Supplementary information

Experimental

General experimental methods have been previously described. ${ }^{1}$ Anhydrous pyridine and DMF were purchased from Sigma Aldrich and used without further purification. All nonaqueous reactions were performed under an atmosphere of nitrogen. The numbering system used to name each compounds has been used to assign the NMR spectra; the numbering of the core ring is not marked with a dash in each case. Analytical HPLC was conducted on a Dionex HPLC system with diode array detection; unless otherwise stated, the column oven was set at $24^{\circ} \mathrm{C}$. An Econosil columns (silica particle size: $10 \mu \mathrm{~m}$) was used for analytical $(4.6 \times 250 \mathrm{~mm})$ work, and a Chiracel OD column $(4.6 \times 250 \mathrm{~mm})$ was used for chiral analytical HPLC; samples were calibrated against external standard samples dissolved in isopropanol. Semi-preparative HPLC was conducted with a Waters 2525 binary gradient pump with detection by a Micromass ZQ mass spectrometer; an XTerra ${ }^{\circledR}$ preparative HPLC column ($19 \times 50 \mathrm{~mm}$) was used. Preparative HPLC was generally conducted on a Gilson HPLC machine using a gradient of $90 \rightarrow 95 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over 30 min detecting at 200 nm on a Thermohypersil $250 \times 21.2 \mathrm{~mm}, 8 \mu$, Hyperprep ${ }^{\circledR}$ HS C18 column. Microanalyses were carried out by staff of the Department of Chemistry using a Carlo Erba 1106 automatic analyser.

4,8-Dioxa-tricyclo $\left[5.1 .0 .0^{3,5}\right]$ octane or cis-1,4-Cyclohexadiene dioxide ${ }^{2 a} 12$

A solution of 1,4-cyclohexadiene ($5.0 \mathrm{~g}, 62 \mathrm{mmol}$) in dichloromethane (13 mL) was added dropwise to a solution of m-chloroperbenzoic acid ($31.0 \mathrm{~g}, 125 \mathrm{mmol}, 2 \mathrm{eq} ., 70 \%$ in weight) in dichloromethane (120 mL) cooled at $0{ }^{\circ} \mathrm{C}$. The rate of the addition was such that the temperature of the reaction mixture did not exceed $4^{\circ} \mathrm{C}$. The reaction was stirred for 8 h at $0{ }^{\circ} \mathrm{C}$ and allowed to warm to room temperature over 14 h . The reaction mixture was filtered, and the cake washed with dichloromethane $(100 \mathrm{~mL})$. The filtrate was stirred with a saturated aqueous solution of sodium sulfite $(100 \mathrm{~mL})$ over 30 min and then extracted with dichloromethane. The organic layer was stirred with calcium hydroxide (8.0 g) for 30 min , filtered, the cake washed with dichloromethane $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated
under reduced pressure. The crude mixture was purified by flash chromatography on silica gel (gradient elution: 1:0.8:0.2 \rightarrow 6:3.8:0.2 \rightarrow 7:2.8:0.2 dichloromethane-petrol- $\mathrm{Et}_{3} \mathrm{~N}$) to give the diepoxide $12(4.1 \mathrm{~g}, 59 \%)$ as colourless prisms, m.p. $54-56{ }^{\circ} \mathrm{C}$ (from dichloromethane) (lit. ${ }^{3} 59-60^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.25$ (7:3 dichloromethane-petrol); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2960, 1278 and 1023; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.09(4 \mathrm{H}, \mathrm{d}, J 1.0,1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}), 2.74\left(2 \mathrm{H}, \mathrm{d}, J 17.1,3-\mathrm{H}_{\text {cis }}\right.$ and $6-\mathrm{H}_{\mathrm{cis}}$), $2.28\left(2 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $1.0,3-\mathrm{H}_{\text {trans }}$ and $\left.6-\mathrm{H}_{\text {trans }}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 49.6$ (CHO), $23.9\left(\mathrm{CH}_{2}\right)$; $m / z(\mathrm{EI}) 112.1\left(20 \%, \mathrm{M}^{+}\right), 55.1(100)$ and 39.1 (50); (Found: M^{+}, 112.0520. $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$ requires $\left.M, 112.0519\right)$.

(1R,2R,4R,5R)-2,5-Diazido-cyclohexane-1,4-diol 13

The diepoxide $12(4.7 \mathrm{~g}, 41.5 \mathrm{mmol})$ was dissolved in dry ether (24 mL) in a flame dried round bottom flask. The (salen) $\mathrm{Cr}(\mathrm{III}) \mathrm{Cl}$ complex $(S, S) \mathbf{- 1 6}(0.53 \mathrm{~g}, 0.8 \mathrm{mmol}, 0.02 \mathrm{eq}$.$) and$ trimethylsilylazide ($11.5 \mathrm{~mL}, 87.1 \mathrm{mmol}, 2.1 \mathrm{eq}$.) were added to the reaction mixture, which was stirred for $24 \mathrm{hr},(S, S) \mathbf{- 1 6}(0.53 \mathrm{mg}, 0.8 \mathrm{mmol}, 0.02 \mathrm{eq}$.) and trimethylsilylazide (11.5 mL , $87.1 \mathrm{mmol}, 2.1 \mathrm{eq}$.) added and the reaction stirred for two days at room temperature. The crude reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel (gradient elution: $0.98: 0: 0.2 \rightarrow 1: 0.98: 0.2$ petrol-EtOAc-Et ${ }_{3} \mathrm{~N}$) to give the corresponding bis silyl ether ($9.7 \mathrm{~g}, 68 \%$), which was dissolved in dry methanol $(94 \mathrm{~mL})$, trifluoroacetic acid ($1.8 \mathrm{~mL}, 24 \mu \mathrm{~mol}$) added dropwise and stirred for 18 h . The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel (7:3 petrol-EtOAc) and recrystallisation from dichloromethane to give the diol $\mathbf{1 3}(4.6 \mathrm{~g}, 57 \%)$ as colourless prisms, m.p. $139-141{ }^{\circ} \mathrm{C}$ (from dichloromethane); $R_{\mathrm{f}} 0.56$ ($6: 4$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}-21.4$ (c. 1.05 in MeOH); (Found C, $36.45 ; \mathrm{H}, 5.15 ; \mathrm{N}, 42.55 ; \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 36.36 ; \mathrm{H}, 5.09 ; \mathrm{N}, 42.41 \%$); $v_{\max } / \mathrm{cm}^{-1}$ (film) $3339,2933,2104,1256,1010 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{MeOD}) 3.66-3.50(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}$ and $5-$ $\mathrm{H}), 1.89-1.77(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H})$ and $1.75-1.62(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H})$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}, \mathrm{MeOD})$ 69.6-63.5 ($1 / 4-\mathrm{CHO}$ and $2 / 5-\mathrm{CN}_{3}$) and $33.6\left(3 / 6-\mathrm{CH}_{2}\right) ; m / z(\mathrm{ES}) 221.0\left(100 \%, \mathrm{MNa}^{+}\right)$. The sample was shown to have $70 \pm 10 \%$ ee by chiral HPLC (Chiralcel OD column; elution with 3:97 isopropanol-hexane).

(1S,2S,4S,5S)-2,5-Diazido-cyclohexane-1,4-diol 13'

By the same general method, the diepoxide $12(2.1 \mathrm{~g}, 18.5 \mathrm{mmol}),(R, R)-16(0.23 \mathrm{~g}$, $0.4 \mathrm{mmol}, 0.02 \mathrm{eq}$.), trimethylsilylazide ($5.1 \mathrm{~mL}, 38.9 \mathrm{mmol}, 2.1 \mathrm{eq}$.), and trifluoroacetic acid ($345 \mu \mathrm{~L}, 4.2 \mu \mathrm{~mol}$) gave the diol $\mathbf{1 3}^{\prime}(0.90 \mathrm{~g}, 25 \%)$ as colourless prisms, $[\alpha]_{\mathrm{D}}+21.7$ (c. 1.40 in MeOH), spectroscopically identical to $\mathbf{1 3}$ obtained previously. The sample was shown to have $70 \pm 10 \%$ ee by chiral HPLC (Chiralcel OD column; elution with 3:97 isopropanol-hexane).

(1R,2R,4R,5R)-1,5-Diazido-2,4-bis-trimethylsilanyloxy-cyclohexane

The diepoxide ${ }^{2 \mathrm{~b}} 14$ ($168 \mathrm{mg}, 3.0 \mathrm{mmol}$), (S, S)- N - N '-bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexane-diaminochromium(III) chloride ($84 \mathrm{mg}, 0.12 \mathrm{mmol}$) and azidotrimethylsilane ($1.2 \mathrm{~mL}, 9 \mathrm{mmol}$) were dissolved in ether $(1 \mathrm{~mL})$ and stirred for 48 h . Azidotrimethylsilane ($600 \mu \mathrm{~L}, 4.5 \mathrm{mmol}$) was added, the reaction mixture stirred for a further 16 h and then evaporated under reduced pressure to give a crude product, which was purified by flash chromatography, eluting with 79:20:1 petrol- $\mathrm{EtOAc}-\mathrm{Et}_{3} \mathrm{~N}$ to give the diazide ($662 \mathrm{mg}, 70 \%$) as a yellow oil, $R_{\mathrm{f}} 0.8$ (8:2, petrol-EtOAc); $[\alpha]_{D}^{20}-4.7$ (c 1.2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 2958, 2903, 2496, 2102 and 1703; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.70(2 \mathrm{H}, \mathrm{q}, J 5.7,2-\mathrm{CH}$ and $4-\mathrm{CH}), 3.37(2 \mathrm{H}, \mathrm{q}, J 5.7,1-\mathrm{CH}$ and $5-\mathrm{CH}), 1.72\left(2 \mathrm{H}, \mathrm{t}, J 5.7,3-\mathrm{CH}_{2}\right), 1.61(2 \mathrm{H}, \mathrm{t}, J 5.7,5-$ CH_{2}) and $0.00(18 \mathrm{H}, \mathrm{s}, \mathrm{TMS}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 69.7,61.7,36.9,29.2$ and $0.00 ; m / z(\mathrm{ES})$ 315 ($100 \%, \mathrm{M}-\mathrm{N}_{2}{ }^{+}$); (Found: $\mathrm{M}-\mathrm{N}_{2}{ }^{+} 315.1670 ; \mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires $M-N_{2}, 315.1673$).

($1 R, 3 R, 4 R, 6 R$)-4,6-Diazidocyclohexane-1,3-diol ${ }^{3} 15$

Trifluoroacetic acid $(2 \mu \mathrm{~L})$ was added to a solution of $(1 R, 2 R, 4 R, 5 R)-1,5$-Diazido-2,4-bis-trimethylsilanyloxy-cyclohexane ($534 \mathrm{mg}, 1.7 \mathrm{mmol}$) dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$, and the reaction mixture was stirred for 35 min . The reaction mixture was evaporated under reduced pressure to give a crude product, which was purified by flash chromatography eluting with 7:3 petrol-EtOAc to give the diazide ${ }^{3} \mathbf{1 5}(327 \mathrm{mg}, 97 \%)$ as colourless prisms, $\mathrm{mp} 97-98^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, lit. ${ }^{3} 96^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.25$ (7:3, petrol-EtOAc); $[\alpha]_{D}^{20}-5.7$ (c 1.2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$);
(Found: C, 36.6; H, 5.20; N, 42.3\%; $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires C, $36.4 ; \mathrm{H}, 5.10 ; \mathrm{N}, 42.4 \%$), spectroscopically identical to the racemate obtained previously. Analysis by chiral HPLC showed that the sample had $>98 \%$ ee.

($1 S, 3 S, 4 S, 6 S$)-4,6-Diazidocyclohexane-1,3-diol ${ }^{3} \mathbf{1 5}^{\prime}$

Azidotrimethylsilane ($15.5 \mathrm{~mL}, 117 \mathrm{mmol}$) was added dropwise to a stirred solution of the diepoxide 14 ($6.25 \mathrm{~g}, 55.8 \mathrm{mmol}$) and (R, R)- N - N^{\prime}-bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexane-diaminochromium(III) chloride ($4 \mathrm{~mol} \%, 705 \mathrm{mg}, 1.12 \mathrm{mmol}$) in ether (19 mL) and stirred for 96 h and concentrated under reduced pressure to give a crude product, which was purified by flash chromatography, eluting with $99: 10: 1$ petrol- $\mathrm{EtOAc}_{\mathrm{E}}-\mathrm{Et}_{3} \mathrm{~N}$ to give the TMS protected diol as a yellow oil. The TMS-protected diol was dissolved in 0.05% TFA in $\mathrm{MeOH}(80 \mathrm{~mL})$, stirred for 16 h and evaporated under reduced pressure to give a crude product, which was purified by flash chromatography eluting with $8: 2$ petrol-EtOAc and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to give the diol ${ }^{3} \mathbf{1 5}^{\prime}$ ($4.44 \mathrm{~g}, 49 \%$) as colourless prisms; mp 98-99 ${ }^{\circ} \mathrm{C}$ (from MeOH- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, lit. ${ }^{3} 96{ }^{\circ} \mathrm{C}$); $R_{\mathrm{f}} 0.25$ (7:3, petrol-EtOAc); $[\alpha]_{D}^{20}+5.6(c$ 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), spectroscopically identical to the racemate obtained previously. Analysis by chiral HPLC showed that the sample had $>98 \%$ ee.

(1R,3S,4S,6R)-Diazidocyclohexane-3,6-diol

Azidotrimethylsilane ($9.42 \mathrm{~mL}, 71.4 \mathrm{mmol}$) was added dropwise to stirred solution of the diepoxide $14(2.0 \mathrm{~g}, 17.9 \mathrm{mmol})$ and $(R, R)-N$ - N '-bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexane-diaminochromium(III) chloride ($4 \mathrm{~mol} \%, 451 \mathrm{mg}, 0.714 \mathrm{mmol}$) in ether (36 mL). After 96 h , the reaction mixture was filtered through a short pad of silica, and the crude residue treated with $0.05 \% \mathrm{TFA}$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ for 30 min . The reaction mixture was concentrated under reduced pressure to give a crude product, which was recrystallised (twice) from crude $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ and the mother liquor purified by flash chromatography eluting with 7:3 petrol-EtOAc to give the centrosymmetric diol $\mathbf{1 7}(183 \mathrm{mg}, 5 \%)$ as colourless plates, m.p. $158-160{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$); $R_{\mathrm{f}} 0.2$ (7:3 petrol-EtOAc); (Found : C, $36.8 ; \mathrm{H}$, 5.05; $\mathrm{N}, 42.3 ; \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 36.4 ; \mathrm{H}, 5.10 ; \mathrm{N}, 42.4 \%$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3376 ,

2939, 2906 and 2105 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; $\left.\mathrm{d}_{4}-\mathrm{MeOD}\right) 3.51$ (2 H , ddd, $J 12.5,9.5$ and $4.5,3-\mathrm{H}$ and $6-$ H), 3.27 ($2 \mathrm{H}, \mathrm{ddd}, J 12.5,9.5$ and $4.5,1-\mathrm{H}$ and $4-\mathrm{H}$), 2.03 (2 H , app dt, ${ }^{2} J 12.5$ and $J 4.5,2-\mathrm{H}$ and $5-\mathrm{H})$ and $1.22\left(2 \mathrm{H}\right.$, app q, ${ }^{2} J$ and $J 12.5,2-\mathrm{H}$ and $\left.5-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{d}_{4}-\mathrm{MeOD}\right) 73.0,65.3$ and 37.7; $m / z\left(\mathrm{ES}^{-}\right) 197\left[100 \%\right.$, (M-H) $\left.{ }^{-}\right]$; (Found: $[\mathrm{M}-\mathrm{H}]$ 197.0789; $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires $M-H, 197.0792)$.

(1R, 3S,4S,6R)-Diazidocyclohexane-3,6-diacetate 18

Triethylamine $(1 \mathrm{~mL})$ and acetic anhydride $(1 \mathrm{~mL})$ were added to the centrosymmetric diol $\mathbf{1 7}$ ($50.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) and the reaction stirred for 1.5 h . The reaction mixture was evaporated under reduced pressure to give a crude product which was purified by flash chromatography eluting with 9:1 petrol-EtOAc to give the diacetate $\mathbf{1 8}(57.9 \mathrm{mg}, 82 \%)$ as colourless plates, m.p. $151-152{ }^{\circ} \mathrm{C}$ (from petrol- $\mathrm{Et}_{2} \mathrm{O}$); $R_{\mathrm{f}} 0.20$ ($9: 1$ petrol- EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid phase) 2967, 2102, 1735 and $1455 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.74(2 \mathrm{H}, \mathrm{ddd}, J 12.4,9.9$ and $4.6,3-\mathrm{H}$ and $6-\mathrm{H}), 3.55(2 \mathrm{H}$, ddd, $J 12.4,9.9$ and $4.6,1-\mathrm{H}$ and $4-\mathrm{H}), 2.39(2 \mathrm{H}$, app dt, $J 12.4$ and $4.6,2-\mathrm{H}$ and $5-\mathrm{H}), 2.12(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and $1.46(2 \mathrm{H}$, app q, $J 12.6,2-\mathrm{H}$ and $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 170.4, 72.8, 60.2, 33.3 and 21.4; $m / z(E S) 300\left(100 \%, \mathrm{MNH}_{4}{ }^{+}\right)$; (Found: $\mathrm{MNH}_{4}{ }^{+}, 300.1415$; $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires $M N H_{4}, 300.1415$).

(1S,3R,4R,6S)-Diazidocyclohexane-3-ol-6-acetate 19

Porcine liver esterase ($54 \mu \mathrm{l}, 10 \mathrm{mgml}^{-1}, 184 \mathrm{Umg}^{-1}, 100 \mathrm{U}$) was added to a stirred solution of the diacetate ($65 \mathrm{mg}, 0.23 \mathrm{mmol}$) suspended in aqueous Tris. HCl buffer $(9 \mathrm{~mL}, 250 \mathrm{mM}$, $\mathrm{pH} 7.5)$ and DMSO (1 mL). After 16 h , water $(10 \mathrm{~mL})$ was added and the reaction mixture extracted with ether $(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give a crude product, which was purified by flash chromatography eluting with 8:2 petrol-EtOAc to the hydroxy acetate $19(25 \mathrm{mg}, 46 \%)$ as a colourless oil, $R_{\mathrm{f}} 0.20$ (8:2 petrol-EtOAc); $[\alpha]_{D}^{20}+0.60\left(c 0.66\right.$ in MeOH); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3357,2928,2098$ and $1740 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.75(1 \mathrm{H}, \mathrm{ddd}, J 11.7,9.9$ and $4.7,6-\mathrm{H}), 3.53-3.48(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and 1-H), $3.35(1 \mathrm{H}$, ddd, $J 11.7,9.9$ and $4.7,4-\mathrm{H}), 2.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.40(1 \mathrm{H}, \mathrm{dt}, J 11.7$ and $4.7,5-\mathrm{H}), 2.30(1 \mathrm{H}, \mathrm{dt}, 11.7$ and $4.7,2-\mathrm{H})$ and $1.45(2 \mathrm{H}, 2 \times \mathrm{app} \mathrm{q}, J 11.7,5-\mathrm{H}$ and $2-\mathrm{H}) ; \delta_{\mathrm{C}}$
($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 170.6, 73.3, 71.4, 63.6, 60.5, 35.6, 32.8 and $21.4 ; m / z(\mathrm{ES}) 258(100 \%$, $\mathrm{MNH}_{4}{ }^{+}$); (Found: $\mathrm{MNH}_{4}{ }^{+} 258.1309 ; \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{3}$ requires $M N H_{4}, 258.1309$).
(1R,2R,4S,5S)-4-(acetyloxy)-2,5-diazidocyclohexyl-1-(1'S)-camphanic acid ester 20a (1S)-(-)-Camphanic chloride ($8.3 \mathrm{mg}, 38.5 \mu \mathrm{~mol}$) was added in one portion to a stirred solution of the alcohol $19(6.6 \mathrm{mg}, 27.5 \mu \mathrm{~mol})$ and dimethylaminopyridine ($0.7 \mathrm{mg}, 5.5 \mu \mathrm{~mol}$) in pyridine $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 4 h , the reaction mixture was concentrated under reduced pressure and the crude residue redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, washed with aqueous hydrochloric acid (25 mL of a 1 M solution), saturated aqueous sodium bicarbonate (25 mL), brine (25 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give a crude product, which was purified by flash chromatography (gradient elution $8: 2 \rightarrow 7: 3$ petrol- $\mathrm{Et}_{2} \mathrm{O}$) to give the ($1^{\prime} S$)-camphanic ester $\mathbf{2 0 a}\left(6.5 \mathrm{mg}, 56 \%\right.$) as colourless needles, m.p. $186-187^{\circ} \mathrm{C}$ (from petrol- $\mathrm{Et}_{2} \mathrm{O}$); $R_{\mathrm{f}} 0.15$ (7:3 petrol- $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{D}^{20}-10.0$ (c 0.16 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 2928, 2106, 1785 and $1751 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.88-4.71(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $1-\mathrm{H})$, 3.65-3.55 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $2-\mathrm{H}$), 2.52-2.38 ($3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 3-\mathrm{H}$ and $4^{\prime}-\mathrm{H}$ or 3 ' -H), $2.13(3 \mathrm{H}, \mathrm{s}$, OAc), 2.10-1.91 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.3^{\prime}-\mathrm{H}\right), 1.71\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} J 13.2, J 12.9\right.$ and $4.2,4^{\prime}-\mathrm{H}$ or $3^{\prime}{ }^{\prime}-$ H), $1.50(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $3-\mathrm{H}), 1.13\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{Me}\right), 1.07\left(3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{H}\right.$ or $\left.8^{\prime}-\mathrm{H}\right)$ and $1.00(3 \mathrm{H}$, s, $9^{\prime}-\mathrm{H}$ or $\left.8^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.2,170.4,167.2,91.2,73.5,72.7,60.2,60.1,55.3$, $55.0,33.3,31.1,29.3,21.3,17.3,17.0$ and 10.1 (1 carbon signal missing or overlapped); m / z (ES) $438\left(100 \%, \mathrm{MNH}_{4}{ }^{+}\right), 421\left(40, \mathrm{MH}^{+}\right)$and $443\left(40, \mathrm{MNa}^{+}\right)$; (Found: $\mathrm{MNa}^{+} 443.1670$; $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires $M N a, 443.1655$).

(1R,2R,4S,5S) 4-(Acetyloxy)-2,5-diazidocyclohexyl-1-(1'R)-camphanic acid ester 20b

By the same general method, the alcohol 19 ($19 \mathrm{mg}, 0.079 \mathrm{mmol}$) was converted into the ($1^{\prime} R$)-camphanic ester 20b ($25.2 \mathrm{mg}, 76 \%$) as colourless plates, m.p. $185-186^{\circ} \mathrm{C}$ (from petrol-EtOAc); $R_{\mathrm{f}} 0.50$ ($8: 2$ petrol-EtOAc); $[\alpha]_{D}^{20}+24.5$ (c 0.62 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2961, 2928, 2104, 1783 and 1737; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.89(1 \mathrm{H}$, ddd, $J 14.6,12.1$ and $4.7,1-\mathrm{H}), 4.76(1 \mathrm{H}$, ddd, $J 14.4,12.1,4.5,4-\mathrm{H}), 3.67-3.56(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $2-\mathrm{H}), 2.51-2.33$ $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ or $4^{\prime}-\mathrm{H}$ and, $3-\mathrm{H}$ and $\left.6-\mathrm{H}\right), 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.14-2.03\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ or $\left.4^{\prime}-\mathrm{H}\right)$,
$1.95\left(1 \mathrm{H}\right.$, ddd, ${ }^{2} J 13.2, J 10.7$ and $4.5,3^{\prime}-\mathrm{H}$ or $\left.4^{\prime}-\mathrm{H}\right), 1.71\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} J 13.2, J 10.7\right.$ and 4.5 , $3^{\prime}-\mathrm{H}$ or $\left.4^{\prime}-\mathrm{H}\right), 1.51(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $3-\mathrm{H}), 1.11\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{Me}\right), 1.07\left(3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{Me}\right.$ or $\left.9^{\prime}-\mathrm{Me}\right)$ and $0.97\left(3 \mathrm{H}, \mathrm{s} 8^{\prime}-\mathrm{H}\right.$ or $\left.9^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.9,170.0,166.8,90.7,72.8,72.3$, 60.1, 59.5, 54.8, 54.5, 32.8, 32.5, 30.6, 28.9, 20.9, 16.7, 16.6 and 9.7; m/z (ES) 438 (100%, $\mathrm{MNH}_{4}{ }^{+}$); (Found: $\mathrm{MNa}^{+} 443.1669 ; \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires $M N a, 443.1655$).

Phenyl-2,3,4,6-tetraol-1-thio- $\boldsymbol{\beta}$-L-glycopyranoside

A catalytic amount of sodium methoxide ($0.90 \mathrm{~g}, 0.2 \mathrm{eq} ., 17.0 \mathrm{mmol}$) was added to a solution of phenyl-2,3,4,6-tetra- O-acetyl-1-thio- β-L-glycopyranoside ($37.0 \mathrm{~g}, 84.0 \mathrm{mmol}$) dissolved in dry $\mathrm{MeOH}(158 \mathrm{~mL})$. The reaction mixture was stirred at room temperature 18 h and concentrated under reduced pressure. The residue was pre-absorbed on silica and filtered through a short pad of silica (gradient elution 9:1 $\rightarrow 8: 2 \mathrm{EtOAc}-\mathrm{MeOH}$). The filtrate was then concentrated under reduced pressure and phenyl-2,3,4,6-tetraol-1-thio- β-Dglycopyranoside ($21.3 \mathrm{~g}, 93 \%$) was obtained as a colourless foam, which has been used without any further purification.

Phenyl-6-O-toluenesulfonyl-2,3,4-triol-1-thio- $\boldsymbol{\beta}$-L-glycopyranoside

A solution of p-toluenesulfonyl chloride ($20.0 \mathrm{~g}, 1.3 \mathrm{eq} ., 112 \mathrm{mmol}$) in dry pyridine $(150 \mathrm{~mL})$ was added dropwise to a solution of phenyl-2,3,4,6-tetraol-1-thio- β-Dglycopyranoside ($23.4 \mathrm{~g}, 86.0 \mathrm{mmol}$) in dry pyridine $(357 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 h stirred at 0 ${ }^{\circ} \mathrm{C}$, the reaction was warmed to ambient temperature and stirred for an additional 18 h . The reaction was then quenched with methanol $(50 \mathrm{~mL})$ and concentrated under reduced pressure. The residue was dissolved in dichloromethane $(150 \mathrm{~mL})$ and washed sequentially with a saturated aqueous sodium hydrogen carbonate solution (100 mL), 1 M hydrochloric acid solution (100 mL) and saturated aqueous sodium hydrogen carbonate solution $(2 \times 100 \mathrm{~mL})$. The aqueous layers were extracted with dichloromethane $(2 \times 100 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (gradient elution 6:4 $\rightarrow 0: 1$ petrol-EtOAc) to
provide phenyl-6- O-toluenesulfonyl-2,3,4-triol-1-thio- β-L-glycopyranoside ($21.8 \mathrm{~g}, 60 \%$) as colourless foam; $[\alpha]_{\mathrm{D}}+40.0$ (c. 0.22 in CHCl_{3}).

Phenyl-6-azido-6-deoxy-2,3,4-triol-1-thio- $\boldsymbol{\beta}$-L-glycopyranoside

Sodium azide ($4.84 \mathrm{~g}, 1.2 \mathrm{eq} ., 74.0 \mathrm{mmol}$) was added to a solution of phenyl-6-O-toluenesulfonyl-2,3,4-triol-1-thio- β-L-glycopyranoside ($26.4 \mathrm{~g}, 62.0 \mathrm{mmol}$) in dry DMF (250 mL). The reaction was heated at $80^{\circ} \mathrm{C}$ during 8 h . After cooling at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in ethyl acetate $(100 \mathrm{~mL})$ and washed with a saturated aqueous sodium hydrogen carbonate solution $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, the aqueous layers were backwashed with ethyl acetate $(2 \times 100$ $\mathrm{mL})$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel with pure ethyl acetate to provide phenyl-6-azido-6-deoxy-2,3,4-triol-1-thio- β-D-glycopyranoside (14.1 g , 48%) as a colourless foam, $[\alpha]_{\mathrm{D}}+15.6$ (c. 1.00 in CHCl_{3}).

