Divalent ligand for intramolecular complex formation to streptavidin

Joan-Antoni Farrera,*, ${ }^{, a}$ Pedro Hidalgo-Fernández, ${ }^{a}$ Jurry M. Hannink, ${ }^{b}$ Jurriaan Huskens, ${ }^{c}$ Alan E. Rowan, ${ }^{b}$ Nico A. J. M. Sommerdijk ${ }^{\text {d }}$ and Roeland J. M. Nolte ${ }^{b}$
${ }^{a}$ Departament de Quimica Organica, ,Universitat de Barcelona, Marti i Franqués 1, 08028-Barcelona, Spain. E-mail: jfarrera@ub.edu; ${ }^{b}$ Institute for Molecules and Materials, Radboud Universiteit Nijmegen.P.O.Box 9010, 6525ED Nijmegen, The Netherlands; ${ }^{c}$ Laboratory of Supramolecular Chemistry and Technology, MESA + Institute for Nanotechnology, University of Twente, P.O.Box 217, 7500 AE Enschede, The Netherlands; ${ }^{\text {a }}$ Laboratory for Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Supplementary data

General Techniques.

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker-AC300 (300 MHz) or Bruker Digital DMX-500 (500 MHz) in the indicated solvent. Chemical shifts were reported in part per million (ppm) relative to tetramethylsilane (0.0 ppm), $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$, DMSO-d6 (2.5 ppm) or dioxane (3.76 ppm) as an internal standard. NMR multiplicities are reported using the following abbreviations: s : singlet; d : doublet, t : triplet; m : multiplet. J values are given in Hz .
${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker-AC300 (75 MHz). Chemical shifts were given in part per million (ppm) relative to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ or DMSO-d6 $(39.5 \mathrm{ppm})$ as an internal standard.

Infrared spectra were recorded on a Perkin-Elmer 681. UV-Vis spectra were recorded on a Varian CARY 50.
Mass spectra were recorded on a ThermoFinnigan MAT900S spectrometer for ESI spectra and a VG 7070 spectrometer for FAB spectra. High resolution mass spectrum (ESI-TOF) were recorded in a Bruker BIOTOF II spectrometer by the Mass Spectrometry Service of the University of Santiago de Compostela.

Analytical thin layer chromatography was performed on Merck Silica Gel 60 F254 plates and visualized with UV light and developed by exposition to Cl_{2} (gas) previous to soaking into a solution of 4,4'-(methylenebis (N, N dimethylaniline)).

Melting points were determined in a variable temperature optical microscope and are uncorrected.
Optical rotation was measured using a 1 mL cell with a 1 dm length on a Perkin Elmer 241 MC polarimeter
Anhydrous DMSO was obtained by stirring overnight DMSO over BaO under dry N_{2} and distillation prior to use. All the other solvents were purified according to standard procedures described in the literature. Commercial reagents were used without further purification. N-(2-methyl-1-propenyl)morpholine (3) was prepared by condensation of morpholine and isobutyraldehyde, as described by Benzing ${ }^{1}$. Methyl 5-(chloroformyl)pentanoate was prepared as described by Morgan and Walton ${ }^{2}$.

Methyl, 7,7-dimethyl-6,8-dioxooctanoate (2)
N-(2-methyl-1-propenyl)morpholine ${ }^{1}(13.21 \mathrm{~g}, \quad 93.5 \mathrm{mmol})$ was added dropwise to methyl 5(chloroformyl)pentanoate $(\mathbf{1})^{2}(16 \mathrm{~g}, 89.6 \mathrm{mmol})$ at room temperature, under nitrogen atmosphere and with stirring. When the addition was complete, the mixture was warmed to $45^{\circ} \mathrm{C}$ and allowed to react at this temperature for two hours. To the resulting reaction mixture, saturated aqueous NaHCO_{3} solution was added, and the aqueous phase was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with water, dried over anhydrous

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. Distillation of the residue under reduced pressure $\left(150^{\circ} \mathrm{C}\right.$ at 0.2 torr $)$ afforded the desired product ($17.23 \mathrm{~g}, 90 \%$). IR (film): $v_{\max } / \mathrm{cm}^{-1} 2954,2874,2721,1737$ and $1703 .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.5-1.6(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 9.61(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (rel. intensity) $214\left(12, \mathrm{M}^{+}\right), 196(46), 186(26), 183(36), 143(100), 115$ (46).

