Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

SUPPLEMENTARY MATERIAL

for the
article
entitled

Total Syntheses of Enantiomerically Enriched $\boldsymbol{R}(+)$ - and $\boldsymbol{S}(-)$ - Deplancheine.
authored by

Nadiya Sydorenko, Craig A. Zificsak, Aleksey I. Gerasyuto, and Richard P. Hsung*

EXPERIMENTAL SECTION

Solvents were distilled prior to use. Reagents were used as purchased (Aldrich, Acros), except where noted. Chromatographic separations were performed using ICN SiliTech 32-63 D $60 \AA \mathrm{SiO}_{2} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Varian VI-300, VXR-300, and VI-500 spectrometers using CDCl_{3} (except where noted) with TMS or residual solvent as standard. Melting points were determined using a Laboratory Devices MEL-TEMP and are uncorrected/calibrated. Infrared spectra were obtained using NaCl plates on a Midac M2000 FTIR. TLC analysis was performed using Whatman 254 nm polyester-backed silica plates ($60 \AA, 250 \mu \mathrm{~m}$) and visualized using UV and vanillin or KMnO_{4} stains. Low-resolution mass spectra were obtained using an Agilent 1100 series LC/MSD (APCI) and HP 6890 series GC/MS (EI). High-resolution mass spectral analyses were performed at University of Minnesota Department of Chemistry Mass Spectrometry Laboratory. Enantiomeric ratios were determined on an Agilent HPLC instrument equipped with a Chiralcel OD column. All spectral data obtained for new compounds are reported here.

N, N-Dibenzyl- N-Boc-2-Iodotryptamine 16.

Tryptamine 14 ($3.02 \mathrm{~g}, 18.9 \mathrm{mmol}$) was added to a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(10.7 \mathrm{~g}, 78.0 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(90 \mathrm{~mL})$, followed by $\mathrm{BnBr}(4.70 \mathrm{~mL}, 39.5 \mathrm{mmol})$. After stirring at rt for 24 h , the solution was concentrated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and filtered through Celite. Excess of solvent was removed under reduced pressure to give N, N-dibenzyl-tryptamine $15(6.10 \mathrm{~g}, 93 \%)$ as an orange oil.

15: $R_{f}=0.39($ EtOAc : hexane $=3: 2)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.73(\mathrm{dd}, 2 \mathrm{H}, J=8.5,7.5$ $\mathrm{Hz}), 2.89$ (dd, 2H, $J=8.5,7.5 \mathrm{~Hz}$), 3.61 (s, 4H), $6.56(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 6.99(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.5 \mathrm{~Hz})$, 7.06 (t, 2H, $J=7.5 \mathrm{~Hz}$), 7.16 (t, 2H, $J=7.5 \mathrm{~Hz}), 7.18-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.26$ (t, 4H, $J=7.5 \mathrm{~Hz}), 7.33$ (d, $4 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.38 (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.1,54.0,58.4,111.2,114.3$, $118.3,119.1,121.6,121.8,126.9,127.6,128.3,128.9,136.2,140.0$; IR (thin film) $\mathrm{cm}^{-1} 3440 \mathrm{brs}, 3013 \mathrm{~s}$, 2944s, 1612s; mass spectrum (APCI): m/e (\% relative intensity) 341 (5) M+ ${ }^{+}$, 234 (10), 210 (100), 198 (15), 144 (60); HRMS: m/e calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Na} 363.1837\left(\mathrm{M}^{+}+\mathrm{Na}\right.$), found 363.1845.
N, N-Dibenzyl-tryptamine $\mathbf{1 5}(6.10 \mathrm{~g}, 17.9 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. DMAP $(230.0 \mathrm{mg}, 2.00 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(6.50 \mathrm{~mL}, 28.0 \mathrm{mmol})$ were added and the resulting mixture was stirred at rt overnight. The mixture was then poured onto silica gel and washed with $20 \% \mathrm{EtOAc}$ in hexanes. Concentration of the combined washes afforded N, N-dibenzyl- N-Boc-tryptamine $\mathbf{S 1}(7.80 \mathrm{~g}$, 99%), which was sufficiently pure for the next step. S1: $R_{f}=0.55$ (EtOAc : hexane $=2: 3$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.65(\mathrm{~s}, 9 \mathrm{H}), 2.78(\mathrm{dd}, 1 \mathrm{H}, J=9.5,1.5 \mathrm{~Hz}), 2.79(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 2.87(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}), 2.89(\mathrm{dd}, 1 \mathrm{H}, J=9.5,1.5 \mathrm{~Hz}), 3.68(\mathrm{~s}, 4 \mathrm{H}), 7.12(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.20-7.27(\mathrm{~m}$, $4 \mathrm{H}), 7.29(\mathrm{t}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.37(\mathrm{~d}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.1,28.5,53.3$,
$58.6,83.4,115.4,119.1,119.2,122.4,122.9,124.3,124.4,127.1,128.4,129.0,130.9,139.9,150.0$; IR (thin film) $\mathrm{cm}^{-1} 3445$ brs, $3012 \mathrm{~s}-2860 \mathrm{~s}, 1610 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 441
(5) $\mathrm{M}+\mathrm{H}^{+}, 385$ (10), 341 (15), 269 (18), 210 (100), 144 (30); HRMS: m/e calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ $463.2361\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 463.2390 .
N, N-Dibenzyl- N-Boc-tryptamine $\mathbf{S 1}(7.80 \mathrm{~g}, 17.8 \mathrm{mmol})$ was azeotroped with benzene and then dissolved in THF (100 mL) before being cooled to $-78^{\circ} \mathrm{C}$. To the cooled solution was added $t-\mathrm{BuLi}$ $\left(25.0 \mathrm{~mL}, 1.7 \mathrm{M}\right.$ in pentane, 42.5 mmol) dropwise, and after stirring at $-78^{\circ} \mathrm{C}$ for 45 min , iodine (12.0 g , 47.0 mmol) was added as a solution in THF (50 mL). The resulting reaction mixture was stirred for 5 h at $-78{ }^{\circ} \mathrm{C}$ before being gradually brought to rt . The reaction was quenched with 50 g of sodium thiosulfate and 50 mL of water. The layers were separated and washed with saturated aqueous sodium thiosulfate ($3 \times 50 \mathrm{~mL}$) and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through silica gel, eluting first with $20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in EtOAc and then with 50% EtOAc in hexanes. Removal of solvent under reduced pressure afforded iodide $16(6.20 \mathrm{~g}, 62 \%)$ as a yellow solid.

16: $R_{f}=0.60(\mathrm{EtOAc}:$ hexane $=2: 3) ; \mathrm{mp}=66-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.69(\mathrm{~s}$, 9H), $2.65-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 7.16(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.23(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.29(\mathrm{t}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.39(\mathrm{~d}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $8.02(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.0,28.5,52.3,58.7,85.1,115.6,118.4$, 122.7, 124.3, 124.4, 127.1, 128.4, 129.0, 129.5, 129.9, 139.1, 139.9, 159.8; IR (thin film) $\mathrm{cm}^{-1} 3422 \mathrm{brs}$, $3025 \mathrm{w}, 2973 \mathrm{~s}, 2924 \mathrm{~s}, 1733 \mathrm{~s}, 1618 \mathrm{~m}, 456 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 567 (5) $\mathrm{M}+\mathrm{H}^{+}, 511$ (30), 269 (25), 210 (100); HRMS: m/e calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{INa} 589.1328\left(\mathrm{M}^{+}+\mathrm{Na}\right.$), found 589.1303.