Phenyl-6-azido-6-deoxy-2,3,4-tri- O-benzoyl-1-thio- $\boldsymbol{\beta}$-D-glycopyranoside 21B

Benzoyl chloride ($4.1 \mathrm{~mL}, 3.0$ eq., 35.4 mmol) was added dropwise at $0^{\circ} \mathrm{C}$ to a stirred solution of phenyl-6-azido-6-deoxy-2,3,4-triol-1-thio- β-D-glycopyranoside ($3.50 \mathrm{~g}, 11.8$ mmol), triethylamine ($6.6 \mathrm{~mL}, 4$ eq., 47.2 mmol) and dimethylaminopyridine ($0.14 \mathrm{~g}, 0.1 \mathrm{eq}$. , $1.18 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{~mL})$. The reaction mixture was warmed to room temperature over 18 h before being concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (gradient elution 9:1 $\rightarrow 8: 2$ petrol-EtOAc) to provide 2-azidomethyl-3,4,5-tris-benzoyloxy-6-phenylsulfanyl-tetrahydro-pyran (4.37 g , 61%), as colourless prisms, $\mathrm{mp} 43-44^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.41$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+30.8$ (c. 1.18 in CHCl_{3}); (Found C, 65.25; H, 4.5; N, 6.7; S, 5.2; $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ requires C, 65.01; H, 4.46; N, $6.89 ; \mathrm{S}, 5.26 \%$); $v_{\max } / \mathrm{cm}^{-1}$ (film) $3155,2959,2107,1734,1278,1091,908,733,650 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.90(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Bz} 3-\mathrm{H}$ and $5-\mathrm{H}), 7.83(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Bz} 3-\mathrm{H}$ and $5-\mathrm{H}), 7.71$ ($2 \mathrm{H}, \mathrm{d}, J 8.7$, Bz 3-H and 5-H), 7.50-7.41 (3H, m, Bz 4-H), 7.37-7.16 (11H, m, Ph), 5.81 (1 H , $\mathrm{t}, J 9.7,3-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{t}, J 9.7,2-\mathrm{H}$ or $4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{t}, J 9.7,2-\mathrm{H}$ or $4-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{d}, J$
$10.2,1-\mathrm{H}), 3.89(1 \mathrm{H}$, ddd, $J 9.7,6.7$ and $3.1,5-\mathrm{H}), 3.45\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.6.7,6-\mathrm{H}_{\mathrm{A}}\right)$ and $3.36\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.3.1,6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.7,164.2,163.9,132.8,132.6$, 132.4, 129.9, 128.8, 128.7, 128.1, 128.0, 127.7, 127.6, 127.5, 127.4, 127.2, 85.2, 76.6, 72.9, 69.3, 68.8 and 50.4 (3 aromatic peaks overlapped or missing); m / z (ES) $632.6\left(20 \%, \mathrm{MNa}^{+}\right)$ and $105.9\left(100 \%, \mathrm{PhCO}^{+}\right)$.

Phenyl-6-azido-6-deoxy-2,3,4-tri- O-benzyl-1-thio- β-D-glycopyranoside 21A,

Benzyl bromide (7.2 mL , 2.6 eq., 60.5 mmol) was added at $0^{\circ} \mathrm{C}$ to a stirred solution of phenyl-6-azido-6-deoxy-2,3,4-triol-1-thio- α-D-glycopyranoside ($7.07 \mathrm{~g}, 23.8 \mathrm{mmol}$) in dimethylformamide (104 mL), and followed by an portionwise addition of sodium hydride $(2.36 \mathrm{~g}, 2.5$ eq., 59.0 mmol$)$. After 1 h , the reaction mixture was allowed to slowly warm to room temperature. After 3 h , additional portions of benzyl bromide ($2.8 \mathrm{~mL}, 1.0 \mathrm{eq} ., 23.5$ $\mathrm{mmol})$ and sodium hydride ($0.76 \mathrm{~g}, 0.8$ eq., 19.0 mmol) were added. After 1 h , TLC showed no more starting material, the reaction mixture was quenched with methanol (50 mL) and the reaction was concentrated under reduced pressure. The residue was dissolved in ethyl acetate $(100 \mathrm{~mL})$, washed with a saturated aqueous ammonium chloride solution $(50 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under reduced pressure, the crude mixture was purified by flash chromatography on silica gel ($9: 1$ petrol-EtOAc) and recrystallised from EtOH to provide phenyl-6-azido-6-deoxy-2,3,4-tri-O-benzyl-1-thio- β-Dglycopyranoside, as colourless needles ($3.63 \mathrm{~g}, 27 \%$), $[\alpha]_{\mathrm{D}}-16.0$ (c. 0.60 in CHCl_{3}).

Phenyl-6-azido-6-deoxy-2,3,4-tri- O-benzoyl-1-thio- β-L-glycopyranoside 21B'

Benzoyl chloride ($8.2 \mathrm{~mL}, 3.0$ eq., 70.8 mmol) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of phenyl-6-azido-6-deoxy-2,3,4-triol-1-thio- β-D-glycopyranoside ($7.06 \mathrm{~g}, 23.6$ mmol), triethylamine ($13.2 \mathrm{~mL}, 4$ eq., 94.4 mmol) and dimethylaminopyridine ($0.28 \mathrm{~g}, 0.1$ eq., 2.36 mmol) in dichloromethane (60 mL). The reaction mixture was warmed to room temperature over 18 h then concentrated under reduced pressure, and residue was purified by flash chromatography on silica gel (gradient elution 9:1 to 8:2 petrol-EtOAc) to provide
phenyl-6-azido-6-deoxy-2,3,4-tri-O-benzoyl-1-thio- β-D-glycopyranoside, as colourless prisms $(9.50 \mathrm{~g}, 66 \%),[\alpha]_{\mathrm{D}}-14.4$ (c. 1.08 in CHCl_{3}).

2-Acetamido-3,4,6-tri- \boldsymbol{O}-acetyl-2-deoxy-1-phenylthio- $\boldsymbol{\beta}$-D-glucopyranoside ${ }^{4} \mathbf{2 4}$

Zinc (II) iodide ($76.92 \mathrm{~g}, 240.4 \mathrm{mmol}$) and phenylthiotrimethylsilane ($25.0 \mathrm{~g}, 137 \mathrm{mmol}$) were added to a stirred suspension of D-glucosamine pentaacetate ($13.36 \mathrm{~g}, 34.34 \mathrm{mmol}$) in dichloroethane $(250 \mathrm{~mL})$ and the reaction mixture heated to $50^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was allowed to cool, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, filtered through celite and the filtrate was washed with saturated aqueous sodium hydrogen carbonate solution (250 mL), water (250 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure to give a crude product, which was purified by flash chromatography eluting with 4:6 petrol-EtOAc to give the 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-phenylthio- β-D-glucopyranoside ${ }^{4} 24$ (7.01 g, 47%) as colourless prisms, m.p. 207-209 ${ }^{\circ} \mathrm{C}$ [from EtOAc-petrol, lit. ${ }^{4} 210-212{ }^{\circ} \mathrm{C}$ (from EtOAc-petrol)]; $R_{\mathrm{f}} 0.30$ ($75: 25$ petrol-EtOAc); $[\alpha]_{D}^{20}-22.4$ [c 1.6 in CHCl_{3}, lit. ${ }^{4}-24.0$ (c $\left.\left.1.0, \mathrm{CHCl}_{3}\right)\right] ; v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3305, 3078, 2951, 1747 and $1661 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$; 7.50-7.48 (2H, m, SPh), 7.31-7.28 (3H, m, SPh), $5.60(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{NHAc}), 5.22(1 \mathrm{H}, \mathrm{t}, J 9.2$, $3-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{t}, J 9.2,4-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{d}, J 10.2,1-\mathrm{H}), 4.23\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 12.2\right.$ and $\left.J 5.6,6-\mathrm{H}\right)$, $4.16\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 12.2\right.$ and $\left.J 5.6,6-\mathrm{H}\right), 4.03(1 \mathrm{H}$, app. dd, $J 10.2$ and $9.2,2-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{dt}, J$ 9.2 and $5.6,5-\mathrm{H}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and $1.99(3 \mathrm{H}, \mathrm{s}$, NAc); m / z (ES) 439 ($100 \%, \mathrm{MH}^{+}$).

Phenyl-6-O-toluenesulfonyl-2-azido-2-deoxy-3,4-diol- $\boldsymbol{\beta}$-D-glycopyranoside ${ }^{\mathbf{5}} \mathbf{2 5}$

The glucosamine 24 ($6.98 \mathrm{~g}, 15.9 \mathrm{mmol}$) was heated under reflux conditions in aqueous sodium hydroxide (150 mL of a 2 M solution) for 24 h . The resulting solution was cooled on ice, neutralised to pH 7 with aqueous hydrochloric acid (2 M), filtered through a short pad of silica eluting with $\mathrm{EtOAc}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ 7:2:1 (200 mL), and evaporated under reduced pressure to give the free amine. Dimethylaminopyridine ($3.88 \mathrm{~g}, 31.8 \mathrm{mmol}$) was added and the reaction mixture was redissolved in methanol (200 mL), and a solution of trifluoromethanesulfonic azide (35.46 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(76 \mathrm{~mL})$ was added dropwise. The
reaction mixture was stirred for 16 h , evaporated under reduced pressure and the resulting residue was redissolved in EtOAc (100 mL), washed with water $(2 \times 75 \mathrm{~mL})$, and the combined aqueous washings extracted with EtOAc ($2 \times 75 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{NaSO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was dissolved in pyridine $(100 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and p-toluene sulfonyl chloride (4.18 g , 21.9 mmol) dissolved in pyridine (100 mL) was added dropwise via cannula. After stirring for $8 \mathrm{~h}, \mathrm{MeOH}(20 \mathrm{~mL})$ was added and the reaction mixture evaporated under reduced pressure to give a crude product, which was pre-absorbed onto silica and purified by flash chromatography eluting with 6:4 petrol-EtOAc to give the azide ${ }^{5} \mathbf{2 5}$ ($3.58 \mathrm{~g}, 69 \%$) as a colourless oil, $R_{\mathrm{f}} 0.20$ (6:4 petrol-EtOAc); $[\alpha]_{D}^{20}+40.8$ (c 1.51 in MeOH); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3401,3060,2917,2113$ and 1597; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.81(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{OTs}), 7.48$ ($2 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.8, Ph), 7.35-7.25 (5H, m, Ph and OTs), 4.41 ($1 \mathrm{H}, \mathrm{d}, J 10.1,1-\mathrm{H}$), 4.30 $(1 \mathrm{H}, \mathrm{br}$ s, $5-\mathrm{H}), 3.49-3.37(6 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 4-\mathrm{H}, 3-\mathrm{H}$ and OH$), 3.21(1 \mathrm{H}, \mathrm{t}, J 10.1,2-\mathrm{H})$ and 2.42 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 133.3,132.1,130.0,129.4,129.0,128.5,128.0,126.0,86.2$, 77.0, 76.6, 69.1, 68.4, 64.5 and 21.7; m / z (ES) 469 ($100 \%, \mathrm{MNH}_{4}{ }^{+}$); (Found: $\mathrm{MNH}_{4}{ }^{+}$ 469.1198; $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires $M N H_{4}, 469.1216$).

S-Phenyl-6-O-toluenesulfonyl-2-azido-2-deoxy-3,4-di-O-benzyl- β-D-glycopyranoside ${ }^{5} \mathbf{2 6}$

Sodium azide ($598 \mathrm{mg}, 9.2 \mathrm{mmol}$) was added to a stirred solution of the tosylate $\mathbf{2 5}(3.193 \mathrm{~g}$, 7.1 mmol) in DMF (100 mL) and the reaction mixture heated to $80^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was concentrated under reduced pressure and the residue redissolved in EtOAc (100 mL), washed with saturated aqueous sodium bicarbonate solution $(100 \mathrm{~mL})$, then the aqueous layer extracted with EtOAc $(2 \times 100 \mathrm{~mL})$ and the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give the product ${ }^{5}(2.03 \mathrm{~g}, 89 \%)$, which was used without further purification.

S-Phenyl-6,2-azido-6,2-deoxy-3,4-di- O-benzyl- β-D-glycopyranoside ${ }^{5}$ 21G

Sodium hydride (60% dispersion in mineral oil, $2.54 \mathrm{~g}, 63.4 \mathrm{mmol}$) was added portionwise to a stirred solution of the sugar $26(2.04 \mathrm{~g}, 6.34 \mathrm{mmol})$ and tert-butyl ammonium iodide (468
$\mathrm{mg}, 1.27 \mathrm{mmol})$ in DMF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 1h, benzyl bromide ($3.77 \mathrm{~mL}, 31.7 \mathrm{mmol}$) was added dropwise and the reaction stirred at room temperature for 1 h . The reaction was quenched with saturated ammonium chloride (100 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, and the combined organic extracts washed with water (200 mL), brine (200 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to give a crude product, which was purified by flash chromatography (gradient elution $9: 1 \rightarrow 7: 3$ petrol-EtOAc) to give the benzylated sugar ${ }^{5}$ 21G ($484 \mathrm{mg}, 31 \%$) as a colourless oil, $R_{\mathrm{f}} 0.20$ ($9: 1$ petrol-EtOAc); $[\alpha]_{D}^{20}+6.46\left(c 0.99\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3063, 3031, 2916, 2868 and $2109 ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.72-7.69 (2H, m, Ph), 7.46-7.31 (13H, m, Ph), 4.97 ($1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.5$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.93\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.67\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.5\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.48(1 \mathrm{H}, \mathrm{d}, J 10.0,1-\mathrm{H}), 3.66-3.53(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 5-\mathrm{H}, 4-\mathrm{H}$ and $3-\mathrm{H})$ and 3.43-3.36 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $2-\mathrm{H}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 137.9, 137.8, 135.0, 130.6, 129.6, 129.3, 129.1, 128.7, 128.6, 128.4, 86.4, 85.4, 78.8, 78.3, 76.4, 75.7, 65.4 and 51.6 (two carbon signals missing or overlapped); m / z (ES) $525\left(100 \%, \mathrm{MNa}^{+}\right)$; (Found: $\mathrm{MNa}^{+} 525.1706 ; \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.M N a^{+}, 525.1685\right)$.

General procedure for glycosylation (Method A)

The glycosyl donor (0.43 mmol) and the acceptor (0.34 mmol), both freshly dried azeotropically by removal of toluene, were dissolved in dry dichloromethane (2.6 mL) and transferred with a syringe into a flame dried round bottom flask containing activated $4 \AA$ molecular sieves. The reaction mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{N}$-iodosuccinimide ($104 \mathrm{mg}, 0.46$ mmol) and silver(I) trifluoromethanesulfonate ($9 \mathrm{mg}, 0.03 \mathrm{mmol}$) added simultaneously, stirred for 2 h and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. The reaction mixture was filtered through celite, eluting with dichloromethane (15 mL), washed with a solution of 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($2 \times 10 \mathrm{~mL}$) and brine ($2 \times 10 \mathrm{~mL}$), and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a crude product.

General procedure for glycosylation (Method B)

The glycosyl donor (5.57 mmol) and the acceptor (7.06 mmol), both freshly dried azeotropically by removal of toluene, were dissolved in dry dichloromethane (13 mL) and diethyl ether (40 mL) respectively, and transferred with a syringe into a flame dried round bottom flask containing activated $4 \AA$ molecular sieves. The reaction mixture was cooled to 0 ${ }^{\circ} \mathrm{C}, N$-iodosuccinimide ($1.63 \mathrm{~g}, 7.23 \mathrm{mmol}$) and silver(I) trifluoromethanesulfonate (286 mg , 1.11 mmol) added simultaneously, stirred for 3 h and quenched with $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL})$. The reaction mixture was filtered through celite, eluting with dichloromethane (50 mL), washed with a solution of 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(2 \times 50 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a crude product.

General procedure for glycosylation with a trichloroacetimidate donor (Method C)

A solution of the trichloroacetimidate donor (1 equivalent), the acceptor (1.2 equivalents) and powdered $4 \AA$ molecular sieves $(80 \mathrm{mg})$ in dichloromethane (5 ml) were stirred at room temperature for 1 h . The reaction mixture was cooled to $-60^{\circ} \mathrm{C}$ and boron trifluoride diethyl etherate (0.1 equivalents) was added dropwise. The reaction was stirred at $-60^{\circ} \mathrm{C}$ for 2 h and then quenched with solid NaHCO_{3} and stirred for 15 min . The mixture was filtered through celite, washing with dichloromethane and EtOAc, and the solvent was removed under reduced pressure to yield a crude product.
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, \mathbf{4}^{\prime}$ 'tri- O-benzyl- α-D-glucopyranosyl)-2,3-diacetoxy-4,6-diazido-cyclohexanol 27A
By method A, the glycosyl donor 21A ($242 \mathrm{mg}, 1.2$ eq., 0.43 mmol) and the acceptor $\mathbf{1 1}$ (100 $\mathrm{mg}, 1.0$ eq., 0.34 mmol), gave a crude product which was purified by flash chromatography on silica gel (gradient elution 9:1 $\rightarrow 8: 2$ petrol-EtOAc) to give 27A ($0.16 \mathrm{~g}, 65 \%$) as a yellow oil, $R_{\mathrm{f}} 0.51$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+34.2$ (c. 1.10 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2931, 2103, 1756, 1234 and $1071 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.18(1 \mathrm{H}, \mathrm{dd}, J$ 9.8 and $9.4,1-\mathrm{H}), 5.13\left(1 \mathrm{H}, \mathrm{d}, J 3.4,1^{\prime}-\mathrm{H}\right), 4.96(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $9.8,2-\mathrm{H}), 4.89(1 \mathrm{H}, \mathrm{d}, J$ 11.1, $\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CHH}_{B} \mathrm{Ph}\right), 4.71(1 \mathrm{H}, \mathrm{d}, J$
12.0, $\mathrm{CH}_{C} \mathrm{HPh}$), $4.64\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH}_{C} \cdot \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.12(1 \mathrm{H}, \mathrm{d}, J$ 9.4, $\left.5^{\prime}-\mathrm{H}\right), 3.96$ ($1 \mathrm{H}, \mathrm{t}, J 9.4,3$ '-H), 3.64-3.47 (6H, m, 2'-H, 4'-H, $6^{\prime}-\mathrm{H}_{\mathrm{A}}, 3-\mathrm{H}, 4-\mathrm{H}$ and $\left.6-\mathrm{H}\right)$, $3.37\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.4.7,6 '-\mathrm{H}_{\mathrm{B}}\right), 2.37\left(1 \mathrm{H}\right.$, ddd, $J 12.8,4.7$ and $\left.4.3,5-\mathrm{H}_{\mathrm{A}}\right), 2.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.56\left(1 \mathrm{H}, \mathrm{q}, J 12.8,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.8(\mathrm{C}=\mathrm{O})$, 169.6 (C=O), 138.4, 138.0, 137.7 (o-Ph), 128.5, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 97.9 (1'-C), 81.3 (3'-C), 79.8 (4'-C), 78.2, 78.1 (2'-C and 3-C), $76.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $75.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.1(2-\mathrm{C}), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.2$ (1-C), 71.1 (5'-C), 60.0, 57.8 (4-C and 6-C), 51.2 (6'-C), $32.3(5-\mathrm{C}), 20.7\left(\mathrm{CH}_{3}\right)$ and $20.6\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 778.3\left(76 \%, \mathrm{MNa}^{+}\right)$and 430.2 (100); (Found: $\mathrm{MNa}^{+}, 778.2921 . \mathrm{C}_{37} \mathrm{H}_{41} \mathrm{O}_{9} \mathrm{~N}_{9}$ requires $M N a, 778.2925$).
($1 R, 2 S, 3 S, 4 R, 6 S)$-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4 '$ 'tri- O-benzyl- α-L-glucopyranosyl)-2,3-diacetoxy-4,6-diazido-cyclohexanol 27A'

By method A, the glycosyl donor 21A' ($0.46 \mathrm{~g}, 1.2$ eq., 0.81 mmol) and the acceptor $11(0.20 \mathrm{~g}, 1.0$ eq., 0.67 mmol$)$ gave a crude product which was purified by flash chromatography on silica gel (gradient elution 9:1 to 8:2 petrol-EtOAc) to give 27A' $(0.28 \mathrm{~g}$, 55%) as a yellow oil; $R_{\mathrm{f}} 0.51$ ($7: 3$ petrol- EtOAc); $[\alpha]_{\mathrm{D}}-25.0$ (c. 0.16 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2925, 2103, 1754, 1234 and 1072; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.09$ (1H, d, J 3.4, 1'-H), 5.04 ($1 \mathrm{H}, \mathrm{t}, J 9.4,2-\mathrm{H}$), 4.95 ($1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{CH}_{A} \mathrm{HPh}$), 4.88 ($1 \mathrm{H}, \mathrm{d}, J$ 11.1, $\mathrm{CH}_{B} \mathrm{HPh}$), 4.87 ($1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $8.6,3-\mathrm{H}$), 4.78 ($1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{C} H_{C} \mathrm{HPh}$), $4.76(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.1, \mathrm{CH}_{B} \cdot \mathrm{Ph}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{CH} H_{A} \cdot \mathrm{Ph}\right), 3.97(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.4,3^{\prime}-\mathrm{H}\right), 3.82$ (1H, dt, $J 9.8$ and 2.5, $\left.5^{\prime}-\mathrm{H}\right), 3.60-3.47$ ($6 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 4{ }^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 1-\mathrm{H}, 4-\mathrm{H}$ and $6-\mathrm{H}), 3.35(1 \mathrm{H}, \mathrm{dd}, J 13.7$ and $2.7,6 '-\mathrm{H}), 2.28\left(1 \mathrm{H}, \mathrm{ddd}, J 12.8,4.7\right.$ and $\left.4.3,5-\mathrm{H}_{\mathrm{A}}\right), 2.07$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.44\left(1 \mathrm{H}, \mathrm{q}, J 12.8,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.0$ (C=O), 169.8 (C=O), 138.6, 138.4, 138.1 (o-Ph), 128.5, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6 (Ph), 98.9 ($\left.1^{\prime}-\mathrm{C}\right), 81.9$ ($2^{\prime}-\mathrm{C}$), 80.8 ($3^{\prime}-\mathrm{C}$), 77.2 ($4^{\prime}-\mathrm{C}$ and 1-C), 75.5 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.6(3-\mathrm{C}), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.2(2-\mathrm{C}), 70.9\left(5{ }^{\prime}-\mathrm{C}\right)$, 60.2, 58.1 (4-C and 6-C), $50.8(6 '-\mathrm{C}), 31.9(5-\mathrm{C}), 20.7\left(\mathrm{CH}_{3}\right)$ and $20.6\left(\mathrm{CH}_{3}\right)$; $m / z(\mathrm{ES}) 778.3\left(97 \%, \mathrm{MNa}^{+}\right)$ and 430.2 (100); (Found: $\mathrm{MNa}^{+}, 778.2891 . \mathrm{C}_{37} \mathrm{H}_{41} \mathrm{O}_{9} \mathrm{~N}_{9} \mathrm{Na}$ requires $M N a, 778.2925$).
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', 3',4'-tri-O-benzoyl- α-D-glucopyranosyl)-2,3-diacetoxy-4,6-diazido-cyclohexanol 27B

By method A, the glycosyl donor 21B ($102 \mathrm{mg}, 1.2$ eq., 0.16 mmol) and the acceptor 11 ($42 \mathrm{mg}, 1.0$ eq., 0.14 mmol) gave a crude product was purified by flash chromatography on silica gel, eluting with 8:2 petrol-EtOAc, to give 27B ($83.5 \mathrm{mg}, 75 \%$) as a yellow oil; $R_{\mathrm{f}} 0.53$ (6:4 petrol-EtOAc); $[\alpha]_{\mathrm{D}}-16.5$ (c. 1.04 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2931, 2103, 1735, 1642, 1260 and $1069 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.96(2 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{Ph} 2-\mathrm{H}$ and $6-\mathrm{H}), 7.91(2 \mathrm{H}, \mathrm{d}, J 7.6$, Ph 2-H and 6-H), 7.80 (2H, d, J 7.6, Ph 2-H and 6-H), 7.56-7.46 (2H, m, Ph 4-H), 7.41-7.33 $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.31-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3-\mathrm{H}$ and $5-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{t}, J 9.6,3 \mathrm{H}-\mathrm{H}), 5.45-5.38(2 \mathrm{H}, \mathrm{m}$, $2^{\prime}-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{d}, J 7.9,1^{\prime}-\mathrm{H}\right), 5.04-4.94(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $3-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 7.4, $\left.5^{\prime}-\mathrm{H}\right), 3.65(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $9.2,2-\mathrm{H}), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.7.4,6{ }^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.51-$ $3.39\left(3 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}^{-} \mathrm{H}_{\mathrm{B}}, 4-\mathrm{H}\right.$ and $\left.6-\mathrm{H}\right), 2.31-2.23\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.07(3 \mathrm{H}, \mathrm{s}$, CH_{3}) and $1.54\left(1 \mathrm{H}, \mathrm{q}, J 12.6,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.7(\mathrm{C}=\mathrm{O} \mathrm{Ac}), 169.6(\mathrm{C}=\mathrm{O} \mathrm{Ac})$, 165.7 ($\mathrm{C}=\mathrm{O} \mathrm{Bz}$), 165.3 ($\mathrm{C}=\mathrm{O} \mathrm{Bz}$), 164.9 ($\mathrm{C}=\mathrm{O} \mathrm{Bz}$), 133.7, 133.3 (4-C Ph), 129.9, 129.8, 129.7 ($2 C$ and $6 C \mathrm{Ph}$), 129.1, 128.7, 128.5 ($1-C \mathrm{Ph}$), 128.5, 128.4, 128.3 ($3 C$ and $5 C \mathrm{Ph}$), 100.6 (1'-C), 79.1 (2-C), 73.6 ($5^{\prime}-\mathrm{C}$ and 3-C), 72.7 (3'-C), 72.0 (4'-C), 71.1 (1-C), 70.2 (2'-C), 60.1, 57.8 (4-C and 6-C), 51.3 (6'-C), $32.3(5-\mathrm{C}), 20.8\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$ (1 aromatic peak overlapped or missing); m / z (ES) 820.2 (100\%, MNa^{+}) and 500.2 (79); (Found: MNa^{+}, 820.2270. $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{O}_{12} \mathrm{~N}_{9}$ requires $M N a, 820.2303$).
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4 '$ 'tri- O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexan-2,3-ol 31A

A catalytic amount of sodium methoxide ($3 \mathrm{mg}, 0.2$ eq., 0.06 mmol) was added to a solution of the diacetylated glycoside $\mathbf{4 A}(165 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry $\mathrm{MeOH}(1.4 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 18 h and concentrated under reduced pressure. The crude product was pre-absorbed on silica and filtered through a short pad of silica (gradient elution 9:1 to 8:2 EtOAc-MeOH) to give 31A ($67 \mathrm{mg}, 65 \%$) as a yellow oil; $R_{\mathrm{f}} 0.26\left(7: 3\right.$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}+60.9$ (c. 1.05 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3429, 2919, 2102,

1262 and $1069 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right), 4.93-$ $4.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.62\left(2 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.11-3.98$ $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 3.63-3.50\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 3.47-3.15\left(6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}, 1-\mathrm{H}\right.$, $2-\mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}$ and $6-\mathrm{H}), 2.29\left(1 \mathrm{H}\right.$, ddd, $J 12.8,4.6$ and $\left.4.1,5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.46(1 \mathrm{H}, \mathrm{q}, J 12.8,5-$ $\left.\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 138.1$ ($o-\mathrm{Ph} \times 3$), 129.2, 128.9, 128.5, 128.3, 128.1 (Ph), 101.4 (1'C), 85.7 (1-C), 82.5 ($\left.3^{\prime}-\mathrm{C}\right), 79.8$ (2'-C), 78.7 ($\left.5^{\prime}-\mathrm{C}\right), 76.0,75.8$ (2-C and 3-C), $75.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $71.5\left(4{ }^{\prime}-\mathrm{C}\right), 60.1,59.8$ (4-C and 6-C), 51.5 (6 '-C) and 32.7 (5-C) (4 aromatic peaks overlapped or missing); m / z (ES) 694.3 ($81 \%, \mathrm{MNa}^{+}$) and 430.2 (100); (Found: MNa^{+}, 694.2736. $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{~N}_{9}$ requires $M N a$, 694.2714).
($1 R, 2 S, 3 S, 4 R, 6 S)$-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4 '$ 'tri- O-benzyl- α-L-

glucopyranosyl)-4,6-diazido-cyclohexan-2,3-ol 31A'