Methyl 5-(9,9-dimethyl-3,7-dioxo-2,4,6,8-tetraaza[3.3.1]bicyclonon-1-yl)pentanoate (3)
A mixture of methyl, 7,7-dimethyl-6,8-dioxooctanoate (2) ($2.14 \mathrm{~g}, 10 \mathrm{mmol}$), urea ($1.80 \mathrm{~g}, 30 \mathrm{mmol}$), toluene (40 $\mathrm{mL})$ and trifluoroacetic acid (0.4 mL) was refluxed in an inert atmosphere for 10 h with azeotropic removal of water. After cooling, the suspension was filtered and the precipitate was washed with toluene and ethanol. Recrystallized from boiling water afforded the desired product $(2.56 \mathrm{~g}, 86 \%)$ as a white solid. $\mathrm{mp}>300^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v_{\max } / \mathrm{cm}^{-1}$ 3248, 3082, 1737 and $1692 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 1.06(\mathrm{~s}, 6 \mathrm{H}$), 1.3-1.6 (m, 6H), $2.30(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8$ $\mathrm{Hz}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}), 6.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$ and $6.99($ broad d, $2 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d $_{6}$): $\delta 173.4,154.5,69.6,65.7,51.2,33.6,33.3,33.1,25.1,21.3$ and 21.1. MS (EI): m / z (rel. intensity) 298 $\left(10, \mathrm{M}^{+}\right), 267(3), 238(15)$ and 223 (100). Elemental analysis: Calcd.: C 52.31, H 7.46, N 18.34; Found: C $52.34, \mathrm{H}$ 7.43, N 18.41 .

5-(9,9-dimethyl-3,7-dioxo-2,4,6,8-tetraaza[3.3.1]bicyclonon-1-yl)pentanoic acid (4)

700 mg (2.35 mmol) of compound $\mathbf{3}$ in 50 mL of 2 M NaOH were heated to reflux for 3 h . After cooling and acidification to $\mathrm{pH}=1$, the white precipitate was filtered, washed with cold water and recrystallized from boiling water, affording $610 \mathrm{mg}(2.13 \mathrm{mmol}, 91 \%)$ of the desired compound. $\mathrm{mp}=310^{\circ} \mathrm{C}$. IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3530-2800$, 1715,1696 and $1646 .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.06(\mathrm{~s}, 6 \mathrm{H}), 1.4-1.5(\mathrm{~m}, 6 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $4.5 \mathrm{~Hz}), 6.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N} H)$ and $7.00(\mathrm{broad} \mathrm{d}, 2 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 174.5,154.5,69.6,65.8$, 33.8, 33.6, 33.3, 25.2, 21.5 and 21.2. FAB-MS (3-nitrobenzyl alcohol as matrix): m/z $307(\mathrm{M}+\mathrm{Na}), 285(\mathrm{M}+\mathrm{H})$. Elemental analysis: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{2} \mathrm{O}$: C 47.67, H 7.33, N 18.53; Found: C 47.69, H 7.27, N 18.48.

N^{\prime}, N^{\prime} '-bis(6-(tert-butoxycarbonyl)aminohexyl)- ${ }^{\alpha}$-benzyloxycarbonyl-L-glutamide (6)