Stille Coupling Product 20.

A mixture of iodide $16(25.0 \mathrm{mg}, 0.044 \mathrm{mmol})$, benzyltriethylammonium chloride (20.0 mg , $0.088 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.50 \mathrm{mg}, 0.005 \mathrm{mmol})$, and E-vinylstannane $19(25.0 \mathrm{mg}, 0.054 \mathrm{mmol})$ in toluene (1 mL) was heated at $80^{\circ} \mathrm{C}$. After 6 h , an additional aliquot of $\mathbf{1 9}(16.0 \mathrm{mg}, 0.034 \mathrm{mmol})$ was added and heating was continued for a total of 24 h . The solution was cooled, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through Celite. Concentration under reduced pressure and purification of the crude residue via basic alumina gel column chromatography afforded $\mathbf{2 0}(23.0 \mathrm{mg}, 86 \%)$ as yellow oil.

20: $R_{f}=0.21(\mathrm{EtOAc}:$ hexane $=1: 9)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$, $1.54(\mathrm{~s}, 9 \mathrm{H}), 2.71(\mathrm{dd}, 2 \mathrm{H}, J=11.5,7.5 \mathrm{~Hz}), 2.94(\mathrm{dd}, 2 \mathrm{H}, J=11.5,7.5 \mathrm{~Hz}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 4.28(\mathrm{dd}, 2 \mathrm{H}$, $J=4.5,2.0 \mathrm{~Hz}), 5.68(\mathrm{dt}, 1 \mathrm{H}, J=16.0,4.5 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.05-7.13$ (m, 2H), 7.19 $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.40(\mathrm{~d}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,23.0,23.2,29.1,29.8,55.9,57.7,61.3,80.0,111.3,112.6,119.0,119.9,122.2$, $122.8,122.9,127.3,127.6,128.4,128.9,130.4,135.5,136.7,150.1$; IR (thin film) $\mathrm{cm}^{-1} 3120 \mathrm{~m}, 3027 \mathrm{~m}$, $2987 \mathrm{~s}, 2964 \mathrm{~s}, 1735 \mathrm{~s}, 1610 \mathrm{~m}, 908 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 611 (2) M+H ${ }^{+}$, 511 (30), 414 (100), 224 (80), 172 (55); HRMS: m/e calcd for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si} 611.3669\left(\mathrm{M}^{+}+\mathrm{H}\right)$, found 611.3677.

Benzyl deprotection.

To a stirred solution of compound $20(60.0 \mathrm{mg}, 0.098 \mathrm{mmol})$ in 1 mL of anhy CHCl_{3} was added 2,2,2-trichloroethyl carbonochloridate ($42.0 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$) and the reaction mixture was stirred at rt 24 h . Reaction progress was monitored by TLC. Upon completion, reaction mixture was filtered through basic alumina with diethyl ether and concentrated under reduced pressure. Purification of the crude residue via basic alumina column chromatography afforded $22(45.0 \mathrm{mg}, 67 \%)$ as two rotameric isomers: minor rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 2.96$ (dd, $2 \mathrm{H}, J=8.5,8.0 \mathrm{~Hz}$), $3.42-3.47(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{dd}, 2 \mathrm{H}, J=3.0,2.0 \mathrm{~Hz}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H})$, $5.85(\mathrm{dt}, 1 \mathrm{H}, J=16.0,5.0 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.09-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $8.00(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$; major rotamer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.57$ (s, 9H), 3.01 (dd, 2H, $J=8.5,8.0 \mathrm{~Hz}$), $3.42-3.47(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{dd}, 2 \mathrm{H}, J=3.0,2.0 \mathrm{~Hz}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, $4.81(\mathrm{~s}, 2 \mathrm{H}), 5.79(\mathrm{dt}, 1 \mathrm{H}, J=16.0,5.0 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.09-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.45(\mathrm{t}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 8.00(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$.

To 45.0 mg (0.064 mmol) of $\mathbf{2 2}$ in 1 mL of THF was added with vigorous stirring 20 mg of zinc powder followed by addition of $0.40 \mathrm{~mL} 1 \mathrm{M}_{2} \mathrm{PO}_{4}$, and the progress of the reaction was monitored by TLC analysis. After $2 \mathrm{~h}, 1 \mathrm{~mL}$ of THF, 20.0 mg of Zn powder, and 0.40 mL of $1 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ were added, and the reaction was continued for 12 h more. The product was extracted with EtOAc, washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The EtOAc was evaporated under reduced pressure. The crude product was purified via silica gel column chromatography to afford amine 23 ($9.0 \mathrm{mg}, 17 \%$) as yellow oil.

23: $R_{f}=0.22(\mathrm{EtOAc}:$ hexane $=3: 2)$, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, $1.64(\mathrm{~s}, 9 \mathrm{H}), 2.93(\mathrm{dd}, 2 \mathrm{H}, J=13.0,6.5 \mathrm{~Hz}), 2.98(\mathrm{dd}, 2 \mathrm{H}, J=13.0,6.5 \mathrm{~Hz}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 4.39$ (dd, 2H, $J=5.0,2.0 \mathrm{~Hz}), 6.01(\mathrm{dt}, 1 \mathrm{H}, J=16.0,5.0 \mathrm{~Hz}), 6.81(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.19-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.51(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1,22.9,23.5,29.4,29.9$, $56.1,57.8,59.9,81.2,107.1,110.3,112.1,119.4,119.8,122.8,123.3,127.3,127.5,128.0,128.5,131.0$, $136.4,136.5,150.6$; IR (thin film) $\mathrm{cm}^{-1} 3113 \mathrm{w}, 2989 \mathrm{~s}, 2975 \mathrm{~m}, 1731 \mathrm{~s}, 1608 \mathrm{~m}$; mass spectrum (APCI): m / e (\% relative intensity) 521 (5) $\mathrm{M}+\mathrm{H}^{+}$, 421 (100), 248 (15), 115 (55); HRMS: m/e calcd for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa} 543.3019\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 543.3036.

2-Bromo- N-Phthaloyltryptamine 24.

