,1 \mathrm{H}$,
$\mathrm{CHCH}_{2} \mathrm{OCH}$), 2.64 (ddd, $\mathrm{J}=6.5,12.8,15.6,1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{C}=\mathrm{O}$); 2.42 (ddd, J = 3.2, 5.4, 15.5, 1 H ,
$\left.\mathrm{CH}_{\mathrm{ax}} \mathbf{H}_{\mathrm{eq}} \mathrm{C}=\mathrm{O}\right)$; $2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{CHOBz}\right), 1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{CHOBz}\right) ; 1.73$ and $1.67(2 \mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathbf{C}-$ NMR (125.8 MHz, CDCl_{3}): $\delta=207.1(\mathrm{q}) ; 165.8(\mathrm{q}) ; 136.7(\mathrm{q}) ; 133.2(\mathrm{t}) ; 130.0(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.4(\mathrm{t}) ;$ $121.2(\mathrm{t}) ; 78.9(\mathrm{t}) ; 67.8(\mathrm{~s}) ; 66.9(\mathrm{t}) ; 63.8(\mathrm{~s}) ; 57.6(\mathrm{p}) ; 53.3(\mathrm{t}) ; 35.7(\mathrm{~s}) ; 25.7(\mathrm{p}) ; 24.6(\mathrm{~s}) ; 18.0(\mathrm{p})$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}: 346.1780$, found: 346.1784

$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)$-Benzoic acid-4-(3-methyl-but-2-enyloxymethyl)-5-methoxy-1-oxa-spiro[2.5]oct-6yl ester 56

24 mg NaH were added to $176 \mathrm{mg}(0.8 \mathrm{mmol})$ trimethylsulfoxonium iodide in 2 ml DMSO/THF $1: 1$ and stirred for 16 h followed by the addition of $139 \mathrm{mg}(0.40 \mathrm{mmol})$ of ketone $\mathbf{5 5}$. The reaction mixture was quenched after 10 min by addition of $20 \mathrm{~mL} \mathrm{NaHCO}_{3}$-solution. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The epoxide $\mathbf{5 6}$ was obtained after purification on silica as colourless oil.
Yield: $32 \mathrm{mg}, 0.09 \mathrm{mmol}, 22 \%$, colourless oil
\mathbf{R}_{F}-value: 0.7 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.74(\mathrm{~m}, 1 \mathrm{H}$, CHOBz), $5.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 3.92\left(\mathrm{dd}, \mathrm{J}=7.2,11.2,1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}\right.$), $3.88(\mathrm{dd}, \mathrm{J}=7.2,11.2$, $1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}$), $3.58(\mathrm{dd}, \mathrm{J}=2.9,9.3,1 \mathrm{H}, \mathrm{CHCHaCHbO}), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.29(\mathrm{dd}, \mathrm{J}=2.7$, $10.4,1 \mathrm{H}, \mathrm{CHOMe}), 3.22(\mathrm{t}, \mathrm{J}=9.0,1 \mathrm{H}, \mathrm{CHCHaCHbO}), 3.10(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H}$, epoxide-Ha), $2.65(\mathrm{~d}, \mathrm{~J}=4.7$, 1 H , epoxide-Hb), $2.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.17\left(\mathrm{dt}, \mathrm{J}=4.0,13.1,1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{ax}}\right), 2.07(\mathrm{ddd}, \mathrm{J}=4.0,4.3,14.3$, $\left.1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{eq}}\right), 1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}_{\mathrm{ax}}\right), 1.73$ and $1.66\left(2 \mathrm{xs}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.29(\mathrm{dt}, \mathrm{J}=4.0,13.6,1 \mathrm{H}, \mathrm{C} 7-$ $\mathbf{H}_{\text {eq }}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.9(\mathrm{q}) ; 137.4(\mathrm{q}) ; 133.0(\mathrm{t}) ; 130.3(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.3(\mathrm{t}) ; 120.7(\mathrm{t}) ;$ 78.8(t); 67.4(t); 67.3(s); 65.1(s); 57.8(q); 57.4(p); 53.3(s); 42.2(t); 28.6(s); 25.8(p); 25.6(s); 17.9(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 360.1937$, found: 360.1941

$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)-5-M e t h o x y-4-(3-M e t h y l-b u t-2-e n y l o x y m e t h y l)-1-o x a s p i r o[2.5] o c t a n-6-o l ~ 57$

See general procedure c)
Starting material: ester 56 ($32 \mathrm{mg}, 0.09 \mathrm{mmol}$)
Yield: $23 \mathrm{mg}, 0.09 \mathrm{mmol}, 100 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.4 (hexane/ethyl acetate 1:2)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}=\mathrm{C}(\mathrm{Me})_{2}\right) ; 4.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}) ; 3.88(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$); 3.46 (dd, $\mathrm{J}=3.3 ; 9.4,1 \mathrm{H}, \mathrm{CHCHaHbOCH}_{2}$); 3.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$); $3.22(\mathrm{dd}, \mathrm{J}=8.6,9.2,1 \mathrm{H}$, $\left.\mathrm{CHCHaHbOCH}_{2}\right) ; 3.15(\mathrm{dd}, \mathrm{J}=2.9 ; 9.7,1 \mathrm{H}, \mathrm{CHOMe}) ; 2.96(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H}$, epoxide-Ha); $2.59(\mathrm{~d}, \mathrm{~J}=4.7$, 1 H , epoxide-Hb); $2.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, \mathrm{OH}), 2.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{\mathrm{ax}}\right) ; 1.95(\mathrm{ddd}, \mathrm{J}=4.6 ; 4.8 ; 13.9,1 \mathrm{H}, \mathrm{C} 8-$ $\left.\mathbf{H}_{\mathrm{eq}}\right) ; 1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}_{\mathrm{ax}}\right) ; 1.66$ and $1.73\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}_{3}\right) ; 1.19\left(\mathrm{dt}, \mathrm{J}=4.4 ; 13.6,1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}_{\mathrm{eq}}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1(\mathrm{q}) ; 120.8(\mathrm{t}) ; 80.4(\mathrm{t}) ; 67.2(\mathrm{~s}) ; 65.5(\mathrm{~s}) ; 64.6(\mathrm{t}) ; 58.0(\mathrm{q}) ; 57.1(\mathrm{p}) ;$ 53.2(s); 40.7(t); 27.6(s); 26.9(s); 25.8(p); 17.9(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}]^{+}: 256.1675$, found: 256.1779
$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)-(2-C h l o r o a c e t y l)-c a r b a m i c ~ a c i d-5-m e t h o x y-4-\{[(3-m e t h y l b u t-2-e n y l) o x y] m e t h y l\}-$ 1-oxaspiro[2.5]oct-6-yl ester 22a