By the same method, 27A' ($50.9 \mathrm{mg}, 0.07 \mathrm{mmol}$) gave 31A' ($39.9 \mathrm{mg}, 89 \%$) as a yellow oil; $R_{\mathrm{f}} 0.26$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}-27.4$ (c. 0.57 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3437, 2923, 2104, 1260 and 1070; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.04(1 \mathrm{H}, \mathrm{d}, ~ J 3.8$, 1'-H), 4.98 (1H, d, J 11.1, $\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.90$ (1H, d, $\left.J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.79$ (1H, d, J 11.1, $\left.\mathrm{CH}_{A} \mathrm{Ph}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J 11.1$, $\left.\mathrm{CH} H_{B} \cdot \mathrm{Ph}\right), 4.06-3.98\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.61-3.55\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.50-3.36$ $\left(5 \mathrm{H}, \mathrm{m}, 4{ }^{\prime}-\mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}\right.$ and $\left.6-\mathrm{H}\right), 3.33\left(1 \mathrm{H}, \mathrm{dd}, J 12.8\right.$ and $\left.6.4,6{ }^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.28-3.23(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 2.28\left(1 \mathrm{H}, \mathrm{dt}, J 12.3\right.$ and $\left.4.3,5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.44\left(1 \mathrm{H}, \mathrm{q}, J 12.3,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 138.5, 137.8, 137.7 (o-Ph), 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.7 (Ph), 98.0 (1'-C), 85.5 (1-C), 81.1 (3'-C), 79.8 (2'-C), 78.1 ($\left.4^{\prime}-\mathrm{C}\right), 75.8$ (3-C), $75.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.3$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.6(2-\mathrm{C}), 71.1\left(5^{\prime}-\mathrm{C}\right), 59.7,59.5$ (4-C and 6-C), $51.7\left(6^{\prime}-\mathrm{C}\right)$ and 32.4 (5-C) (2 aromatic peaks overlapped or missing); m / z (ES) 694.2 (100\%, MNa ${ }^{+}$) and 430.2 (78); (Found: $\mathrm{MNa}^{+}, 694.2681 . \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{~N}_{9}$ requires $M N a, 694.2714$).
($1 R, 2 S, 3 S, 4 R, 6 S)-1-O-\left(6^{\prime}-A z i d o-6 '-d e o x y-2^{\prime}, 3^{\prime}, 4 '\right.$ 'tri-O-benzyl- α-D-glucopyranosyl)-3-O-(6''-Azido-6''-deoxy-2', 3 '', 4 ''-tri- O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AA

By method A, the glycosyl donor $\mathbf{2 1 A}$ ($51 \mathrm{mg}, 1.2$ eq., 0.09 mmol) and the acceptor 31A ($50 \mathrm{mg}, 1.0$ eq., 0.08 mmol), gave a crude mixture which was purified by flash chromatography on silica gel (9:1 petrol-EtOAc) to give 27AA ($54 \mathrm{mg}, 62 \%$) as a yellow foam, $R_{\mathrm{f}} 0.46$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+88.0$ (c. 1.10 in CHCl_{3}), $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3446, 2925, 2103,1154 and $1070 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.10(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.29(1 \mathrm{H}, \mathrm{d}, J 3.4,1 "-$ H), $5.12\left(1 \mathrm{H}, \mathrm{d}, J 3.4,1^{\prime}-\mathrm{H}\right), 5.01\left(1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right)$, 4.91-4.76 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.61\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH} H_{D} \mathrm{Ph}\right), 4.34$ (1 H , ddd, $J 9.8,4.3$ and 2.6, $\left.5^{\prime}-\mathrm{H}\right), 4.09\left(1 \mathrm{H}\right.$, ddd, $J 9.9,3.4$ and $\left.2.6,5{ }^{\prime \prime}-\mathrm{H}\right), 4.01(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 9.4, $3^{\prime}-\mathrm{H}$), 3.97 (1 H , dd, J 9.8 and 9.4, $3^{\prime \prime}-\mathrm{H}$), 3.61-3.52 ($6 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 4{ }^{\prime \prime}-\mathrm{H}, 6 "-\mathrm{H}, 2-$ H and 4-H), 3.49-3.39 (3H, m, 4'-H, 3-H, and 6"-H), 3.31-3.23 (3H, m, 6'-H, 1-H and 6-H), $3.19(1 \mathrm{H}, \mathrm{dd}, J 13.2$ and $4.3,6 '-\mathrm{H}), 2.41\left(1 \mathrm{H}, \mathrm{dt}, J 12.4\right.$, and $\left.4.3,5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.61(1 \mathrm{H}, \mathrm{q}, J$ $12.4,5-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.7,138.4,138.0,137.9,137.1,137.2$ (o-Ph), 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7 (Ph), 100.4 (1'-C), 97.5 (1"-C), 84.9 (1-C), 81.8 ($3^{\prime \prime}-\mathrm{C}$), 81.6 ($\left.3^{\prime}-\mathrm{C}\right), 80.3$ (3-C), 79.8 ($2^{\prime}-\mathrm{C}$ and 2"-C), 78.3 ($4^{\prime}-\mathrm{C}$ and 4"-C), $75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.4(2-\mathrm{C}), 74.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.0$ ($\left.5^{\prime \prime}-\mathrm{C}\right), 70.2$ ($\left.5^{\prime}-\mathrm{C}\right), 60.2$ (4-C), 58.9 ($6-\mathrm{C}$), 51.2 ($\left.6^{\prime \prime}-\mathrm{C}\right), 51.1$ ($\left.6^{\prime}-\mathrm{C}\right)$ and 32.2 (5-C) (nine peaks overlapped or missing); m / z (ES) $1151.9\left(100 \%, \mathrm{MNa}^{+}\right)$and 430.4 (100); (Found: MNa^{+}, 1151.4712. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a, 1151.4715$).
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, 4$ '-tri-O-benzyl- α-d-glucopyranosyl)-3-O-(6'"-Azido-6"'-deoxy-2', ${ }^{\prime}$ ', ${ }^{\prime}{ }^{\prime}$ '-tri-O-benzyl- α-L-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AA'

By method A, the glycosyl donor 21A' ($67 \mathrm{mg}, 1.2$ eq., 0.12 mmol) and the acceptor 31A gave a crude mixture was purified by flash chromatography on silica gel (9:1 petrol-EtOAc) to give 27AA' ($56 \mathrm{mg}, 50 \%$) as a yellow foam, $R_{\mathrm{f}} 0.55$ (7:3 petrol-EtOAc); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3421, 2923, 2102, 1152 and 1069; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(30 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 5.35$ (2H, d, $J 3.7,1$ '-H and 1"-H), 4.94 (2H, d, $\left.J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.90$ (2H, d, J 11.4, $\left.\mathrm{CH}_{B} \mathrm{HPh}\right), 4.84\left(2 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.65\left(2 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{C} H_{C} \mathrm{HPh}\right), 4.62(2 \mathrm{H}, \mathrm{d}, J 11.4$, $\left.\mathrm{CHH}_{B} \cdot \mathrm{Ph}\right), 4.59\left(2 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CH}_{C} \cdot \mathrm{Ph}\right), 4.14\left(2 \mathrm{H}, \mathrm{ddd}, J 9.9,3.9\right.$ and $2.5,5^{\prime}-\mathrm{H}$ and $\left.5^{\prime \prime}-\mathrm{H}\right)$,
4.06 ($2 \mathrm{H}, \mathrm{t}, J 9.3,4^{\prime}-\mathrm{H}$ and 4"-H), 3.74 ($1 \mathrm{H}, \mathrm{t}, J 8.6,2-\mathrm{H}$), 3.60-3.50 ($6 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}$, $4 "-\mathrm{H}, 6$ '- H_{A} and $6 \mathrm{H}-\mathrm{H}_{\mathrm{A}}$), 3.45-3.37 (4H, m, 1-H, 3-H, 4-H and 6-H), $3.35(2 \mathrm{H}, \mathrm{dd}, J 10.0$ and $4.2,6^{\prime}-\mathrm{H}_{\mathrm{B}}$ and $\left.6 "-\mathrm{H}_{\mathrm{B}}\right), 2.41\left(1 \mathrm{H}, \mathrm{dt}, J 12.6\right.$, and $\left.4.1,5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.60\left(1 \mathrm{H}, \mathrm{q}, J 12.6,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.5, 137.9, 137.2 (o-Ph), 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7 (Ph), 98.8 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 82.0-81.8 (1-C, 3-C, $3^{\prime}-\mathrm{C}$ and $3^{\prime \prime}-\mathrm{C}$), 79.8 ($2^{\prime}-\mathrm{C}$ and $2^{\prime \prime}-\mathrm{C}$), 78.1 ($4^{\prime}-$ C and 4 "-C), $76.7(2-\mathrm{C}), 75.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.8\left(5^{\prime}-\mathrm{C}\right.$ and $\left.5^{\prime \prime}-\mathrm{C}\right)$, 58.9 (4-C and 6-C), 51.3 (6 '-C and 6 "-C) and 32.4 (5-C) (2 aromatic peaks overlapped or missing); m / z (ES) 1151.6 ($20 \%, \mathrm{MNa}^{+}$), and 947.4 (100, M-2Bn); (Found: $\mathrm{MNa}^{+}, 1151.4724$. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $\left.M N a, 1151.4715\right)$.
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4 '$ 'tri- O-benzyl- α-L-glucopyranosyl)-3-O-(6''-Azido-6''-deoxy-2', 3 '', 4 ''-tri-O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'A

By method A, the glycosyl donor 21A ($91 \mathrm{mg}, 1.2$ eq., 0.16 mmol) and the acceptor 31A' ($89 \mathrm{mg}, 1.0$ eq., 0.13 mmol) gave a crude product which was purified by flash chromatography on silica gel ($9: 1$ petrol-EtOAc) to give 27A'A ($31 \mathrm{mg}, 21 \%$) as a yellow foam, $R_{\mathrm{f}} 0.44$ ($7: 3$ petrol-EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3469, 2923, 2104 and $1070 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.21(2 \mathrm{H}, \mathrm{d}, J 3.9,1$ '-H and 1"-H), 4.98 (2H, d, J 11.1, $\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.89$ (2H, d, $\left.J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.79$ (2H, d, $J 11.1, \mathrm{CH}_{B}$. Ph), $4.78\left(2 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{C} H_{C} \mathrm{HPh}\right), 4.74\left(2 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.58\left(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH} H_{A} \cdot \mathrm{Ph}\right)$, 4.25-4.19 (2H, m, $5^{\prime}-\mathrm{H}$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.99\left(2 \mathrm{H}, \mathrm{dd}, J 9.4\right.$ and $8.9,3^{\prime}-\mathrm{H}$ and $\left.3^{\prime \prime}-\mathrm{H}\right), 3.60-3.48(8 \mathrm{H}$, m, 2'-H, 2"-H, 4'-H, 4"-H, 6'- $\mathrm{H}_{\mathrm{A}}, 6{ }^{\prime \prime}-\mathrm{H}_{\mathrm{A}}, 4-\mathrm{H}$ and 6-H), 3.46 (1H, t, J 9.4, 2-H), 3.36 (2H, t, J 9.4, 1-H and $3-\mathrm{H}), 3.33\left(2 \mathrm{H}\right.$, dd, $J 13.2$ and 5.1, 6 '- H_{B} and $\left.6 \mathrm{H}-\mathrm{H}_{\mathrm{B}}\right), 2.34(1 \mathrm{H}$, ddd, $J 12.8,4.7$ and 4.1, $5-\mathrm{H}_{\mathrm{A}}$) and $1.53\left(1 \mathrm{H}, \mathrm{q}, J 12.8,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.6,137.9,137.8(o-$ Ph), 128.5, 128.4, 128.0, 127.9 (Ph), 97.6 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 82.9 ($1-\mathrm{C}$ and 3-C), 81.4 ($3^{\prime}-\mathrm{C}$ and 3"-C), 79.8 (2'-C and 2"-C), 78.2 ($4^{\prime}-\mathrm{C}$ and 4"-C), $75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5,73.2$ ($\mathrm{CH}_{2} \mathrm{Ph}$ and 2-C), 70.7 (5'-C and 5"-C), 59.7 (4-C and 6-C), 51.4 (6 '-C and 6"-C) and 29.7 (5C) (five aromatic peaks overlapped or missing); m / z (ES) 1151.6 ($65 \%, \mathrm{MNa}^{+}$) and 430.3 (100); (Found: MNa^{+}, 1151.4711. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a, 1151.4715$).
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, 4$ '-tri- O-benzyl- α-L-glucopyranosyl)-3-O-(6'"-Azido-6"'-deoxy-2', 3 '', 4 ''-tri- O-benzyl- α-L-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'A'

By method A, the glycosyl donor 21A' ($119 \mathrm{mg}, 1.2$ eq., 0.21 mmol) and the acceptor $\mathbf{3 1 A}^{\prime}(117 \mathrm{mg}, 1.0 \mathrm{eq} ., 0.17 \mathrm{mmol})$ gave a crude product which was purified by flash chromatography on silica gel (9:1 petrol-EtOAc) to give 27A'A' $\mathbf{A}^{\prime}(49 \mathrm{mg}, 26 \%)$ as a yellow oil, $[\alpha]_{\mathrm{D}}-71.6$ (c. 0.91 in CHCl_{3}), spectroscopically identical to 27AA reported previously.
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido- $\mathbf{6}^{\prime}$-deoxy-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-tri-O-benzyl- α-D-glucopyranosyl)-3-O-(6''-Azido-6''-deoxy-2', 3 '’,4''-tri- O-benzoyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AB

By method A, the glycosyl donor 21B ($85 \mathrm{mg}, 1.2$ eq., 0.14 mmol) and the acceptor 31A ($78 \mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel (7:3 petrol-EtOAc) and preparative HPLC to give 27AB (69 $\mathrm{mg}, 51 \%$) as a colourless foam, $R_{\mathrm{f}} 0.45$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+32.1$ (c. 0.09 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3460,2920,2104,1736,1261$ and $1068 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.94(2 \mathrm{H}$, dd, $J 7.2$ and 1.1, Bz), 7.88 ($2 \mathrm{H}, \mathrm{dd}, J 7.2$ and 1.1, Bz), 7.84 ($2 \mathrm{H}, \mathrm{dd}, J 7.2$ and 1.1, Bz), 7.55-7.20 ($24 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.89(1 \mathrm{H}, \mathrm{t}, J 9.5,3 "-\mathrm{H}), 5.51-5.46\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right.$ and 4 "-H), $5.45(1 \mathrm{H}, \mathrm{d}, J 8.0$, 1"-H), 4.94 ($1 \mathrm{H}, \mathrm{d}, J 3.5,1 '-\mathrm{H}$), 4.91 ($1 \mathrm{H}, \mathrm{d}, ~ J 10.9, \mathrm{CH}_{A} \mathrm{HPh}$), 4.90-4.81 (3H, m, CH ${ }_{B} \mathrm{HPh}$, $\mathrm{CH}_{C} \mathrm{HPh}$ and $\left.\mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{B} \cdot \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.54$ ($1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{OH}$), 4.03-3.97 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$ and $5^{\prime \prime}-\mathrm{H}$), $3.92\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.81(1 \mathrm{H}, \mathrm{t}, J$ 9.4, 3-H), 3.64-3.58 ($2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}$ and $6^{\prime \prime}-\mathrm{H}$), 3.58-3.52 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$ and 6 '-H), 3.43-3.37 (3 H , $\mathrm{m}, 6^{\prime}-\mathrm{H}, 2-\mathrm{H}$ and $\left.4-\mathrm{H}\right), 3.35\left(1 \mathrm{H}, \mathrm{dd}, J 13.7\right.$ and $\left.2.1,6^{\prime \prime}-\mathrm{H}\right), 3.16-3.02(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $6-\mathrm{H})$, 2.24-2.15 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.45-1.33\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.8,165.4$ $(3 \times \mathrm{C}=\mathrm{OBz}), 138.3,137.8,136.6$ (o-Ph), 133.7, 133.3, 133.0 (o-Bz), 129.9, 129.8, 129.5, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6 (Ph), 101.2 (1'-C), 100.3 (1"-C), 86.2 (1-C), 82.1 (3'-C), 80.3 (3-C), 79.7 (2'-C), 78.2 (4'-C), 76.2 (2-C), $75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.2$ (5'-C), 72.7 (3"-C), 72.1 (4"-C), 71.0 (5"-C),
70.5 (2"-C), 58.9 (6-C), 57.9 (4-C), 51.5, 51.1 (6 '-C and 6"-C) and 32.3 (5-C) (three aromatic peaks overlapped or missing); m / z (ES) $1194.2\left(24 \%, \mathrm{MNa}^{+}\right)$and 429.8 (98); (Found: MNa^{+}, 1193.4080. $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{14} \mathrm{~N}_{12}$ requires $M N a, 1193.4093$).
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, 4$ '-tri- O-benzyl- α-D-glucopyranosyl)-3-O-(6''-Azido-6''-deoxy-2', 3'',4'-tri-O-benzoyl- β-L-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AB'

By method A, the glycosyl donor 21B' ($85 \mathrm{mg}, 1.2$ eq., 0.14 mmol) and the acceptor 31A ($78 \mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel (7:3 petrol-EtOAc) and preparative HPLC to give 27AB' (38 $\mathrm{mg}, 28 \%$) as a colourless foam, $R_{\mathrm{f}} 0.48$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+45.3$ (c. 0.98 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3475, 2926, 2104, 1733, 1261 and 1069; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.99(2 \mathrm{H}, \mathrm{dd}$, $J 7.3$ and 1.0, Bz), 7.92 ($2 \mathrm{H}, \mathrm{dd}, J 7.3$ and 1.0, Bz), 7.81 ($2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.3, \mathrm{Bz}$), 7.56-7.23 (24H, m, Ph), $5.91(1 \mathrm{H}, \mathrm{t}, J 9.7,3 "-\mathrm{H}), 5.57\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $\left.8.0,2^{2}-\mathrm{H}\right), 5.55\left(1 \mathrm{H}, \mathrm{d}, J 3.8,1^{\prime}-\mathrm{H}\right)$, $5.50(1 \mathrm{H}, \mathrm{t}, J 9.7,4 \mathrm{H}-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{d}, J 8.0,1 "-\mathrm{H}), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.90(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.2, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{C}_{C} \mathrm{HPh}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.73(1 \mathrm{H}, \mathrm{d}$, J 11.7, $\left.\mathrm{CH} H_{C} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{CH}_{B} \mathrm{Ph}\right), 4.15$ ($1 \mathrm{H}, \mathrm{ddd}, J 9.9,4.4$ and $2.3,5{ }^{\prime}-\mathrm{H}$), $4.00\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.94\left(1 \mathrm{H}, \mathrm{ddd}, J 9.7,6.9\right.$ and $\left.2.7,5^{\prime \prime}-\mathrm{H}\right), 3.75$ ($1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 8.3, $2-\mathrm{H}), 3.57$ ($1 \mathrm{H}, \mathrm{dd}, J 9.3$ and 3.8, $1^{\prime}-\mathrm{H}$), 3.53-3.47 (5H, m, $4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 6{ }^{\prime \prime}-\mathrm{H}$ and 1-H), 3.47$3.34(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}$ and $6-\mathrm{H}), 2.32-2.25\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.52(1 \mathrm{H}, \mathrm{q}, J 12.4,5-$ $\left.\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7,165.3,165.1(\mathrm{C}=\mathrm{O} \mathrm{Bz}), 138.7,138.1,137.7$ (o-Ph), 133.8, 133.4 (o-Bz), 129.9, 129.8, 129.1, 128.7, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8 (Ph), 101.5 (1"-C), 97.9 (1'-C), 84.5 (3-C), 81.5 (3'-C), 80.5 (1-C), 79.4 (2'-C), 78.1 (4'-C), 75.7 $\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.1\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 74.8(2-\mathrm{C}), 73.8$ (5 "-C), 72.9 ($\left.C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 72.6$ (3"-C), 71.7 (2"-C), 70.7 ($\left.5^{\prime}-\mathrm{C}\right), 69.9$ (4 "-C), 59.2, 58.7 (4-C and 6-C), 51.4, 51.3 ($6^{\prime}-\mathrm{C}$ and 6 "-C) and 32.1 (5-C) (eight aromatic peaks overlapped or missing); m / z (ES) 1193.7 ($52 \%, \mathrm{MNa}^{+}$) and 430.3 (100); (Found: $\mathrm{MNa}^{+}, 1193.4125 . \mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{14} \mathrm{~N}_{12}$ requires $M N a$, 1193.4093).
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', 3',4'-tri-O-benzyl- α-L-glucopyranosyl)-3-O-(6''-Azido-6''-deoxy-2', 3 '’,4''-tri- O-benzoyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'B

By method A, the donor 21B ($88 \mathrm{mg}, 1.2$ eq., 0.15 mmol) and the acceptor $\mathbf{3 1} \mathbf{A}^{\prime}(81$ $\mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel (7:3 petrol-EtOAc) and preparative HPLC to give 27A'B ($45 \mathrm{mg}, 32 \%$) as a colourless foam; $R_{\mathrm{f}} 0.38$ ($7: 3$ petrol/EtOAc); $[\alpha]_{\mathrm{D}}-32.4$ (c. 1.00 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3461, 2924, 2106, 1733, 1261 and 1069; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.95$ ($2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Bz}$), 7.91 (2H, d, J 7.4, Bz), 7.80 ($2 \mathrm{H}, \mathrm{d}, J 7.4,3 " \mathrm{C}-\mathrm{Bz}$), 7.52 (1 H , dd, $J 7.5$ and 7.4, Ph), 7.44-7.21 ($23 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.90\left(1 \mathrm{H}, \mathrm{t}, J 9.6,3^{\prime \prime}-\mathrm{H}\right), 5.51\left(1 \mathrm{H}, \mathrm{dd}, J 9.6\right.$ and $\left.8.0,2^{2 "-H}\right), 5.49(1 \mathrm{H}, \mathrm{t}, J 9.6$, 4"-H), 5.43 (1H, d, J 8.0, 1"-H), 5.01 (1H, d, J3.5, 1'-H), 4.93 (1H, d, J 10.9, 3'C-CH ${ }_{A} \mathrm{HPh}$), $4.89\left(1 \mathrm{H}, \mathrm{d}, J 10.9,4^{\prime} \mathrm{C}-\mathrm{CH}_{B} \mathrm{HPh}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J 10.9,3^{\prime} \mathrm{C}-\mathrm{CH} H_{A} \cdot \mathrm{Ph}\right), 4.70\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime} \mathrm{C}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 10.9,4^{\prime} \mathrm{C}-\mathrm{CHH}_{B} \mathrm{Ph}\right), 4.00(1 \mathrm{H}, \mathrm{ddd}, J 9.7,7.5$ and 2.2, 5 "-H), 3.90 ($\left.1 \mathrm{H}, \mathrm{t}, J 9.4,3^{\prime}-\mathrm{H}\right), 3.89-3.84\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.76-3.70(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and $3-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{dd}, J$ 13.4 and $\left.7.5,6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 9.4\right.$ and $\left.3.5,2^{\prime}-\mathrm{H}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J 9.6\right.$ and $\left.9.3,4^{\prime}-\mathrm{H}\right)$, 3.45-3.33 (4H, m, 2-H, 4-H, 6-H and $6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}$), 3.23 (1H, t, J 9.4, 1-H), 3.14 (2H, d, J 3.5, 6'-H), $2.17\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.4.5,5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.57\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.8$, 165.3, 165.0 (C=O Bz), 138.5, 137.7 (o-Ph), 133.6, 133.3, 133.2 (o-Bz), 129.9, 129.8, 129.7, 129.3, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.7 (Ph), 100.8 (1"-C), 98.3 (1'-C), 85.4 (1-C), 81.3 (3-C), 80.9 (3'-C), 79.6 (2'-C ${ }^{\prime}$), 77.7 (4'-C), 75.6 (3"- $\mathrm{CCH}_{2} \mathrm{Ph}$), 75.3 (4"$\mathrm{CCH}_{2} \mathrm{Ph}$), 75.2 (2-C), 74.1 ($\left.5^{\prime \prime}-\mathrm{C}\right), 73.5$ (2"-CCH2Ph), 72.7 (3"-C), 72.3 (2"-C), 71.0 ($5^{\prime}-\mathrm{C}$), 70.3 (4"-C), 59.5 (6-C), 58.0 (4-C), 51.5 (6"-C), 51.0 (6'-C) and 32.4 (5-C) (seven aromatic peaks overlapped or missing); m / z (ES) 1193.6 ($55 \%, \mathrm{MNa}^{+}$), 1151.7 (57) and 430.3 (100); (Found: $\mathrm{MNa}^{+}, 1193.4102 . \mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{14} \mathrm{~N}_{12}$ requires $M N a, 1193.4093$).
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', ${ }^{\prime},{ }^{\prime},{ }^{\prime}-t r i-O$-benzyl- α-L-glucopyranosyl)-3-O-(6'"-Azido-6''-deoxy-2', 3 '’,4'’-tri-O-benzoyl- β-L-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'B'

By method A, the glycosyl donor 21B' ($88 \mathrm{mg}, 1.2$ eq., 0.15 mmol) and the acceptor 31A' ($81 \mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel (7:3 petrol-EtOAc) and preparative HPLC to give 27A'B' (36 $\mathrm{mg}, 26 \%$) as a colourless foam; $R_{\mathrm{f}} 0.32$ ($7: 3$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}-29.6$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) $3490,2924,2104,1735,1261$ and $1092 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00(2 \mathrm{H}, \mathrm{d}, J$ $7.5, \mathrm{Bz}), 7.92$ (2H, d, $J 7.5, \mathrm{Bz}$), 7.81 (2H, d, $J 7.5,3 " \mathrm{C}-\mathrm{Bz}), 7.56-7.49$ (2H, m, Ph), 7.45-7.23 ($22 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.90 ($1 \mathrm{H}, \mathrm{t}, J 9.7,3$ "-H), $5.54\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $\left.8.0,2^{2 "-H}\right), 5.48(1 \mathrm{H}, \mathrm{t}, J 9.7$, 4"-H), 5.32 ($\left.1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right), 5.07$ ($\left.1 \mathrm{H}, \mathrm{d}, J 8.0,1 "-\mathrm{H}\right), 4.98$ ($1 \mathrm{H}, \mathrm{d}, J 10.9,3^{\prime}-\mathrm{CCH}_{A} \mathrm{HPh}$), 4.89 (1H, d, J 11.1, 4'-CCH $B_{B} \mathrm{HPh}$), 4.84 (1H, d, J 11.8, 2'-CCH ${ }_{C} \mathrm{HPh}$), 4.82 (1H, d, J 10.9, 3'$\left.\mathrm{CCH}_{A} \cdot \mathrm{Ph}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, J 11.8,2^{\prime}-\mathrm{CCH} H_{C} \cdot \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 11.1,4^{\prime}-\mathrm{CCHH}_{B} \mathrm{Ph}\right), 4.51-4.44$ ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), $4.00\left(1 \mathrm{H}, \mathrm{t}, J 9.4,3^{\prime}-\mathrm{H}\right), 3.99-3.94$ ($1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}$), 3.68 ($1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{OH}$), 3.613.49 (6H, m, 2-H, 6-H, 2'-H, $6^{\prime}-\mathrm{H}_{\mathrm{A}}$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.49\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 3.44(1 \mathrm{H}, \mathrm{t}, J 9.4,1-$ H), $3.40-3.32\left(3 H, m, 3-H, 4-H\right.$ and $\left.6 '-\mathrm{H}_{\mathrm{B}}\right), 2.31-2.23\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.58-1.49(1 \mathrm{H}, \mathrm{m}, 5-$ $\left.\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7,165.3,165.1$ (C=O Bz), 138.7, 138.1, 137.9 (o-Ph), 133.8, 133.4 (o-Bz), 129.9, 129.8, 129.0, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8, 127.6 (Ph), 101.9 (1"-C), 97.5 (1'-C), 85.7 (3-C), 81.6 (3'-C), 80.1 (1-C), 79.7 (2'-C), 78.2 (4'-C), 75.6 (3'-
 C), 70.2 ($\left.5^{\prime}-\mathrm{C}\right), 69.9$ (4"-C), 59.9 (6-C), 59.0 ($4-\mathrm{C}$), 51.4 (6 "-C), 51.1 (6 '-C) and 31.8 (5-C) (eight aromatic peaks overlapped or missing); m / z (ES) 1193.6 ($75 \%, \mathrm{MNa}^{+}$), 1188.7 (55) and 430.3 (100); (Found: $\mathrm{MNa}^{+}, 1193.4081 . \mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{14} \mathrm{~N}_{12}$ requires $M N a$, 1193.4093).
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-de0xy-2', $3^{\prime}, 4^{\prime}$ 'tri- O-benzyl- α-D-glucopyranosyl)-3-O-(3'"-Azido-3'"-deoxy-2'’,4', 6 '"-tri-O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AC

By method A, the glycosyl donor 21C ($79 \mathrm{mg}, 1.2$ eq., 0.14 mmol) and the acceptor 31A ($78 \mathrm{mg}, 1.0$ eq., 0.12 mmol), gave a crude product which was purified by flash chromatography on silica gel ($8: 2$ petrol-EtOAc) and preparative HPLC to give 27AC (40 $\mathrm{mg}, 30 \%$) as a colourless foam, $R_{\mathrm{f}} 0.58$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+76.7$ (c. 0.97 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3453, 2924, 2106, 1154 and $1071 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48-7.10(30 \mathrm{H}, \mathrm{m}$,

Ph), 5.27 ($1 \mathrm{H}, \mathrm{d}, J 3.5,1$ "-H), 5.11 ($\left.1 \mathrm{H}, \mathrm{d}, J 3.5,1^{\prime}-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, J 10.9,3\right.$ '-CCH $\left.{ }_{A} \mathrm{HPh}\right)$, $4.89\left(1 \mathrm{H}, \mathrm{d}, J 11.0,2^{2}-\mathrm{CCH}_{B} \mathrm{HPh}\right), 4.84$ ($1 \mathrm{H}, \mathrm{d}, J 10.9,3^{\prime}-\mathrm{CCHH}_{A} \cdot \mathrm{Ph}$), 4.82 ($1 \mathrm{H}, \mathrm{d}, J 11.9$, $\left.\mathrm{CH}_{C} \mathrm{HPh}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 10.5,4\right.$ - $\left.-\mathrm{CC} H_{D} \mathrm{HPh}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH} H_{C} \mathrm{Ph}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J$ 11.7, $\left.\mathrm{CH}_{E} \mathrm{HPh}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{CH}_{E} \cdot \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 11.0,2^{\prime \prime}-\mathrm{CCH} H_{B} \cdot \mathrm{Ph}\right), 4.55(1 \mathrm{H}$, d, $\left.J 12.1,6 "-\mathrm{CCH}_{F} \mathrm{HPh}\right), 4.42\left(1 \mathrm{H}, \mathrm{d}, J 10.5,4 "-\mathrm{CCH} H_{D} \mathrm{Ph}\right), 4.36$ (1H, d, $J 12.1,6 "-$ $\left.\mathrm{CCH}_{F} \mathrm{Ph}\right), 4.26\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime \prime}-\mathrm{H}\right), 4.09\left(1 \mathrm{H}, \mathrm{ddd}, J 9.8,3.3\right.$ and $\left.2.7,5^{\prime}-\mathrm{H}\right), 3.98\left(1 \mathrm{H}, \mathrm{t}, J 9.4,3^{\prime}-\right.$ H), 3.89 ($\left.1 \mathrm{H}, \mathrm{t}, J 9.9,3^{\prime \prime}-\mathrm{H}\right), 3.59$ ($1 \mathrm{H}, \mathrm{dd}, J 10.9$ and 2.8, $6^{\prime \prime}-\mathrm{H}$), 3.56-3.49 (5H, m, 2'-H, 4'-H, 6'-H, 2-H and 6-H), 3.49-3.43 (2H, m, 4"-H and 6"-H), 3.43-3.36 (3H, m, 2"-H, $6^{\prime \prime}-\mathrm{H}$ and 1-H), 3.31-3.22 $(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 2.40-2.34\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.57\left(1 \mathrm{H}, \mathrm{q}, J 12.5,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.4, 137.9, 137.7, 137.4, 137.1 (o-Ph), 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7 (Ph), 100.0 (1"-C), 96.9 (1'-C), 84.3 (3-C), 81.8 (3'C), 80.7 (1-C), 79.6, 78.2 (2'-C and 4'-C), 77.3 (2"-C), 76.3 (4"-C), 75.6 ($\left.C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.3$ $\left(C_{D} \mathrm{H}_{2} \mathrm{Ph}\right), 75.1\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 74.6(2-\mathrm{C}), 74.0\left(C_{E} \mathrm{H}_{2} \mathrm{Ph}\right), 73.6\left(C_{F} \mathrm{H}_{2} \mathrm{Ph}\right), 72.9\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 70.9$ ($\left.5^{\prime}-\mathrm{C}\right), 70.4$ ($\left.5^{\prime \prime}-\mathrm{C}\right), 68.0$ ($\left.6^{\prime \prime}-\mathrm{C}\right), 65.4$ ($3^{\prime \prime}-\mathrm{C}$), 60.2 ($6-\mathrm{C}$), 58.8 ($4-\mathrm{C}$), 51.2 ($6^{\prime}-\mathrm{C}$) and 32.2 ($5-\mathrm{C}$) (nine aromatic peaks overlapped or missing); $m / z(E S) 1151.4$ (71\%, MNa ${ }^{+}$), 586.8 (41) and 429.8 (100); (Found: MNa^{+}, 1151.4667. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a, 1151.4715$).