Tryptamine $14(6.00 \mathrm{~g}, 36.7 \mathrm{mmol})$ and phthalic anhydride ($6.00 \mathrm{~g}, 40.5 \mathrm{mmol}$) were heated in toluene at reflux with azeotropic removal of water using a Dean-Stark trap for 16 h . Concentration of the crude reaction gave the crude phthaloyltryptamine $\mathbf{S 2}(10.0 \mathrm{~g}, 98 \%)$ as a clear oil, which can be used in the bromination step crude. S2: $\mathrm{R}_{f}=0.08$ (EtOAc : hexanes $=1: 3$); $\mathrm{mp}=173.5-174{ }^{\circ} \mathrm{C}$ (Lit. $\mathrm{mp}=$ $16{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.18(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $4.03(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $7.13(\mathrm{dd}, 1 \mathrm{H}, J$ $=6.6,1.2 \mathrm{~Hz}), 7.14(\mathrm{dt}, 1 \mathrm{H}, J=7.4,1.2 \mathrm{~Hz}), 7.21(\mathrm{dt}, 1 \mathrm{H}, J=7.4,1.2 \mathrm{~Hz}), 7.37(\mathrm{td}, 1 \mathrm{H}, J=7.4,1.2$ Hz), 7.72 (dd, 2H, $J=5.0,3.0 \mathrm{~Hz}$), $7.76(\mathrm{dd}, 1 \mathrm{H}, J=7.4,1.2 \mathrm{~Hz}), 7.86(\mathrm{dd}, 2 \mathrm{H}, J=5.0,3.0 \mathrm{~Hz}), 8.04$ (brs, 1H).

The crude phthaloyltryptamine $\mathbf{S 2}(10.0 \mathrm{~g}, 36.0 \mathrm{mmol})$ was dissolved in the mixture THF : $\mathrm{CHCl}_{3}(1: 1,100 \mathrm{~mL})$, cooled to $-10{ }^{\circ} \mathrm{C}$ in an ice-acetone bath, and treated with pyridinium bromide perbromide ($13.2 \mathrm{~g}, 41.3 \mathrm{mmol}$). When the reaction was complete as indicated by TLC analysis ($1-3 \mathrm{~h}$), the reaction was warmed up to rt and washed with sat $\mathrm{aq}_{\mathrm{Na}}^{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{X} 100 \mathrm{~mL})$ and the aqueous washes were extracted with EtOAc (100 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give bromide 24 ($12.6 \mathrm{~g}, 95 \%$) as an oil. For subsequent coupling reactions, the intermediate can be purified on silica gel.

24: $\mathrm{R}_{f}=0.27(E t O A c:$ hexane $=2: 3), \mathrm{mp}=180.5-181{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.10$ $(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.95(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.08(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.14(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz})$, $7.26(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.69(\mathrm{dd}, 2 \mathrm{H}, J=5.5,3.0 \mathrm{~Hz}), 7.81(\mathrm{dd}, 2 \mathrm{H}, J=5.5$, 3.0 Hz), 8.00 (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.3,37.7,109.8,110.7,115.3,115.4$, $115.7,118.3,120.5,122.7,123.4,131.4,134.0,168.0$; IR (thin film) $\mathrm{cm}^{-1} 3427 \mathrm{brs}, 3079 \mathrm{~m}, 2950 \mathrm{~s}$, $1652 \mathrm{~s}, 1558 \mathrm{~s}, 741 \mathrm{~s}, 668 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 289 (100) M $\mathrm{M}^{+}-\mathrm{Br}, 271$ (60), 262 (5), 142 (35); HRMS: m/e calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrNa} 391.0058$, $393.0038\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 391.0024, 393.0013.

Vinyl Catechol Borane 25. ${ }^{1}$

Catechol borane ($2.30 \mathrm{~mL}, 21.6 \mathrm{mmol}$) was added dropwise to neat silyl ether $17(3.40 \mathrm{~g}, 20.0$ $\mathrm{mmol})$. After stirring for 5 d , the mixture was diluted with pentane (6 mL) and filtered. Kugelrohr distillation afforded boronate $25(3.50 \mathrm{~g}, 60 \%)$ as a clear oil.

Suzuki-Miyaura Coupling Product 26.

Bromide 24 ($124.0 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathrm{LiCl}(43.0 \mathrm{mg}, 1.00 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20.0 \mathrm{mg}, 0.017$ $\mathrm{mmol})$ were placed in a flask and purged with nitrogen. The mixture was dissolved in toluene (6 mL) and to this solution were added boronate $25(174.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ as a solution in toluene (2 mL) and 2 N aq $\mathrm{NaOH}(0.75 \mathrm{~mL})$. The solution was heated to reflux for 5 h , and an additional 175 mg of boronate $\mathbf{2 5}$ was added at this time. After an additional 5 h at reflux, the reaction was filtered through Celite eluted with EtOAc. Concentration of the crude mixture under reduced pressure and purification of the crude residue via silica gel column chromatography afforded allyl ether 26 ($100.0 \mathrm{mg}, 65 \%$).

26: $R_{f}=0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}$, 9 H), 3.14 (dd, 2H, $J=8.0,7.2 \mathrm{~Hz}$), 3.91 (dd, $2 \mathrm{H}, J=8.0,7.2 \mathrm{~Hz}$), 4.32 (dd, $2 \mathrm{H}, J=4.5,1.2 \mathrm{~Hz}$), 6.03 (dt, 1H, $J=16.2,5.2 \mathrm{~Hz}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 7.09(\mathrm{td}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 7.17(\mathrm{td}, 1 \mathrm{H}, J=7.2$, $1.2 \mathrm{~Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.62-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.3,21.9,23.3,28.1,49.7,59.6,107.8,112.8,119.0,119.7,121.9,122.3$, $127.3,127.4,127.5,131.1,132.0,134.5,136.7,169.2$; IR (thin film) $\mathrm{cm}^{-1} 3341 \mathrm{brm}, 3011 \mathrm{~m}, 2987 \mathrm{~s}$, 2965m, 1732s, 1608s; mass spectrum (APCI): m/e (\% relative intensity) 461 (5) $\mathrm{M}^{+}+\mathrm{H}, 271$ (60), 313 (100), 290 (35), 115 (80); HRMS: m/e calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa} 483.2080\left(\mathrm{M}^{+}+\mathrm{Na}\right.$), found 483.2066.

Vinylogous Amide 27.

Allyl ether 26 ($207.0 \mathrm{mg}, 0.45 \mathrm{mmol}$) was dissolved in EtOH (5 mL) and 1,1-dimethylhydrazine $(0.60 \mathrm{~mL}, 11.3 \mathrm{mmol})$ was added. After 3 h of stirring at rt , the reaction mixture was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography (EtOAc : $\mathrm{MeOH}=9: 1)$ to afford the amine $\mathbf{S 3}(74.0 \mathrm{mg}, 50 \%) . \mathbf{S 3}: \mathrm{R}_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 3.15-3.21(\mathrm{~m}, 4 \mathrm{H}), 4.39(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 5.30$ (brs, $2 \mathrm{H}, \mathrm{NH}), 6.12(\mathrm{dt}, 1 \mathrm{H}, J=16.0,5.5 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.01(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.49(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.8,14.3,29.6,40.7,64.4,109.3,111.1,115.2,118.9,119.0,120.1,123.3,128.4,128.6$, $133.4,136.6$; IR (thin film) $\mathrm{cm}^{-1} 3342 \mathrm{brs}, 3009 \mathrm{~m}, 2983 \mathrm{~s}, 2870 \mathrm{~m}, 1611 \mathrm{~s}, 913 \mathrm{~s}$; mass spectrum (APCI):
m / e (\% relative intensity) 331 (5) $\mathrm{M}+\mathrm{H}^{+}, 159$ (20), 149 (100), 121 (45); HRMS: m/e calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSiNa} 353.2025\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 353.2023.