See general procedure d)
Starting material: alcohol 57 ($19.8 \mathrm{mg}, 0.078 \mathrm{mmol}$)
Yield: $22 \mathrm{mg}, 0.059 \mathrm{mmol}, 76 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.55 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOC}(\mathrm{O}) \mathrm{NH}), 5.31(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{C}(\mathrm{Me})_{2}\right), 4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.90(\mathrm{dd}, \mathrm{J}=7.0,11.4,1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{C}), 3.87(\mathrm{dd}, \mathrm{J}=7.1,11.4,1 \mathrm{H}$,
$\mathrm{CHaHbCH}=\mathrm{C}), 3.50\left(\mathrm{dd}, \mathrm{J}=3.0,9.4,1 \mathrm{H}, \mathrm{CHCHaHbOCH}_{2}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.23(\mathrm{dd}, \mathrm{J}=2.7,10.3$,
$1 \mathrm{H}, \mathrm{CHOMe}), 3.18(\mathrm{t}, \mathrm{J}=9.0,1 \mathrm{H}, \mathrm{CHCHaHbOCH} 2), 3.02(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H}$, epoxide-Ha), $2.62(\mathrm{~d}, \mathrm{~J}=4.6$, 1 H , epoxide- Hb), $2.39(\mathrm{ddd}, \mathrm{J}=3.0,8.7,10.7,1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 1.82-2.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{H}_{2} \mathrm{CH}, \mathrm{C} 7-\mathrm{H}_{\mathrm{ax}}\right), 1.66$ and $1.73\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}_{\mathrm{eq}}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.2(\mathrm{q}) ; 150.6(\mathrm{q}) ; 137.2(\mathrm{q}) ; 120.7(\mathrm{t}) ; 78.6(\mathrm{t}) ; 70.3(\mathrm{t}) ; 67.3(\mathrm{~s}) ;$ 64.9(s); 57.6(p); 57.5(q); 53.3(s); 43.5(s); 41.8(t); 28.2(s); 25.7(p); 25.3(s); 17.9(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{ClNO}_{6}[\mathrm{M}]^{+}: 375.1449$, found: 375.1458
$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)-6-\left[1\left(S^{*}\right)-(3-M e t h y l-b u t-2-e n y l o x y)\right.$-ethyl]-7,8-O-(1-methylethylidene)-1,4-dioxaspiro[4.5]decane 58
$620 \mathrm{mg} \mathrm{NaH}(60 \%$ suspension in mineral oil, 14.5 mmol$)$ were added at $0^{\circ} \mathrm{C}$ in small portions to a solution of $2 \mathrm{~g}(7.7 \mathrm{mmol})$ alcohol $10,100 \mathrm{mg}(0.27 \mathrm{mmol})$ tetrabutyl-ammoniumiodide and 3 mL allylbromide $(20.8 \mathrm{~g}$, 120 mmol). After stirring for additional 24 h excess sodium hydride was quenched by addition of 200 mL brine and the reaction mixture was extracted three times with ethyl ether. The combined organic layers were washed twice with brine and dried over sodium sulfate. After removal of the solvent under reduced pressure the crude product was purified on silica (hexane/ethyl acetate 3:1) to yield the desired allylether as colourless oil.
Yield: $1.94 \mathrm{~g}, 5.96 \mathrm{mmol}, 77 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 3:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}=\mathrm{CMe}_{2}\right), 4.53(\mathrm{dd}, \mathrm{J}=5.0 ; 8.1,1 \mathrm{H}, \mathrm{C} 7-\mathbf{H}), 4.20(\mathrm{q}, \mathrm{J}=$ $4.20,1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 4.05\left(\mathrm{dd}, \mathrm{J}=6.4,12.1,1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}\right.$), 3.85-4.00 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}$, $\mathrm{CHaHbCH}=\mathrm{CMe}_{2}$), $2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 10-\mathrm{Ha}), 1.92(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{CHCHMe}), 1.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{Ha}), 1.70$ and $1.64\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.56-1.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 10-\mathrm{Hb}, \mathrm{C} 9-\mathrm{Hb}), 1.49$ and $1.34\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.28\left(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=134.9(\mathrm{q}) ; 122.4(\mathrm{t}) ; 110.0(\mathrm{q}) ; 107.8(\mathrm{q}) ; 75.1(\mathrm{t}) ; 72.9(\mathrm{t}) ; 70.4(\mathrm{t}) ; 65.4(\mathrm{~s}) ;$ 64.4(s); 64.1(s); 51.0(t); 28.8(s); 28.5(p); 26.5(p); 25.8(p); 23.8(s); 20.6(p); 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}]^{+}: 326.2093$, found: 326.1098

$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)-6-\left[1\left(S^{*}\right)\right.$-(3-Methyl-but-2-enyloxy)-ethyl]-1,4-dioxa-spiro[4.5]decane-7,8-diol 59

See general procedure b)
Starting material: ketal $\mathbf{5 8}(1.73 \mathrm{~g}, 5.3 \mathrm{mmol})$
Yield: $1.48 \mathrm{~g}, 5.2 \mathrm{mmol}, 98 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.4 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 4.46(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.53(\mathrm{dd}, \mathrm{J}=6.8,11.2,1 \mathrm{H}$, C7-H), 3.82-3.98 (m, 7H, C8-H, CH2CH=CMe $\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.72 (quint., J = 6.0, $1 \mathrm{H}, \mathrm{CHMe}$), 2.66 (br, 1 H , $\mathrm{OH}), 2.12(\mathrm{dd}, \mathrm{J}=5.5,9.4,1 \mathrm{H}, \mathrm{CHCHMe}), 1.52-1.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} 10-\mathrm{H}_{2}, \mathrm{C} 9-\mathrm{H}_{2}\right), 1.71$ and $1.64(2 \mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, CDCl 3): $\delta=136.7(\mathrm{q}) ; 121.0(\mathrm{t}) ; 110.3(\mathrm{q}) ; 73.9(\mathrm{t}) ; 72.5(\mathrm{t}) ; 68.1(\mathrm{t}) ; 65.9(\mathrm{~s}) ; 64.4(\mathrm{~s}) ;$ 63.8(s); 51.3(t), 28.1(s), 25.8(s), 25.7(p), 22.8(p), 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}: 286.1780$, found: 286.1772
($6 S^{*}, 7 S^{*}, 8 R^{*}$)-Benzoic acid-7-hydroxy-6-[($1 S^{*}$)-1-(3-methyl-but-2-enyloxy)-ethyl]-1,4-dioxa-spiro[4.5]dec-8-yl ester 60

See general procedure g)
Starting material: ketal 59 ($2.5 \mathrm{~g}, 8.7 \mathrm{mmol}$)
Yield: $2.44 \mathrm{~g}, 6.24 \mathrm{mmol}, 72 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate $2: 1$)
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=\delta=8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.49(\mathrm{~m}, 1 \mathrm{H}$, CHOBz), 5.33 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}$), $4.20(\mathrm{dt}, \mathrm{J}=3.4,9.5,1 \mathrm{H}, \mathrm{CHOH}), 4.11(\mathrm{dd}, \mathrm{J}=6.8,11.4,1 \mathrm{H}$, $\mathrm{CHHCH}=\mathrm{CMe}_{2}$), 3.94-4.05 (m, 6H, CH2CH= $\left.\mathrm{CMe}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.82(\mathrm{dq}, \mathrm{J}=4.3,6.4,1 \mathrm{H}, \mathrm{CHMe}), 2.30$
$(\mathrm{dd}, \mathrm{J}=4.3,9.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{CO})(\mathrm{CHOH})), 2.0$ and $1.62-1.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.72$ and $1.66(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34\left(\mathrm{~d}, \mathrm{~J}=6.4,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13} \mathbf{C}-$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.1(\mathrm{q}) ; 136.5(\mathrm{q}) ; 132.7(\mathrm{t}) ; 130.7(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.2(\mathrm{t}) ; 121.2(\mathrm{t}) ;$ $110.0(\mathrm{q}) ; 73.1(\mathrm{t}) ; 71.8(\mathrm{t}) ; 70.9(\mathrm{t}) ; 65.9(\mathrm{~s}) ; 64.6(\mathrm{~s}) ; 64.0(\mathrm{~s}) ; 52.6(\mathrm{t}) ; 29.0(\mathrm{~s}) ; 25.7(\mathrm{p}) ; 24.5(\mathrm{~s}) ; 22.9(\mathrm{p}) ;$ 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{6}[\mathrm{M}]^{+}: 390.2042$, found: 390.2047
($6 S^{*}, 7 S^{*}, 8 R^{*}$)-Benzoic acid-7-methoxy-6-[(1S*)-1-(3-methyl-but-2-enyloxy)-ethyl]-1,4-dioxa-spiro[4.5]dec-8-ylester 61

See general procedure e)
Starting material: alcohol $\mathbf{6 0}(268 \mathrm{mg}, 0.68 \mathrm{mmol})$
Yield: $160 \mathrm{mg}, 0.39 \mathrm{mmol}, 57 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.4 (hexane/ethyl acetate 3:1)
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=\delta=8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.66(\mathrm{~m}, 1 \mathrm{H}$, CHOBz), $5.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 3.92-4.09\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}$), $3.83(\mathrm{dq}, \mathrm{J}=1.2$, $6.6,1 \mathrm{H}, \mathrm{CHMe}), 3.75(\mathrm{dd}, \mathrm{J}=3.1,10.5,1 \mathrm{H}, \mathrm{CHOMe}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.23(\mathrm{dd}, \mathrm{J}=0.9,10.5,1 \mathrm{H}$, CHCHMe), $1.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right), 1.61-1.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHaHbC}\left(\mathrm{OCH}_{2}\right)_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{COBz}\right), 1.72$ and $1.66\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34\left(\mathrm{~d}, \mathrm{~J}=6.6,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0(\mathrm{q}) ; 134.8(\mathrm{q}) ; 132.7(\mathrm{t}) ; 130.7(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.2(\mathrm{t}) ; 122.6(\mathrm{t}) ;$ $110.4(\mathrm{q}) ; 78.9(\mathrm{t}) ; 70.9(\mathrm{t}) ; 68.3(\mathrm{t}) ; 65.5(\mathrm{~s}) ; 64.4(\mathrm{~s}) ; 64.4(\mathrm{~s}) ; 57.1(\mathrm{p}) ; 50.3(\mathrm{t}) ; 29.1(\mathrm{~s}) ; 25.7(\mathrm{p}) ; 24.6(\mathrm{~s}) ;$ 21.4(p); 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{6}[\mathrm{M}]^{+}: 404.2199$, found: 404.2206
$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-Benzoic acid-2-methoxy-3-((1S**)-1-[(3-methylbut-2-enyl)oxy]ethyl)-4-oxo-cyclohexyl ester 62