Also obtained was ($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4$ '-tri- O-benzyl- α -D-glucopyranosyl)-3-O-(3'"-Azido-3'"-deoxy-2'",4'",6"-tri-O-benzyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27Ad ($15 \mathrm{mg}, 11 \%$) as a colourless foam, $R_{\mathrm{f}} 0.58$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+52.4$ (c. 1.16 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3429, 2922, 2104, 1151 and $1070 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 3.5,1^{\prime}-\mathrm{H}\right), 4.96(1 \mathrm{H}, \mathrm{d}, J$ 10.9, $\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.91$ (1H, d, J 8.0, 1"-H), 4.90 ($\left.1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.89$ (1H, d, J 10.9, $\left.\mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{CH}_{D} \mathrm{HPh}\right), 4.77(1 \mathrm{H}, \mathrm{d}, J 11.5$, $\left.\mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.76\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 12.1,6 "-\mathrm{CCH}_{F} \mathrm{HPh}\right), 4.66(1 \mathrm{H}, \mathrm{d}, J$ 11.6, $\mathrm{CH}_{E} \mathrm{Ph}$), 4.64-4.57 (3H, m, 6"- $\mathrm{CCH}_{F} \cdot \mathrm{Ph}, \mathrm{CH}_{D}, \mathrm{Ph}$ and $\mathrm{CH} H_{B} \cdot \mathrm{Ph}$), 4.10-4.08 (1H, m, $\left.5^{\prime}-\mathrm{H}\right), 4.01\left(1 \mathrm{H}, \mathrm{t}, J 9.4,3^{\prime}-\mathrm{H}\right), 3.81-3.73$ ($2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}$ and $6^{\prime \prime}-\mathrm{H}$), $3.70(1 \mathrm{H}, \mathrm{t}, J 9.5,3-\mathrm{H})$, 3.60-3.54 ($3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}$), 3.54-3.46 (4H, m, $4^{\prime}-\mathrm{H}, 44^{\prime \prime}-\mathrm{H}, 6{ }^{\prime \prime}-\mathrm{H}$, and 2-H), 3.41 ($1 \mathrm{H}, \mathrm{dd}, J 13.2$ and 4.2, $6{ }^{\prime}-\mathrm{H}$), 3.34-3.20 (3H, m, 2"-H, 4-H and $\left.6-\mathrm{H}\right), 3.17(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $9.2,1-\mathrm{H}), 2.25\left(1 \mathrm{H}, \mathrm{dt}, J 13.4\right.$ and $\left.4.4,5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.43-1.34\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$,
CDCl_{3}) 138.3, 137.9, 137.7, 137.4, 136.7 (o-Ph), 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6 (Ph), 102.6 (1"-C), 100.2 (1'-C), 84.2 (1-C), 82.0 (3'-C), 80.3, 80.2 (3-C and 2"-C), 79.2 (2'-C), 78.2 (4'-C), 76.5 (2-C), 76.4 (4"-C), $75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.9$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.9\left(6{ }^{\prime \prime}-\mathrm{CCH}_{2} \mathrm{Ph}\right), 70.9\left(5^{\prime}-\mathrm{C}\right), 68.6$ (3 "-C, 5 "-C and $6 "-C$), 59.1 ($6-\mathrm{C}$), 58.4 (4-C), 50.8 (6 '-C) and 32.3 (5-C) (eight aromatic peaks overlapped or missing); m / z (ES) $1151.2\left(12 \%, \mathrm{MNa}^{+}\right.$) and 430.1 (100); (Found: MNa^{+}, 1151.4734. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $\left.M N a, 1151.4715\right)$.
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido- 6^{\prime}-deoxy- ${ }^{\prime}, 3^{\prime}, 4^{\prime}$ 'tri- O-benzyl- α-D-glucopyranosyl)-3-O-(3"-Azido-3'"-deoxy-2', 4 "', 6 '’-tri- O-acetoxy- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AD

By method A, the glycosyl donor 21D ($59 \mathrm{mg}, 1.2$ eq., 0.14 mmol) and the acceptor 31A ($78 \mathrm{mg}, 1.0$ eq., 0.12 mmol), gave a crude product which was purified by flash chromatography on silica gel (gradient elution 8:2 to 7:3 to 6:4 petrol-EtOAc) to give 27AD $(61 \mathrm{mg}, 54 \%)$ as a colourless foam, $R_{\mathrm{f}} 0.40$ (6:4 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+27.3$ (c. 0.06 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3412, 2920, 2106, 1749, 1223 and $1068 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-$ 7.20 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.03 ($1 \mathrm{H}, \mathrm{t}, J 10.1,4 "-\mathrm{H}), 5.00$ ($1 \mathrm{H}, \mathrm{d}, ~ J 3.5, ~ 1 '-\mathrm{H}$), 4.92-4.88 (4H, m, 1"$\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, \mathrm{CH}_{A} \mathrm{HPh}$ and $\left.\mathrm{CH}_{B} \mathrm{HPh}\right), 4.87\left(2 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right.$ and $\left.\mathrm{C} H_{C} \mathrm{HPh}\right), 4.75(1 \mathrm{H}, \mathrm{d}, J$ $11.5, \mathrm{CHH}_{B} \mathrm{Ph}$), 4.62 (1H, d, J 10.8, CHH ${ }_{C}$ Ph), 4.36 (1H, br s, OH), 4.22 (2H, d, J 3.4, 6"H), 4.09-4.04 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), $4.01\left(1 \mathrm{H}, \mathrm{dd}, J 9.8\right.$ and $\left.9.3,3^{\prime}-\mathrm{H}\right), 3.69-3.64\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime \prime}-\mathrm{H}\right), 3.64-$ $3.58\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 3.58-3.52\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right.$ and $\left.3-\mathrm{H}\right), 3.48(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and 8.4, $2-\mathrm{H}), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.3.9,6{ }^{\prime}-\mathrm{H}\right), 3.38-3.31(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.24-3.18(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $3.14\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.6\right.$ and 9.1, 1-H), 2.28-2.22 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}$), $2.14\left(3 \mathrm{H}, \mathrm{s}, 4\right.$ "- $\left.\mathrm{COCOCH}_{3}\right), 2.08$ $\left(3 \mathrm{H}, \mathrm{s}, 6 \mathrm{6}-\mathrm{COCOCH}_{3}\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, 2 "-\mathrm{COCOCH}_{3}\right)$ and $1.43-1.33\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.8, 169.2, $169.1(\mathrm{C}=\mathrm{O})$, 138.2, 137.7, 136.9 ($o-\mathrm{Ph}$), 128.7, 128.6, 128.5, 128.4, 128.0, 127.9, 127.8, 127.6 (Ph), 100.9 ($1^{\prime \prime}-\mathrm{C}$ and $1^{\prime}-\mathrm{C}$), 85.6 ($1-\mathrm{C}$), 82.0 (3'-C), 81.6 (3C), 79.7, $78.4\left(2^{\prime}-\mathrm{C}\right.$ and $\left.4{ }^{\prime}-\mathrm{C}\right), 75.9(2-\mathrm{C}), 75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.4$ (5 "-C), 71.6 (2"-C), 71.1 ($5^{\prime}-\mathrm{C}$), 68.5 (4 "-C), 64.4 (3"-C), 61.9 (6 "-C), 58.9 ($\left.6-\mathrm{C}\right), 58.3$ (4-C), 51.1 (6'-C), 32.4 (5-C), 20.8, 20.7, $20.6\left(\mathrm{CH}_{3}\right)$ (one aromatic peak overlapped or missing); m / z
(ES) 1007.3 ($54 \%, \mathrm{MNa}^{+}$), 1006.3 (100) and 429.7 (87); (Found: MNa^{+}, 1007.3596. $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{14} \mathrm{~N}_{12}$ requires $\left.M N a, 1007.3624\right)$.
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$ 'tri- O-benzyl- α-L-glucopyranosyl)-3-O-(3''-Azido-3'"-deoxy-2'’,4', $\mathbf{~}^{\prime}$ '-tri-O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'C

By method A, the glycosyl donor 21C ($82 \mathrm{mg}, 1.2$ eq., 0.15 mmol) and the acceptor $\mathbf{3 1 A}^{\prime}$ ($81 \mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel (gradient elution 9:1 to 8:2 petrol-EtOAc) and preparative HPLC to give 27A'C ($55 \mathrm{mg}, 40 \%$) as a colourless foam, $R_{\mathrm{f}} 0.60\left(7: 3\right.$ petrol- EtOAc); $[\alpha]_{\mathrm{D}}$ +12.2 (c. 0.92 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3475, 2920, 2107 and $1071 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.45-7.11 (30H, m, Ph), 5.27 ($\left.1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right), 5.10$ (1H, d, J3.5, 1"-H), 4.94 (1H, d, J 10.9, $\mathrm{CH}_{A} \mathrm{HPh}$), 4.83 ($1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{CH}_{B} \mathrm{HPh}$), 4.81-4.70 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.53 ($1 \mathrm{H}, \mathrm{d}, J$ $\left.10.9, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.51\left(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{CH}_{D} \mathrm{HPh}\right), 4.43\left(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{CH} H_{D} \cdot \mathrm{Ph}\right), 4.39(1 \mathrm{H}, \mathrm{d}, J$ 10.7, $\mathrm{CH}_{E} \mathrm{HPh}$), 4.34-4.29 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), 4.16 ($1 \mathrm{H}, \mathrm{d}, ~ J 3.1, \mathrm{OH}$), 4.14-4.09 ($1 \mathrm{H}, \mathrm{m}, 5$ "-H), $3.96\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.9.9,3^{\prime \prime}-\mathrm{H}\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J 9.8\right.$ and $\left.3.7,2^{\prime}-\mathrm{H}\right)$, 3.54-3.49 (4H, m, 2-H, 6-H, and 6"-H), 3.49-3.41 (3H, m, 4-H, 4'-H and 6'-H), 3.41-3.35 (2H, m, 1-H and $\left.2^{\prime \prime}-\mathrm{H}\right), 3.31(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 9.8, 4"-H), $3.30(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 9.3, 3-H), 3.27 $(1 \mathrm{H}, \mathrm{dd}, J 13.7$ and $4.8,6 '-\mathrm{H}), 2.34-2.28\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.51\left(1 \mathrm{H}, \mathrm{q}, J 12.8,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.6, 137.9, 137.8, 137.6, 137.5, 137.4 (o-Ph), 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6 (Ph), 97.4, 97.3 (1"-C and 1'-C), 84.8 (3-C), 81.6, 81.5 (3'-C and 1-C), 79.7 (2'-C), 78.2 (4'-C), 77.6 (2"-C), 76.3 (4"-C), $75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $75.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4(2-\mathrm{C}), 73.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.8$ (5 "-C), 70.4 ($\left.5^{\prime}-\mathrm{C}\right), 67.9$ (6 "-C), 65.2 (3"-C), 59.9 (6-C), 59.7 (4-C), 51.4 (6'-C), 32.2 (5-C) (eight aromatic peaks overlapped or missing); m / z (ES) $1151.8\left(55 \%, \mathrm{MNa}^{+}\right), 496.3$ (65), 430.3 (100) and 401.0 (70); (Found: MNa^{+}, 1151.4756. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a$, 1151.4715).

Also obtained was $(1 R, 2 S, 3 S, 4 R, 6 S)-1-O-\left(6^{\prime}-A z i d o-6 '-d e o x y-2^{\prime}, 3^{\prime}, 4 '\right.$ 'tri- O-benzyl- α -L-glucopyranosyl)-3-O-(3''-Azido-3''-deoxy-2'',4'",6''-tri-O-benzyl- β-D-glucopyranosyl)-

4,6-diazido-cyclohexan-1,2,3-ol 27A'd ($17 \mathrm{mg}, 12 \%$) as a colourless foam, $R_{\mathrm{f}} 0.60$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}-16.7$ (c. 1.03 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3468, 2919, 2105, 1261 and $1070 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.18$ ($30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.18\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right), 4.99(1 \mathrm{H}, \mathrm{d}, J$ $\left.10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.84(1 \mathrm{H}, \mathrm{d}, J$ 10.9, $\left.\mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.82-4.76\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.77(1 \mathrm{H}, \mathrm{d}, J 5.3,1 "-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, J 11.6$, $\left.\mathrm{CH}_{D} \mathrm{HPh}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{CH} H_{E} \mathrm{Ph}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J 10.8$, $\left.\mathrm{CH} H_{B} \cdot \mathrm{Ph}\right), 4.10-4.05\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.93\left(1 \mathrm{H}, \mathrm{t}, J 9.4,3^{\prime}-\mathrm{H}\right), 3.77-3.72\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}-\mathrm{H}\right), 3.69$ (1H, d, J 2.5, OH), 3.60-3.42 (8H, m, 2-H, 3-H, 6-H, 2'-H, 4'-H, 3"-H, 4"-H and 5"-H), 3.36 ($1 \mathrm{H}, \mathrm{dd}, J 13.1$ and 2.4, $6^{\prime}-\mathrm{H}$), 3.34-3.28 (3H, m, 1-H, 4-H and 2"-H), 3.22 ($1 \mathrm{H}, \mathrm{dd}, J 13.1$ and 4.4, 6 '-H), 2.28-2.22 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.45-1.35\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 138.3, 137.8 (o-Ph), 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7 (Ph), 103.5 (1"-C), 97.7 (1'-C), 83.7 (3-C), 81.9 (2"-C), 81.5 ($\left.3^{\prime}-\mathrm{C}\right), 80.3$ (1-C), 79.7 (2'-C), 78.1 (4'-C), $75.9(2-\mathrm{C}), 75.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.3(4 \mathrm{H}-\mathrm{C}), 74.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.4\left(5{ }^{\prime}-\right.$ C), 68.8 ($3^{\prime \prime}-\mathrm{C}$), 68.6 (6 "-C), 60.1 ($\left.6-\mathrm{C}\right), 58.2$ (4-C), 51.1 (6 '-C) and 32.3 (5-C) (sixteen peaks overlapped or missing); m / z (ES) 1151.7 ($30 \%, \mathrm{MNa}^{+}$), 1101.7 (32) and 430.3 (100); (Found: MNa^{+}, 1151.4681. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a$, 1151.4715).
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', 3',4'-tri-O-benzyl- α-L-glucopyranosyl)-3-O-(3''-Azido-3''-deoxy-2', 4 '’, 6 ''-tri-O-acetoxy- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'D

By method A, the glycosyl donor 21D ($61 \mathrm{mg}, 1.2$ eq., 0.15 mmol) and the acceptor 31A' ($81 \mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel (gradient elution 7:3 to 6:4 petrol-EtOAc) and preparative HPLC to give 27A'D (44 mg, 37\%) as a colourless foam, $R_{\mathrm{f}} 0.25$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}$ -23.6 (c. 1.00 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3486, 2916, 2106, 1751, 1222 and 1069; $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.24(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.05(1 \mathrm{H}, \mathrm{d}, J 3.8,1 '-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 9.6 , 4"-H), 4.98 ($1 \mathrm{H}, \mathrm{d}, J 7.9,1$ "-H), $4.97\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.91$ ($1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 7.9, 2"-H), 4.90 ($1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{B} \mathrm{HPh}$), 4.79 (1H, d, $J 10.9, \mathrm{CH}_{A} \cdot \mathrm{Ph}$), 4.76 ($1 \mathrm{H}, \mathrm{d}, J 11.8$, $\left.\mathrm{C} H_{C} \mathrm{HPh}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH} H_{B} \cdot \mathrm{Ph}\right), 4.23-4.20(2 \mathrm{H}, \mathrm{m}$,
$\left.6^{\prime \prime}-\mathrm{H}\right), 4.05-4.01\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 4.00\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.83(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 3.68-3.64$ ($1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime \prime}-\mathrm{H}$), $3.63(1 \mathrm{H}, \mathrm{t}, J 10.1,3 "-\mathrm{H}), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J 9.3\right.$ and $\left.3.8,2^{\prime}-\mathrm{H}\right), 3.55(1 \mathrm{H}, \mathrm{dd}, J$ 9.3 and $9.1,3-\mathrm{H}), 3.53-3.38\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 6-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 3.41\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $\left.9.3,4^{\prime}-\mathrm{H}\right)$, 3.38-3.34 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $3.31\left(1 \mathrm{H}, \mathrm{dd}, J 13.0\right.$ and $\left.6.7,6^{\prime}-\mathrm{H}\right), 3.24(1 \mathrm{H}, \mathrm{t}, J 9.2,1-\mathrm{H}), 2.20(1 \mathrm{H}$, $\mathrm{dt}, J 13.5$ and $\left.4.5,5-\mathrm{H}_{\mathrm{A}}\right), 2.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.37-1.27\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.8,169.2,169.2(\mathrm{C}=\mathrm{O}), 138.4,137.8,137.6$ (o-Ph), 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8 (Ph), 100.8 (1"-C), 98.4 (1'-C), 85.6 (1-C), 81.6 (3-C), 81.0 (3'-C), $79.7\left(2^{\prime}-\mathrm{C}\right), 78.1\left(4^{\prime}-\mathrm{C}\right), 75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.3\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 75.0(2-\mathrm{C}), 73.6\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right)$, 72.5 ($5^{\prime \prime}-\mathrm{C}$), 71.6 ($\left.2^{\prime \prime}-\mathrm{C}\right), 71.2$ ($\left.5^{\prime}-\mathrm{C}\right), 68.4$ (4 "-C), 64.3 ($3^{\prime \prime}-\mathrm{C}$), 61.8 (6 "-C), 59.4 ($6-\mathrm{C}$), 58.3 (4 C), 51.8 (6 '-C), $32.5(5-\mathrm{C}), 20.7,20.7$ and $20.6\left(\mathrm{CH}_{3}\right)$ (two aromatic peaks overlapped or missing); m / z (ES) 1007.5 (60\%, MNa^{+}), and 430.3 (100); (Found: MNa^{+}, 1007.3625. $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{14} \mathrm{~N}_{12}$ requires $\left.M N a, 1007.3624\right)$.
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, 4$ '-tri- O-benzyl- α-D-glucopyranosyl)-3-O-(2''-Azido-2'’-deoxy-3'’,4', 6 '’-tri-O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AE

By method A, the glycosyl donor 21E ($79 \mathrm{mg}, 1.2$ eq., 0.14 mmol) and the acceptor 31A ($78 \mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel (gradient elution: $8: 2 \rightarrow 7: 3$ petrol-EtOAc) and preparative HPLC to give 27AE ($31 \mathrm{mg}, 24 \%$) as a colourless foam, $R_{\mathrm{f}} 0.50\left(7: 3\right.$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}$ +64.2 (c. 0.99 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3459, 2923, 2106, 1154 and $1069 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.40-7.00(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.33\left(1 \mathrm{H}, \mathrm{d}, J 3.7,1{ }^{\prime \prime}-\mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.92-4.87$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J$ 11.6, $\left.\mathrm{CH}_{C} \mathrm{HPh}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{CH}_{C} \cdot \mathrm{Ph}\right), 4.61\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J$ 12.1, $\left.\mathrm{CH}_{D} \mathrm{HPh}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CHH}_{B} \mathrm{Ph}\right), 4.40\left(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{CH} H_{D} \cdot \mathrm{Ph}\right), 4.35(1 \mathrm{H}, \mathrm{d}, J$ $1.6, \mathrm{OH}), 4.33-4.28\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 4.11-4.05\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.99\left(1 \mathrm{H}, \mathrm{t}, J 9.4,3^{\prime}-\mathrm{H}\right), 3.96$ ($1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $9.3,3$ "-H), 3.75 (1 H , dd, $J 9.7$ and $9.3,4$ "-H), 3.65 ($1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 3.0, 6"-H), 3.59-3.50 (6H, m, 2'-H, 4'-H, 6'-H, 6"-H, 2-H and 4-H), 3.46-3.36 (3H, m, 2"-H, 6'H and $1-\mathrm{H}), 3.30-3.25(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.38\left(1 \mathrm{H}, \mathrm{dt}, J 13.1\right.$ and $\left.4.3,5-\mathrm{H}_{\mathrm{A}}\right)$
and 1.67-1.50 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.4,138.1,138.0,137.9,137.8,137.0$ (o-Ph), 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7 (Ph), 100.4 (1"C), 98.7 (1'-C), 84.9 (3-C), 81.9 (3'-C), 80.8 (1-C), 80.3 ($\left.3^{\prime \prime}-\mathrm{C}\right), 79.7$ (2'-C), 78.2, 78.1 ($4^{\prime}-\mathrm{C}$ and 4"-C), $75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.4,74.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ and 2-C), $73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.0,70.9$ ($5^{\prime}-\mathrm{C}$ and $\left.5^{\prime \prime}-\mathrm{C}\right), 68.1$ (6 "-C), 63.6 (2"-C), 60.9 (4-C), 58.8 (6C), 51.2 (6 '-C) and 32.5 (5-C) (eight aromatic peaks overlapped or missing); m / z (ES) 1151.8 (100%, MNa^{+}), and 430.3 (89); (Found: MNa^{+}, 1151.4741. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a$, 1151.4715).