The amine $\mathbf{S 3}$ ($74.0 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and treated with 3-butyn-2-one ($0.025 \mathrm{~mL}, 0.32 \mathrm{mmol}$). After 90 min at rt , the solution was concentrated under reduced pressure and the crude residue was purified over silica gel (20% EtOAc in hexanes) to give vinylogous amide 27 ($44.0 \mathrm{mg}, 50 \%$).

27: $R_{f}=0.37(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, 3.01 (t, 2H, $J=7.0 \mathrm{~Hz}$), 3.40 (q, 2H, $J=7.0 \mathrm{~Hz}$), 4.39 (ddd, 2H, $J=14.0,5.0,2.0 \mathrm{~Hz}$), 4.89 (d, 1H, $J=$ $7.5 \mathrm{~Hz}), 6.05(\mathrm{dt}, 1 \mathrm{H}, J=16.0,5.0 \mathrm{~Hz}), 6.44(\mathrm{dd}, 1 \mathrm{H}, J=12.5,7.5 \mathrm{~Hz}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.09$ (td, $1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}$), 7.19 (td, $1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}$), $7.30(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 7.49 (d, $1 \mathrm{H}, J=8.0$ Hz), 8.06 (brs, $1 \mathrm{H}, \mathrm{NH}$), 9.87 (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,25.1,26.2,26.8,29.2$, $49.9,63.9,94.0,110.8,113.7,113.8,118.3,118.7,120.0,123.2,128.0,129.7,134.3,152.5,190.7$; IR (thin film) $\mathrm{cm}^{-1} 3339 \mathrm{brs}, 3018 \mathrm{~m}, 2988 \mathrm{~s}, 1724 \mathrm{~s}, 1612 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 399 (2) $\mathrm{M}_{+} \mathrm{H}^{+}, 397$ (5), 276 (65), 182 (100), 170 (40), 156 (35), 144 (30); HRMS: m/e calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SiNa} 421.2287\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 421.2278 .

Alcohol 28.

To a solution of vinylogous amide $27(40.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TBAF $(0.15 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.15 mmol$)$. The resulting mixture was stirred at rt for 24 h . The mixture was filtered through Celite, concentrated and purified silica gel column chromatography to give alcohol $\mathbf{2 8}$ ($20.0 \mathrm{mg}, 70 \%$).

28: $R_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.01(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{t}, 2 \mathrm{H}, J$ $=6.0 \mathrm{~Hz}), 3.44(\mathrm{q}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.98(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 4.28(\mathrm{dd}, 2 \mathrm{H}, J=5.0,1.5 \mathrm{~Hz}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 6.16(\mathrm{dt}, 1 \mathrm{H}, J=16.0,5.0 \mathrm{~Hz}), 6.28(\mathrm{dd}, 1 \mathrm{H}, J=13.5,7.5 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.09$ (td, $1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.18(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ Hz), 8.48 (brs, $1 \mathrm{H}, \mathrm{NH}$), 9.73 (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.1,28.9,49.9,63.1,93.3$, $110.8,111.0,118.0,119.0,119.5,122.3,127.4,128.0,133.7,136.4,153.3,197.5$; IR (thin film) cm^{-1} 3540 brs, $3114 \mathrm{~s}, 3065 \mathrm{~m}, 2953 \mathrm{~s}, 2883 \mathrm{~s}, 1721 \mathrm{~s}, 1653 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 285 (3) $\mathrm{M}+\mathrm{H}^{+}, 267$ (100), 227 (10), 215 (15), 159 (80); HRMS: m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} 307.1422$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 307.1401.

Aldehyde 29.

A solution of alcohol $28(10.0 \mathrm{mg}, 0.035 \mathrm{mmol})$ in acetone $(1 \mathrm{~mL})$ was stirred with $\mathrm{MnO}_{2}(63.0$ $\mathrm{mg}, 0.72 \mathrm{mmol}, 20$ equiv) at rt for 24 h . Filtration through Celite and removal of the solvent under reduced pressure afforded the pure aldehyde $29(9.00 \mathrm{mg}, 90 \%)$.

29: $R_{f}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{t}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 3.49(\mathrm{q}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.35(\mathrm{dd}, 1 \mathrm{H}, J=13.0,7.6 \mathrm{~Hz}), 6.46(\mathrm{dd}$, $1 \mathrm{H}, J=15.6,13.0 \mathrm{~Hz}), 7.13(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}), 7.25-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz})$, $7.57(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 9.17$ (brs, $1 \mathrm{H}, \mathrm{NH}), 9.57(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 9.85(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}){ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.9,28.9,50.4,94.4,111.1,111.9,118.8,119.7,122.1,128.1,134.0,135.2,136.5$, $143.8,153.5,191.3,197.8$; IR (thin film) $\mathrm{cm}^{-1} 3333 \mathrm{brm}, 3081 \mathrm{~m}, 2982 \mathrm{~s}, 2887 \mathrm{~s}, 1731 \mathrm{~s}, 1685 \mathrm{~s}, 1650 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 283 (5) $\mathrm{M}+\mathrm{H}^{+}, 213$ (30), 227 (10), 158 (100); HRMS: m / e calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} 305.1266\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 305.1293.

N-Boc-2-Bromo- N-Phthaloyltryptamine 30.

$\mathrm{Boc}_{2} \mathrm{O}(15.0 \mathrm{~mL}, 65.3 \mathrm{mmol})$ was added to a solution of bromide $24(1.35 \mathrm{~g}, 36.7 \mathrm{mmol})$ and DMAP ($50.0 \mathrm{mg}, 0.40 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The reaction mixture was stirred at rt until TLC indicated complete consumption of the starting 24 . The reaction mixture was concentrated under reduced pressure to give the Boc-protected bromide $\mathbf{S 4}$ as a white solid. Purification was accomplished via adding 100 mL of MeOH , heating the mixture at $60^{\circ} \mathrm{C}$ with sonication for 1 h , cooling, filtering and washing with cold $\mathrm{MeOH}(100 \mathrm{~mL})$ and pentane $(2 \times 50 \mathrm{~mL})$. This partial recrystallization process gave $15.2 \mathrm{~g}(88 \%)$ of the Boc-protected bromide $\mathbf{S 4}$ as white solid. $\mathbf{S 4}: \mathrm{R}_{f}=0.37($ EtOAc : hexanes $=1: 3)$; $\mathrm{mp}=118-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.69(\mathrm{~s}, 9 \mathrm{H}), 3.13(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.94(\mathrm{t}, 2 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 7.22(\mathrm{dt}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.27(\mathrm{dt}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.71$ $(\mathrm{dd}, 2 \mathrm{H}, J=5.5,3.5 \mathrm{~Hz}), 7.84(\mathrm{dd}, 2 \mathrm{H}, J=5.5,3.5 \mathrm{~Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.5,28.1,36.4,84.8,109.7,115.2,117.9,119.4,122.9,123.1,124.4,128.5,132.0,133.8$, $136.4,148.9,168.0$; IR (thin film) $\mathrm{cm}^{-1} 2980 \mathrm{~m}, 2937 \mathrm{w}, 2362 \mathrm{w}, 1772 \mathrm{~m}, 1736 \mathrm{~s}, 1713 \mathrm{~s}, 1367 \mathrm{~s}, 1158 \mathrm{~m}$, 710 m ; mass spectrum (APCI): m/e (\% relative intensity) 469 (2) $\mathrm{M}+\mathrm{H}^{+}, 371$ (98), 369 (100), 289 (96); HRMS: m/e calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{BrNa} 493.0562\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 493.0613.