See general procedure f)
Starting material: spiroketal $\mathbf{6 1}(155 \mathrm{mg}, 0.38 \mathrm{mmol})$
Yield: $106 \mathrm{mg}, 0.29 \mathrm{mmol}, 77 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.75 (hexane/ethyl acetate 2:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.78$ (ddd, $\mathrm{J}=2.7$, $3.4,8.4,1 \mathrm{H}, \mathrm{CHOBz}), 5.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 4.08\left(\mathrm{dd}, \mathrm{J}=6.7,11.6,1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}\right), 4.02(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CHOMe}$ and CHMe), 3.89 (dd, $\mathrm{J}=6.7,11.6,1 \mathrm{H}, \mathrm{CHaHbCH}=\mathrm{CMe}_{2}$), $3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $2.65(\mathrm{dt}, \mathrm{J}$ $=1.4,5.7,1 \mathrm{H}, \mathrm{CHCHMe}), 2.42-2.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHaHbCO}$ and CHaHbCHOBz$), 2.32(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHaHbCHOBz}), 2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHbCO}), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMeCH}_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3} \mathrm{Me}\right), 1.30(\mathrm{~d}, \mathrm{~J}=$ $6.4,3 \mathrm{H}, \mathrm{CHCH}_{3}$).
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.7(\mathrm{q}) ; 165.9(\mathrm{q}) ; 136.7(\mathrm{q}) ; 133.1(\mathrm{t}) ; 130.1(\mathrm{q}) ; 129.6(\mathrm{t}) ; 128.4(\mathrm{t}) ;$ 121.1(t); 78.7(t); 72.7(t); 69.2(t); 65.5(s); 59.8(t); 57.4(p); 36.4(s); 25.7(p); 23.8(s); 18.0(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 360.1937$, found: 360.1943

$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)$-Benzoic acid-4-\{($1 S^{*}$)-1-[(3-methylbut-2-enyl)oxy]ethyl\}-5-methoxy-1-oxaspiro[2.5]oct-6-yl ester 63

At $-78^{\circ} \mathrm{C} 213 \mu \mathrm{~L}$ of a $1.5 \mathrm{M} \mathrm{MeLi} / \mathrm{LiBr}$-solution were added to a solution of 23 mg of compound $\mathbf{6 2}$ and $24 \mu \mathrm{~L}$ chloroiodomethane $(0.32 \mathrm{mmol})$ in 1 mL THF. The reaction mixture was slowly warmed to room temperature and stirred for 1 h . Then 20 mL semisaturated brine was added and the aqueous layer was extracted three times with ethyl acetate. The combined organic layers were dried over sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified on silica (hexane/ethyl acetate 3:1) to yield the desired epoxide as colourless oil.
Yield: $5 \mathrm{mg}, 0.013 \mathrm{mmol}, 20 \%$, colourless oil
$\mathbf{R}_{\mathbf{F}}$-value: 0.45 (hexane/ethyl acetate 3:1)

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.40(\mathrm{~m}, 1 \mathrm{H}$, CHOBz). $5.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 4.09(\mathrm{dd}, \mathrm{J}=6.8,11.3 .1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 3.90-3.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}$, CHMe), $3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.74(\mathrm{~d}, \mathrm{~J}=4.9,1 \mathrm{H}$, epoxide-Ha), $2.58(\mathrm{~d}, \mathrm{~J}=4.9,1 \mathrm{H}$, epoxide- Hb), $1.90-2.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCHMe}, \mathrm{C} 7-\mathrm{H}_{2}, \mathrm{C}-8 \mathrm{HaHb}\right), 1.70$ and $1.64\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}-7 \mathrm{HaHbC}-8 \mathrm{HaHb}), 1.25\left(\mathrm{~d}, \mathrm{~J}=6.1,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
 HRMS (EI, 70 eV): calc. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}]^{+}: 374.2093$, found: 374.2078

$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)-5-M e t h o x y-4-\left\{\left(1 S^{*}\right)\right.$-1-[(3-methylbut-2-enyl)oxy]ethyl\}-1-oxaspiro[2.5]octan-6-ol 64

See general procedure c)
Starting material: ester $\mathbf{6 3}(4.1 \mathrm{mg}, 0.0107 \mathrm{mmol})$
Yield: $2.9 \mathrm{mg}, 0.0107 \mathrm{mmol}, 100 \%$, colourless oil
\mathbf{R}_{F}-value: 0.45 (hexane/ethyl acetate 1:2)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CMe}_{2}\right), 4.09(\mathrm{dd}, \mathrm{J}=6.7,11.3 .1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 3.68-$ 4.02 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CHOH}, \mathrm{CHOMe}, \mathrm{C}=\mathrm{CHaHb}, \mathrm{CHMe}$), 3.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.65 (d, J = 4.9, 1H, epoxide-Ha), $2.55\left(\mathrm{~d}, \mathrm{~J}=4.9,1 \mathrm{H}\right.$, epoxide- Hb), $2.30(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.65-2.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCHMe}, \mathrm{C} 7-\mathrm{H}_{2} \mathrm{C}-8 \mathrm{HaHb}\right), 1.67$ and $1.75\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-8 \mathrm{HaHb}), 1.25\left(\mathrm{~d}, \mathrm{~J}=6.1,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
HRMS (EI, 70 eV): calc. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}]^{+}: 270.1831$, found: 270.1840
$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}\right)$-(2-Chloroacetyl)-carbamic acid-5-methoxy-4-\{($1 S^{*}$)-1-[(3-methylbut-2-enyl)oxylethyl\}-1-oxaspiro[2.5]oct-6-yl ester 23b

See general procedure d)
Starting material: alcohol $64(2.9 \mathrm{mg}, 0.0107 \mathrm{mmol})$
Yield: $2.4 \mathrm{mg}, 0.0062 \mathrm{mmol}, 55 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 5.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 5.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOC}=\mathrm{O}), 4.42$
(s, 2H, CH2Cl), $4.10(\mathrm{dd}, \mathrm{J}=6.4,11.3 .1 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}), 3.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHaHb}, \mathrm{CHOMe}), 3.75$ (quint, J $=6.3,1 \mathrm{H}, \mathrm{CHMe}), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.71(\mathrm{~d}, \mathrm{~J}=5.2,1 \mathrm{H}$, epoxide-Ha), $2.58(\mathrm{~d}, \mathrm{~J}=5.2,1 \mathrm{H}$, epoxide$\mathrm{Hb}), 1.90-2.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCHMe}, \mathrm{C}-7 \mathrm{HaHbC}-8 \mathrm{HaHb}), 1.67$ and $1.75\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.71(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}-7 \mathrm{HaHbC}-8 \mathrm{HaHb}), 1.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-8 \mathrm{HaHb}), 1.25\left(\mathrm{~d}, \mathrm{~J}=6.2,3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.4(\mathrm{q}) ; 150.5(\mathrm{q}) ; 136.7(\mathrm{q}) ; 121.1(\mathrm{t}) ; 78.3(\mathrm{t}) ; 73.7(\mathrm{t}) ; 72.5(\mathrm{t}) ; 65.1(\mathrm{~s}) ;$ 57.8(p); 57.2(q); 55.0(s); 48.9(t); 43.5(s); 28.8(s); 25.7(p); 24.7(s); 18.0(p); 17.9(p).

HRMS (EI, 70 eV): calc. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{ClNO}_{6}[\mathrm{M}]^{+}: 389.1605$, found: 389.1612
$\left(6 S^{*}, 7 S^{*}, 8 R^{*}\right)$-6-Methansulfonyloxymethyl-7,8-O-(1-methylethylidene)-1,4-dioxa-spiro[4.5]decane 65
To a solution of $8.05 \mathrm{~g}(33 \mathrm{mmol})$ of alcohol $\mathbf{8}$ and $6.89 \mathrm{~mL}(49 \mathrm{mmol})$ triethylamine in 100 mL DCM were added $2.82 \mathrm{~mL}(36 \mathrm{mmol}, 4.16 \mathrm{~g})$ mesyl chloride at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred 1 h at $0^{\circ} \mathrm{C}$ then 2 h at room temperature. After hydrolysis with 2 M sulfuric acid the aqueous layer was extracted twice with 100 mL DCM. The combined organic layers were dried over sodium sulfate. After removal of the solvent under reduced pressure the product was isolated as colourless oil and used for the next step without further purification.
Yield: $10.63 \mathrm{~g}, 33 \mathrm{mmol} ; 100 \%$, colourless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.47-4.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OS}\right) ; 4.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathbf{H}\right) ; 4.06-3.85(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$); $3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right) ; 2.20-2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 1.72(\mathrm{td}, 2 \mathrm{H}, \mathrm{J}=13.3$, $4.7 \mathrm{C}_{9}-\mathrm{H}_{2}$); 1.63-1.54 (m, 2H, $\left.\mathrm{C}_{10}-\mathrm{H}_{2}\right) ; 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ; 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, CDCl_{3}): $\delta=108.8$ (q); 108.7 (q); 75.5 (t); 72.4 (t); 66.1 (s); 64.9 (s); $64.4(\mathrm{~s}) ; 46.7$ (t); $23.0(\mathrm{~s}) ; 37.3(\mathrm{p}) ; 29.0(\mathrm{~s}) ; 28.5(\mathrm{p}) ; 26.3(\mathrm{p})$.