Also obtained was ($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido- 6^{\prime}-deoxy- $2^{\prime}, 3^{\prime}, 4^{\prime}$ 'tri- O-benzyl- α -D-glucopyranosyl)-3-O-(2''-Azido-2'"-deoxy-3', 4 '', 6 '"-tri- O-benzyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27Af ($32 \mathrm{mg}, 24 \%$) as a colourless foam, $R_{\mathrm{f}} 0.50(7: 3$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}+57.6$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3435, 2919, 2107 and 1069; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42-7.14(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 3.5,1^{\prime}-\mathrm{H}\right), 4.96(1 \mathrm{H}, \mathrm{d}, J 11.0$, $\left.\mathrm{C} H_{A} \mathrm{HPh}\right), 4.93-4.89\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH} H_{A} \cdot \mathrm{Ph}, \mathrm{CH}_{B} \mathrm{HPh}\right.$ and $\left.\mathrm{C} H_{C} \mathrm{HPh}\right), 4.88(1 \mathrm{H}, \mathrm{d}, J 11.4$, $\left.\mathrm{CH}_{D} \mathrm{HPh}\right), 4.86\left(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{CH} H_{B} \mathrm{Ph}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{E} \mathrm{HPh}\right), 5.11(1 \mathrm{H}, \mathrm{d}, J 4.0$, 1"-H), $4.72\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{CH}_{D} \mathrm{Ph}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{CH}_{F} \mathrm{HPh}\right), 4.64-4.59(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} H_{C} \mathrm{Ph}$ and $\left.\mathrm{CH} H_{E} \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{CH}_{F} \mathrm{Ph}\right), 4.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.6,5^{\prime}-\mathrm{H}\right), 4.03$ $\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.81-3.78\left(1 \mathrm{H}, \mathrm{m}, 6 "-\mathrm{H}_{\mathrm{A}}\right), 3.75\left(1 \mathrm{H}, \mathrm{dd}, J 11.3\right.$ and $\left.4.5,6 "-\mathrm{H}_{\mathrm{B}}\right), 3.71-3.63$ $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}, 2-\mathrm{H}\right.$ and $\left.3-\mathrm{H}\right), 3.60\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3\right.$ and $\left.3.5,2^{\prime}-\mathrm{H}\right), 3.58-3.52\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $6^{\prime}-$ H), 3.50-3.36 (5H, m, 2"-H, 4"-H, 5 "-H, 6 '-H and 4-H), 3.30-3.22 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 3.20-3.14 $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.29-2.22\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.38\left(1 \mathrm{H}, \mathrm{q}, J 12.8,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 138.5, 138.3, 138.0, 137.9, 137.8, 136.9 (o-Ph), 128.7, 128.6, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5 (Ph), 101.5 (1"-C), 100.5 (1'-C), 84.6 (1-C), 83.1 (4"-C), 82.0 (3'C), 80.7 (3-C), 79.8 ($\left.2^{\prime}-\mathrm{C}\right), 78.3$ ($\left.4^{\prime}-\mathrm{C}\right), 77.9$ ($3^{\prime \prime}-\mathrm{C}$), 76.3 (2-C), 75.6 ($\left.5{ }^{\prime \prime}-\mathrm{C}\right), 75.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $75.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.9\left(5^{\prime}-\mathrm{C}\right), 68.8$ ($\left.6^{\prime \prime}-\mathrm{C}\right), 66.0$ ($2^{\prime \prime}-\mathrm{C}$), 58.9 ($6-\mathrm{C}$), 58.3 ($4-\mathrm{C}$), 51.2 ($6^{\prime}-\mathrm{C}$) and 32.3 (5-C) (eight aromatic peaks overlapped or missing); m / z (ES) 1151.9 ($100 \%, \mathrm{MNa}^{+}$) and 430.4 (89); (Found: MNa^{+}, 1151.4698. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a, 1151.4715$).
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, 4$ '-tri- O-benzyl- α-D-glucopyranosyl)-3-O-(2'-Phthalimido-2"'deoxy-3', 4 "', 6 ''-tri- O-benzyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27AF

By method A, the glycosyl donor 21F ($72 \mathrm{mg}, 1.2$ eq., 0.11 mmol) and the acceptor 31A ($60 \mathrm{mg}, 1.0$ eq., 0.09 mmol) gave a crude product which was purified by flash chromatography on silica gel (7:3 petrol-EtOAc) and preparative HPLC to give 27AF (56 $\mathrm{mg}, 51 \%$) as a colourless foam, $R_{\mathrm{f}} 0.50\left(7: 3\right.$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}+63.8$ (c. 1.01 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3432, 2926, 2105, 1715, 1388 and $1070 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42-7.17$ $(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.98\left(2 \mathrm{H}, \mathrm{d}, J 7.1,2-\mathrm{H}_{\mathrm{Phth}}\right), 6.98\left(2 \mathrm{H}, \mathrm{t}, J 7.1,3-\mathrm{H}_{\mathrm{Phth}}\right), 5.51(1 \mathrm{H}, \mathrm{d}, J 8.5,1 \mathrm{H}-\mathrm{H})$, $4.84\left(1 \mathrm{H}, \mathrm{d}, J 3.8,1^{\prime}-\mathrm{H}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{C} H_{C} \mathrm{HPh}\right), 4.69$ $\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{CH}_{D} \mathrm{HPh}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.65-4.63(3 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{d}, J$ 12.2, $\left.\mathrm{CH}_{D} \mathrm{Ph}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH} H_{C} \mathrm{Ph}\right), 4.47(1 \mathrm{H}, \mathrm{t}, J$ $10.5,3$ "-H), 4.45 (1H, d, $J 11.7, \mathrm{CH}_{B}$ Ph), 4.40 (1H, d, $\left.J 12.1, \mathrm{CHH}_{E} \mathrm{Ph}\right), 4.27$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 10.5 and $\left.8.5,2^{\prime \prime}-\mathrm{H}\right), 4.05(1 \mathrm{H}, \mathrm{d}, J 1.1, \mathrm{OH}), 3.95\left(1 \mathrm{H}\right.$, ddd, $J 9.6,4.0$ and $\left.2.8,5{ }^{\prime}-\mathrm{H}\right), 3.88-$ 3.80 (3H, m, 4"-H and 6"-H), 3.77 ($1 \mathrm{H}, \mathrm{t}, J 9.4,3$ '-H), 3.75-3.70 ($1 \mathrm{H}, \mathrm{m}, 5$ "-H), 3.53 ($1 \mathrm{H}, \mathrm{t}, J$ $9.5,3-\mathrm{H}), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.2.8,6^{\prime}-\mathrm{H}\right), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J 9.6\right.$ and $\left.9.4,4{ }^{\prime}-\mathrm{H}\right), 3.39(1 \mathrm{H}, \mathrm{dd}$, $J 9.4$ and 3.8, $\left.2^{\prime}-\mathrm{H}\right), 3.35\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and 4.0, $\left.6^{\prime}-\mathrm{H}\right), 3.33-3.23(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $4-\mathrm{H}), 3.15$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.04(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and $9.4,1-\mathrm{H}), 2.24-2.16\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.38-1.28(1 \mathrm{H}$, $\left.\mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.6(\mathrm{C}=\mathrm{O}), 138.5,138.4,138.1,138.0,137.9(o-\mathrm{Ph})$, 133.4, 131.9 (o-Phth), 128.8, 128.7, 128.6, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 127.3 (Ph), 100.1 (1'-C), 98.6 (1"-C), 84.1 (1-C), 81.7 (3'-C and 3-C), 79.6 (4"-C), 79.2 (3"C), 78.6 (2'-C), 78.0 (4'-C), 75.5 (2-C), 75.4 (5"-C), 75.2 ($\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 75.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.0$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.8\left(5^{\prime}-\mathrm{C}\right), 68.9\left(6^{\prime \prime}-\mathrm{C}\right), 59.2(6-\mathrm{C}), 58.4(4-\mathrm{C}), 55.9$ (2"-C), 51.1 ($6^{\prime}-\mathrm{C}$) and 32.4 (5-C) (ten peaks overlapped or missing); m / z (ES) 1256.0 (40%, MNa^{+}), 454.4 (25) and 348.3 (100); (Found: MNa^{+}, 1255.4885. $\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{O}_{13} \mathrm{~N}_{10}$ requires $M N a$, 1255.4865).
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', 3',4'-tri-O-benzyl- α-L-glucopyranosyl)-3-O-(2'’-Azido-2''-deoxy-3', 4 '', 6 ''-tri- O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'E

By method A, the glycosyl donor 21E ($82 \mathrm{mg}, 1.2$ eq., 0.14 mmol) and the acceptor 31A' (81 $\mathrm{mg}, 1.0$ eq., 0.12 mmol) gave a crude product which was purified by flash chromatography on silica gel ($8: 2$ petrol-EtOAc) and preparative HPLC to give 27A'E ($25 \mathrm{mg}, 19 \%$; $>90: 10$ mixture of diastereomers) as a colourless foam, $R_{\mathrm{f}} 0.57$ ($7: 3$ petrol-EtOAc); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3473, 2920, 2106 and 1070 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48-7.07(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.24(1 \mathrm{H}, \mathrm{d}, J 4.3$, 1'-H), $5.22(1 \mathrm{H}, \mathrm{d}, J 4.6,1 "-\mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, J 10.6, \mathrm{CH}_{B} \mathrm{HPh}\right)$, $4.85\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.84\left(1 \mathrm{H}, \mathrm{d}, J 10.6, \mathrm{CH} H_{B} \mathrm{Ph}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{CH}_{D} \mathrm{HPh}\right)$, $4.77\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.75-4.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} H_{A} \cdot \mathrm{Ph}\right.$ and $\left.\mathrm{CH} H_{D} \cdot \mathrm{Ph}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J$ $\left.10.9, \mathrm{CH}_{C} \mathrm{Ph}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J 12.5,6 "-\mathrm{CCH}_{F} \mathrm{HPh}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CHH}_{E} \mathrm{Ph}\right), 4.44(1 \mathrm{H}$, d, $\left.J 12.5,6^{\prime \prime}-\mathrm{CCHH}_{F} \mathrm{Ph}\right), 4.28$ (1H, ddd, $J 9.9,4.9$ and 2.3, $\left.5^{\prime}-\mathrm{H}\right), 4.19$ (1 H , ddd, $J 9.9,3.4$ and $\left.3.0,5{ }^{\prime \prime}-\mathrm{H}\right), 4.10(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{OH}), 3.98\left(1 \mathrm{H}, \mathrm{t}, J 9.4,3^{\prime}-\mathrm{H}\right), 3.96(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 9.4, $3 "-\mathrm{H}), 3.63-3.53\left(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 2^{\prime}-\mathrm{H}, 4{ }^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 3.53-3.49\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 6 \mathrm{H}^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.2^{\prime \prime}-\mathrm{H}\right)$, 3.49-3.40 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 3.35(1 \mathrm{H}, \mathrm{t}, J 9.4,1-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $9.1,3-\mathrm{H})$, $3.29\left(1 \mathrm{H}, \mathrm{dd}, J 13.0\right.$ and $\left.5.0,6{ }^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.36-2.30\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.52\left(1 \mathrm{H}, \mathrm{q}, J 12.8,5-\mathrm{H}_{\mathrm{B}}\right)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.6,137.9,137.8,137.7$ (o-Ph), 128.7, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8 (Ph), 98.8 (1"-C), 97.5 (1'-C), 84.2 (3-C), 82.5 (1-C), 81.5 (3'-C), 80.4 (3"-C), 79.7 (2'-C), 78.3 (4"-C), $78.2\left(4^{\prime}-\mathrm{C}\right), 75.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.1$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5,73.4,73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$ and 2-C), 71.4 ($\left.5^{\prime \prime}-\mathrm{C}\right), 70.6\left(5^{\prime}-\mathrm{C}\right), 67.9$ ($\left.6^{\prime \prime}-\mathrm{C}\right), 63.9$ (2"-C), 60.3-59.8 (4-C and 6-C), 51.4 (6 '-C) and 32.4 (5-C) (13 aromatic peaks overlapped or missing); m / z (ES) $1151.7\left(80 \%, \mathrm{MNa}^{+}\right), 609.4$ (54) and 430.3 (100); (Found: MNa^{+}, 1151.4666. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a, 1151.4715$).

Also obtained was ($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Azido-6'-deoxy- $2^{\prime}, 3^{\prime}, 4^{\prime}$ 'tri- O-benzyl-α-L-glucopyranosyl)-3-O-(2"'-Azido-2"'-deoxy-3'",4", $6^{\prime \prime}$ 'tri- O-benzyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'f ($36 \mathrm{mg}, 26 \%$; $>85: 15$ mixture of diastereomers) as a colourless foam, $R_{\mathrm{f}} 0.57$ ($7: 3$ petrol-EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3480, 2918, 2108 and 1070; δ_{H} ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.41-7.15 (30H, m, Ph), $5.12\left(1 \mathrm{H}, \mathrm{d}, J 3.5,1^{\prime}-\mathrm{H}\right), 4.98(1 \mathrm{H}, \mathrm{d}, J 10.9$,
$\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.87\left(1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{C} H_{C} \mathrm{HPh}\right), 4.83-4.74(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.78(1 \mathrm{H}, \mathrm{d}, J 5.1,1 "-\mathrm{H}), 4.66\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{CH}_{D} \mathrm{HPh}\right), 4.63-4.54\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.18-4.12 ($1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}$), 4.05-3.98 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), $4.04(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{OH}), 3.80-3.75(1 \mathrm{H}, \mathrm{m}$, $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.73\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.4.5,6{ }^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 3.68-3.55\left(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and 4 "H), $3.50-3.43\left(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 4^{\prime}-\mathrm{H}, 2{ }^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right.$ and 5 "-H), 3.43-3.33 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6^{\prime}-\mathrm{H}_{\mathrm{B}}$), $3.30(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $9.0,1-\mathrm{H}), 2.26-2.18\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.34\left(1 \mathrm{H}, \mathrm{q}, J 12.9,5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.6, 138.5, 137.9, 137.8, 137.7 (o-Ph), 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.5 (Ph), 101.9 (1"-C), 97.8 ($\left.1^{\prime}-\mathrm{C}\right), 84.3$ (1-C), 83.2 ($\left.3^{\prime \prime}-\mathrm{C}\right), 82.2$ (3-C), 81.3 (3'-C), $79.7\left(2^{\prime}-\mathrm{C}\right), 78.1\left(4^{\prime}-\mathrm{C}\right), 77.9\left(4^{\prime \prime}-\mathrm{C}\right), 75.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.4\left(5{ }^{\prime \prime}-\right.$ C), $75.2(2-\mathrm{C}), 75.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.9$ ($\left.5^{\prime}-\mathrm{C}\right), 68.8$ (6 "-C), 66.1 (2"-C), 59.7 ($\left.6-\mathrm{C}\right)$, 58.3 (4-C), 51.5 (6'-C) and 32.4 (5-C) (twelve peaks overlapped or missing); m / z (ES) 1151.7 ($88 \%, \mathrm{MNa}^{+}$) and 430.3 (100); (Found: MNa^{+}, 1151.4746. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{11} \mathrm{~N}_{12}$ requires $M N a$, 1151.4715).
(1R,2S,3S,4R,6S)-1-O-(6'-Azido-6'-deoxy-2', 3',4'-tri-O-benzyl- α-L-glucopyranosyl)-3-O-(2'’-Phthalimido-2'’-deoxy-3', 4 ',,6'-tri- O-benzyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexan-1,2,3-ol 27A'F

By method A, the glycosyl donor 21F ($97 \mathrm{mg}, 1.2$ eq., 0.15 mmol) and the acceptor 31A' ($81 \mathrm{mg}, 1.0$ eq., 0.14 mmol) gave a crude product which was purified by flash chromatography on silica gel (7:3 petrol-EtOAc) and preparative HPLC to give 27A'F (62 $\mathrm{mg}, 42 \%$) as a colourless foam, $R_{\mathrm{f}} 0.41$ (7:3 petrol/EtOAc); $[\alpha]_{\mathrm{D}}-2.0$ (c. 0.92 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3477, 2923, 2106, 1715 and $1071 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.14(30 \mathrm{H}, \mathrm{m}$, Ph), 6.99-6.80 (4H, m, H ${ }_{\text {Phth }}$), 5.49 ($\left.1 \mathrm{H}, \mathrm{d}, ~ J 8.5,1 "-\mathrm{H}\right), 5.00(1 \mathrm{H}, \mathrm{d}, J 3.5,1$ '-H), $4.90(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.0, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.84\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.82\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{C} H_{C} \mathrm{HPh}\right), 4.78(1 \mathrm{H}, \mathrm{d}, J$ 12.1, $\left.\mathrm{CH}_{D} \mathrm{HPh}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J 12.1,6 "-\mathrm{CCH}_{E} \mathrm{HPh}\right), 4.66(1 \mathrm{H}$, d, $\left.J 11.8, \mathrm{CH}_{F} \mathrm{HPh}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{C} \mathrm{Ph}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH} H_{F} \mathrm{Ph}\right), 4.60(1 \mathrm{H}$, d, $\left.J 12.1,6^{\prime \prime}-\mathrm{CCHH}_{E} \cdot \mathrm{Ph}\right), 4.51\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CHH}_{B} \cdot \mathrm{Ph}\right), 4.42\left(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{CH} H_{D} \cdot \mathrm{Ph}\right), 4.37$ (1 H , dd, $J 10.6$ and $8.7,3^{\prime \prime}-\mathrm{H}$), 4.24 (1 H , dd, $J 10.6$ and $\left.8.5,2^{\prime \prime}-\mathrm{H}\right), 3.93-3.88\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, 3.87 ($1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $9.3,3$ '-H), 3.83-3.73 ($3 \mathrm{H}, \mathrm{m}, 4$ "-H and 6 "-H), 3.71-3.66 ($1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime \prime}-\mathrm{H}$),
3.52-3.45 ($3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 2^{\prime}-\mathrm{H}$ and OH), $3.42\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.9.4,4{ }^{\prime}-\mathrm{H}\right), 3.37-3.30(1 \mathrm{H}, \mathrm{m}, 6-$ H), $3.30-3.21(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $4-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{t}, J 9.4,1-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{dd}, J 13.3$ and 4.1, 6'$\left.\mathrm{H}_{\mathrm{A}}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J 13.3\right.$ and $\left.2.2,6{ }^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.18-2.11\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right)$ and $1.34-1.25(1 \mathrm{H}, \mathrm{m}, 5-$ H_{B}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.1,137.9,137.5,137.4,137.2$ (o-Ph), 128.6, 127.9, 127.8, 127.7, 127.5, 127.4, 127.3, 127.2, 127.0, 129.8 (Ph), 97.6 (1"-C), 97.1 (1'-C), 83.1 (1-C), 81.3 (3-C), 80.7 (3'-C), 79.2 (4"-C), 78.9 (2'-C), 78.2 (3"-C), 77.2 (4'-C), 75.1 ($\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7$ (5"C), $74.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4(2-\mathrm{C}), 72.9,72.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.1\left(5{ }^{\prime}-\mathrm{C}\right)$, 68.2 (6 "-C), 59.1 ($6-\mathrm{C}), 57.5$ (4-C), 55.4 (2"-C), 50.3 ($\left.6^{\prime}-\mathrm{C}\right)$ and 31.8 (5-C) (thirteen peaks overlapped or missing); $m / z(E S) 1255.8\left(50 \%, \mathrm{MNa}^{+}\right)$and 348.2 (100); (Found: MNa^{+}, 1255.4866. $\mathrm{C}_{68} \mathrm{H}_{68} \mathrm{O}_{13} \mathrm{~N}_{10}$ requires $\left.M N a, 1255.4865\right)$.
($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$ '-tri- O-benzyl- α-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28A

By method B, the glycosyl donor $\mathbf{2 1 A}(3.16 \mathrm{~g}, 1.0$ eq., 5.57 mmol$)$ and the acceptor 13 $(1.40 \mathrm{~g}, 1.2$ eq., 7.06 mmol$)$ gave a crude product which was purified by flash chromatography on silica gel (gradient elution: 9:1, 8:2 $\rightarrow 7: 3$ petrol-EtOAc) to give a mixture of diastereomeric monoglycosylated products ($1.17 \mathrm{~g}, 32 \%$; ca. 70:15:15 28A : 28b : $\mathbf{2 8}^{\prime} \mathbf{A}$) and a mixture of diastereomeric diglycosylated products ($1.98 \mathrm{~g}, 32 \%$; $c a .70: 20: 10$

28AA : 28Ab : 28’AA).

For analytical purposes, a sample (201 mg) of the mixture of diastereomeric monoglycosylated products was purified by preparative HPLC to give $\mathbf{2 8 A}(82.5 \mathrm{mg}, 13 \%)$ as a yellow oil, $R_{\mathrm{f}} 0.34$ ($8: 2$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}+41.8$ (c. 0.90 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3450, 2927, 2102, 1756, 1255 and 1071; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.40-7.25 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 4.98 (1H, d, $\left.J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.84(1 \mathrm{H}, \mathrm{d}, J 3.3,1$ '-H), 4.83 (1H, d, $\left.J 10.9, \mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.58(1 \mathrm{H}, \mathrm{d}$, $\left.J 10.9, \mathrm{CHH}_{B} \cdot \mathrm{Ph}\right), 3.92(1 \mathrm{H}, \mathrm{t}, J 9.3,3 '-\mathrm{H}), 3.87-3.81(1 \mathrm{H}, \mathrm{m}, 5 '-\mathrm{H}), 3.75-3.64(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 4-$ H, 2-H or $5-\mathrm{H}), 3.59-3.54(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $5-\mathrm{H}), 3.33\left(1 \mathrm{H}, \mathrm{dd}, J 9.3\right.$ and $\left.3.3,2^{\prime}-\mathrm{H}\right), 3.47(1 \mathrm{H}$, dd, $J 13.1$ and $\left.2.4,6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.50-3.42\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.34\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.5.7,6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.07-$ $2.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}), 2.00-1.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}), 1.94-1.88(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H})$ and
$1.88-1.80(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.5,138.1,137.7$ (o-Ph), 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8 (Ph), 97.4 (1'-C), 81.4 (3'-C), 80.2 (2'-C), 77.3 (4'-C), $75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.4\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 74.7$ (1-C or 4-C), $73.9\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 71.0\left(5^{\prime}-\mathrm{C}\right), 68.6$ (1C or 4-C), 61.9, 59.0 (2-C and 5-C), 51.4 (6 '-C), 32.1, 30.8 ($3-\mathrm{C}$ and $6-\mathrm{H}$) (one aromatic peak overlapped or missing); m / z (ES) 677.9 (50, MNa^{+}), 672.9 (100, $\mathrm{MNH}_{4}{ }^{+}$) and 429.9 (58); (Found: $\mathrm{MNa}^{+}, 678.2781 \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~N}_{9}$ requires $M N a, 678.2765$).

Also obtained was ($1 S, 2 S, 4 S, 5 S$)-1-O-(6'-Azido-6'-deoxy-2 ', $3^{\prime}, 4$ '-tri-O-benzyl- α-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28'A (20.3 mg, 3\%) as a yellow oil, R_{f} 0.34 (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+54.0$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3453, 2926, 2102, 1255 and $1071 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.25(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right)$, 4.91 ($1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{B} \mathrm{HPh}$), 4.83 ($1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CHH}_{A} \cdot \mathrm{Ph}$), 4.81 ($1 \mathrm{H}, \mathrm{d}, J 3.9,1 '-\mathrm{H}$), 4.79 (1H, d, $\left.J 11.9, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH} H_{B} \cdot \mathrm{Ph}\right), 3.92$ $(1 \mathrm{H}, \mathrm{t}, J 9.3,3 '-\mathrm{H}), 3.88-3.86(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $5-\mathrm{H}), 3.85-3.81(1 \mathrm{H}, \mathrm{m}, 5 '-\mathrm{H}), 3.80-3.73(2 \mathrm{H}$, m, 1-H and $4-\mathrm{H}), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 9.3\right.$ and $\left.3.6,2^{\prime}-\mathrm{H}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.2.3,6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.46-$ $3.42\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.32\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.5.8,6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.14-2.08(1 \mathrm{H}$, br. s, OH), 2.08-1.99 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 1.99-1.91\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right)$ and $1.77-1.69\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $6-$ $\left.\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.5,138.1,137.7$ (o-Ph), 128.9, 128.8, 128.4, 128.1, 127.9, 127.8 (Ph), 95.9 (1'-C), 81.4 (3'-C), 79.7 (2'-C), 78.2 (4'-C), $75.6\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.4\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right)$, $73.8\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 73.4$ (1-C or 4-C), 70.9 ($5^{\prime}-\mathrm{C}$), 68.9 (1-C or 4-C), 61.7, 59.8 (2-C and 5-C), 51.3 (6 '-C), 32.4 and 28.8 (3-C and 6-H) (two aromatic peaks overlapped or missing); m / z (ES) $678.3\left(35 \%, \mathrm{MNa}^{+}\right), 673.3\left(67, \mathrm{MNH}_{4}{ }^{+}\right)$and 430.2 (100); (Found: MNa^{+}, 678.2780. $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~N}_{9}$ requires $\left.M N a, 678.2765\right)$.

Also obtained was ($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4$ '-tri-O-benzyl- β-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28b (22.3 mg, 4\%; 90:10 mixture of diastereoisomers) as a yellow oil, $R_{\mathrm{f}} 0.34$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+1.4$ (c. 1.10 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) $3435,2917,2101,1756,1254,1070,736$ and $698 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.40-7.25 (15H, m, Ph), 4.94 ($\left.1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.87$ (1H, d, $\left.J 11.0, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.85$ $\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.82\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.58$ (1H, d, J 11.0, CHH ${ }_{B}$ Ph), 4.51 (1H, d, $\left.J 7.8, ~ 1 '-H\right), ~ 4.03-3.98$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or 5-H), 3.95-3.91
$(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}), 3.75-3.63(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}, 3 \mathrm{-H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.51-3.41(5 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}$ or $\left.5-\mathrm{H}, 2^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5{ }^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.5.7,6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.10-2.01(2 \mathrm{H}, \mathrm{m}, 3-$ H_{A} and $\left.6-\mathrm{H}_{\mathrm{A}}\right), 1.93\left(1 \mathrm{H}\right.$, ddd, $J 13.9,10.5$ and $3.3,3-\mathrm{H}_{\mathrm{B}}$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right)$ and $1.75(1 \mathrm{H}$, ddd, $J 14.0$, 11.3 and $2.6,3-\mathrm{H}_{\mathrm{B}}$ or $6-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.5,138.1,137.7(o-\mathrm{Ph}), 128.9,128.8$, 128.5, 128.2, 128.1, 128.0 (Ph), 102.3 ($\left.1^{\prime}-\mathrm{C}\right), 84.4$ ($\left.3^{\prime}-\mathrm{C}\right), 82.1$ ($\left.2^{\prime}-\mathrm{C}\right), 78.2$ ($\left.4^{\prime}-\mathrm{C}\right), 75.8$ $\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.3\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 75.2\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 75.1$ (1-C or 4-C), 74.8 (5 '-C), 68.6 (1-C or 4-C), 61.9, 59.9 (2-C and 5-C), 51.2 (6 '-C) and 32.1, 29.5 (3-C and 6-H) (two aromatic peaks overlapped or missing); $m / z(\mathrm{ES}) 678.3\left(35 \%, \mathrm{MNa}^{+}\right), 673.3\left(67, \mathrm{MNH}_{4}{ }^{+}\right)$and 430.2 (100); (Found: $\mathrm{MNa}^{+}, 678.2781 . \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~N}_{9}$ requires $M N a, 678.2765$).

For analytical purposes, a sample (424 mg) of the mixture of diastereomeric diglycosylated products was purified by preparative HPLC to give ($1 R, 2 R, 4 R, 5 R$)-1-O-(6^{\prime} ' Azido-6'-deoxy-2', 3 ', 4'-tri-O-benzyl- α-D-glucopyranosyl)-4-O-(6''-Azido-6''-deoxy$2^{\prime \prime}, 3$ ', 4'"-tri-O-benzyl- α-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28AA (200.2 $\mathrm{mg}, 15 \%$) as a yellow oil, $R_{\mathrm{f}} 0.53$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+46.4$ (c. 1.12 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1}$ (film) 2922, 2102, 1285 and 1072; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.10(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.02(2 \mathrm{H}$, d, J 10.9, $\mathrm{CH}_{A} \mathrm{HPh}$), 4.95-4.90 (4H, m, 1'-H, 1"-H and $\left.\mathrm{CH}_{B} \mathrm{HPh}\right), 4.85(2 \mathrm{H}, \mathrm{d}, J 10.9$, $\left.\mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.77\left(2 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.68$ (2H, d, $J_{11.8, ~ C H H}^{C} \cdot \mathrm{Ph}$), 4.58 (2H, d, J 10.9, $\mathrm{CHH}_{B} \cdot \mathrm{Ph}$), 3.97 ($2 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}$ and $3^{\prime \prime}-\mathrm{H}$), 3.88-3.83 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$ and $5^{\prime \prime}-\mathrm{H}$), 3.70-3.63 ($4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}$), $3.54\left(2 \mathrm{H}, \mathrm{dd}, J 9.3\right.$ and $3.6,2^{\prime}-\mathrm{H}$ and $\left.2^{\prime \prime}-\mathrm{H}\right), 3.48-3.41(4 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.34\left(2 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $5.8,6^{\prime}-\mathrm{H}_{\mathrm{B}}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 2.12-2.02$ $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right)$ and 1.98-1.89 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 138.6, 138.1, 137.8 (o-Ph), 129.1, 128.6, 128.4, 128.5, 128.3, 128.1, 127.9, 127.7 (Ph), 97.8 (1'-C and $1^{\prime \prime}-\mathrm{C}$), 81.4 ($3^{\prime}-\mathrm{C}$ and $3^{\prime \prime}-\mathrm{C}$), 80.0 ($2^{\prime}-\mathrm{C}$ and $2^{\prime \prime}-\mathrm{C}$), 78.4 ($4^{\prime}-\mathrm{C}$ and $4^{\prime \prime}-\mathrm{C}$), $75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right)$, $75.4\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 74.9$ (1-C and 4-C), $73.6\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 70.9$ ($5^{\prime}-\mathrm{C}$ and 5"-C), 59.5 (2-C and 5-C), 51.5 (6 '-H and $6^{\prime \prime}-\mathrm{C}$) and 31.4 (3-C and 6-C) (one aromatic peak overlapped or missing); m / z (ES) 1135.4 ($80, \mathrm{MNa}^{+}$) and 430.2 (100); (Found: MNa^{+}, 1135.4800. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a, 1135.4766)$.

Also obtained was (1S, $2 S, 4 S, 5 S)$-1-O-(6'-Azido-6'-deoxy-2 ', 3',4'-tri-O-benzyl- α-D-glucopyranosyl)-4-O-(6''-Azido-6'"-deoxy-2', $3^{\prime \prime}, 4^{\prime \prime}$-tri-O-benzyl- α-D-glucopyranosyl)-2,5-
diazido-cyclohexane-1,4-diol 28'AA ($31.7 \mathrm{mg}, 2 \%$) as a yellow oil, $R_{\mathrm{f}} 0.53$ ($8: 2$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}+61.6$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2925, 2102, 1086 and 1072; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.02\left(2 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.92(2 \mathrm{H}, \mathrm{d}, J$ 11.1, $\left.\mathrm{CH}_{B} \mathrm{HPh}\right), 4.84\left(2 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.81$ (2H, d, $\left.J 12.0, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.79$ (2H, d, J $4.9,1^{\prime}-\mathrm{H}$ and $\left.1 "-\mathrm{H}\right), 4.63\left(2 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.60\left(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH} H_{B} \cdot \mathrm{Ph}\right), 4.00(2 \mathrm{H}$, $\mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}$ and $\left.3^{\prime \prime}-\mathrm{H}\right), 3.97-3.90\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.87-3.81$ (2H, m, 2-H and 5-H), 3.75-3.68 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $4-\mathrm{H}$), 3.58-3.53 ($2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}$ and $2^{\prime \prime}-\mathrm{H}$), 3.51-3.43 (4H, m, $4^{\prime}-\mathrm{H}$, $4 "-\mathrm{H}, 6{ }^{\prime}-\mathrm{H}_{\mathrm{A}}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.43\left(2 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $5.5,6^{\prime}-\mathrm{H}_{\mathrm{B}}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 2.00-1.92(2 \mathrm{H}, \mathrm{m}, 3-$ H_{A} and $\left.6-\mathrm{H}_{\mathrm{A}}\right)$ and $1.89-1.81\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.4,137.9(o-$ Ph), 128.7, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7 (Ph), 95.5 (1 '-C and 1"-C), 81.6 ($3^{\prime}-\mathrm{C}$ and $3^{\prime \prime}-\mathrm{C}$), 79.7 ($2^{\prime}-\mathrm{C}$ and $2^{\prime \prime}-\mathrm{C}$), 78.3 ($4^{\prime}-\mathrm{C}$ and $4^{\prime \prime}-\mathrm{C}$), $75.8\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.2\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right)$, $73.9\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 73.4$ (1-C and 4-C), 70.8 ($5^{\prime}-\mathrm{C}$ and $5^{\prime \prime}-\mathrm{C}$), 59.7 ($2-\mathrm{C}$ and 5-C), 51.3 ($6^{\prime}-\mathrm{H}$ and 6"-C) and 29.6 (3-C and 6-C) (two aromatic peaks overlapped or missing); m / z (ES) 1135.4 ($69, \mathrm{M}^{+}+\mathrm{Na}$), 1085.5 (60) and 430.2 (100); (Found: MNa^{+}, 1135.4792. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a, 1135.4766)$.