The Boc-protected bromide $\mathbf{S 4}(15.1 \mathrm{~g}, 32 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.80 \mathrm{~g}, 1.6 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were placed in a 500 mL RB-flask and purged with N_{2}. Toluene (100 mL) was added then followed by methyl acrylate ($14.5 \mathrm{~mL}, 160 \mathrm{mmol}$), dicyclohexylmethylamine ($7.60 \mathrm{~mL}, 35.5 \mathrm{mmol}$) and additional toluene (60 mL). The reaction mixture was heated in an $85^{\circ} \mathrm{C}$ oil bath for 48 h , before being filtered through silica gel. After removal of the solvent under reduced pressure, the crude residue was purified via adding 150 mL of MeOH , heating the mixture at $60^{\circ} \mathrm{C}$ with sonication for 1 h cooling, filtering and washing with cold $\mathrm{MeOH}(100 \mathrm{~mL})$ and pentane ($2 \times 50 \mathrm{~mL}$). This partial recrystallization process gave $12.4 \mathrm{~g}(82 \%)$ of ester 30 as an off-white solid.

30: $\mathrm{R}_{f}=0.25$ (EtOAc : hexanes $\left.=1: 3\right) ; \mathrm{mp}=194-196{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.67$ (s, 9 H$), 3.17(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.28(\mathrm{t}$, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.73(\mathrm{dd}, 2 \mathrm{H}, J=5.5,3.5 \mathrm{~Hz}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.86$ $(\mathrm{dd}, 2 \mathrm{H}, J=5.0,3.5 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.2,28.1,37.6,51.8,84.7,115.6,119.3,119.7,119.9,123.2,123.3,126.0,129.4,132.0$, $132.2,134.0,136.1,136.5,150.0,167.0,168.1$; IR (thin film) $\mathrm{cm}^{-1} 2924 \mathrm{~m}, 2358 \mathrm{~m}, 1770 \mathrm{~m}, 1711 \mathrm{~s}$, $1635 \mathrm{~m}, 1457 \mathrm{~m}, 1364 \mathrm{~s}, 1163 \mathrm{~s}, 720 \mathrm{~m}$; mass spectrum (APCI): m/e (\% relative intensity) 475 (4) M+H ${ }^{+}$, 375 (100); HRMS: m/e calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} 475.1869\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found 475.1888.

Amino Alcohol 32.

To a solution of ester $\mathbf{3 0}(1.00 \mathrm{~g}, 2.11 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL$\mathrm{H}\left(1 \mathrm{M}\right.$ in hexane, $7.60 \mathrm{~mL}, 7.60 \mathrm{mmol}$) by dropwise and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before $\mathrm{MeOH}(2 \mathrm{~mL})$ was added. The mixture was poured into 30 mL of sat aq potassium sodium tartrate, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added. Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the crude hydroxyaminal intermediate $\mathbf{3 1}$ as yellow foam, which was used in the next step without further purification.

31: $R_{f}=0.44(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~s}, 9 \mathrm{H}), 3.11-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.12$ (brs, 1H), 3.57-3.74 (m, 2H), 4.16-4.25 (m, 2H), $5.66(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.04(\mathrm{dt}, 1 \mathrm{H}, J=16.0,6.5$ $\mathrm{Hz}), 6.53(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.20-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.46-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.58$ (d, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), $7.63(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$.

To a solution of the crude 31 in $i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(6: 1,20 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(241.0 \mathrm{mg}, 6.33$ $\mathrm{mmol})$ in portions. The reaction was stirred at rt for 18 h before $\mathrm{AcOH}(1.8 \mathrm{~mL})$ was added. Following evolution of gas, the mixture was heated at $80^{\circ} \mathrm{C}$ for 10 h . The reaction was then cooled and the contents were partitioned between 10% aq $\mathrm{NH}_{4} \mathrm{OH}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Separation of the
layers was followed with the extraction of aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and drying of the combined organic layers $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave a crude oil [51\% overall crude yield from 30] that consisted of both amino-alcohol 32 and phthalide. $R_{f}=0.14$ (EtOAc). It was difficult to obtain meaningful characterizations for 32, and thus, the crude $\mathbf{3 2}$ was used for the next step, and its full characterizations can be reflected in the concise synthesis of vinylogous amide $\mathbf{3 3}$.

Vinylogous Amide 33.

The crude amino-alcohol $32(200.0 \mathrm{mg}, 0.65 \mathrm{mmol})$ was dissolved in toluene (10 mL) and 1,3cyclohexanedione ($112.0 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added. After being heated at reflux for 1 h , TLC indicated complete consumption of the starting material. Removal of the solvent and purification by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ loading, hexanes washing, then EtOAc followed by acetone) gave the vinylogous amide $\mathbf{3 3}$ ($187.0 \mathrm{mg}, 69 \%$) as a red solid.

33: $\mathrm{R}_{f}=0.34$ (acetone): $\mathrm{mp}=68-70^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.70(\mathrm{~s}, 9 \mathrm{H}), 2.01(\mathrm{t}, 2 \mathrm{H}$, $J=6.2 \mathrm{~Hz}), 2.32-2.41(\mathrm{~m}, 4 \mathrm{H}), 3.09-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~d}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 5.24$ (brs, 1H), $5.39(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{td}, 1 \mathrm{H}, J=16.2,5.1 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 7.35(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.8,22.9,28.2,29.7,36.0,43.1,62.5,84.0,96.9,115.6,115.7,118.0,121.6,122.7,124.5$, $129.5,134.8,135.3,135.6,150.3,164.9,198.1$; IR (thin film) $\mathrm{cm}^{-1} 3584 \mathrm{brm}, 3263 \mathrm{~m}, 3076 \mathrm{~m}, 2939 \mathrm{~m}$, $1728 \mathrm{~s}, 1538 \mathrm{~s}, 1456 \mathrm{~m}, 1368 \mathrm{~m}, 2926 \mathrm{~s}, 1141 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 411 (47) $\mathrm{M}+\mathrm{H}^{+}, 393$ (25), 337 (100), 293 (45); HRMS: m/e calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} 411.2284$ ($\mathrm{M}+\mathrm{H}^{+}$), found 411.2280 .

Vinylogous Amide 34.