HRMS (EI): calc. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}^{+}: 322.1086\right.$, found: 322.1083.

($7 S^{*}, 8 R^{*}$)-Methylene-7,8-O-(1-methylethylidene)-1,4-dioxa-spiro[4.5]decane 23

Potassium -tert.-butoxide $(7.4 \mathrm{~g}, 66 \mathrm{mmol})$ was added in small portions to a solution of $10.63 \mathrm{~g}(33 \mathrm{mmol})$ mesylate $\mathbf{6 5}$ in 200 mL DMF. The reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ then 10 min at room temperature. Within this time, the reaction mixture formed a highly viscous pulp. After completion (monitored by TLC), 200 mL ice water are added and the aqueous layer was extracted three times with ethyl ether. The combined ether layers were washed twice with water and dried over sodium sulfate. After removal of the solvent under reduced pressure, the crude product was purified on silica (hexane/ethyl acetate 1:1) to yield the desired epoxide as colourless oil.
Yield: $6.37 \mathrm{~g}, 28 \mathrm{mmol}, 85 \%$, colourless oil.
\mathbf{R}_{F}-value: 0.5 (hexane/ethyl acetate 1:1)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\square=5.31-5.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right) ; 4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 4.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 3.96-$ $3.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 2.09-1.89$ and $1.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ; 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=144.9(\mathrm{q}) ; 111.8(\mathrm{~s}) ; 108.8(\mathrm{q}) ; 107.7(\mathrm{q}) ; 76.5(\mathrm{t}) ; 73.9(\mathrm{t}) ; 65.1(\mathrm{~s}) ;$ 63.4 (s); 30.7 (s); 27.8 (p); 26.3 (p); 23.5 (s).

HRMS (EI): calc. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}]^{+}: 226.1205$, found: 226.1220.

(7S*,8R*)-Methylene-1,4-dioxa-spiro[4.5]decan-7,8-diol 24

See general procedure b)
Starting material: ketal 23 ($8.34 \mathrm{~g}, 37 \mathrm{mmol}$)
Yield: $6.15 \mathrm{~g}, 33 \mathrm{mmol}, 90 \%$, white solid ($\mathbf{T}_{\mathrm{M}}: 122^{\circ} \mathrm{C}$).
($\mathbf{R}_{\mathbf{F}}$-value: 0.4 hexane/ethyl acetate 1:10).
${ }^{1} \mathbf{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=5.37-5.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right) ; 4.34(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{CHOH}) ; 4.03-3.96(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.80(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{CHOH}) ; 2.97(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{OH}) ; 2.30(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{OH}) ; 1.94-1.86$ and $1.70(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=144.2(\mathrm{q}) ; 111.8(\mathrm{~s}) ; 108.0(\mathrm{q}) ; 74.7(\mathrm{t}) ; 71.1(\mathrm{t}) ; 64.7(\mathrm{~s}) ; 64.4(\mathrm{~s})$; 32.4 (s); 26.9 (s).

HRMS (EI): calc. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}]^{+}: 186.0892$, found: 186.0898.

$(\pm)-\left(3 R^{*}, 11 R^{*}, 12 R^{*}\right)-1,5,8-T r i o x a-d i s p i r o[2.0 .4 .4]$ dodecan-11,12-diol 25

$7.2 \mathrm{~mL}(40 \mathrm{mmol})$ of a 5.5 M tert.-butylhydroperoxide solution were added dropwise to a solution of 3.69 g $(19.8 \mathrm{mmol})$ alkene 24 and 790 mg (3 mmol) vanadium(IV)-oxyacetylacetonate in 250 mL DCM at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for additional 16 h at $0^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure (water bath temperature $<30^{\circ} \mathrm{C}$) and the crude product was purified on silica to yield 2.68 g of the desired product as a colourless oil and 922 mg of unreacted starting material.
Yield: $2.68 \mathrm{~g}, 13.3 \mathrm{mmol}, 67 \%$, colourless oil. $922 \mathrm{mg}, 5.0 \mathrm{mmol}, 25 \%$, starting material 24
\mathbf{R}_{F}-value: 0.25 (hexane/ethyl acetate 1:10).
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=4.10$ and 4.04-3.93 (m, 4H, OCH $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 3.67(\mathrm{~m}$,
$1 \mathrm{H}, \mathrm{CH}) ; 3.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}) ; 2.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.6\right.$ epoxide $\left.-\mathrm{H}_{\mathrm{a}}\right) ; 2.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.6\right.$ epoxide- $\left.\mathrm{H}_{\mathrm{b}}\right) ; 2.67$ (sbr,
$1 \mathrm{H}, \mathrm{OH}$); 1.95-1.86 and $1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \quad. $=107.1(\mathrm{q}) ; 74.0(\mathrm{t}) ; 70.4(\mathrm{t}) ; 66.0(\mathrm{~s}) ; 65.7(\mathrm{~s}) ; 60.2(\mathrm{q}) ; 47.8(\mathrm{~s}) ; 30.6$ (s); 26.6 (s).

HRMS (EI): calc. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}[\mathrm{M}]^{+}: 202.0841$ found: 202.0834.

$\left(6 R^{*}, 7 R^{*}, 8 R^{*}\right)$-Benzoic acid-6,7-dihydroxy-6-allyloxymethyl-1,4-dioxa-spiro[4.5]dec-8-yl-ester 26

To a solution of 315 mg (1.56 mmol) epoxy diol $\mathbf{2 5}$ in 20 mL allyl alcohol were added 408 mg (1.64 mmol) dibutyl tin oxide. The reaction mixture was refluxed for 16 h in a round bottom flask that had been equipped with a Soxlett-extractor (filled with molecular sieves $4 \AA$). The solvent was removed under reduced pressure, after cooling to room temperature and the remaining syrup was dissolved in dry 1.4-dioxane.

After addition of $190 \mu \mathrm{~L}(241 \mathrm{mg}, 1.72 \mathrm{mmol})$ benzoyl chloride the reaction mixture was stirred for 16 h at room temperature. Subsequently, $50 \mathrm{~mL} \mathrm{NaHCO}_{3}$-solution were added and the aqueous layer was extracted three times with ethyl acetate. The combined organic layer were dried over sodium sulfate, filtered through celite and the solvent was removed under reduced pressure. After purification on silica (hexane/ethyl acetate 1:2) the desired ester was yielded as a white solid. As side product the bisbenzoate($\mathbf{R}_{\mathbf{F}}$-value: 0.75 hexane/ethyl acetate 1:2) was isolated.
Yield: $300 \mathrm{mg}, 0.82 \mathrm{mmol}, 53 \%$, colourless oil.
(\mathbf{R}_{F}-value: 0.45 hexane/ethyl acetate 1:2)
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=8.11-8.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.91$ (m, 1H, All); $5.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}) ; 5.30\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); $5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{All}) ; 4.15-3.96\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}, \mathrm{C} 7-\mathrm{H}\right) ; 3.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{OCH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.49$ (sbr, $1 \mathrm{H}, \mathrm{OH}$); 3.42 (sbr, $1 \mathrm{H}, \mathrm{OH}$); 2.06-1.99, 1.91 and $1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=165.9$ (q); 134.1 (t); $133.0(\mathrm{t}) ; 130.3(\mathrm{q}) ; 129.8$ (t); $128.4(\mathrm{t}) ; 117.6$ (s); 110.0 (q); 76.5 (q); $73.0(\mathrm{~s}) ; 72.6$ (t); 71.7 (s); 71.2 (t); 65.5 (2 s); 27.5 (s); 23.3 (s).

HRMS (FAB in 3-NBA): calc. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{7}[\mathrm{M}-\mathrm{H}]^{+}: 365.1600$, found: 365.1617.