Also obtained was ($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido- 6 '-deoxy- 2 ', 3 ',4'-tri-O-benzyl- β-Dglucopyranosyl) -4-O-(6''-Azido-6'"-deoxy-2', 3', 4 ''-tri-O-benzyl- α-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28Ab ($69.6 \mathrm{mg}, 16 \% ; 80: 20$ mixture of diastereoisomers) as a yellow oil, $R_{\mathrm{f}} 0.53$ ($8: 2$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}+18.0$ (c. 1.00 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2917, 2102,1285 and 1072; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.45-7.20 (30H, m, Ph), 5.03 ($1 \mathrm{H}, \mathrm{d}, ~ J 3.4,1 "-$ H), $4.99\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.90(1 \mathrm{H}, \mathrm{d}, J 10.9$, $\left.\mathrm{C} H_{C} \mathrm{HPh}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{C}_{E} \mathrm{HPh}\right), 4.87\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C}_{D} \mathrm{HPh}\right), 4.82(1 \mathrm{H}, \mathrm{d}, J 11.0$, $\left.\mathrm{CH} H_{B} \cdot \mathrm{Ph}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{E} \cdot \mathrm{Ph}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.75(2 \mathrm{H}, \mathrm{d}, J 11.6$, $\mathrm{CH}_{F} \mathrm{HPh}$ and $\left.\mathrm{CH} H_{F} \cdot \mathrm{Ph}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH} H_{D} \cdot \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.51$ ($1 \mathrm{H}, \mathrm{d}, J 7.7,1^{\prime}-\mathrm{H}$), 4.00-3.94 (2H, m, $3^{\prime \prime}-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}$), 3.91-3.84 ($2 \mathrm{H}, \mathrm{m}, 4$ "-H and 1-H or $4-\mathrm{H}), 3.69-3.62\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}\right.$ or $4-\mathrm{H}, 3{ }^{\prime}-\mathrm{H}$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $3.4,2^{\prime \prime}-$ H), 3.51-3.40 (6H, m, 2'-H, 4'-H, 5'-H, 6'- $\mathrm{H}_{\mathrm{A}}, 5^{\prime \prime}-\mathrm{H}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.34(1 \mathrm{H}, \mathrm{dd}, J 13.1$ and 5.6, $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 3.31-3.26\left(1 \mathrm{H}, \mathrm{m}, 6 '-\mathrm{H}_{\mathrm{B}}\right), 2.13-1.93(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.87-1.78(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.4,137.9,137.7,137.4,137.1$ (o-Ph), 128.3, 128.2, 128.1,
128.0, 127.9, 127.8, 127.7 (Ph), 102.6 (1'-C), 98.2 (1"-C), 84.4 (3'-C), 82.1 (2'-C), 81.4 (3"C), 80.1 ($2^{\prime \prime}-\mathrm{C}$), 78.3 ($4^{\prime}-\mathrm{C}$), 76.5 ($1-\mathrm{C}$ or $4-\mathrm{C}$), 75.6 ($C_{B} \mathrm{H}_{2} \mathrm{Ph}$ and $C_{E} \mathrm{H}_{2} \mathrm{Ph}$), 75.5 (4"-C and $\left.C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.1\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $\left.C_{D} \mathrm{H}_{2} \mathrm{Ph}\right), 74.6$ (5'-C and 5"-C), $73.2\left(C_{F} \mathrm{H}_{2} \mathrm{Ph}\right), 70.8$ (1-C or 4C), $60.2,60.1$ ($2-\mathrm{C}$ and 5-C), 51.4 (6 '-C and 6 "-C), 31.4 and 30.2 ($3-\mathrm{C}$ and $6-\mathrm{C}$) (12 aromatic peaks overlapped or missing); $m / z(E S) 1135.6\left(100, \mathrm{M}^{+}+\mathrm{Na}\right), 575.2$ (67) and 430.3 (100); (Found: $\mathrm{MNa}^{+}, 1135.4806 . \mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a, 1135.4766$).
($1 R, 2 R, 4 R, 5 R$)-1-O-(6^{\prime}-Azido- $6^{\prime}-$ deoxy- $\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}$ 'tri- O-benzyl- α-D-glucopyranosyl)- 4-O-(6'"-Azido-6''-deoxy-2', 3 '', 4 ''-tri-O-benzyl- α-L-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28AA'

By method A, the glycosyl donor 21A' $(242 \mathrm{mg}, 1.2$ eq., 0.43 mmol$)$ and the acceptor 28A (233 mg , 1.0 eq., 0.36 mmol ; $c a .70: 15: 15 \mathbf{2 8 A}: \mathbf{2 8 b}: \mathbf{2 8} \mathbf{A}$) gave a crude mixture which was purified by flash chromatography on silica gel ($8: 2$ petrol-EtOAc) and preparative HPLC to give 28AA' ($83.4 \mathrm{mg}, 21 \%$) as a yellow oil, $R_{\mathrm{f}} 0.33$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}-11.2$ (c. 1.00 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3031, 2922, 2102, 1285 and $1072 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.45-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.02\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 5.01\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.95$ $\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right.$ or 1 "-H), $4.92\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{CH}_{D} \mathrm{HPh}\right)$, $4.85\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH} H_{A} \cdot \mathrm{Ph}\right), 4.84\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{B} \cdot \mathrm{Ph}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 3.7,1^{\prime}-\mathrm{H}\right.$ or 1"H), $4.79\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH}_{F} \mathrm{HPh}\right), 4.72(1 \mathrm{H}, \mathrm{d}, J 11.9$, $\left.\mathrm{CH} H_{F} \mathrm{Ph}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH}_{E} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H} \mathrm{d}, J 11.8, \mathrm{CH}_{C} \mathrm{Ph}\right), 4.58(1 \mathrm{H} \mathrm{d}, J 10.7$, $\mathrm{CH} H_{D}$ Ph $), 3.98\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right.$ or $\left.3^{\prime \prime}-\mathrm{H}\right), 3.97\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right.$ or $\left.3^{\prime \prime}-\mathrm{H}\right), 3.92-3.85(2 \mathrm{H}$, $\mathrm{m}, 5^{\prime}-\mathrm{H}$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.84-3.78(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $5-\mathrm{H}), 3.77-3.65(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-$ H), $3.55\left(2 \mathrm{H}, \mathrm{dd}, J 9.3\right.$ and $3.6,2^{\prime}-\mathrm{H}$ and $\left.2^{\prime \prime}-\mathrm{H}\right), 3.51-3.42\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 4{ }^{\prime \prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $6^{\prime \prime}-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 3.38-3.30\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 2.07-1.99(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.84-1.77(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 138.6, 138.5, 138.1, 138.0, 137.9, 137.8 (o-Ph), 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7 (Ph), 98.1, 95.8 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 81.6, 81.4 ($3^{\prime}-\mathrm{C}$ and $3^{\prime \prime}-\mathrm{C}$), 80.1, 79.7 ($2^{\prime}-\mathrm{C}$ and $2^{\prime \prime}-\mathrm{C}$), 78.3, 78.2 ($4^{\prime}-\mathrm{C}$ and $4^{\prime \prime}-\mathrm{C}$), 75.8 ($1-\mathrm{C}$ and $4-$ C), 75.7, $75.6\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $\left.C_{D} \mathrm{H}_{2} \mathrm{Ph}\right)$, 75.4, $75.2\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $\left.C_{B} \mathrm{H}_{2} \mathrm{Ph}\right)$, 73.8, $73.5\left(C_{E} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $C_{F} \mathrm{H}_{2} \mathrm{Ph}$), 73.4 (1-C and 4-C), 70.9 (5'-C and 5"-C), 59.9, 59.7 (2-C and 5-C), 51.5, 51.3
(6 '-H and 6 "-C), 31.7 and 29.5 ($3-\mathrm{C}$ and $6-\mathrm{C}$) (nine aromatic peaks overlapped or missing); m / z (ES) 1135.5 (45, MNa^{+}) and 430.2 (100); (Found: MNa^{+}, 1135.4784. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a, 1135.4766)$.

Also obtained was ($1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{4S}, 5 S$)-1-O-(6^{\prime}-Azido- 6 '-deoxy- $2^{\prime}, 3^{\prime}, 4^{\prime}$ 'tri-O-benzyl- α-D-glucopyranosyl)-4-O-(6''-Azido-6'"-deoxy-2', 3'",4'-tri-O-benzyl- α-L-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol $\mathbf{2 8} \mathbf{' A A}^{\prime}$ ($22.0 \mathrm{mg}, 5 \%$) as a yellow oil, $R_{\mathrm{f}} 0.33$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+4.4$ (c. 1.00 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3031, 2917, 2102, 1285 and $1071 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.99(1 \mathrm{H}$, d, $J 4.6,1 "-H), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{C} H_{C} \mathrm{HPh}\right), 4.89(1 \mathrm{H}, \mathrm{d}, J$ 11.1, $\left.\mathrm{CH}_{D} \mathrm{HPh}\right), 4.87\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{F} \mathrm{HPh}\right), 4.80\left(2 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH} H_{A} \cdot \mathrm{Ph}\right.$ and $\left.\mathrm{CH} H_{B} \mathrm{Ph}\right)$, $4.77\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{D} \mathrm{Ph}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{F} \mathrm{HPh}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH} H_{F} \cdot \mathrm{Ph}\right)$, 4.59 ($\left.1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{E} \mathrm{Ph}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{C} \cdot \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 5.2,1^{\prime}-\mathrm{H}\right), 3.95$ $\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime \prime}-\mathrm{H}\right), 3.84-3.78\left(2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime \prime}-\mathrm{H}\right.$ and $1-\mathrm{H}$ or $\left.4-\mathrm{H}\right), 3.78-3.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $5-\mathrm{H})$, 3.73-3.62 (4H, m, 1-H or 4-H, 3'-H, and 2-H or 5-H), 3.56-3.39 (7H, m, 2'-H, 2'-H, 4'-H, 5'$\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}, 4^{\prime \prime}-\mathrm{H}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.34-3.27\left(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{\prime} \mathrm{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.26-2.19(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-$ H) and 2.04-1.92 ($3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.5,138.2,138.1,137.9$, 137.7, 137.6 (o-Ph), 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7 (Ph), 103.6 (1'-C), 97.8 (1"-C), 84.4 (3'-C), 82.2 ($2^{\prime}-C$), 81.4 ($3^{\prime \prime}-C$), 79.9 ($2^{\prime \prime}-C$), 78.2, 77.9 ($4^{\prime}-\mathrm{C}$ and 4"-C), 75.9, 75.6, 75.4, 75.3, 75.2, 74.4 (5'-C), 73.4, 70.8 ($5^{\prime \prime}-\mathrm{C}$), 59.8, 59.6 (2-C and 5-C), 51.4, 51.1 ($6^{\prime}-\mathrm{C}$ and $6 "-\mathrm{C}$), 31.6 and 31.4 ($3-\mathrm{C}$ and $6-\mathrm{C}$) (11 aromatic peaks overlapped or missing); $m / z(\mathrm{ES})$ 1135.9 (55, MNa^{+}) and 430.3 (100); (Found: MNa^{+}, 1135.4769. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a$, 1135.4766).

Also obtained was ($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido- 6 '-deoxy- $2^{\prime}, 3$ ', 4 '-tri-O-benzyl- β-Dglucopyranosyl) -4-O-(6''-Azido-6"'-deoxy-2",3'",4'-tri-O-benzyl- α-L-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28A’b ($40.3 \mathrm{mg}, 10 \%$) as a yellow oil, $R_{\mathrm{f}} 0.33$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}-24.0$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3031, 2920, 2102, 1285 and $1071 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.96\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.95(1 \mathrm{H}$, d, $\left.J 10.6, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, J 10.6, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.88\left(2 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{D} \mathrm{HPh}\right.$ and $\left.\mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.84\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.83(1 \mathrm{H}, \mathrm{d}, J 4.1,1 "-\mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{d}, J 10.6$,
$\left.\mathrm{CH}_{C} \cdot \mathrm{Ph}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{CH}_{E} \cdot \mathrm{Ph}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 10.2, \mathrm{C} H_{F} \mathrm{HPh}\right), 4.68(1 \mathrm{H}, \mathrm{d}, J 10.2$, $\left.\mathrm{CHH}_{F} \cdot \mathrm{Ph}\right), 4.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6, \mathrm{CH}_{B} \cdot \mathrm{Ph}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8, \mathrm{CH} H_{D} \cdot \mathrm{Ph}\right), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$, $\left.1^{\prime}-\mathrm{H}\right), 4.03-3.94(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.94-3.86(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}), 3.75-3.62(3 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}, 3^{\prime}-\mathrm{H}$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $\left.3.6,2^{\prime \prime}-\mathrm{H}\right), 3.53-3.42\left(7 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ H, $4^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 5{ }^{\prime \prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.42-3.25\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 2.09-1.93$ $(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.93-1.81(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.9,138.6$, 138.4, 138.3, 138.0 (o-Ph), 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1 (Ph), 103.0 (1'-C), 94.9 (1"-C), 84.8 (3'-C), 82.6 (2'-C), 82.1 (3"-C), 80.1 (2"-C), 78.5, 78.4 (4'-C and 4"-C), 76.2, 76.1, 75.9, 75.6, 75.5, 74.9, $73.4\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}, C_{B} \mathrm{H}_{2} \mathrm{Ph}, C_{D} \mathrm{H}_{2} \mathrm{Ph}, C_{E} \mathrm{H}_{2} \mathrm{Ph}\right.$, $C_{F} \mathrm{H}_{2} \mathrm{Ph}, 1-\mathrm{C}$ and 4-C), 74.2 ($5^{\prime}-\mathrm{C}$ and 5"-C), $71.0\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right.$), 60.1 (2-C and 5-C), 51.7, 51.6 (6 '-H and $6 "-\mathrm{C}$), 30.9, 29.4 (3-C and 6-C) (10 aromatic peaks overlapped or missing); m / z (ES) 1135.5 (40, MNa^{+}), 1085.5 (35) and 430.2 (100); (Found: MNa^{+}, 1135.4758.
$\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a, 1135.4766$).
($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$ 'tri- O-benzyl- α-d-glucopyranosyl)-4-O-(6''-Azido-6''-deoxy-2', 3 '’,4''-tri-O-benzoyl- β-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28AB

By method A, glycosyl donor 21B ($260 \mathrm{mg}, 1.2$ eq., 0.43 mmol) and the acceptor 28A ($233 \mathrm{mg}, 0.36 \mathrm{mmol}$; $c a .70: 15: 15$ 28A : 28b : 28'A) gave a crude mixture which was purified by flash chromatography on silica gel (gradient elution: 7:3 \rightarrow 6:4 petrol-EtOAc) and preparative HPLC to give $\mathbf{2 8 A B}$ ($185 \mathrm{mg}, 45 \%$) as a yellow oil, $R_{\mathrm{f}} 0.35$ ($7: 3$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}-6.67$ (c. 1.14 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2929, 2101, 1732, 1259 and $1070 ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Bz}), 7.92(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{OBz}), 7.84(2 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Bz}), 7.56-$ 7.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Bz}$), 7.47-7.14 (23H, m, Ar), 5.92 ($1 \mathrm{H}, \mathrm{t}, J 9.7,3$ "-H), 5.60-5.43 (2H, m, 2"-H and 4"-H), $4.96\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.95(1 \mathrm{H}, \mathrm{d}, J 6.8,1$ "-H), $4.92(1 \mathrm{H}, \mathrm{d}, J 11.0$, $\left.\mathrm{CH}_{B} \mathrm{HPh}\right), 4.89\left(1 \mathrm{H}, \mathrm{d}, J 4.6,1^{\prime}-\mathrm{H}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.67-4.55(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CHH}_{B} \cdot \mathrm{Ph}, \mathrm{CH}_{C} \mathrm{HPh}$ and $\left.\mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.06-3.96(1 \mathrm{H}, \mathrm{m}, 5 "-\mathrm{H}), 3.96-3.90(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.88\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 3.84-3.77\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right), 3.62-3.51\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right.$ and 1-H or $4-\mathrm{H}), 3.51-3.42\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.44-3.30\left(4 \mathrm{H}, \mathrm{m}, 4{ }^{\prime}-\mathrm{H}, 2-\mathrm{H}\right.$ or $5-\mathrm{H}, 6^{\prime}-$
H_{B} and $6 \mathrm{H}-\mathrm{H}_{\mathrm{B}}$), 2.14-1.84 $(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.76-1.62(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 166.2, 165.7, 165.4 ($C=\mathrm{O}$), 139.1, 138.6, 138.4 ($\left.o-\mathrm{Ph}\right), 134.2,134.1$, 133.8(oBz), 130.3, 130.2, 130.1, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 100.7 (1"-C), 98.3 ($\left.1^{\prime}-\mathrm{C}\right), 81.7$ ($\left.3^{\prime}-\mathrm{C}\right), 80.5$ ($2^{\prime}-\mathrm{C}$), 78.5 ($\left.4^{\prime}-\mathrm{C}\right), 76.9$ ($1-\mathrm{C}$ or 4-C), 76.2, $76.1\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $\left.C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 75.8$ (1-C or 4-C), $74.8\left(5^{\prime \prime}-\mathrm{C}\right)$, $73.5\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 72.7(3 "-\mathrm{C})$, 72.2 (2"-C), 71.2 ($5^{\prime}-\mathrm{C}$), 70.5 (4"-C), 60.1, 60.0 (2-C and 5-C), 51.8, 51.7 ($6^{\prime}-\mathrm{H}$ and 6"-C), 31.6 and 30.7 (3-C and 6-C) (three aromatic peaks overlapped or missing); m / z (ES) 1177.4 ($60, \mathrm{MNa}^{+}$), 760.3 (27) and 430.2 (100); (Found: $\mathrm{MNa}^{+}, 1177.4193$. $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{~N}_{12}$ requires $M N a, 1177.4144)$.

Also obtained was (1S,2S,4S,5S)-1-O-(6'-Azido-6'-deoxy-2 ', 3',4'-tri-O-benzyl- α-D-glucopyranosyl)-4-O-(6''-Azido-6''-deoxy-2', 3 '', 4''-tri-O-benzoyl- β-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol $\mathbf{2 8}^{\prime} \mathbf{A B}(11.3 \mathrm{mg}, 3 \%)$ as a yellow oil, $R_{\mathrm{f}} 0.35$ (7:3
petrol-EtOAc); $[\alpha]_{\mathrm{D}}+24.8$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2926, 2103, 1734, 1260 and $1070 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}, \mathrm{dd}, J 7.2$ and $1.4, \mathrm{Bz}$), $7.91(2 \mathrm{H}, \mathrm{dd}, J 7.2$ and $1.0, \mathrm{Bz}$), 7.81 ($2 \mathrm{H}, \mathrm{dd}, J 7.3$ and 1.3, Bz), 7.57-7.17 (24H, m, Ph), 5.88 ($1 \mathrm{H}, \mathrm{t}, J 9.7,3$ "-H), 5.58-5.44 $\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right.$ and $\left.4 \mathrm{H}-\mathrm{H}\right), 5.05(1 \mathrm{H}, \mathrm{d}, J 8.0,1 \mathrm{l}-\mathrm{H}), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.91(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.69(1 \mathrm{H}, \mathrm{d}$, $\left.J 4.5,1^{\prime}-\mathrm{H}\right), 4.58$ ($1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{B} \cdot \mathrm{Ph}$), 4.52 ($1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CHH}_{C} \cdot \mathrm{Ph}$), 4.04-3.93 ($1 \mathrm{H}, \mathrm{m}$, $5 "-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{t}, J 9.4,3$ '-H), 3.89-3.69 (3H, m, 1-H or 4-H, 5 '-H and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.69-3.57$ $(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.52-3.37\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right)$, $3.31\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.5.4,6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.25-2.08(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}), 1.94-1.82\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{A}}\right)$ and $1.75-1.53\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7,165.3,165.1$ $(C=\mathrm{O}), 138.5,137.9,137.8$ (o-Ph), 133.7, 133.3 (o-Bz), 129.9, 129.8, 129.2, 128.7, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.7 (Ph), 102.1 ($1^{\prime \prime}-\mathrm{C}$), 95.8 ($\left.1^{\prime}-\mathrm{C}\right), 81.4$ ($\left.3^{\prime}-\mathrm{C}\right), 79.4$ (2'C), $78.1\left(4^{\prime}-\mathrm{C}\right), 77.0(1-\mathrm{C}$ or $4-\mathrm{C}), 75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.2\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 73.7,73.6\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right.$ and 1C or 4-C), 73.1 ($3^{\prime \prime}-\mathrm{C}$), 72.6 ($5^{\prime \prime}-\mathrm{C}$), 71.8 ($2^{\prime \prime}-\mathrm{C}$ or 4"-C), 70.8 ($5^{\prime}-\mathrm{C}$), 69.9 ($2^{\prime \prime}-\mathrm{C}$ or 4"-C), 59.9 (2-C and 5-C), 51.2 (6 -C and 6 "-C), 31.8 and 29.4 (3-C and 6-C) (eight aromatic peaks overlapped or missing); m / z (ES) 1177.5 ($95, \mathrm{MNa}^{+}$), 760.5 (20) and 430.2 (100); (Found: $\mathrm{MNa}^{+}, 1177.4186 . \mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{~N}_{12}$ requires $\left.M N a, 1177.4144\right)$.

Also obtained was ($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4$ '-tri-O-benzyl- β-D-glucopyranosyl)-4-O-(6''-Azido-6''-deoxy-2', 3 '', 4 ''-tri-O-benzoyl- β-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28Bb (20.8 mg, 5\%; 90:10 mixture of diastereomers) as a yellow oil, $R_{\mathrm{f}} 0.35$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+9.1$ (c. 1.10 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2924, $2103,1735,1260$ and $1069 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{Bz}), 7.91(2 \mathrm{H}, \mathrm{d}, J 8.2$, Bz), 7.81 ($2 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Bz}$), $7.58-7.22(24 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.87(1 \mathrm{H}, \mathrm{t}, J 9.7,3 "-\mathrm{H}), 5.59-5.41(2 \mathrm{H}$, $\mathrm{m}, 2^{\prime \prime}-\mathrm{H}$ and $\left.4 "-\mathrm{H}\right), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 7.9,1^{\prime \prime}-\mathrm{H}\right), 4.98-4.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{A} \mathrm{HPh}, \mathrm{CH}_{B} \mathrm{HPh}\right.$ and $\left.\mathrm{CH}_{C} \mathrm{HPh}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.55\left(2 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CHH}_{B} \cdot \mathrm{Ph}\right.$, and $\left.\mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.43$ ($\left.1 \mathrm{H}, \mathrm{d}, J 7.4,1^{\prime}-\mathrm{H}\right), 4.07-3.94\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime \prime}-\mathrm{H}\right), 3.94-3.85\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.85-$ $3.69\left(2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right.$ and $1-\mathrm{H}$ or $\left.4-\mathrm{H}\right), 3.64-3.52\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $1-\mathrm{H}$ or $\left.4-\mathrm{H}\right), 3.52-3.19(6 \mathrm{H}$, $\mathrm{m}, 2^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 2-\mathrm{H}$ or $5-\mathrm{H}, 6^{\prime}-\mathrm{H}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 2.17-2.07\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{A}}\right), 2.07-1.96(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}$ or $6-\mathrm{H}_{\mathrm{A}}$) and $1.94-1.78\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; m / z(\mathrm{ES}) 1177.4\left(100, \mathrm{MNa}^{+}\right), 760.3$ (20), 487.2 (48) and 430.2 (98); (Found: $\mathrm{MNa}^{+}, 1177.4180 . \mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{~N}_{12}$ requires $M N a$, 1177.4144).
($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$ 'tri- O-benzyl- α-D-glucopyranosyl)-4-O-(6'"-Azido-6''-deoxy-2', ${ }^{\prime}$ '', 4^{\prime} ''-tri- O-benzoyl- β-L-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28AB'

By method A, the glycosyl donor 21B' $(260 \mathrm{mg}, 1.2 \mathrm{eq} ., 0.43 \mathrm{mmol})$ and the acceptor $\mathbf{2 8 A}(233 \mathrm{mg}, 1.0 \mathrm{eq} ., 0.36 \mathrm{mmol}$; $c a .70: 15: 15 \mathbf{2 8 A}: \mathbf{2 8 b}: \mathbf{2 8} \mathbf{\prime} \mathbf{A}$) gave a crude product which was purified by flash chromatography on silica gel ($8: 2$ petrol-EtOAc) and preparative HPLC
 1.09 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2927, 2102, 1732, 1259 and $1070 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.97 (2H, dd, $J 7.3$ and 1.0, Bz), 7.92 (2H, dd, $J 7.3$ and $1.0, \mathrm{Bz}$), 7.82 ($2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Bz}$), 7.51 ($1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Bz}$), 7.45 ($1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Bz}$), 7.42-7.13 ($22 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.89 ($1 \mathrm{H}, \mathrm{t}, J 9.7,3$ "-H), 5.56-5.48 ($2 \mathrm{H}, \mathrm{m}, 2^{2 "-H}$ and 4"-H), $5.01(1 \mathrm{H}, \mathrm{d}, J 7.9,1 "-\mathrm{H}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{A} \mathrm{HPh}\right)$, $4.90\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.80(1 \mathrm{H}, \mathrm{d}, J 2.9,1 '-\mathrm{H}), 4.76$ $\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH} H_{B} \cdot \mathrm{Ph}\right)$, 4.01-3.95 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}$), $3.89\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.80-3.74\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right), 3.71-3.66(1 \mathrm{H}, \mathrm{m}$,
$1-\mathrm{H}$ or $4-\mathrm{H}), 3.66-3.62(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $5-\mathrm{H}), 3.62-3.55(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H})$, 3.55-3.47 $\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.45\left(1 \mathrm{H}, \mathrm{dd}, J 13.4\right.$ and $\left.2.6,6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 3.40\left(1 \mathrm{H}, \mathrm{t}, J 9.4,4^{\prime}-\right.$ H), $3.33\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.2.2,6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.5.6,6 '-\mathrm{H}_{\mathrm{B}}\right), 2.25-2.17(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}$ or $\left.6-\mathrm{H}_{\mathrm{A}}\right)$, 2.13-2.05 $\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right)$ and $1.91-1.77(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-\mathrm{H}) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 165.8, 165.3, 165.2 ($C=\mathrm{O}$), 138.6, 138.2, 137.8 (o-Ph), 133.7, 133.4, 133.3 (o-Bz), 129.9, 129.8, 129.7, 129.2, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.7 (Ph), 101.9 (1"-C), 97.6 (1'-C), 81.3 (3'-C), 80.1 (2'-C), 78.2 ($\left.4^{\prime}-\mathrm{C}\right), 77.2$ (1-C or 4-C), $75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.3\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 74.6$ (1-C or 4-C), 73.9, 73.7 (5 "-C and $C_{C} \mathrm{H}_{2} \mathrm{Ph}$), 72.6 ($3^{\prime \prime}-\mathrm{C}$), 71.9 (2"-C), 70.8 ($\left.5^{\prime}-\mathrm{C}\right), 70.1$ (4 "-C), 59.8, 59.3 (2-C and 5-C), 51.3, 51.2 (6 '-H and $6 "-C$), 31.6 and 31.3 (3-C and 6-C) (four aromatic peaks overlapped or missing); m / z (ES) 1177.5 (55, MNa ${ }^{+}$) and 430.3 (100); (Found: MNa^{+}, 1177.4180. $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{~N}_{12}$ requires $\left.M N a, 1177.4144\right)$.