A solution of the bis(4-nitrophenyl)ester of N-benzyloxycarbonyl-L-glutamic acid (5) ($2.314 \mathrm{~g}, 4.42 \mathrm{mmol}$) in 50 mL of AcOEt was slowly added over a stirred solution of N-tert-butoxycarbonyl-1,6-hexanediamine ($2.366 \mathrm{~g}, 9.36$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{ml})$ in 50 mL of AcOEt. The mixture was allowed to react at room temperature for 48 h , and then it was extracted with water $(5 \times 200 \mathrm{~mL})$ and with $0.1 \mathrm{M} \mathrm{HCl}(2 \times 200 \mathrm{~mL})$. Subsequently the organic phase was concentrated to one fourth of the initial volume and left at $4^{\circ} \mathrm{C}$ overnight. Filtration of the precipitate and washing with cold AcOEt afforded $1.648 \mathrm{~g}(2.48 \mathrm{mmol}, 56 \%)$ of the desired compound. $\mathrm{mp}=114-115^{\circ} \mathrm{C} . R_{f}=0.52$ $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 9 / 1\right)$. IR (KBr): $v_{\text {max }} / \mathrm{cm}^{-1} 3307,1689,1649$ and $1535 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ., \mathrm{CDCl}_{3}$): $\delta 7.34(5 \mathrm{H}, \mathrm{Ar}-$ H), 6.88 (broad, 1H, NH), 6.30 (broad, $1 \mathrm{H}, \mathrm{NH}$), 6.23 (broad, $1 \mathrm{H}, \mathrm{NH}$), 5.10 (s, 2H, Ph-CH2), 4.62 (broad, 2H, NH), $4.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{C}_{\alpha} \mathrm{H}-\mathrm{CO}\right), 3.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CO}-\mathrm{NH}-\mathrm{CH}_{2}\right), 3.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CO}\right), 2.4-1.9\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{C}_{\alpha} \mathrm{H}-\mathrm{CH}_{2}-\right.$ $\mathrm{CH} \mathrm{H}_{2}$-CO-), $1.5-1.4\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz , CDCl_{3}): $\delta 172.8,171.2,156.4,156.1,156.0,136.3,128.5,128.1,128.0,78.9,66.8,54.2,40.2,40.1,39.3,39.2,32.6$, 29.9, 29.8, 29.4, 29.2, 28.4, 26.2, 26.1 and 26.0. FAB-MS (3-nitrobenzyl alcohol as matrix) m/z $678[\mathrm{M}+\mathrm{H}]^{+}$. Elemental analysis: Calcd. C 62.64, H 8.81, N 10.32; Found: C 62.51, H 8.77, N 10.33.

Compound 7

0.587 g of compound $\mathbf{6}(0.868 \mathrm{mmol})$ was allowed to react with 20 mL of TFA at room temperature for 1 h , and then it was evaporated to dryness. The resulting product was dried under vacuum and then it was dissolved in 50 mL of anhydrous DMSO and added to a stirred solution of compound $4(0.536 \mathrm{~g}, 1.887 \mathrm{mmol})$, diphenylphosphoryl azide $(0.8 \mathrm{ml}, 3.70 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL})$ in 50 mL of anhydrous DMSO. The mixture was allowed to react for 24 h at room temperature, and then 50 mL of water were added and the mixture was evaporated to dryness. The solid obtained was dissolved in 50 mL of MeOH and was precipitated with 300 mL of $\mathrm{Et}_{2} \mathrm{O}$ affording a pale yellow precipitate which was subsequently purified by counter current extraction using $\mathrm{BuOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(4 / 1 / 1)$ yielding $387 \mathrm{mg}(0.383 \mathrm{mmol}, 44 \%)$ of the desired product as a white solid. $\mathrm{mp}=195-196^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.25\left(\mathrm{BuOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}\right.$, $4 / 1 / 1$). IR (KBr): $v_{\text {max }} / \mathrm{cm}^{-1} 3530$, 3262, 3088, 2935, 1703, 1656 and $1531 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} .$, DMSO-d ${ }_{6}$): $\delta 7.8-$ 7.7 ($4 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}-$), $7.40-7.25$ ($6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}+\mathrm{NH}-\mathrm{CO}-\mathrm{O}$), 7.04 ($4 \mathrm{H}, \mathrm{NH}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}-$), 6.57 (s, 4H, N $\underline{H}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}-$), $5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 3.90\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NH}-\mathrm{C}_{\alpha} H-\mathrm{CO}\right), 3.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{NH}-\mathrm{CH}-\mathrm{NH}), 3.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}-\mathrm{NH}\right)$, 2.1-2.0 (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right), 1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{C}_{\alpha} \mathrm{H}-\mathrm{C}_{\beta} H \mathrm{H}-\mathrm{CH}_{2}\right), 1.70\left(\mathrm{~m} \mathrm{1H}, \mathrm{NH}-\mathrm{C}_{\alpha} \mathrm{H}-\mathrm{C}_{\beta} \mathrm{H} H-\mathrm{CH}_{2}\right), 1.55-1.15(\mathrm{~m}$,

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is © The Royal Society of Chemistry 2005$28 \mathrm{H},-\mathrm{CH}_{2}-$), 1.05 (s, $12 \mathrm{H}, \mathrm{CH}_{3^{-}}$). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta 171.9,171.3,155.8,154.6,137.0,128.3$, $127.8,127.7,69.6,65.6,65.4,54.5,38.4,38.3,35.2,33.8,33.3,31.9,29.2,29.1,29.0,28.1,26.1,26.0,21.6,21.2$.