Crude amino alcohol $32\left(500.0 \mathrm{mg}, 1.58 \mathrm{mmol}\right.$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Triethylamine $(0.35 \mathrm{~mL}, 2.50 \mathrm{mmol})$ was added followed by addition of 4-methoxy-3-buten-2-one ($0.20 \mathrm{~mL}, 1.80$ mmol), and the reaction mixture was allowed to stir at rt for 20 h . Purification of the concentrated mixture by silica gel column chromatographyafforded vinylogous amide 34 as a yellow oil (200.0 mg , $33 \%)$.

34: $R_{f}=0.21(\mathrm{EtOAc}:$ hexane $=4: 1)$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$, 2. $96(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.34(\mathrm{q}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.98(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 4.23(\mathrm{dd}, 2 \mathrm{H}, J=5.5,1.5 \mathrm{~Hz})$, $4.77(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.89(\mathrm{dt}, 1 \mathrm{H}, J=16.0,5.5 \mathrm{~Hz}), 6.20(\mathrm{dd}, 1 \mathrm{H}, J=13.5,7.5 \mathrm{~Hz}), 6.58(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}), 7.15(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=7.5$ Hz), 9.82 (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.8,28.3,28.9,49.4,63.2,84.1,93.7,115.6$, 115.7, 118.2, 122.2, 122.8, 124.7, 129.4, 133.0, 135.8, 135.9, 150.4, 153.3, 197.7; IR (thin film) cm^{-1} 3440brs, $3109 \mathrm{~s}, 2970 \mathrm{~s}$, 2863s, 1725s, 1622s; mass spectrum (APCI): m/e (\% relative intensity) 385 (1) $\mathrm{M}+\mathrm{H}^{+}, 367$ (10), 311 (45), 267 (100), 182 (80), 170 (30); HRMS: m/e calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $407.1947\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 407.1921.

Aldehyde 35.

A solution of alcohol $34(200.0 \mathrm{mg}, 0.52 \mathrm{mmol})$ in acetone (3 mL) was stirred with $\mathrm{MnO}_{2}(1.02$ $\mathrm{g}, 10.4 \mathrm{mmol}, 20$ equiv) at rt for 6 h . Filtration through Celite and removal of the solvent under reduced pressure afforded the pure aldehyde $\mathbf{3 5}(133.0 \mathrm{mg}, 67 \%)$ as a yellow oil.

35: $R_{f}=0.33(\mathrm{EtOAc}:$ hexane $=4: 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.67(\mathrm{~s}, 9 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$, $3.07(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.45(\mathrm{q}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 6.33(\mathrm{dd}, 1 \mathrm{H}, J=16.0,7.5$ $\mathrm{Hz}), 6.42(\mathrm{dd}, 1 \mathrm{H}, J=12.0,7.5 \mathrm{~Hz}), 7.28(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.40(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.53$ (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $7.88(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 9.68(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 9.83$ (brs, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.4,28.4,29.2,48.9,85.4,94.7,116.0,119.7,121.7$, $123.6,126.8,129.3,130.2,132.4,137.0,143.6,150.4,152.1,193.7,197.8$; IR (thin film) $\mathrm{cm}^{-1} 3452 \mathrm{brs}$, 3024s, 2970s, 2844m, 1731s, 1683s, 1652s; mass spectrum (APCI): m/e (\% relative intensity) 383 (5) $\mathrm{M}+\mathrm{H}^{+}, 283$ (75), 263 (30), 198 (100), 180 (40), 170 (50); HRMS: m/e calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $405.1790\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 405.1802.
(\pm) 3-Acetyl-12-(t-Butoxycarbonyl)-1,2,6,7,12,12b-Hexahydro-Indolo[2,3-a]quinolizine 36.

To a solution of aldehyde $35(133.0 \mathrm{mg}, 0.35 \mathrm{mmol})$ in EtOAc (5 mL) were added $\mathrm{Na}_{2} \mathrm{SO}_{4}$ $(510.0 \mathrm{mg})$ and piperidinium acetate ($82.0 \mathrm{mg}, 0.56 \mathrm{mmol}$). The mixture was sealed under nitrogen and heated in an $85^{\circ} \mathrm{C}$ oil bath for 6 h . After cooling the mixture, $\mathrm{Pd} / \mathrm{C}(25 \mathrm{~mol} \%)$ was added and the
mixture was stirred under 1 atm of H_{2} for 24 h . Filtration through Celite, removal of solvent under reduced pressure, and purification of the crude residue via silica gel column chromatography [eluent EtOAc : hexanes $=2: 3]$ afforded the cycloadduct $36(61.0 \mathrm{mg}, 48 \%)$.

36: $R_{f}=0.16(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31$ (ddd, $1 \mathrm{H}, J=24.0,13.0,5.5 \mathrm{~Hz}$), $1.59(\mathrm{~s}, 9 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, 1 \mathrm{H}, J=13.0,5.5,4.5,2.5 \mathrm{~Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J$ $=16.5,2.5 \mathrm{~Hz}$), 2.73 (ddd, $1 \mathrm{H}, J=15.5,2.5,2.0 \mathrm{~Hz}$), 2.78 (ddd, $1 \mathrm{H}, J=10.0,5.5,2.5 \mathrm{~Hz}$), 3.57 (ddd, $1 \mathrm{H}, J=13.0,5.5,1.5 \mathrm{~Hz}$), 3.63 (dd, $1 \mathrm{H}, J=13.0,3.5 \mathrm{~Hz}$), 4.76 (dd, $1 \mathrm{H}, J=10.0,1.5 \mathrm{~Hz}$), 7.19 (td, 1 H , $J=7.5,1.0 \mathrm{~Hz}), 7.25(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,22.8,24.2,28.4,29.5,51.0,54.3,86.4,115.9,116.5,118.2$, $123.2,124.9,128.6,134.5,137.0,148.2,150.1,179.5,193.7$; IR (thin film) $\mathrm{cm}^{-1} 2974 \mathrm{~m}, 2924 \mathrm{~m}, 1728 \mathrm{~s}$, $1660 \mathrm{~m}, 1588 \mathrm{~s}, 1456 \mathrm{~m}, 1402 \mathrm{~m}$; mass spectrum (APCI): m/e (\% relative intensity) 367 (1) M+H ${ }^{+}, 311$ (100) M^{+}-Boc, 267 (45), 261 (10), 170 (20), 144 (15); HRMS: m/e calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na} 389.1841$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, found 389.1830.
(S) - (-) - 3-Acetyl-12-(t-Butoxycarbonyl)-1,2,6,7,12,12b-Hexahydro-Indolo[2,3-a]quinolizine 36.