Also obtained was ($1 S, 2 S, 4 S, 5 S$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4^{\prime}$ 'tri-O-benzyl- α-D-glucopyranosyl)-4-O-(6''-Azido-6''-deoxy-2', 3'",4''-tri-O-benzoyl- β-L-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol $\mathbf{2 8}{ }^{\prime} \mathbf{A B}^{\prime}(12.2 \mathrm{mg}, 3 \%)$ as a yellow oil, $R_{\mathrm{f}} 0.52$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+70.4$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2917, 2103, 1734, 1259 and $1069 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.96(2 \mathrm{H}, \mathrm{dd}, J 7.3$ and $1.2, \mathrm{Bz}), 7.92(2 \mathrm{H}, \mathrm{dd}, J 7.3$ and $1.1, \mathrm{Bz})$, $7.83(2 \mathrm{H}, \mathrm{dd}, J 7.2$ and $1.1, \mathrm{Bz}), 7.53(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and $7.3, \mathrm{Bz}), 7.49(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and 7.3 , Bz), 7.44 (1H, dd, $J 7.5$ and 7.4, Bz), 7.41-7.23 (21H, m, Ph), 5.89 (1H, t, J 9.7, 3"-H), 5.50 (1H, dd, $J 9.7$ and 7.9, 2"-H), 5.49 (1H, t, $J 9.7,4$ "-H), 4.95 ($1 \mathrm{H}, \mathrm{d}, J 7.9,1 "-\mathrm{H}$), 4.94 ($1 \mathrm{H}, \mathrm{d}, J$ 11.4, $\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.89\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.79-4.74\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH} H_{A} \cdot \mathrm{Ph}, \mathrm{CH}_{C} \mathrm{HPh}\right.$ and 1'H), $4.61\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH}_{C} \cdot \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{B} \cdot \mathrm{Ph}\right), 4.00(1 \mathrm{H}, \mathrm{ddd}, J 9.7,7.3$ and 2.3, 5 "-H), 3.97-3.92 $(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.89\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.86-$ $3.80\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right), 3.63-3.58(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J 13.6\right.$ and $\left.7.3,6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.53-$ $3.47\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.42\left(1 \mathrm{H}, \mathrm{t}, J 9.3,4^{\prime}-\mathrm{H}\right), 3.40-3.35\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $6^{\prime \prime}-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.5.1,6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 1.95-1.82(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.80-1.73(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7,165.3,164.9(\mathrm{C}=\mathrm{O}), 138.6,137.9(o-\mathrm{Ph})$, 133.7, 133.6, 133.4 (o-Bz), 129.9, 129.8, 129.7, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8, 127.6 (Ph), 100.6 (1"-C), 95.0 ($\left.1^{\prime}-\mathrm{C}\right), 81.5$ ($3^{\prime}-\mathrm{C}$), 79.7 ($2^{\prime}-\mathrm{C}$), 78.1 ($\left.4^{\prime}-\mathrm{C}\right), 76.3$ (1-C or

4-C), $75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.0\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 74.3(5 "-\mathrm{C}), 73.7\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 73.2$ (1-C or 4-C), 72.4 (3"C), 71.8 (2"-C), 70.6 ($\left.5^{\prime}-\mathrm{C}\right), 70.1$ (4"-C), 59.6, 59.4 (2-C and 5-C), 51.3, 51.2 (6 '-H and 6"-C), 30.5 and 29.1 (3-C and 6-C) (eight aromatic peaks overlapped or missing); $m / z(E S) 1177.8$ ($69, \mathrm{MNa}^{+}$) and 430.2 (100); (Found: MNa^{+}, 1177.4167. $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{~N}_{12}$ requires $M N a$, 1177.4144).

Also obtained was ($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4$ '-tri-O-benzyl- β-D-glucopyranosyl)-4-O-(6"'-Azido-6'"-deoxy-2',3', $\mathbf{4}^{\prime \prime}$-tri-O-benzoyl- β-L-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28bB' ($36.3 \mathrm{mg}, 9 \% ; 90: 10$ mixture of diastereomers) as a yellow oil, $R_{\mathrm{f}} 0.52$ (7:3 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+5.8$ (c. 1.04 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2923, $2103,1733,1260$ and $1070 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98-7.89(4 \mathrm{H}, \mathrm{m}, \mathrm{Bz}), 7.83-7.78(2 \mathrm{H}, \mathrm{m}$, Bz), 7.56-7.20 (24H, m, Ph), 5.88 (1H, t, $\left.J 9.7,3^{\prime \prime}-\mathrm{H}\right), 5.56-5.47$ ($2 \mathrm{H}, \mathrm{m}, 2^{2}-\mathrm{H}$ and 4"-H), 5.04 (1H, d, $J 7.9,1 "-\mathrm{H}), 4.93$ (1H, d, J 10.9, $\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.85$ (1H, d, $\left.J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.80(1 \mathrm{H}$, d, $\left.J 10.9, \mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.76\left(1 \mathrm{H} \mathrm{d}, J 10.9, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH} H_{C} \cdot \mathrm{Ph}\right), 4.56(1 \mathrm{H}$, d, $J 11.1, \mathrm{CHH}_{B}$ Ph), 4.44 ($1 \mathrm{H}, \mathrm{d}, J 7.7,1^{\prime}-\mathrm{H}$), 4.01-3.95 ($2 \mathrm{H}, \mathrm{m}, 5$ "-H and $2-\mathrm{H}$ or $5-\mathrm{H}$), 3.87$3.82(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}), 3.78-3.70(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}), 3.64-3.58(1 \mathrm{H}, \mathrm{m}, 3$ '-H), 3.52-3.46 (3H, m, 2-H or 5-H, 6'-H), 3.46-3.38 (4H, m, 2'-H, 4'-H, $5^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}_{\mathrm{A}}$), 3.27 ($1 \mathrm{H}, \mathrm{dd}, J 12.7$ and 4.3, 6 '- H_{B}), 2.28-2.18 $\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{A}}\right), 2.15-2.06\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right), 1.97-1.90$ $\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{A}}\right)$ and $1.80-1.71\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7$, 165.3, 165.1 ($C=O$), 138.2, 137.7, 137.6 (o-Ph), 133.7, 133.3, 133.2 (OBz), 129.9, 129.7, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 127.8 (Ph), 102.4, 102.1 (1"-C and 1'-C), 84.5 (3'-C), 81.9 (2'-C), 78.1, 77.9 (4'-C and 1-C or 4-C), $75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.3,75.2,75.0\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right.$, $C_{C} \mathrm{H}_{2} \mathrm{Ph}$ and 1-C or 4-C), 74.6 ($\left.5^{\prime}-\mathrm{C}\right), 73.7$ (5"-C), 72.7 (3"-C), 71.8 (2"-C), 70.0 (4"-C), 60.2, 60.0 ($2-\mathrm{C}$ and $5-\mathrm{C}$), 51.3 (6 '- H and 6 "-C), 31.8 and 30.2 ($3-\mathrm{C}$ and $6-\mathrm{C}$) (eight aromatic peaks overlapped or missing); m / z (ES) 1177.5 (57, MNa ${ }^{+}$), 760.3 (22) and 430.2 (100); (Found: $\mathrm{MNa}^{+}, 1177.4175 . \mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{~N}_{12}$ requires $M N a, 1177.4144$).
(1R,2R,4R,5R)-1-O-(6'-Azido-6'-deoxy-2', 3',4'-tri-O-benzyl- α-D-glucopyranosyl)-4-O-(3'"-Azido-3''-deoxy-2', 4 '', 6 '’-tri-O-benzyl- α-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28AC

By method A, the glycosyl donor 21C ($242 \mathrm{mg}, 1.2$ eq., 0.43 mmol) and the acceptor 28A ($233 \mathrm{mg}, 1.0$ eq., $0.36 \mathrm{mmol} ; c a .70: 15: 15 \mathbf{2 8 A}: \mathbf{2 8 b}: \mathbf{2 8}^{\prime} \mathbf{A}$) gave a crude mixture which was purified by flash chromatography on silica gel ($8: 2$ petrol-EtOAc) and preparative HPLC to give 28AC ($117.2 \mathrm{mg}, 30 \%$) as a yellow oil, $R_{\mathrm{f}} 0.43$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+58.0$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) $3031,2924,2106,1254$ and 1073 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-$ $7.25(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 10.9,3^{\prime} \mathrm{C}-\mathrm{CH}_{A} \mathrm{HPh}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 10.9,2^{\prime \prime} \mathrm{C}-\mathrm{CH}_{B} \mathrm{HPh}\right), 4.89$ ($2 \mathrm{H}, \mathrm{br}$ s, $1^{\prime}-\mathrm{H}$ and $1^{\prime \prime}-\mathrm{H}$), $4.82\left(1 \mathrm{H}, \mathrm{d}, J 10.9,3^{\prime} \mathrm{C}-\mathrm{CH} H_{A} \cdot \mathrm{Ph}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 10.5,4^{\prime \prime} \mathrm{C}-\right.$ $\left.\mathrm{CH}_{C} \mathrm{HPh}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CH}_{D} \mathrm{HPh}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.66(1 \mathrm{H}, \mathrm{d}, J 11.9$, $\left.\mathrm{CH}_{D} \mathrm{Ph}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{E} \mathrm{Ph}\right), 4.61\left(1 \mathrm{H}, \mathrm{d}, J 12.1,6 \mathrm{C}-\mathrm{CH}_{F} \mathrm{HPh}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J$ $10.9,2^{\prime \prime} \mathrm{C}-\mathrm{CH} H_{B}$ Ph), 4.47 ($1 \mathrm{H}, \mathrm{d}, J 12.1,6^{\prime \prime} \mathrm{C}-\mathrm{CH}_{F} \cdot \mathrm{Ph}$), 4.44 ($1 \mathrm{H}, \mathrm{d}, J 10.5,4 " \mathrm{C}-\mathrm{CH} H_{C} \mathrm{Ph}$), 3.95 (1H, t, $\left.J 9.3,3^{\prime}-\mathrm{H}\right), 3.89$ (1H, t, $\left.J 9.9,3^{\prime \prime}-\mathrm{H}\right), 3.85-3.81\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right), 3.81-3.77$ (1H, m, $5 "-\mathrm{H}), 3.72\left(1 \mathrm{H}, \mathrm{dd}, J 10.6\right.$ and $\left.3.5,6 "-\mathrm{H}_{\mathrm{A}}\right), 3.66-3.59(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}), 3.60$ $\left(1 \mathrm{H}, \mathrm{dd}, J 10.6\right.$ and $\left.2.0,6^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 3.51\left(1 \mathrm{H}, \mathrm{dd}, J 9.3\right.$ and $\left.3.6,2^{\prime}-\mathrm{H}\right), 3.47-3.40\left(3 \mathrm{H}, \mathrm{m}, 4{ }^{\prime}-\mathrm{H}, 4{ }^{\prime \prime}-\right.$ H and $\left.6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.37(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $3.6,2 \mathrm{H}-\mathrm{H}), 3.32\left(1 \mathrm{H}, \mathrm{dd}, J 13.1\right.$ and $\left.5.7,6{ }^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.07-$ $1.98\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right)$ and $1.95-1.84\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 138.6, 138.1, 137.8, 137.7, 136.6, 137.5 (o-Ph), 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7 (Ph), 97.7, 97.2 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 81.4 ($3^{\prime}-\mathrm{C}$), 79.9 (2'-C), 78.3 ($\left.4^{\prime}-\mathrm{C}\right), 77.8$ (2"-C), 76.3 (4"-C), $75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.3,75.1,74.8\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}, 1-\mathrm{C}, 4-\mathrm{C}\right.$ and $\left.C_{C} \mathrm{H}_{2} \mathrm{Ph}\right)$, 73.7, 73.5, $73.4\left(C_{D} \mathrm{H}_{2} \mathrm{Ph}, C_{E} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $\left.C_{F} \mathrm{H}_{2} \mathrm{Ph}\right), 70.9,70.8$ (5'-C and 5"-C), 68.1 (6"-C), 65.2 (3"C), 59.5 ($2-\mathrm{C}$ and $5-\mathrm{C}$), 51.4 (6 '-H), 31.3 and 31.3 (3-C and 6-C) (nine aromatic peaks overlapped or missing); m / z (ES) 1135.5 (38, MNa^{+}) and 430.2 (100); (Found: MNa^{+}, 1135.4814. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $\left.M N a, 1135.4766\right)$.

Also obtained was (1S,2S,4S,5S)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4^{\prime}$ 'tri-O-benzyl- α-D-glucopyranosyl)-4-O-(3''-Azido-3''-deoxy-2', 4 ',, 6 ''-tri-O-benzyl- α-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol $\mathbf{2 8}{ }^{\prime} \mathbf{A C}(15.3 \mathrm{mg}, 4 \% ; 90: 10$ mixture of diastereomers) as a yellow oil, $R_{\mathrm{f}} 0.43$ ($8: 2$ petrol-EtOAc); $[\alpha]_{\mathrm{D}}+60.8$ (c. 1.00 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2924, 2105, 1255 and 1073; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.00(1 \mathrm{H}, \mathrm{d}, J 10.9$, $\left.\mathrm{CH}_{A} \mathrm{HPh}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.84\left(1 \mathrm{H}, \mathrm{d}, J 9.9, \mathrm{C}_{C} \mathrm{HPh}\right), 4.82(1 \mathrm{H}, \mathrm{d}, J 10.9$, $\left.\mathrm{CHH}_{A} \cdot \mathrm{Ph}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH}_{D} \mathrm{HPh}\right), 4.78\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.77(2 \mathrm{H}, \mathrm{d}, J 2.7$,

1'-H and 1"-H), 4.65-4.57 (4H, m, $\mathrm{CH}_{B} \cdot \mathrm{Ph}, \mathrm{CH}_{C} \cdot \mathrm{Ph}, \mathrm{CHH}_{E} \cdot \mathrm{Ph}$ and $\mathrm{CH}_{F} \mathrm{HPh}$), 4.48-4.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} H_{C} \mathrm{Ph}$ and $\mathrm{CHH}_{F} \mathrm{Ph}$), $3.97\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}-\mathrm{H}\right), 3.90(1 \mathrm{H}, \mathrm{t}, J 10.0,3 "-\mathrm{H}), 3.89-$ $3.84\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right), 3.83-3.76(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ and $5-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $\left.3.5,6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.71-3.65(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $1.9,6 "-$ H_{B}), 3.61-3.55 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}$), $3.53\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.50-3.42\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 4{ }^{\prime \prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.39$ $\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 3.33\left(1 \mathrm{H}, \mathrm{dd}, J 13.2\right.$ and $\left.5.5,6 '-\mathrm{H}_{\mathrm{B}}\right), 1.95-1.88\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{A}}\right)$ and $1.84-1.76\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.4,137.9(o-\mathrm{Ph}), 128.9,128.4$, 128.3, 128.1, 127.9, 127.8 (Ph), 96.1, 94.1 ($1^{\prime}-\mathrm{C}$ and $\left.1^{\prime \prime}-\mathrm{C}\right), 81.5$ ($\left.3^{\prime}-\mathrm{C}\right), 79.6$ ($\left.2^{\prime}-\mathrm{C}\right), 78.2$ ($4^{\prime}-$ C), $77.9\left(2^{\prime \prime}-\mathrm{C}\right), 76.2(4 "-\mathrm{C}), 75.7\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.3\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 75.1\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 74.8,74.1,73.8$ $\left(C_{D} \mathrm{H}_{2} \mathrm{Ph}, C_{E} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $\left.C_{F} \mathrm{H}_{2} \mathrm{Ph}\right), 73.4$ (1-C and 4-C), 70.7 ($\left.5^{\prime}-\mathrm{C}\right), 68.5$ (5 "-C), 68.3 ($6^{\prime \prime}-\mathrm{C}$), 65.2 (3 "-C), 59.7 ($2-\mathrm{C}$ and 5-C), 51.4 (6 '-H), 29.7 and 29.4 (3-C and 6-C) (sixteen aromatic peaks overlapped or missing); m / z (ES) 1135.5 (30, MNa^{+}), 955.4 (25) and 430.2 (100); (Found: $\mathrm{MNa}^{+}, 1135.4783 . \mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a, 1135.4766$).

Also obtained was (1R,2R,4R,5R)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4$ '-tri-O-benzyl- β-D-glucopyranosyl)-4-O-(3''-Azido-3''-deoxy-2', $4^{\prime \prime}, 6^{\prime \prime}$-tri-O-benzyl- α-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28bC ($29.7 \mathrm{mg}, 8 \%$; ca. $90: 10$ mixture of diastereomers) as a yellow oil, $R_{\mathrm{f}} 0.43$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+24.0$ (c. 1.00 in CHCl_{3}); $v_{\mathrm{max}} / \mathrm{cm}^{-1}$ (film) 3031, $2920,2105,1255$ and $1072 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.25(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.99(1 \mathrm{H}, \mathrm{d}, J 3.4$, 1"-H), 4.94 (1H, d, $J 10.9$), 4.86 (1H, d, $J 11.8$), 4.85 ($1 \mathrm{H}, \mathrm{d}, J 10.9$), 4.81 ($1 \mathrm{H}, \mathrm{d}, J 10.9$), 4.79 ($1 \mathrm{H}, \mathrm{d}, J 10.5$), $4.75(1 \mathrm{H}, \mathrm{d}, J 10.9), 4.73-4.72(2 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{d}, J 12.1), 4.57(1 \mathrm{H}, \mathrm{d}$, $J 11.8), 4.49(1 \mathrm{H}, \mathrm{d}, J 7.7,1 '-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{d}, J 12.1), 4.41(1 \mathrm{H}, \mathrm{d}, J 10.5), 3.92-3.82(3 \mathrm{H}, \mathrm{m}$, $3^{\prime}-\mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.82-3.76\left(1 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $3.5,6$ " $\left.\mathrm{H}_{\mathrm{A}}\right), 3.66-3.62(1 \mathrm{H}, \mathrm{m}, 3 "-\mathrm{H}), 3.62-3.56\left(3 \mathrm{H}, \mathrm{m}, 6 "-\mathrm{H}_{\mathrm{B}}, 1-\mathrm{H}\right.$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.50-$ $3.40\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.37\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.3.4,2^{\prime \prime}-\mathrm{H}\right), 3.27(1 \mathrm{H}$, dd, $J 12.3$ and $\left.5.0,6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.06-1.90(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.86-1.78(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or $6-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.8,137.7,137.5$ (o-Ph), 128.2, 128.1, 128.0, 127.9, 127.6, 127.5 (Ph), 102.5 (1'-C), 97.5 (1"-C), 84.4 (3'-C), 82.1 (2'-C), 78.1 (4'-C), 77.7 (2"-C), 76.3 (4"-C and 1-C or 4-C), $75.3\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}, C_{B} \mathrm{H}_{2} \mathrm{Ph}, C_{C} \mathrm{H}_{2} \mathrm{Ph}, C_{D} \mathrm{H}_{2} \mathrm{Ph}\right.$ and 1-C or 4-C), 74.7 (5"-C), 73.6 $\left(C_{F} \mathrm{H}_{2} \mathrm{Ph}\right), 72.9\left(C_{E} \mathrm{H}_{2} \mathrm{Ph}\right), 70.6\left(5^{\prime}-\mathrm{C}\right), 68.2$ ($\left.6{ }^{\prime \prime}-\mathrm{C}\right), 65.3$ (3"-C), 59.8 (2-C and 5-C), 51.3 ($6^{\prime}-$
H), 31.5 and 30.6 (3-C and 6-C) (15 aromatic peaks overlapped or missing); m / z (ES) 1135.6 (100, MNa^{+}), 575.1 (27) and 430.2 (98); (Found: MNa^{+}, 1135.4783. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $M N a, 1135.4766$).

Also obtained was ($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido- $6^{\prime}-$ deoxy- $2^{\prime}, 3^{\prime}, 4^{\prime}$-tri-O-benzyl- α-D-glucopyranosyl)-4-O-(3''-Azido-3'"-deoxy-2', 4 '", $6^{\prime \prime}$-tri-O-benzyl- β-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28Ad ($42.4 \mathrm{mg}, 11 \%$) as a yellow oil, $R_{\mathrm{f}} 0.43$ (8:2 petrol-EtOAc); $[\alpha]_{\mathrm{D}}+4.00$ (c. 1.00 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}$ (film) 2918, 2104, 1256 and 1072; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.25(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.03(1 \mathrm{H}, \mathrm{d}, J 3.5,1 '-\mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{d}, J 10.9$, $\left.3^{\prime} \mathrm{C}-\mathrm{CH}_{A} \mathrm{HPh}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J 10.9,4^{\prime} \mathrm{C}-\mathrm{CH}_{B} \mathrm{HPh}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH}_{C} \mathrm{HPh}\right), 4.81(1 \mathrm{H}, \mathrm{d}$, $\left.J 10.6,4^{\prime \prime} \mathrm{C}-\mathrm{CH}_{D} \mathrm{HPh}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J 10.9,3^{\prime} \mathrm{C}-\mathrm{CH} H_{A} \mathrm{Ph}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{CH} H_{C} \mathrm{Ph}\right)$, $4.75\left(2 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{E} \mathrm{HPh}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, J 12.0,6{ }^{\prime \prime} \mathrm{C}-\mathrm{CH}_{F} \mathrm{HPh}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 10.9,4 \mathrm{C}^{\prime} \mathrm{C}\right.$ $\left.\mathrm{CHH}_{B} \cdot \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 10.6,4 " \mathrm{C}-\mathrm{CH} H_{D} \cdot \mathrm{Ph}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 12.0,6^{\prime \prime} \mathrm{C}-\mathrm{CH} H_{F} \mathrm{Ph}\right), 4.60(1 \mathrm{H}$, d, $\left.J 7.7,1^{\prime \prime}-\mathrm{H}\right), 4.00-3.94(2 \mathrm{H}, \mathrm{m}, 3$ '-H and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.91-3.84\left(2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}\right.$ and $1-\mathrm{H}$ or $4-$ H), 3.69-3.63 ($4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $5-\mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $6 \mathrm{H}-\mathrm{H}$), 3.56 ($1 \mathrm{H}, \mathrm{dd}, J 9.7$ and 3.6, $2^{\prime}-\mathrm{H}$), $3.55\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime \prime}-\mathrm{H}\right), 3.48-3.41\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 4 "-\mathrm{H}, 6^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.33(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $\left.5.8,6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J 9.7\right.$ and $\left.7.7,2^{\prime \prime}-\mathrm{H}\right), 2.12-2.00(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.87-$ $1.79\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.4,137.4(o-\mathrm{Ph}), 128.4,128.3,128.2$, 128.1, 128.0, 127.9 (Ph), 102.5 (1"-C), 98.0 ($\left.1^{\prime}-\mathrm{C}\right), 81.5$ (3'-C), 80.1 ($2^{\prime}-\mathrm{C}$ and 2"-C), 78.3 ($4^{\prime}-$ C), 76.1 (1-C or 4-C), 76.1 (4"-C, $C_{A} \mathrm{H}_{2} \mathrm{Ph}$ and, $C_{D} \mathrm{H}_{2} \mathrm{Ph}$), 75.3 (1-C or 4-C, $C_{B} \mathrm{H}_{2} \mathrm{Ph}$, and $\left.C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 73.4\left(C_{F} \mathrm{H}_{2} \mathrm{Ph}\right), 73.1\left(C_{E} \mathrm{H}_{2} \mathrm{Ph}\right), 70.9$ (5'-C), 68.7 ($\left.5^{\prime \prime}-\mathrm{C}\right), 68.6$ ($\left.6^{\prime \prime}-\mathrm{C}\right), 68.5$ (3"-C), $60.0(2-\mathrm{C}$ and $5-\mathrm{C}), 51.6(6 '-\mathrm{H}), 30.8$ and 30.2 ($3-\mathrm{C}$ and $6-\mathrm{C}$) (16 aromatic peaks overlapped or missing); m / z (ES) 1135.6 (100, MNa^{+}), 575.1 (27) and 430.2 (98); (Found: MNa^{+}, 1135.4782. $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{~N}_{12}$ requires $\left.M N a, 1135.4766\right)$.

($1 R, 2 R, 4 R, 5 R$)-1-O-(6^{\prime}-Azido- 6^{\prime}-deoxy- ${ }^{\prime}, 3^{\prime}, 4^{\prime}$ 'tri- O-benzyl- α-D-glucopyranosyl)-4-O-(3''-Azido-3''-deoxy-2', 4 '’, 6 ''-tri- O-acetoxy- β-D-glucopyranosyl)-2,5-diazido-cyclohexane-1,4-diol 28AD

By method A, the glycosyl donor 21D ($181 \mathrm{mg}, 1.2$ eq., 0.43 mmol) and the acceptor $\mathbf{2 8 A}\left(233 \mathrm{mg}, 1.0\right.$ eq., $0.36 \mathrm{mmol} ; c a .70: 15: 15 \mathbf{2 8 A}: \mathbf{2 8 b}: \mathbf{2 8}^{\prime} \mathbf{A}$) gave a crude product which
was purified by flash chromatography on silica gel (gradient elution: 9:1 \rightarrow 7:3 petrol-EtOAc) and preparative HPLC to give 28AD ($29.0 \mathrm{mg}, 8 \%$) as a yellow oil, $R_{\mathrm{f}} 0.10$ ($8: 2$ petrol- EtOAc); $[\alpha]_{\mathrm{D}}+13.7$ (c. 0.99 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2929, 2106, 1752, 1218 and 1040; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.25(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.01-4.99(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{l}-\mathrm{H}), 4.98(1 \mathrm{H}$, dd, $J 10.2$ and $9.5,4 "-H), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \mathrm{HPh}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd}, J 11.1, \mathrm{CH}_{B} \mathrm{HPh}\right), 4.90$ ($1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $7.9,2 "-\mathrm{H}), 4.82\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{A} \cdot \mathrm{Ph}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{C} H_{C} \mathrm{HPh}\right)$, 4.71 ($1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH}_{C} \cdot \mathrm{Ph}$), 4.57 ($1 \mathrm{H}, \mathrm{dd}, J 11.1, \mathrm{CHH}_{B} \cdot \mathrm{Ph}$), 4.56 ($1 \mathrm{H}, \mathrm{dd}, J 7.9,1 "-\mathrm{H}$), $4.20\left(1 \mathrm{H}, \mathrm{dd}, J 12.6\right.$ and $\left.5.1,6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J 12.6\right.$ and $\left.2.6,6 "-\mathrm{H}_{\mathrm{B}}\right), 3.96(1 \mathrm{H}, \mathrm{t}, J 9.3$, $\left.3^{\prime}-\mathrm{H}\right), 3.89-3.82(2 \mathrm{H}, \mathrm{m}, 5$ '-H and $2-\mathrm{H}$ or $5-\mathrm{H}), 3.80-3.75(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}), 3.70-3.63(1 \mathrm{H}$, m, 5"-H), 3.63 ($1 \mathrm{H}, \mathrm{t}, J 10.2,3 "-\mathrm{H}), 3.63-3.60(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}), 3.60-3.55(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ or $5-\mathrm{H}), 3.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3\right.$ and $\left.3.6,2^{\prime}-\mathrm{H}\right), 3.50-3.40\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.34(1 \mathrm{H}, \mathrm{dd}, J$ 13.1 and 5.7, $\left.6^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.12(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.06-1.94(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.83-1.76\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.6,138.1,137.8(o-\mathrm{Ph}), 128.5$, 128.3, 128.0, 127.9, 127.5 (Ph), 100.3 (1"-C), 97.8 (1'-C), 81.3 ($\left.3^{\prime}-\mathrm{C}\right), 80.1$ (2'-C), 78.1 (4'-C), 75.8, 75.6 (1-C and 4-C), $75.5\left(C_{A} \mathrm{H}_{2} \mathrm{Ph}\right), 75.1\left(C_{B} \mathrm{H}_{2} \mathrm{Ph}\right), 73.1\left(C_{C} \mathrm{H}_{2} \mathrm{Ph}\right), 72.8(5 "-\mathrm{C}), 71.1$ (2"-C), 70.9 ($\left.5^{\prime}-\mathrm{C}\right), 68.5$ ($4^{\prime \prime}-\mathrm{C}$), 64.2 ($3^{\prime \prime}-\mathrm{C}$), 61.9 ($\left.6{ }^{\prime \prime}-\mathrm{C}\right), 59.8$ (2-C and 5-C), 51.3 ($\left.6^{\prime}-\mathrm{H}\right)$, 30.7, 30.4 (3-C and 6-C), 20.6 and 20.5 (Me) (7 peaks overlapped or missing); m / z (ES) 991.7 (100, MNa^{+}) and 430.3 (82); (Found: MNa^{+}, 991.3668. $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{~N}_{12}$ requires $M N a$, 991.3675).