Compound 8

To a solution of $175 \mathrm{mg}(0.173 \mathrm{mmol})$ of compound 7 in 20 mL of $\mathrm{MeOH}, 10 \mathrm{mg}$ of $10 \% \mathrm{Pd} / \mathrm{C}$ were added and the mixture was kept under H_{2} atmosphere at room temperature for 11 h . Filtration of the catalyst over Celite and evaporation of the solvent afforded $145 \mathrm{mg}(0.166 \mathrm{mmol}, 98 \%)$ of the desired product as a withe solid. $\mathrm{mp}=215-216$ ${ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}+7.2(\mathrm{c} 0.16, \mathrm{MeOH}) ; \mathrm{R}_{\mathrm{f}}=0.05\left(\mathrm{BuOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}, 4 / 1 / 1\right)$. IR $(\mathrm{KBr}): v_{\max } / \mathrm{cm}^{-1} 3275,2933,1653$ and 1522. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}, 9 / 1$, PBS pH = 6.0): $\delta 8.1-7.9$ ($4 \mathrm{H} \mathrm{NH}-\mathrm{CH}_{2}$), 7.31 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{NH}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}$), 6.83 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{NH}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}-), 4.26(2 \mathrm{H}, \mathrm{NH}-\mathrm{CH}-\mathrm{NH}), 3.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}-\mathrm{C}_{\alpha} H\right.$), 3.19-3.16 (m. $8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}$), 2.35 and $2.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CO}-\mathrm{C}_{\alpha} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}\right), 2.29\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right), 1.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.45$ (m, 12H, $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}$ and $\left.\mathrm{CH}_{2}\right), 1.32\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}\right), 1.19\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\right) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz , DMSO-d $_{6}$): $\delta 171.87,171.85,171.83,154.5,69.6,66.3,65.7,38.4-38.3,35.2,33.8,33.3,29.1-29.0,26.1-25.9,21.6$, 21.1. HRMS calcd for $\mathrm{C}_{41} \mathrm{H}_{74} \mathrm{~N}_{13} \mathrm{O}_{8}\left(\mathrm{MH}^{+}\right) 876.5783$, found 876.5780 .

Determination of the binding constant by spectrophotometric competitive titration.

a. Binding model for the monovalent complexes.

Assuming that the four identical binding sites of both Av and SAv behave independently, the competitive titration could be represented as shown in scheme 1 .

Scheme 1
Expressions for [S], [I], [L], [SI] and [SL], derived from the 1:1 binding model ${ }^{3}$, were used in the least-squares fitting of the calculated absorbance $\left(\mathrm{A}_{\text {calc }}\right)$ (eq. 1) to the experimental absorbance $\left(\mathrm{A}_{\text {exp }}\right)$.

$$
\begin{equation*}
\mathrm{A}_{\text {calc }}=\varepsilon_{\mathrm{I}(500)}[I]+\varepsilon_{\mathrm{SI}(500)}[S I] \tag{1}
\end{equation*}
$$

This fitting procedure led to the optimal value for the binding constant between S and L . The reasonably good fit between the experimental and calculated curves supports our assumption of independent behaviour between binding sites.

b. Binding model for the divalent complexes.

Assuming that half the protein (two proximal binding sites) behaves independently of the other half, the competitive titration could be represented as shown in scheme 2.

Scheme 2
Apart from $\mathrm{S}=\mathrm{L}$, the complexes $\mathrm{S}-\mathrm{L}, \mathrm{SL}_{2}$ and $\mathrm{S}_{2} \mathrm{~L}$ (scheme 3) were also considered in the fitting procedure.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

Scheme 3

Consideration of these equilibria led to the use of expressions (2)-(6) in the least-squares fitting of the calculated absorbance ($\mathrm{A}_{\text {calc }}$) (eq. 7) to the experimental absorbance ($\mathrm{A}_{\text {exp }}$).