($6 R^{*}, 7 R^{*}, 8 R^{*}$)-Benzoic acid-6-allyloxymethyl-6-hydroxy-7-methoxy-1,4-dioxa-spiro[4.5]dec-8-ylester 27

See general procedure e)
Starting material: alcohol 26 ($1.69 \mathrm{~g}, 4.6 \mathrm{mmol}$)
Yield: $785 \mathrm{mg}, 2.08 \mathrm{mmol}, 45 \%$, colourless oil.
($\mathbf{R}_{\mathbf{F}}$-value: 0.5 hexane/ methyl tert.-butyl ether 1:3).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.08-8.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.94$ (m, 1H, All); $5.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}) ; 5.30\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); $5.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{All}) ; 4.14-3.93\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\right) ; 3.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{C} 7-\mathrm{H}) ; 3.68-3.58\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{3}, \mathrm{OCH}_{2} \mathrm{C}\right) ; 3.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 2.07$, 1.951.83, 1.68 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=165.8(\mathrm{q}) ; 134.6(\mathrm{t}) ; 133.0(\mathrm{t}) ; 130.3(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.4(\mathrm{t}) ; 117.4$ (s); $109.5(\mathrm{q}) ; 81.5(\mathrm{t}) ; 76.6(\mathrm{q}) ; 72.8(\mathrm{~s}) ; 71.1(\mathrm{t}) ; 70.7(\mathrm{~s}) ; 65.8(\mathrm{~s}) ; 65.4(\mathrm{~s}) ; 61.5(\mathrm{p}) ; 29.4(\mathrm{~s}) ; 23.2(\mathrm{~s})$.

HRMS (EI): calc. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{7}[\mathrm{M}]^{+}: 378.1678$, found: 378.1684.
$\left(6 R^{*}, 7 R^{*}, 8 R^{*}\right)$-Benzoic acid-6-allyloxymethyl-6,7-dimethoxy-1,4-dioxa-spiro[4.5]dec-8-yl-ester 28
Yield: $422 \mathrm{mg}, 1.08 \mathrm{mmol}, 23 \%$, colourless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.13-8.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.93$ (m, 1H, All); $5.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}) ; 5.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{All}) ; 5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{All}) ; 4.12-3.90\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}$); 3.81-3.74 (m, 3H, C7-H, OCH ${ }_{2} \mathrm{C}$); $3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.28,1.97,1.83$, and $1.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=166.3(\mathrm{q}) ; 134.7(\mathrm{t}) ; 132.8(\mathrm{t}) ; 130.7(\mathrm{q}) ; 129.9(\mathrm{t}) ; 128.3(\mathrm{t}) ; 117.2$ (s); 110.6 (q); 81.1 (q); 80.3 (t); 72.7 (s); 68.0 (t); $66.5(\mathrm{~s}) ; 65.4(\mathrm{~s}) ; 65.0(\mathrm{~s}) ; 59.1(\mathrm{p}) ; 53.5(\mathrm{p}) ; 27.7(\mathrm{~s}) ;$ 24.6 (s).

HRMS (EI): calc. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7}[\mathrm{M}]^{+}: 392.1835$, found: 392.1828.

$\left(1 R^{*}, 2 R^{*}, 3 R^{*}\right)$-Benzoic acid-3-allyloxymethyl-2,3-dimethoxy-4-oxo-cyclohexyl-ester 66

See general procedure i)
Starting material: spiroketal 28 ($20 \mathrm{mg}, 0.036 \mathrm{mmol}$)
Yield: $60 \mathrm{mg}, 0.17 \mathrm{mmol}, 97 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.8 hexane/ methyl tert.-butyl ether 1:3
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.10-8.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.91$ (m, 1H, All); 5.77 (m, 1H, C1-H); 5.29 (m, 1H, All); $5.22(\mathrm{~m}, 1 \mathrm{H}$, All); 4.07-4.04 (m, 2H, OCH 2 CH$) ; 3.97$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}) ; 3.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.7 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.7 \mathrm{OCH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}) ; 3.42$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); 2.76, 2.42, 2.34 and $2.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$).
${ }^{13}$ C-NMR (125.8 MHz, CDCl_{3}): $\square=205.8$ (q); 166.1 (q); 134.1 (t); 133.2 (t); 130.1 (q); $129.8(\mathrm{t}) ; 128.4$ (t); 117.8 (s); 84.9 (q); 80.9 (t); 72.7 (s); 69.1 (t); 67.1 (s); 60.2 (p); 52.8 (p); 34.7 (s); 24.8 (s).

HRMS (EI): calc. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}]^{+}: 348.1572$, found: 348.1568.

$\left(3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-Benzoic acid-4-allyloxymethyl-4,5-dimethoxy-1-oxa-spiro[2.5]oct-6-yl-ester 67

See general procedure j)
Starting material: ketone $\mathbf{6 6}(18 \mathrm{mg}, 0.052 \mathrm{mmol})$
Yield: $16 \mathrm{mg}, 0.044 \mathrm{mmol}, 85 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.8 hexane/ methyl tert.-butyl ether 1:3; 0.4 hexane/ methyl tert.-butyl ether 2:1
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.11-8.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.95$ (m, 1H, All); $5.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right) ; 5.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{All}) ; 5.23(\mathrm{~m}, 1 \mathrm{H}$, All); 4.05-4.03 (m, 2H, OCH 2 CH$) ; 3.91$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathbf{H}\right) ; 3.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}\right) ; 3.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{OCH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathrm{C}\right) ; 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; $3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.5\right.$, epoxide- $\left.\mathrm{H}_{\mathrm{a}}\right) ; 2.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.5\right.$, epoxide- $\left.\mathrm{H}_{\mathrm{b}}\right) ; 2.13,1.97,1.80$ and $1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=166.0(\mathrm{q}) ; 134.3(\mathrm{t}) ; 133.0(\mathrm{t}) ; 130.3(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.4(\mathrm{t}) ; 117.9$ (s); 79.7 (t); 77.9 (q); 72.5 (s); 71.3 (t); 68.1 (s); 60.6 (q); 60.1 (p); 52.4 (p); 52.1 (s); 28.0 (s); $24.4(\mathrm{~s})$.

HRMS (EI): calc. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}]^{+}: 362.1729$, found: 362.1732.

$\left(3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)-4-$ Allyloxymethyl-4.5-dimethoxy-1-oxa-spiro[2.5]octan-6-ol 68

See general procedure c)
Starting material: ester $67(16 \mathrm{mg}, 0.045 \mathrm{mmol})$
Yield: $11 \mathrm{mg}, 0.043 \mathrm{mmol}, 96 \%$, colourless oil.
\mathbf{R}_{F}-value: 0.3 hexane/ methyl tert.-butyl ether 1:3
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\quad=5.89\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); $5.25\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); $5.18\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); $4.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6}{ }^{-}\right.$ H) ; 3.96-3.94 (m, 2H, $\left.\mathrm{OCH}_{2} \mathrm{CH}\right) ; 3.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{OCH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.53$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.8\right.$ epoxide- $\left.\mathrm{H}_{\mathrm{a}}\right) ; 3.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{C} 5-\mathrm{H}) ; 2.63(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=5.2$ epoxide- H_{b}); 2.14, 1.94, 1.65 and $1.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\quad=134.3$ (t); $117.3(\mathrm{~s}) ; 81.0(\mathrm{q}) ; 80.8(\mathrm{t}) ; 72.4(\mathrm{~s}) ; 68.2(\mathrm{~s}) ; 66.6(\mathrm{t}) ; 58.9$ (p); 58.4 (q); 53.2 (p); 52.9 (s); 28.4 (s); 25.8 (s).

HRMS (FAB in 3-NBA): calc. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{+}: 259.1545$, found: 259.1533 .

$\left(3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-(2-Chloro-acetyl)-carbamic acid-4-allyloxymethyl-4,5-dimethoxy-1-oxa-spiro[2.5]oct-6-yl-ester 30

See general procedure d)
Starting material: alcohol 68 ($11 \mathrm{mg}, 0.426 \mathrm{mmol}$)
Yield: $9 \mathrm{mg}, 0.029 \mathrm{mmol}, 68 \%$, colourless oil.
\mathbf{R}_{F}-value: 0.5 hexane/ methyl tert.-butyl ether 1:3
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.03(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{NH}) ; 5.92(\mathrm{~m}, 1 \mathrm{H}$, All); $5.29(\mathrm{~m}, 1 \mathrm{H}$, All); $5.22(\mathrm{~m}, 1 \mathrm{H}$, All); $5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}) ; 5.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 4.04-3.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right) ; 3.81-3.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$, $\left.\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{OCH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.3$ epoxide- $\left.\mathbf{H}_{\mathrm{a}}\right) ; 2.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.4\right.$ epoxide- $\left.\mathbf{H}_{\mathrm{b}}\right) ; 2.05,1.90$ and 1.74-1.59 $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\quad=166.6(\mathrm{q}) ; 150.7(\mathrm{q}) ; 134.1(\mathrm{t}) ; 118.0(\mathrm{~s}) ; 79.5(\mathrm{t}) ; 78.1(\mathrm{q}) ; 73.1(\mathrm{t}) ;$ 72.5 (s); 67.7 (s); 60.5 (q); 59.7 (p); 52.4 (p); 52.2 (s); 43.6 (s); 27.3 (s); 24.3 (s).