According to the general procedure (described for the synthesis of racemic 36), the cycloaddition reaction of amide $\mathbf{3 5}(20.7 \mathrm{mg}, 0.06 \mathrm{mmol})$ through treatment with amine salt $\boldsymbol{S}, \boldsymbol{S} \mathbf{- 3 8}(21.3 \mathrm{mg}, 0.03$ mmol, prepared in situ from equimolar amounts of the corresponding free amine and acetic acid) in EtOAc (2 mL) with subsequent hydrogenation over $\mathrm{Pd} / \mathrm{C}(25 \mathrm{~mol} \%)$ afforded enantiomerically enriched cycloadduct $\boldsymbol{S} \mathbf{- 3 6}$ ($12.2 \mathrm{mg}, 69 \%$) as yellow oil upon purification on silica gel column [eluent EtOAc : hexanes $=2: 3]$.
\boldsymbol{S}-36: $[\alpha]_{\mathrm{D}}{ }^{20}=-70.0^{\circ}\left[\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right]$; CSP-HPLC (Chiralcel OD column, IPA/hexane [10: 90], $0.75 \mathrm{~mL} / \mathrm{min}) \tau=20.2 \mathrm{~min}(80 \%, S), \tau=24.3 \mathrm{~min}(20 \%, R) ; 60 \%$ ee.

(R) - (+) - 3-Acetyl-12-(\boldsymbol{t}-Butoxycarbonyl)-1,2,6,7,12,12b-Hexahydro-Indolo[2,3-a]quinolizine 36.

According to the general procedure (described for the synthesis of racemic 36), the cycloaddition reaction of amide $\mathbf{3 5}(27.0 \mathrm{mg}, 0.07 \mathrm{mmol})$ through treatment with amine salt $\boldsymbol{R}, \boldsymbol{R} \mathbf{- 3 8}(18.8 \mathrm{mg}, 0.028$ mmol, prepared in situ from equimolar amounts of the corresponding free amine and acetic acid) in

EtOAc (2 mL) with subsequent hydrogenation over $\mathrm{Pd} / \mathrm{C}(25 \mathrm{~mol} \%)$ afforded enantiomerically enriched cycloadduct $\boldsymbol{R} \mathbf{- 3 6}(6.0 \mathrm{mg}, 23 \%)$ as yellow oil upon purification on silica gel column [eluent: EtOAc : hexanes $=2: 3]$.
\boldsymbol{R}-36: $[\alpha]_{\mathrm{D}}{ }^{20}=+44.8^{\circ}\left[\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right]$; CSP-HPLC (Chiralcel OD column, IPA/hexane [10: 90], $0.75 \mathrm{~mL} / \mathrm{min}) \tau=20.2 \mathrm{~min}(31 \%, S), \tau=24.3 \mathrm{~min}(69 \%, R) ; 38 \%$ ee.

(土) 3-Acetyl-1,2,6,7,12,12b-Hexahydro-indolo[2,3-a]quinolizine 10.

A solution of racemic cycloadduct $36(40.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: TFA $(1: 1,2 \mathrm{~mL})$ was stirred at rt for 20 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and 10% aq $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~mL})$. The layers were separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Crude product was purified via silica gel column chromatography [eluent EtOAc : hexanes = 4:1] to give desired (\pm) $\mathbf{1 0}$ $(24.0 \mathrm{mg}, 90 \%)$ as a yellow oil. The ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{1 0}$ was in accordance with those reported in literature. ${ }^{2}$

10: $R_{f}=0.12(E t O A c:$ hexanes $=4: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75(\mathrm{ddd}, 1 \mathrm{H}, J=24.0$, $12.5,5.0 \mathrm{~Hz}$), 2.22 (s, 3H), 2.34 (ddd, $1 \mathrm{H}, J=17.0,16.5,5.0 \mathrm{~Hz}$), $2.45-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.76$ (ddd, 1H, J $=16.5,5.0,2.5 \mathrm{~Hz}$), 2.85 (dddd, $1 \mathrm{H}, J=16.5,4.0,2.5,1.0 \mathrm{~Hz}$), $2.94-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.68$ (ddd, 2H, $J=$ $24.0,12.5,5.0 \mathrm{~Hz}$), $4.54(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 7.14(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.21(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0$ $\mathrm{Hz}), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.17$ (brs, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.0,22.2,24.1,28.6,51.7,52.4,81.4,108.4,111.3,118.4,120.1,122.4,127.0,132.9$, $139.5,148.5,193.8$; IR (neat) $\mathrm{cm}^{-1} 3228 \mathrm{~m}, 2960 \mathrm{~m}, 1574 \mathrm{~s}, 1440 \mathrm{~m}, 1402 \mathrm{~m}$; mass spectrum (APCI): m/e (\% relative intensity) 267 (100) $\mathrm{M}+\mathrm{H}^{+}, 263$ (10), 238 (5), 223 (5), 196 (5), 170 (70), 144 (35); HRMS: m / e calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O} 267.1497\left(\mathrm{M}^{+}+\mathrm{H}\right)$, found 267.1526.

(S) - (-) - 3-Acetyl-1,2,6,7,12,12b-Hexahydro-indolo[2,3-a]quinolizine 10.

According to the general procedure (described for the synthesis of racemic 10), the deprotection reaction of enantiomerically enriched $\boldsymbol{S} \mathbf{- 3 6}(16.8 \mathrm{mg}, 0.043 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: TFA $(1: 1,1 \mathrm{~mL})$ afforded desired tetracycle $\boldsymbol{S} \mathbf{- 1 0}(7.60 \mathrm{mg}, 66 \%)$ as yellow oil upon purification on silica gel preparative TLC plate [eluent EtOAc : hexanes $=4: 1] . \boldsymbol{S}-\mathbf{1 0}:[\alpha]_{\mathrm{D}}{ }^{20}=-22.0^{\circ}\left[\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right]$.

(R) - (+) -3-Acetyl-1,2,6,7,12,12b-Hexahydro-indolo[2,3-a]quinolizine 10.

According to the general procedure (described for the synthesis of racemic 10), the deprotection reaction of enantiomerically enriched $\boldsymbol{R} \mathbf{- 3 6}(6.20 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{TFA}(1: 1,0.5 \mathrm{~mL})$
afforded desired tetracycle $\boldsymbol{R} \mathbf{- 1 0}(4.50 \mathrm{mg}, 95 \%$.) as yellow oil which was used in the next step without further purification. $\boldsymbol{R}-\mathbf{1 0}:[\alpha]_{\mathrm{D}}{ }^{20}=+18.0^{\circ}\left[\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right]$.
$(\pm)-(E)$-3-ethylidene-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine (1), (Deplancheine). ${ }^{3,4,5}$