$$
\begin{align*}
& {[S]=\frac{S_{t}}{1+K_{S l}[I]+K_{S=L}[L]+K_{S l} K_{S I_{2}}[I]^{2}+K_{S-L}[L]\left(1+K_{L_{2} S}[L]+2 K_{S_{2} L}[S]\right)}} \tag{2}\\
& {[I]=\frac{I_{t}}{1+K_{S l}[S]\left(1+2 K_{S l_{2}}[I]\right)}} \tag{3}\\
& {[L]=\frac{L_{t}}{1+K_{S=L}[S]+K_{S-L}[S]\left(1+2 K_{S L_{2}}[L]+K_{S_{2} L}[S]\right)}} \tag{4}\\
& {[S I]=K_{S l}[S][I]} \tag{5}\\
& {\left[S I_{2}\right]=K_{S_{I}}[I][S I]} \tag{6}\\
& \mathrm{A}_{\text {calc }}=\varepsilon_{\text {IS(S0) }}[I]+\varepsilon_{S I(50)}\left[[S I]+2\left[S I_{2}\right]\right) \tag{7}
\end{align*}
$$

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

S_{t}, I_{t} and L_{t} are the total concentrations of S, I and L respectively.
This fitting procedure led to the optimal value for the binding constant of the divalent complex $\left(\mathrm{K}_{\mathrm{S}=\mathrm{L}}\right)$. Incorporation of the complexes $\mathrm{S}-\mathrm{L}, \mathrm{SL}_{2}$ and $\mathrm{S}_{2} \mathrm{~L}$ into the fitting procedure resulted to have only little influence on the value obtained for $\mathrm{K}_{\mathrm{S}=\mathrm{L}}$.

c. General experimental procedure.

Spectrophotometric competitive titrations were performed on a 1.5 mL cell of 1 cm pathlength. Aliquots of a 0.1-2.0 mM solution of the ligand in phosphate buffer $(\mathrm{pH}=7.3)$ were added to a $3-30 \mu \mathrm{M}$ solution of the protein and $70-100$ $\mu \mathrm{M}$ of HABA in phosphate buffer ($\mathrm{pH}=7.3$) . UV-Vis absorption spectra were recorded five minutes after each addition from 650 to 300 nm , and the changes in absorbance at 500 nm and 348 nm (due to the displacement of the protein-bound dye by the ligand) were fitted to the corresponding $1: 1$ binding model assuming independent binding.

Figure 1. Absorption change at 500 nm in the titration of Av $3.0 \mu \mathrm{M}$ (tetramer) and HABA $81 \mu \mathrm{M}$ with ligand 4. Phosphate buffer $0.1 \mathrm{M}, \mathrm{pH}=7.3$. The solid line represents the fit of the data to the (1:1) binding model.

Figure 2. Absorption change at 500 nm in the titration of SAv $6.5 \mu \mathrm{M}$ (tetramer) and HABA $76 \mu \mathrm{M}$ with ligand 4. Phosphate buffer $0.1 \mathrm{M}, \mathrm{pH}=7.3$.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

Figure 3. Absorption change at 500 nm in the titration of $\mathrm{SAv} 26 \mu \mathrm{M}$ (tetramer) and HABA $76 \mu \mathrm{M}$ with ligand $\mathbf{8}$. Phosphate buffer $0.1 \mathrm{M}, \mathrm{pH}=7.3$.

Calorimetric titrations

Calorimetric titrations were carried out using a Microcal VP-ITC instrument with a cell volume of 1.4115 mL . The titrations were performed by adding $10 \mu \mathrm{~L}$ aliquots of a $0.2-0.8 \mathrm{mM}$ aqueous solution of the ligand (pH 7.3) to a 5$33 \mu \mathrm{M}$ solution of the protein (pH 7.3) in the calorimetric cell, and monitoring the heat change after each addition. All isothermal titration calorimetry experiments were conducted in 100 mM KCl in the absence of buffer to avoid heat effects due to ionization of buffer components ${ }^{4}$. The pH of the solutions was adjusted adding small amounts of 0.1 M KOH and 0.1 M HCl .

Figure 4. Isothermal titration calorimetry of a solution of Av $9.73 \mu \mathrm{M}$ (tetramer) in 0.10 M KCl (adjusted to pH 7.3) with a solution 0.24 mM of $\mathbf{8}$ in 0.10 M KCl (adjusted to pH 7.3). The solid line represents the fit of the data to the (1:1) binding model.

References

1 E. Benzing, Angew. Chem. 1959, 71, 521.
2 G. T. Morgan, E. Walton, J. Chem. Soc. 1933, 91.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

3 K.A. Connors, Binding constants. The measurement of molecular complex stability; John Wiley \& Sons, New York, 1987.
4 P. C. Weber, M. W. Pantoliano, D. M. Simons, F. R. Salemme, J. Am. Chem. Soc., 1994, 116, 2717.