HRMS (EI): calc. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{Cl}[\mathrm{M}]^{+}: 377.1241$, found: 377.1236.

$\left(3 S^{*}, 4 R^{*}, 5 S^{*}\right)$-4-Allyloxymethyl-4,5-dimethoxy-1-oxa-spiro[2.5]octan-6-one 29

A solution of $9 \mathrm{mg}(0.035 \mathrm{mmol})$ epoxy alcohol 68 and 20 mg IBX $(0.07 \mathrm{mmol})$ in 2 mL DMSO was stirred for 2 h at room temperature. After addition of 10 mL water the reaction mixture was extracted three times
with ether. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure to yield the desired ketone without further purification as colourless oil.
Yield: $9 \mathrm{mg}, 0.035 \mathrm{mmol}, 100 \%$, colourless oil.
\mathbf{R}_{F}-value: 0.6 hexane/ methyl tert.-butyl ether 1:3
${ }^{1} \mathbf{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=5.92(\mathrm{~m}, 1 \mathrm{H}$, All); $5.29(\mathrm{~m}, 1 \mathrm{H}$, All); $5.23(\mathrm{~m}, 1 \mathrm{H}$, All); 4.02-3.98 (m, $\left.3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}, \mathrm{C}_{5}-\mathrm{H}\right) ; 3.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8\right.$ epoxide- $\left.\mathbf{H}_{\mathrm{a}}\right) ; 3.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $\left.10.8 \mathrm{OCH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8\right.$ epoxide- $\left.\mathrm{H}_{\mathrm{b}}\right) ; 2.64-2.52$ and $1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=206.4(\mathrm{q}) ; 134.1(\mathrm{t}) ; 117.9(\mathrm{~s}) ; 87.1(\mathrm{t}) ; 82.8(\mathrm{q}) ; 72.5(\mathrm{~s}) ; 64.5(\mathrm{~s}) ;$ 59.7 (p); 59.1 (q); 53.8 (s); 53.3 (p); 36.8 (s); 29.4 (s).

HRMS (EI): calc. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}]^{+}: 256.1310$, found: 256.1306.

$\left(1 R^{*}, 2 R^{*}, 3 R^{*}\right)$-2-Allyloxymethyl-4-hydroxy-2,3-dimethoxy-cyclohexanone 69

See general procedure c)
Starting material: ester $66(20 \mathrm{mg}, 0.058 \mathrm{mmol})$
Yield: $11 \mathrm{mg}, 0.045 \mathrm{mmol}, 78 \%$, colourless oil.
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=5.91(\mathrm{~m}, 1 \mathrm{H}$, All); $5.29(\mathrm{~m}, 1 \mathrm{H}$, All); $5.20(\mathrm{~m}, 1 \mathrm{H}$, All); $4.41(\mathrm{~m}, 1 \mathrm{H}$, C4-H); 4.11-4.02 (m, 2H, OCH 2 CH); $3.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.60$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{C} 3-\mathrm{H}) ; 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.92,2.34-2.23$ and $1.68(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=206.2(\mathrm{q}) ; 134.5(\mathrm{t}) ; 117.2(\mathrm{~s}) ; 86.0(\mathrm{q}) ; 79.9$ (t); 72.3 (s); $65.6(\mathrm{t})$; 64.5 (s); 58.4 (p); 52.6 (p); 32.9 (s); 28.1 (s).

HRMS (EI): calc. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}]^{+}: 244.1310$, found: 244.1319.

$\left(1 R^{*}, 2 R^{*}, 3 R^{*}\right)$-(2-Chloro-acetyl)-carbamic acid-3-allyloxymethyl-
 2,3-dimethoxy-4-oxo-cyclohexyl-ester 31

See general procedure d)
Starting material: alcohol $69(6 \mathrm{mg}, 0.025 \mathrm{mmol})$
Yield: $9 \mathrm{mg}, 0.025 \mathrm{mmol}, 100 \%$, colourless oil.
${ }^{1} \mathbf{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=8.18(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{NH}) ; 5.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{All}) ; 5.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{1}-\mathrm{H}\right) ; 5.29(\mathrm{~m}, 1 \mathrm{H}$, All); $5.23\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); 4.51 (sbr, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$); 4.10-4.01 (m, 2H, OCH OH_{2}); 3.92 (d, 1H, J = 9.2 $\left.\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{C} 2-\mathrm{H}) ; 3.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.31(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}); 2.78, 2.40-2.25 and $1.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \quad) 205.3 (q); $166.5(\mathrm{q}) ; 150.8(\mathrm{q}) ; 134.1(\mathrm{t}) ; 117.8(\mathrm{~s}) ; 84.5(\mathrm{q}) ; 80.0(\mathrm{t})$; 72.7 (s); 70.3 (t); 65.9 (s); 60.0 (p); 52.6 (p); 43.6 (s); 33.8 (s); 24.6 (s).

HRMS (EI): calc. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{7} \mathrm{Cl}[\mathrm{M}]^{+}: 363.1084$, found: 363.1080.

$\left(1 R^{*}, 2 R^{*}, 3 R^{*}\right)$-Benzoic acid-3-allyloxymethyl-3-hydroxy-2-methoxy-4-oxo-cyclohexyl-ester 70

See general procedure i)
Starting material: spiroketal 27 ($290 \mathrm{mg}, 0.77 \mathrm{mmol}$)
Yield: $199 \mathrm{mg}, 0.60 \mathrm{mmol}, 78 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.75 hexane/ methyl tert.-butyl ether 1:3
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=8.10-8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.88$
(m, 1H, All); $5.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}) ; 5.29\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); $5.23\left(\mathrm{~m}, 1 \mathrm{H}\right.$, All); 4.07-4.05 (m, 2H, OCH $\left.{ }_{2} \mathrm{CH}\right) ; 3.91$
(m, 1H, C2-H); 3.85 (s, 1H, OH); $3.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.60$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$); 2.66, 2.57, 2.32 and $2.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$).
${ }^{13}$ C-NMR (125.8 MHz, CDCl $_{3}$): $\square=208.4$ (q); $165.9(\mathrm{q}) ; 133.8(\mathrm{t}) ; 133.3(\mathrm{t}) ; 129.8(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.5$ (t); 118.1 (s); 84.5 (t); 81.6 (q); 72.9 (s); 72.5 (s); 71.4 (t); 62.1 (p); 34.8 (s); 25.1 (s).

HRMS (EI): calc. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}[M]^{+}: 334.1416$, found: 334.1412.

$\left(3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-Benzoic acid-4-allyloxymethyl-4-hydroxy-5-methoxy-1-oxa-spiro[2.5]oct-6-ylester 71

See general procedure j)
Starting material: ketone $70(22 \mathrm{mg}, 0.07 \mathrm{mmol})$
Yield: $13 \mathrm{mg}, 0.037 \mathrm{mmol}, 57 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.1 hexane/ methyl tert.-butyl ether 2:1
diastereomer epoxide $\mathbf{7 2}\left(\mathbf{R}_{\mathbf{F}}\right.$-value: 0.2 hexane/ methyl tert.-butyl ether 2:1).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.08-8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.93$ (m, 1H, All); $5.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right) ; 5.31(\mathrm{~m}, 1 \mathrm{H}$, All); $5.23(\mathrm{~m}, 1 \mathrm{H}$, All); 4.14-4.04 (m, 2H, OCH 2 CH$) ; 3.84$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=0.7 \mathrm{C} 5-\mathrm{H}) ; 3.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.3 \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})$); $3.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.3$ $\left.\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2$ epoxide-H$) ; 2.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 2.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2$ epoxide-H$) ; 2.13,2.02-$ 1.89 and $1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$-NMR (125.8 MHz, CDCl_{3}): $\square=165.8(\mathrm{q}) ; 134.2(\mathrm{t}) ; 133.2(\mathrm{t}) ; 130.1(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.5(\mathrm{t}) ; 117.8$ (s); 81.8 (t); $73.8(\mathrm{q}) ; 72.8(\mathrm{~s}) ; 71.9(\mathrm{t}) ; 70.1(\mathrm{~s}) ; 61.3(\mathrm{p}) ; 59.7(\mathrm{q}) ; 51.4(\mathrm{~s}) ; 27.6(\mathrm{~s}) ; 24.2(\mathrm{~s})$.