Amide $10(25.0 \mathrm{mg}, 0.094 \mathrm{mmol})$ was dissolved in $t-\mathrm{BuOH}(2 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(37.8 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ was added then. Reaction mixture was refluxed with occasional addition of $\mathrm{MeOH}(0.5 \mathrm{~mL})$ in portions for 6 h . When most of the starting material was consumed as indicated by TLC analysis (eluent EtOAc : hexanes = 4:1), the reaction mixture was cooled down to room temperature, water (1.5 mL) was added and excess of t - BuOH was removed in vacuo. The residue (containing E - and Z-deplancheine as $9: 1$ mixture) was purified by silica gel column chromatography, (eluent EtOAc $:$ hexanes $=2: 1$) to yield (\pm)-E-deplancheine (1) ($11.0 \mathrm{mg}, 79$ \% based on recovered starting material) as yellowish gummy solid. For characterization purposes it was further purified via trituration in diethyl ether to yield (\pm)-Edeplancheine (1) ($5.00 \mathrm{mg}, 40 \%$ based on recovered starting material) as white solid. The spectral data of $\mathbf{1}$ was in accordance with those reported in literature. ${ }^{4,5}$
$(\pm)-\mathbf{1}: R_{f}=0.20($ EtOAc : hexanes $=4: 1) ; \mathrm{mp}=137-140{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.{ }^{3,4,5} \mathrm{mp}=140^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.01(\mathrm{brt}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 2.18-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.01-3.13(\mathrm{~m}, 3 \mathrm{H}), 3.36$ (d, $1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 3.42-3.45(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.09(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}), 7.14$ (td, $1 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}$), $7.32(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.73(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.9,21.8,26.1,30.5,53.1,60.4,63.6,108.4,110.9,118.4,119.6,119.7$, $121.6,127.7,134.1,134.8,136.4$; IR (neat) $\mathrm{cm}^{-1} 3415 \mathrm{~s}, 3123 \mathrm{~m}, 2867 \mathrm{~s}, 2790 \mathrm{~m}, 1436 \mathrm{~m}$; mass spectrum (GC/MS, EI): m/e (\% relative intensity) 252 (90) M ${ }^{+}$, 251 (100), 237 (20), 223 (25), 169 (50), 156 (30); HRMS: m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} 253.1705\left(\mathrm{M}^{+}+\mathrm{H}\right)$, found 253.1678.

(S)-(-)-(E)-3-ethylidene-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine (1), (Deplancheine).

According to the general procedure (described for the synthesis of racemic $\mathbf{1}$), the reduction of tetracycle \boldsymbol{S}-10 ($7.6 \mathrm{mg}, 0.029 \mathrm{mmol}$) with $\mathrm{NaBH}_{4}(11.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ in t - $\mathrm{BuOH}(1 \mathrm{~mL})$ afforded enantiomerically enriched (-) deplancheine ($\boldsymbol{S} \mathbf{- 1}$) ($1.6 \mathrm{mg}, 78 \%$ based on recovered starting material) as yellowish gummy solid upon purification on silica gel preparative TLC plate [eluent EtOAc : hexanes = $2: 1]$.
$\boldsymbol{S}-(-)-\mathbf{1}:[\alpha]_{\mathrm{D}}{ }^{20}=-26.0^{\circ}\left[\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right] ; 50 \%$ ee $(75 \% S, 25 \% R)$. Lit. $^{4}[\alpha]_{\mathrm{D}}{ }^{20}=-52.0^{\circ}[\mathrm{c}=1$, CHCl_{3}].

$(R)-(+)-(E)$-3-ethylidene-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine (1), (Deplancheine).

According to the general procedure (described for the synthesis of racemic $\mathbf{1}$), the reduction of tetracycle $\boldsymbol{R} \mathbf{- 1 0}(4.50 \mathrm{mg}, 0.017 \mathrm{mmol})$ with $\mathrm{NaBH}_{4}(7.00 \mathrm{mg}, 0.18 \mathrm{mmol})$ in t - $\mathrm{BuOH}(1 \mathrm{~mL})$ afforded enantiomerically enriched (+) deplancheine ($\boldsymbol{R} \mathbf{- 1})(1.50 \mathrm{mg}, 87 \%$ based on recovered starting material) as yellowish gummy solid upon purification on silica gel preparative TLC plate [eluent EtOAc : hexanes $=2: 1]$.
$\boldsymbol{R}-(+)-\mathbf{1}:[\alpha]_{\mathrm{D}}{ }^{20}=+19.6^{\circ}\left[\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right] ; 43.5 \%$ ee $(31 \% S, 69 \% R)$. Lit. $^{4}[\alpha]_{\mathrm{D}}{ }^{20}=+52.0^{\circ}[\mathrm{c}$ $\left.=1, \mathrm{CHCl}_{3}\right]$.

COMPARISON TABLES

Deplancheine, ${ }^{13}$ C NMR.

δ, ppm (Allin) 5	δ, ppm (observed)	$\Delta \delta$
12.7	12.9	0.2
21.6	21.8	0.2
25.9	26.1	0.2
30.3	30.5	0.2
52.9	53.1	0.2
60.2	60.4	0.2
63.5	63.6	0.1
108.4	108.4	0.0
110.7	110.9	0.2
118.2	118.4	0.2
119.4	119.6	0.2
119.4	119.7	0.3
121.3	121.6	0.3
127.4	127.7	0.3
134.0	134.1	0.1
134.6	134.8	0.2
136.0	136.4	0.4

Deplancheine, ${ }^{1}$ H NMR.

δ, ppm (Allin) $)^{5}$	δ, ppm (observed)	$\Delta \delta$
$1.52-1.60(1 \mathrm{H})$	$1.55-1.61(1 \mathrm{H})$	
$1.63(3 \mathrm{H})$	$1.64(3 \mathrm{H})$	0.1
$1.95-2.02(1 \mathrm{H})$	$2.01(1 \mathrm{H})$	
$2.15-2.20(1 \mathrm{H})$	$2.18-2.20(1 \mathrm{H})$	
$2.61-2.75(2 \mathrm{H})$	$2.62-2.69(1 \mathrm{H})$	
$2.72-2.76(1 \mathrm{H})$		
$2.80-2.84(1 \mathrm{H})$	$2.80-2.85(1 \mathrm{H})$	
$2.98-3.11(3 \mathrm{H})$	$3.01-3.13(3 \mathrm{H})$	
$3.32-3.35(1 \mathrm{H})$	$3.36(1 \mathrm{H})$	
$3.38-3.41(1 \mathrm{H})$	$3.42-3.45(1 \mathrm{H})$	0.2
$5.43(1 \mathrm{H})$	$5.45(1 \mathrm{H})$	
$7.06-7.15(2 \mathrm{H})$	$7.09(1 \mathrm{H})$	
$7.30-7.33(1 \mathrm{H})$	$7.32(1 \mathrm{H})$	
$7.46-7.48(1 \mathrm{H})$	$7.48(1 \mathrm{H})$	
$7.76(1 \mathrm{H})$	$7.73(1 \mathrm{H})$	-0.3

References:

1. Roush, W. R. Personal communication. The boronic acid has been described but without experimental detail, see: a) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Wada, A.; Ito, M. Angew. Chem., Int. Ed. 1998, 37, 320. b) Roush, W. R.; Champoux, J. A.; Peterson, B. C. Tetrahedron Lett. 1996, 37, 8989.
2. Mandal, S. B.; Pakrashi, S. C. Heterocycles 1987, 26, 1557.
3. Sankar, P. J.; Das, S. K.; Giri, V. S. Heterocycles 1991, 32, 1109.
4. Meyers, A. I.; Sohda, T.; Loewe, M.F. J. Org. Chem. 1986, 51, 3108.
5. Allin, S. M.; Thomas, C. I.; Doyle, K.; Elsegood, M. R. J. J. Org. Chem. 2005, 70, 357.