HRMS (FAB in 3-NBA): calc. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{+}: 349.1651$, found: 349.1686.

$\left(3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-Benzoic acid-4-allyloxymethyl-4-hydroxy-5-methoxy-1-oxa-spiro[2.5]oct-6-ylester 72

Yield: $3 \mathrm{mg}, 0.009 \mathrm{mmol}, 13 \%$, colourless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.09-8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.93$ (m, 1H, All); 5.38 (m, 1H, C6-H); $5.32(\mathrm{~m}, 1 \mathrm{H}$, All); $5.23(\mathrm{~m}, 1 \mathrm{H}$, All); 4.12-4.03 (m, 2H, OCH 2 CH$) ; 3.82$ (m, 1H, C5-H); $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.3 \mathrm{OCH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}} \mathrm{C}\right) ; 3.13(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}) ; 2.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2$ epoxide-H$) ; 2.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2$ epoxide- H$) ; 2.26,2.08,1.88$ and $1.52(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=165.8(\mathrm{q}) ; 134.3(\mathrm{t}) ; 133.1(\mathrm{t}) ; 130.1(\mathrm{q}) ; 129.7(\mathrm{t}) ; 128.5(\mathrm{t}) ; 117.6$ (s); 82.1 (t); $77.5(\mathrm{q}) ; 72.8(\mathrm{t}) ; 72.8(\mathrm{~s}) ; 71.6(\mathrm{~s}) ; 62.0(\mathrm{q}) ; 58.0(\mathrm{p}) ; 46.9(\mathrm{~s}) ; 28.0(\mathrm{~s}) ; 22.8(\mathrm{~s})$.

HRMS (FAB in 3-NBA): calc. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{+}: 349.1651$, found: 349.1646.

$\left(3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-4-Allyloxymethyl-5-methoxy-1-oxa-spiro[2.5]octane-4,6-diol 73

A solution of $15 \mathrm{mg}(0.043 \mathrm{mmol})$ ester 71 and $2.8 \mathrm{mg}(0.043 \mathrm{mmol})$ potassium cyanide in 1 mL was stirred 24 h at room temperature. After addition of 10 mL water, the aqueous layer was extracted five times with ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified on silica to yield the alcohol as colourless oil.
Yield: $10 \mathrm{mg}, 0.041 \mathrm{mmol}, 95 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 hexane/ethyl acetate 1:10
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=5.88(\mathrm{~m}, 1 \mathrm{H}$, All); $5.26(\mathrm{~m}, 1 \mathrm{H}$, All); $5.20(\mathrm{~m}, 1 \mathrm{H}$, All); $4.17(\mathrm{~m}, 1 \mathrm{H}$, C6-H); 4.04-3.98 (m, 2H, OCH $\left.{ }_{2} \mathrm{CH}\right) ; 3.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right) ; 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $\left.9.7 \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right) ; 3.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1, \mathrm{C} 5-\mathrm{H}) ; 3.21-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}\right.$, epoxide- $\left.\mathrm{H}_{\mathrm{a}}\right) ; 3.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{OH})$; $2.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.9\right.$ epoxide- $\left.\mathrm{H}_{\mathrm{b}}\right) ; 2.13,1.95,1.81$ and $1.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): \quad = $134.0(\mathrm{t}) ; 117.8(\mathrm{~s}) ; 80.8(\mathrm{t}) ; 75.7(\mathrm{q}) ; 72.6(\mathrm{~s}) ; 67.9(\mathrm{~s}) ; 67.1(\mathrm{t}) ; 59.6$ (q); 59.1 (p); $51.8(\mathrm{~s}) ; 28.1$ (s); 25.3 (s).

HRMS (FAB in 3-NBA): calc. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{+}: 245.1388$, found: 245.1368 .
$\left(3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}\right)$-(2-Chloro-acetyl)-carbamic acid-4-allyloxymethyl-4-hydroxy-5-methoxy-1-oxa-spiro[2.5]oct-6-yl-ester 74

See general procedure d)
Starting material: alcohol 73 ($5 \mathrm{mg}, 0.021 \mathrm{mmol}$)
Yield: $6 \mathrm{mg}, 0.017 \mathrm{mmol}, 81 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.6 hexane/ethyl acetate $1: 10$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.24(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{NH}) ; 5.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{All}) ; 5.32-5.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{All}, \mathrm{C} 6-\mathrm{H})$; 4.49 (s, 2H, CH2Cl); 4.14-4.03 (m, 2H, OCH ${ }_{2} \mathrm{CH}$); 3.65-3.58 (m, 2H, CH $\left.\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}, \mathrm{C} 5-\mathrm{H}\right) ; 3.56(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right) ; 3.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right) ; 3.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0\right.$ epoxide- $\left.\mathrm{H}_{\mathrm{a}}\right) ; 3.06(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{OH}) ; 2.57(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=5.0$ epoxide- $\left.\mathrm{H}_{\mathrm{b}}\right) ; 2.07,1.95,1.79$ and $1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=166.4(\mathrm{q}) ; 150.6(\mathrm{q}) ; 134.1(\mathrm{t}) ; 117.9(\mathrm{~s}) ; 80.7(\mathrm{t}) ; 74.1(\mathrm{t}) ; 73.2(\mathrm{q})$; 72.7 (s); $69.4(\mathrm{~s}) ; 60.8(\mathrm{p}) ; 59.5(\mathrm{q}) ; 51.7(\mathrm{~s}) ; 43.6(\mathrm{~s}) ; 26.7(\mathrm{~s}) ; 24.3(\mathrm{~s})$.

HRMS (FAB in 3-NBA): calc. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Cl}[\mathrm{M}-\mathrm{H}]^{+}: 364.1163$, found: 364.1155.

$\left(3 S^{*}, 4 R^{*}, 5 S^{*}\right)$-4-Allyloxymethyl-4-hydroxy-5-methoxy-1-oxa-spiro[2.5]octan-6-one 32

A suspension of $9 \mathrm{mg}(0.037 \mathrm{mmol})$ epoxide 73 and 21 mg IBX ($2 \mathrm{eq} ; 0.074 \mathrm{mmol}$) in 10 mL acetone was refluxed over night. After cooling to $-40^{\circ} \mathrm{C}$ the reaction mixture was filtered and the solvent was evaporated under reduced pressure. The crude product was purified on silica to yield the pure ketone as colourless oil. Yield: $3 \mathrm{mg}, 0.013 \mathrm{mmol}, 35 \%$, colourless oil.
\mathbf{R}_{F}-value: 0.5 hexane/ methyl tert.-butyl ether 1:3
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\square=5.89(\mathrm{~m}, 1 \mathrm{H}$, All $) ; 5.30-5.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{All}) ; 4.07-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right)$; $3.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}) ; 3.58-3.48\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{3}, \mathrm{OCH}_{2} \mathrm{C}\right) ; 3.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.7\right.$ epoxide- $\left.\mathrm{H}_{\mathrm{a}}\right) ; 2.96(\mathrm{sbr}, 1 \mathrm{H}$, $\mathrm{OH}) ; 2.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.7\right.$ epoxide- $\left.\mathrm{H}_{\mathrm{b}}\right) ; 2.63-2.60,2.45$ and $1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=206.2$ (q); 133.9 (t); 117.9 (s$) ; 85.2(\mathrm{t}) ; 77.5(\mathrm{q}) ; 72.7(\mathrm{~s}) ; 67.6(\mathrm{~s}) ;$ 59.3 (q); 59.2 (p); 52.7 (s); 36.4 (s); 28.8 (s).

HRMS (EI): calc. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}]^{+}: 242.1154$, found: 242.1005.

($6 R^{*}, 7 R^{*}, 8 R^{*}$)-Benzoic acid-6-hydroxy-6-hydroxymethyl-7-methoxy-1,4-dioxa-spiro[4.5]dec-8-ylester 75

5 mg palladium (10%) on charcoal were added to a solution of $50 \mathrm{mg}(0.132 \mathrm{mmol})$ compound 27 and 50 mg p-toluene sulfonic acid $(0.265 \mathrm{mmol})$ in 10 mL water $/$ methanol $1: 1$ and stirred over night at room temperature. $20 \mathrm{~mL} \mathrm{NaHCO}_{3}$-solution were added and the aqueous layer was extracted five times with ethyl acetate. The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. The crude alcohol was purified on silica to yield the desired product as a colourless oil. Yield: $35 \mathrm{mg}, 0.104 \mathrm{mmol}, 78 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.3 hexane/ethyl acetate 1:10
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=8.09-8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) ; 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 5.61$ (m, 1H, C8-H); 4.10-3.97 (m, 4H, OCH $\mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{O}$); 3.82-3.75 (m, 3H, CH2OH, C7-H); $3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; $3.18(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{OH}) ; 2.63(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{OH}) ; 2.16,2.04,1.82$ and $1.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR (125.8 MHz, CDCl $)$): $\quad=165.9$ (q); 133.1 (t); 130.1 (q); $129.8(\mathrm{t}) ; 128.5$ (t); 110.7 (q); $79.8(\mathrm{t}) ;$ 76.4 (q); 68.5 (t); 65.3 (s); 65.1 (s$) ; 63.4$ (s); $59.5(\mathrm{p}) ; 26.6(\mathrm{~s}) ; 23.9(\mathrm{~s})$.

HRMS (EI): calc. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{7}[\mathrm{M}]^{+}: 338.1365$, found: 338.1356 .

$\left(6 R^{*}, 7 R^{*}, 8 R^{*}\right)$-Benzoic acid-6-benzyloxymethyl-6-hydroxy-7-methoxy-1,4-dioxa-spiro[4.5]dec-8-ylester 76

See general procedure a)
Starting material: alcohol 75 ($84 \mathrm{mg}, 0.25 \mathrm{mmol}$)
Yield: $52 \mathrm{mg}, 0.12 \mathrm{mmol}, 48 \%$, colourless oil.
\mathbf{R}_{F}-value: 0.55 hexane/ethyl acetate 1:2
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\quad=8.10-8.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.59-7.28(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}) ; 5.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathbf{H}) ; 4.62$ (dd, 2H, J = 46.1; $\left.12.3 \mathrm{OCH}_{2} \mathrm{Ph}\right) ; 4.09-3.86\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{C} 7-\mathrm{H}\right) ; 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right) 3.62(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}); 3.33 (sbr, $1 \mathrm{H}, \mathrm{OH}$); 2.08-1.60 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=165.8$ (q); 138.0 (q); 133.0 (t); 130.3 (q); 129.7 (t); 128.4 (t); 128.3 (t); $127.8(\mathrm{t}) ; 127.6(\mathrm{t}) ; 127.4(\mathrm{q}) ; 109.5(\mathrm{q}) ; 81.3(\mathrm{t}) ; 76.7(\mathrm{t}) ; 73.9(\mathrm{~s}) ; 70.7(\mathrm{~s}) ; 65.7(\mathrm{~s}) ; 65.4(\mathrm{~s}) ; 61.3(\mathrm{p}) ;$ 29.2 (s); 23.2 (s).

HRMS (EI): calc. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{7}[\mathrm{M}]^{+}: 428.1835$, found: 428.1842.

$\left(1 R^{*}, 2 R^{*}, 3 R^{*}\right)$-Benzoic acid-3-benzyloxymethyl-3-hydroxy-2-methoxy-4-oxo-cyclohexyl-ester 77

See general procedure i)
Starting material: spiroketal 76 ($45 \mathrm{mg}, 0.11 \mathrm{mmol}$)
Yield: $23 \mathrm{mg}, 0.06 \mathrm{mmol}, 57 \%$, colourless oil.
\mathbf{R}_{F}-value: 0.9 hexane/ methyl tert.-butyl ether 1:3
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\quad=8.07-8.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ; 7.62-7.28(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}) ; 5.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}) ; 4.60$ (dd, $\left.2 \mathrm{H}, \mathrm{J}=23.7,12.2 \mathrm{OCH}_{2} \mathrm{Ph}\right) ; 3.91-3.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}, \mathrm{C} 2-\mathrm{H}) ; 3.75\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=48.7,10.2 \mathrm{OCH}_{2} \mathrm{C}\right) 3.59$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$); 2.54, 2.36-2.26 and $2.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\quad=208.4$ (q); 165.9 (q); $137.2(\mathrm{q}) ; 133.4(\mathrm{t}) ; 129.7(\mathrm{t}) ; 128.5(\mathrm{q}, \mathrm{t}) ; 128.0$ (t); 127.8 (t); 84.4 (t); 81.7 (q); $73.9(\mathrm{~s}) ; 72.4(\mathrm{~s}) ; 71.4$ (t); $62.1(\mathrm{p}) ; 34.7(\mathrm{~s}) ; 25.1(\mathrm{~s})$.

HRMS (EI): calc. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}]^{+}: 384.1572$, found: 384.1579.

$\left(1 R^{*}, 2 R^{*}, 3 R^{*}\right)$-2-Benzyloxymethyl-2,4-dihydroxy-3-methoxy-cyclohexanone 78

See general procedure c)
Starting material: ester $77(15 \mathrm{mg}, 0.04 \mathrm{mmol})$
Yield: $9 \mathrm{mg}, 0.032 \mathrm{mmol}, 80 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.5 hexane/ethyl acetate 1:10
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\quad=7.38-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) ; 4.57\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=35.9,12.1, \mathrm{OCH}_{2} \mathrm{Ph}\right) ; 4.24-4.18$
(m, 2H, C3-H, C2-H); 3.87-3.58 (m, 5H, OCH $2 \mathrm{C}, \mathrm{OCH}_{3}$); 2.50-2.41, 2.06 and $1.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$).
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=209.2(\mathrm{q}) ; 137.2(\mathrm{q}) ; 128.5(\mathrm{t}) ; 128.0(\mathrm{t}) ; 127.8(\mathrm{t}) ; 86.3(\mathrm{t}) ; 82.2(\mathrm{q})$; 73.9 (s); 72.6 (s); 68.2 (t); $62.6(\mathrm{p}) ; 34.3(\mathrm{~s}) ; 29.2(\mathrm{~s})$.

HRMS (EI): calc. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}]^{+}: 280.1310$, found: 280.1317 .
$\left(1 R^{*}, 2 R^{*}, 3 R^{*}\right)$-2-Chloro-acetyl)-carbamic acid-3-benzyloxymethyl-3-hydroxy-2-methoxy-4-oxo-cyclohexyl-ester 33

See general procedure d)
Starting material: alcohol 78 ($9 \mathrm{mg}, 0.033 \mathrm{mmol}$)
Yield: $9 \mathrm{mg}, 0.023 \mathrm{mmol}, 70 \%$, colourless oil.
$\mathbf{R}_{\mathbf{F}}$-value: 0.85 hexane/ethyl acetate 1:10
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \square=8.29(\mathrm{sbr}, 1 \mathrm{H}, \mathrm{NH}) ; 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) ; 5.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}) ; 4.61-$ 4.56 (m, 2H, OCH ${ }_{2} \mathrm{Ph}$); 4.49 (sbr, 2H, CH2Cl); $3.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 3.87$ (d, $\left.1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{C} 2-\mathrm{H}\right) ; 3.67$ (dd, 2 H , $\left.\mathrm{J}=42.7 ; 10.1 \mathrm{OCH}_{2} \mathrm{C}\right) ; 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 2.56-2.53,2.24$ and $2.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13}$ C-NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square=208.1$ (q); 166.8 (q); 150.6 (q); 137.0 (q); 128.6 (t); 128.1 (t); 127.9 (t); 83.9 (t); 81.4 (q); 73.9 (s); 73.3 (t); 72.4 (s); 62.2 (p); 43.5 (s); 34.4 (s); 24.8 (s).

HRMS (EI): calc. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{7} \mathrm{Cl}[\mathrm{M}]^{+}: 399.1084$, found: 399.1092.

HUVEC Proliferation-Assay

HUVE-cells (PromoCell, Heidelberg, Germany) were added in $100 \mu \mathrm{~L}$ medium (Endothelial Cell Growth Medium, PromoCell, Heidelberg, Germany) at a density of 3000-4000 cells/well to gelatine coated 96 -well microtiter plates. After 24 h the medium was aspirated and replaced by $90 \mu \mathrm{~L}$ fresh medium. Serial dilutions of the fumagillin analogs were prepared in medium ($+5 \%$ DMSO) and added ($10 \mu \mathrm{~L} / \mathrm{well}$). Controls received pure medium supplemented with 5\% DMSO.
The cells were incubated for 72 h . Cell proliferation was quantified by BrdU incorporation according to the manufacturer's protocol (Cell Proliferation ELISA-Kit (chemoluminecence), Roche, Germany). The incubation time after addition of BrdU was 4-6h. All data points were determined at least in triplicate.