(1S,3S,4S,6S)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4$ '-tri-O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexane-1,3-diol 29A

By method B, the glycosyl donor 21A ($551 \mathrm{mg}, 1.0$ eq., 0.97 mmol) and the acceptor 15 (192 $\mathrm{mg}, 1.0 \mathrm{eq} ., 0.97 \mathrm{mmol}$) gave a crude product, which was purified by flash chromatography (gradient elution 9:1 \rightarrow 7:3 petrol-EtOAc) to give the glycosidated product 29A (179.6 mg , 29%) as a colourless oil, $R_{\mathrm{f}} 0.15$ (7:3 petrol-EtOAc); $[\alpha]_{D}^{20}+54.3$ (c 2.07 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3445, 3031, 2928 and 2105 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.49-7.23(15 \mathrm{H}, \mathrm{m}$, $\mathrm{PhH}), 4.97\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right)$, $4.82\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.77\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57$
(1H, d, $\left.{ }^{2} J 11.6, C H_{2} \mathrm{Ph}\right), 3.91\left(1 \mathrm{H}, \mathrm{t}, J 9.3,3\right.$ '-H), 3.84-3.42 (9H, m, 1-H, 3-H, 4-H, 6-H, $6^{\prime}-\mathrm{H}$, $5^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}$ and $\left.2^{\prime}-\mathrm{H}\right)$ and 2.13-1.70 ($4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$ and $2-\mathrm{H}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.9$, 138.4, 138.2, 130.4, 129.4, 129.1, 129.0, 128.8, 128.6, 128.5, 128.4, 128.2, 95.7, 81.9, 80.3, $78.7,78.6,76.2,75.7,74.1,71.4,69.1,62.1,51.7,32.2$ and 30.0 (1 carbon signal missing or overlapped); $m / z(E S) 674\left(100 \%, \mathrm{MNH}_{4}{ }^{+}\right)$and $679\left(40, \mathrm{MNa}^{+}\right)$; (Found: $\mathrm{MNa}^{+} 678.2741$; $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{9} \mathrm{O}_{6}$ requires $M N a 678.2765$).
($1 R, 3 R, 4 R, 6 R$)-1-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4 '$ 'tri- O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexane-1,3-diol 29'A

By method B, the diol $\mathbf{1 5}^{\prime}(1.07 \mathrm{~g}, 5.39 \mathrm{mmol})$ and the donor $\mathbf{2 1 A}(2.55 \mathrm{~g}, 4.49 \mathrm{mmol})$ gave a crude product, which was pre-absorbed onto silica and purified by flash chromatography (gradient elution 9:1 \rightarrow 6:4 petrol-EtOAc) to give the glycosidated product 29'A (429.4 mg , 15%) as a colourless oil, $R_{\mathrm{f}} 0.15$ (8:2 petrol-EtOAc); $[\alpha]_{D}^{20}+28.1\left(c 2.05\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3448, 3031, 2927 and $2103 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.37-7.24(15 \mathrm{H}, \mathrm{m}$, $\mathrm{PhH}), 4.97\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right)$, $4.81\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.78\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61\left(1 \mathrm{H},{ }^{2} J 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57$ ($1 \mathrm{H},{ }^{2} J 11.0, \mathrm{CH}_{2} \mathrm{Ph}$), $3.90\left(1 \mathrm{H}, \mathrm{t}, J 9.2,3^{\prime}-\mathrm{H}\right), 3.86-3.82\left(2 \mathrm{H}, \mathrm{m}, 4{ }^{\prime}-\mathrm{H}\right.$ and 1-H), 3.81-3.74 $\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.3-\mathrm{H}\right), 3.59(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $4.7,6-\mathrm{H}), 3.54-3.50\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.4-\mathrm{H}\right)$, $3.44\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $\left.J 5.5,6^{\prime}{ }_{\mathrm{a}}-\mathrm{H}\right), 3.31\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $\left.J 5.9,6{ }^{\prime}{ }_{\mathrm{b}}-\mathrm{H}\right), 2.13(1 \mathrm{H}$, br s, $\mathrm{OH}), 2.01-1.95\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.5-\mathrm{H}_{2}\right)$ and $1.87\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.4$, 138.1, 137.6, 128.6, 128.5, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7, $97.4,81.4,80.2$, 78.2, 75.7, 75.3, 75.1, 73.8, 70.9, 69.0, 61.5, 58.8, 51.3, 34.0 and 29.2; m/z (ES) $679(100 \%$, MNa^{+}); (Found: $\mathrm{MNa}^{+} 678.2739 ; \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{9} \mathrm{O}_{6}$ requires $M N a$, 678.2765).

Also obtained ($1 R, 3 R, 4 R, 6 R$)-1,3-O-(6'-Azido-6'-deoxy-2', $3^{\prime}, 4$ '-tri- O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexane-1,3-diol 29'AA ($73.7 \mathrm{mg}, 2 \%$) as a colourless amorphous solid, $R_{\mathrm{f}} 0.20$ (8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{D}^{20}+49.3$ (c 2.02 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3064, 3031, 2917 and 2102; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34-7.24(30 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 4.98(2 \mathrm{H}$, d, $\left.{ }^{2} J 10.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.93\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J 3.6,1^{\prime}-\mathrm{H}\right), 4.89\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J 11.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.81\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J\right.$ 10.9, $\mathrm{CH}_{2} \mathrm{Ph}$), $4.77\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.67\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(2 \mathrm{H},{ }^{2} J 11.0\right.$,
$\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.94\left(2 \mathrm{H}, \mathrm{t}, J 9.1,3^{\prime}-\mathrm{H}\right), 3.85-3.82\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.72(2 \mathrm{H}$, app. q, $J 5.9,1-\mathrm{H}$ and $3-$ H), $3.58(2 \mathrm{H}$, app. q, $J 5.9,6-\mathrm{H}$ and $4-\mathrm{H}), 3.52\left(2 \mathrm{H}, \mathrm{dd}, J 9.1\right.$ and $\left.3.6,2^{\prime}-\mathrm{H}\right), 3.44(2 \mathrm{H}, \mathrm{t}, J$ $9.1,4-\mathrm{H}), 3.42\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $\left.J 4.9,6^{\prime}{ }_{\mathrm{a}}-\mathrm{H}\right), 3.29\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $\left.J 5.5,6^{\prime}{ }_{\mathrm{b}}-\mathrm{H}\right), 2.01$ (2 H , app. t, $J 5.9,2-\mathrm{H}$) and $1.96(2 \mathrm{H}$, app. t, $J 5.9,5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.0,138.5$, 138.3, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.1, 98.0, 81.9, 80.5, 78.6, 76.1, $75.7,74.0,71.5,59.5,51.8,33.5$ and 29.9 (2 carbon missing or overlapped); m / z (ES) 1135 ($100 \%, \mathrm{MNH}_{4}{ }^{+}$); (Found: $\mathrm{MNa}^{+} 1135.4719 ; \mathrm{C}_{60} \mathrm{H}_{64} \mathrm{~N}_{12} \mathrm{O}_{10}$ requires $M N a$, 1135.4766). Also obtained $(1 R, 3 R, 4 R, 6 R)$-1- O-(6^{\prime} '-Azido-6'-deoxy-2', $3^{\prime}, 4^{\prime}$-tri- O-benzyl- $\alpha-D-$ glucopyranosyl)-3-O-(6''-Azido-6''-deoxy-2', 3 ', 4 '' -tri- O-benzyl- β-D-glucopyranosyl)-4,6-diazido-cyclohexane-1,3-diol 29'Ab ($42.5 \mathrm{mg}, 1 \%$) as a colourless amorphous solid, $R_{\mathrm{f}} 0.20$ (8:2 petrol- $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{D}^{20}+28.2$ (c 2.13 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3064,3031,2917$ and 2102; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.33-7.25(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.96\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90(1 \mathrm{H}$, d, $\left.{ }^{2} J 11.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.88\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.87\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.85(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2} J 11.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right), 4.78\left(1 \mathrm{H},{ }^{2} J 10.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.77\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.7\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.73\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.4, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.62\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.4, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.4\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.56\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.4, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 7.7,1{ }^{\prime}{ }^{\prime}-\right.$ H), 4.02-3.99 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $3-\mathrm{H}$), $3.94\left(2 \mathrm{H}, \mathrm{t}, J 9.3,3^{\prime}\right.$ '-H and 3 '-H), 3.87-3.81 ($3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ or 1-H, 5^{\prime} '-H and $\left.5^{\prime}-\mathrm{H}\right), 3.67-3.62\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 4-\mathrm{H}, 4{ }^{\prime}\right.$ '-H and 4 '-H), 3.47-3.38 ($4 \mathrm{H}, \mathrm{m}, 2^{\prime}-$ $\mathrm{H}, 2{ }^{\prime}{ }^{\prime}-\mathrm{H}, 6_{\mathrm{a}}{ }^{\prime}{ }^{\prime}-\mathrm{H}$ and $6_{\mathrm{b}}{ }^{\prime \prime}-\mathrm{H}$, or $6_{\mathrm{a}}{ }^{\prime}-\mathrm{H}$ and $\left.6_{\mathrm{b}}{ }^{\prime}-\mathrm{H}\right), 3.36\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $J 2.2,6_{\mathrm{a}}{ }^{\prime}{ }^{\prime}-\mathrm{H}$ or $6^{\prime}{ }_{\mathrm{a}}{ }^{-}$ H), $3.26\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $J 5.6,6{ }^{\prime}{ }_{\mathrm{b}}$-H or $\left.6{ }^{\prime}{ }_{\mathrm{b}}-\mathrm{H}\right), 2.16-2.12\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.06-2.02(1 \mathrm{H}$, $\left.\mathrm{m}, 2-\mathrm{H}_{\mathrm{b}}\right)$ and 1.98-1.90 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.0,138.7,138.6,138.5,138.3$, 138.1, 129.0, 128.8, 128.6, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 101.8, 98.6, 84.8, 82.4, $81.7,80.5,78.6,78.4,76.2,76.0,75.7,75.6,75.4,75.0,73.5,71.3,60.2,59.7,52.0,51.6,31.7$ and 30.2 (11 signals missing or overlapped); $m / z(E S) 1131\left(100 \%, \mathrm{MNH}_{4}{ }^{+}\right.$); (Found: $\mathrm{MNH}_{4}{ }^{+}$ 1130.5013; $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{~N}_{12} \mathrm{O}_{10}$ requires $M N H_{4}^{+}, 1130.5212$).
($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Azido-6'-deoxy-2', $\mathbf{3}^{\prime}$, ' $^{\prime}$ 'tri- O-benzoyl- β-D-glucopyranosyl)-2,4-diazido-cyclohexane-1,5-diol 29’B

By method A, the diol $\mathbf{1 5}^{\prime}$ ($313 \mathrm{mg}, 1.58 \mathrm{mmol}$) and the donor 21B ($481.8 \mathrm{mg}, 0.79 \mathrm{mmol}$) gave a crude product, which was pre-absorbed onto silica and purified by flash chromatography (gradient elution 9:1 \rightarrow 7:3 petrol-EtOAc) and then by LC-MS to give the glycosidated product 29'B ($46.8 \mathrm{mg}, 8 \%$) as a yellow oil, $R_{\mathrm{f}} 0.10$ (7:3 petrol-EtOAc); $[\alpha]_{D}^{20}-41.7$ (c 1.17 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3496, 2925, 2103, 1733 and $1601 ; \delta_{\mathrm{H}}$ ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.95 (2H, d, J7.2, Ph), 7.91 (2H, d, J7.4, Ph), 7.82 (2H, d, J7.3, Ph), $7.53(2 \mathrm{H}, \mathrm{dd}, J 7.4$ and $6.6, \mathrm{Ph}), 7.45-7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.30-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.18-7.14(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 5.89\left(1 \mathrm{H}, \mathrm{t}, J 8.1,3^{\prime}-\mathrm{H}\right), 5.49\left(1 \mathrm{H}, \mathrm{t}, J 8.1,4^{\prime}-\mathrm{H}\right.$ or $\left.2^{\prime}-\mathrm{H}\right), 5.47\left(1 \mathrm{H}, \mathrm{t}, J 8.1,4^{\prime}-\mathrm{H}\right.$ or $\left.2^{\prime}-\mathrm{H}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 8.1,1^{\prime}-\mathrm{H}\right), 4.03-3.98\left(4 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}, 5-\mathrm{H}, 1-\mathrm{H}\right.$ and OH$), 3.56\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J\right.$ 13.7 and $J 7.7,6^{\prime}{ }_{\mathrm{a}}-\mathrm{H}$), 3.42-3.38 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $2-\mathrm{H}$), $3.34\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.7\right.$ and $J 2.3,6^{\prime}{ }_{\mathrm{a}}{ }^{-}$ H), $2.01\left(1 \mathrm{H}, \mathrm{dt}, J 13.9\right.$ and $\left.3.7,6_{\mathrm{a}}-\mathrm{H}\right), 1.90-1.84\left(2 \mathrm{H}, \mathrm{m}, 6_{\mathrm{b}}-\mathrm{H}\right.$ and $\left.3_{\mathrm{a}}-\mathrm{H}\right)$ and $1.72-1.64(1 \mathrm{H}$, $\left.\mathrm{m}, 3_{\mathrm{b}}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.7,165.3,165.0,133.8,133.6,133.4,129.9,129.8,129.7$, $128.9,128.7,128.6,128.5,128.4,128.2,100.1,75.6,74.3,72.2,71.7,70.3,68.8,61.7,59.4$, 51.2, 32.3 and 29.2; m / z (ES) 715 ($100 \%, \mathrm{MNH}_{4}{ }^{+}$); (Found: $\mathrm{MNH}_{4}{ }^{+} 715.2588 ; \mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{9} \mathrm{O}_{9}$ requires $\mathrm{MNH}_{4}, 715.2556$).
($1 R, 3 R, 4 R, 6 R$)-1-O-(2'-Phthalimido-2'-deoxy-3', $\mathbf{4}^{\prime}, \mathbf{~}^{\prime}$ '-tri- O-benzyl- β-d-glucopyranosyl)-4,6-diazido-cyclohexane-1,3-diol 29'F

By method A, the diol $\mathbf{1 5}^{\prime}(33 \mathrm{mg}, 0.17 \mathrm{mmol})$, the donor 21F ($128 \mathrm{mg}, 0.19 \mathrm{mmol}$) gave a crude product, which was pre-absorbed onto silica and purified by flash chromatography eluting with 7:3 petrol-EtOAc to give the glycosidated product 29'F ($65 \mathrm{mg}, 45 \%$) at a yellow oil, $R_{\mathrm{f}} 0.15$ (7:3 petrol-EtOAc); $[\alpha]_{D}^{20}-9.6\left(c 1.8\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3468,2930,2102,1775$ and 1712; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.77-7.59 (2H, m, phthal-H), 7.397.22 ($12 \mathrm{H}, \mathrm{m}$, phthal-H and Ph), 7.01-6.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 6.91-6.81 (3H, m, Ph), 5.23 ($1 \mathrm{H}, \mathrm{d}, J$ $\left.8.4,1^{\prime}-\mathrm{H}\right), 4.84\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.8, \mathrm{C} H \mathrm{Ph}\right), 4.79\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 12.1, \mathrm{C} H \mathrm{Ph}\right), 4.64\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 10.8\right.$, $\mathrm{C} H \mathrm{Ph}), 4.62\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 12.1, \mathrm{C} H \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 12.1, \mathrm{C} H \mathrm{Ph}\right), 4.44\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 12.1\right.$, CHPh), 4.32 ($1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 8.7, $3^{\prime}-\mathrm{H}$), 4.14 ($1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 8.4, $2^{\prime}-\mathrm{H}$), 3.92-3.83 $\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.1-\mathrm{H}\right), 3.78-3.71\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$ and $\left.3-\mathrm{H}\right), 3.64\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 9.9\right.$ and J $\left.3.7,6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.31(1 \mathrm{H}$, app td, $J 10.9$ and $4.1,4-\mathrm{H}), 3.21(1 \mathrm{H}$, app td, $J 9.9$ and $4.1,6-\mathrm{H}), 2.10$
$(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.93-1.86\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{a}}\right), 1.74\left(1 \mathrm{H}, \mathrm{app} \mathrm{dd}, J 10.5\right.$ and $\left.4.1,5-\mathrm{H}_{\mathrm{b}}\right), 1.71-1.62$ $\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{a}}\right)$ and $1.61-1.49\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.3,134.4,131.7,128.9$, $128.5,128.4,128.2,127.8,123.8,97.6,79.9,75.5,75.4,73.9,69.1,68.9,62.0,59.8,56.3$, 35.6, 32.7, 29.4 and 29.3 (seven carbon signals missing or overlapped); m / z (ES) $778(100 \%$, $\mathrm{MNH}_{4}{ }^{+}$); (Found: $\mathrm{MNH}_{4}{ }^{+} 777.3376 ; \mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{8}$ requires $M N H_{4}, 777.3360$).
($1 S, 3 S, 4 S, 6 S$)-1-O-(2',6'-Azido-2', $\mathbf{6}^{\prime}$-deoxy-3',4'-di- O-benzyl- α-D-glucopyranosyl)-4,6-diazido-cyclohexane-1,3-diol 29G

By Method B, the acceptor $\mathbf{1 5}(113 \mathrm{mg}, 0.57 \mathrm{mmol})$ and the donor 21G (191.2 mg, 0.381 mmol) gave a crude product, which was purified by flash chromatography (gradient elution $9: 1 \rightarrow 8: 2$ petrol-EtOAc) to give the glycosidated product 29G ($31.8 \mathrm{mg}, 14 \%$) as a colourless oil, $R_{\mathrm{f}} 0.15$ (8:2 petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{D}^{20}+18.9$ (c 1.4 in MeOH$) ; v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3379 , 2923, 2104 and 1448; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39-7.25(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 3.6,1^{\prime}-\mathrm{H}\right), 4.91-$ $4.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.9.1,3^{\prime}-\mathrm{H}\right), 3.89-$ $3.86\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.1-\mathrm{H}\right), 3.83-3.73(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}$ or $6-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{dt}, J 13.0$ and $4.1,4-\mathrm{H}$ or $6-\mathrm{H}), 3.51\left(1 \mathrm{H}\right.$, app t, $\left.J 9.1,4^{\prime}-\mathrm{H}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $\left.J 2.4,6{ }^{\prime}{ }_{\mathrm{a}}{ }^{-} \mathrm{H}\right), 3.40$ ($1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $\left.3.6,2^{\prime}-\mathrm{H}\right), 3.33\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $\left.J 5.7,6^{\prime}{ }_{\mathrm{b}}-\mathrm{H}\right), 2.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.09\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J 13.9\right.$ and $\left.J 4.9,2-\mathrm{H}_{\mathrm{a}}\right), 2.04-1.97\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{a}}\right)$ and $1.89\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} J\right.$ 12.8 , and $J 9.3$ and $3.3,5-\mathrm{H}_{\mathrm{b}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.6,137.3,129.3,128.6,128.5,128.2$, 128.1, 124.9, 102.1, 82.6, 77.9, 76.7, 75.7, 75.2, 74.8, 69.0, 66.4, 61.4, 59.7, 51.1, 34.5 and 29.5; $m / z(E S) 563\left(100 \%, \mathrm{M}^{+}-\mathrm{N}_{2}\right)$ and $613\left(60, \mathrm{MNa}^{+}\right)$; (Found: $\mathrm{MNa}^{+} 613.2361$; $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{12} \mathrm{O}_{5}$ requires $M N a, 613.2360$).

($1 R, 3 R, 4 R, 6 R$)-1-O-(2',6'-Azido-2', $\mathbf{6}^{\prime}$ 'deoxy- ${ }^{\prime}, \mathbf{4}^{\prime}$ 'di- O-benzyl- α-d-glucopyranosyl)-4,6-diazido-cyclohexane-1,3-diol 29'G

By Method B, the acceptor $\mathbf{1 5}^{\prime}(113 \mathrm{mg}, 0.57 \mathrm{mmol})$ and the donor $\mathbf{2 1 G}(191.2 \mathrm{mg}, 0.381$ mmol) gave a crude product, which was purified by flash chromatography (gradient elution 9:1 $\rightarrow 8: 2$ petrol-EtOAc) to give the glycosidated product $\mathbf{2 9}^{\prime} \mathbf{G}(58.7 \mathrm{mg}, 26 \%)$ as a colourless oil, $R_{\mathrm{f}} 0.15$ (8:2 petrol- $\left.\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{D}^{20}+57.4$ (c 2.3 in MeOH$) ; v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film)

3379, 2923, 2104 and 1448; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.39-7.25(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.00(1 \mathrm{H}, \mathrm{d}, 3.6$, $\left.1^{\prime}-\mathrm{H}\right), 4.91-4.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J 11.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.92(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and 9.1, $\left.3^{\prime}-\mathrm{H}\right), 3.89-3.86\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.1-\mathrm{H}\right), 3.83-3.73(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ or $4-\mathrm{H}$ and $3-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{dt}$, ${ }^{2} J 13.0$ and $J 4.1,6-\mathrm{H}$ or $\left.4-\mathrm{H}\right), 3.51\left(1 \mathrm{H}, \mathrm{d}, J 9.1,4{ }^{\prime}-\mathrm{H}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $J 2.4,6{ }^{\prime}{ }_{\mathrm{a}}{ }^{-}$ H), $3.40\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.3.6,2^{\prime}-\mathrm{H}\right), 3.33\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.1\right.$ and $\left.J 5.7,6^{\prime}{ }_{\mathrm{b}}-\mathrm{H}\right), 2.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.09\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J 13.9\right.$ and $\left.J 4.9,2-\mathrm{H}_{\mathrm{a}}\right), 2.04-1.97\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.2-\mathrm{H}_{\mathrm{b}}\right)$ and $1.89(1 \mathrm{H}$, ddd, ${ }^{2} J 12.8$, and $J 9.3$ and $3.3,5-\mathrm{H}_{\mathrm{b}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.9,137.7,129.1,129.0,128.8$, $128.7,128.5,128.4,98.3,80.3,79.2,75.9,71.9,69.4,63.8,61.9,59.3,51.5,34.3$ and 29.8 (5 missing or overlapped); m / z (ES) $613\left(100 \%, \mathrm{MNa}^{+}\right)$and $563\left(80,\left(\mathrm{M}^{+}-\mathrm{N}_{2}\right)\right.$; (Found: MNa^{+} 613.2369; $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{12} \mathrm{O}_{5}$ requires $M N a, 613.2360$).

5'-(2'-Phthalimido-2'-deoxy-3',4' ${ }^{\prime \prime}$ '6'-tri-O-benzyl- β-D-glucopyranosyl)-1',3',2,6-tetraazido-6',3,4-tri- O-benzyl Neamine 30GF

By Method A, the donor 21F ($103 \mathrm{mg}, 0.15 \mathrm{mmol}$) and the acceptor 30G ($106 \mathrm{mg}, 0.15$ mmol) gave a crude product which was purified by column chromatography (gradient elution: $0: 10 \rightarrow 2: 8$ EtOAc-petrol) to yield 30GF ($31 \mathrm{mg}, 16 \%$) as a yellow oil, $R_{\mathrm{f}} 0.4(2: 8$ EtOAc-petrol); $[\alpha]_{\mathrm{D}}+83.1$ (c. $0.52, \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3031, 2924, 2103 (azide), $1775(\mathrm{C}=\mathrm{O})$ and $1713(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.79-7.77(1 \mathrm{H}, \mathrm{m}, \mathrm{Phth}), 7.68-7.63(3 \mathrm{H}$, m, Phth), 7.50-7.48 (2H, m, Ph), 7.39-7.16 (23H, m, Ph), 6.99-6.97 (2H, m, Ph), 6.92-6.86 $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.66(1 \mathrm{H}, \mathrm{d}, J 7.4,1$ "-H), $5.45(1 \mathrm{H}, \mathrm{d}, J 3.8,1-\mathrm{H}), 4.86-4.76(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH} \times 5)$, 4.68-4.47 (6H, m, PhCH × 6), 4.43-4.38 (3H, m, PhCH, 3"- and 2"-H), 4.27 ($1 \mathrm{H}, \mathrm{t}, J 8.8,5^{\prime}-$ H), 4.21-4.20 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}), 3.83-3.70\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\right.$ and $\left.6_{\mathrm{A}}{ }_{\mathrm{A}}-\mathrm{H}\right), 3.72$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}, 6^{\prime \prime}{ }_{\mathrm{B}}-\mathrm{H}\right), 3.55(1 \mathrm{H}, \mathrm{t}, J 9.2,4-\mathrm{H}), 3.45-3.31\left(7 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-, 2-, 4^{\prime}-, 1^{\prime}-, 3^{\prime}-, 6_{A^{-}}\right.$and $6_{\mathrm{B}^{-}}$ $\mathrm{H}), 3.14\left(1 \mathrm{H}, \mathrm{t}, J 9.1,6^{\prime}-\mathrm{H}\right), 2.22\left(1 \mathrm{H}\right.$, app dt, $J 13.0$ and $\left.4.3,2^{\prime}{ }_{\mathrm{A}}-\mathrm{H}\right)$ and $1.41(1 \mathrm{H}$, app q, J $\left.13.0,2^{\prime}{ }_{\mathrm{B}}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.2(\mathrm{C}=\mathrm{O}), 167.7,138.4,138.1,138.1,138.0,137.8$, 137.4, 133.8, 133.7, 131.9, 131.5, 128.4, 128.4, 128.4, 128.3, 128.2, 128.2, 128.0, 127.9, 127.9, 127.9, 127.8, 127.8, 127.6, 127.5, 127.5, 123.6, 123.1, 98.8 (1-C), 95.6 (1'-C), 83.8 (6'C), 79.9 (4"-C), 79.1, 78.5 (4-C), $76.7\left(4^{\prime}-\mathrm{C}\right), 75.6\left(5^{\prime}-\mathrm{C}\right), 75.1\left(5^{\prime \prime}-\mathrm{C}\right), 74.9\left(\mathrm{CH}_{2}\right), 74.9\left(\mathrm{CH}_{2}\right)$, $74.7\left(\mathrm{CH}_{2}\right), 74.7\left(\mathrm{CH}_{2}\right), 74.4\left(\mathrm{CH}_{2}\right), 72.8\left(\mathrm{CH}_{2}\right), 70.9(5-\mathrm{C}), 68.9(6 \mathrm{C}-\mathrm{C}), 62.5(2-\mathrm{C}), 60.7\left(1^{\prime}-\right.$
C), 58.8 ($\left.6^{\prime}-\mathrm{C}\right), 56.3$ ($\left.2^{\prime}-\mathrm{C}\right), 51.1$ ($6-\mathrm{C}$) and 31.8 ($\left.2^{\prime}-\mathrm{C}\right) ; ~ m / z(E S) 1280.3$ ($100 \%, \mathrm{MNa}^{+}$); Found $\mathrm{MNa}^{+} 1280.4944 ; \mathrm{C}_{68} \mathrm{H}_{67} \mathrm{~N}_{13} \mathrm{O}_{12}$ requires MNa^{+}1280.4930.

4^{\prime}-(2', $3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}-$ tetra-O-acetyl- β-d-glucopyranosyl)-1',3',2,6,-tetraazido-6',3,4-tri-Obenzyl Neamine 30GH

By Method C, the trichloroacetimidate $\mathbf{2 1 H}(90 \mathrm{mg}, 0.18 \mathrm{mmol})$ and the acceptor 30G (152 $\mathrm{mg}, 0.21 \mathrm{mmol}$) gave a crude product which was purified by column chromatography (gradient elution: $1: 9 \rightarrow 3: 7 \mathrm{EtOAc}-$ petrol) to yield $\mathbf{3 0 G H}$ ($40 \mathrm{mg}, 22 \%$) as a colourless oil, $R_{\mathrm{f}} 0.15(2: 8 \mathrm{EtOAc}-$ petrol $) ;[\alpha]_{\mathrm{D}}+98.5\left(c 0.28, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ (Thin film) 3031, 2936, 2105 (azide), $1758(\mathrm{C}=\mathrm{O})$ and 1366; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 7.53-7.25 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3$), 5.68 (1H, d, $J 3.8,1-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{d}, J 7.6,1 "-\mathrm{H}), 5.14$ (1H, dd, $J 9.5$ and $8.9,4$ "-H), 5.08 ($1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $9.3,3^{\prime \prime}-\mathrm{H}$), 5.04 ($1 \mathrm{H}, \mathrm{dd}, J 9.3$ and $\left.7.6,2^{\prime \prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{PhCH}_{\mathrm{A}}\right)$, $4.89\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{PhCH}_{\mathrm{B}}\right), 4.88-4.83(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH} \times 2)$, $4.68\left(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{PhCH}_{\mathrm{A}}\right), 4.61$ $\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{PhCH}_{\mathrm{B}}\right), 4.28\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and 4.2, $\left.6_{\mathrm{A}} \mathrm{A}^{-} \mathrm{H}\right), 4.24-4.21(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.12$ (1 H , app t, $J 9.4,5{ }^{\prime}-\mathrm{H}$), 4.10-4.01 ($2 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}$ в- and $^{3}-\mathrm{H}$), 3.57 ($1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 9.4, 4'-H), 3.51-3.41 (4H, m, $1^{\prime}-, 3^{\prime}-, 6_{A^{-}}$and 4-H), 3.38-3.34 (3H, m, $6^{\prime}-, 6_{\mathrm{B}}$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J$ 10.3 and $3.8,2-\mathrm{H}), 2.73\left(1 \mathrm{H}\right.$, app dt, $J 12.7$ and $\left.4.5,2^{\prime}{ }_{\mathrm{B}}-\mathrm{H}\right), 2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.02(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and $1.50\left(1 \mathrm{H}, \mathrm{app} \mathrm{q}, J 12.7,2^{\prime}{ }_{\mathrm{A}}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 170.7(C=\mathrm{O}), 170.2(C=\mathrm{O}), 169.3(C=\mathrm{O}), 168.9(C=\mathrm{O}), 137.7,137.7,136.7,128.9$, 128.7, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.8, 98.9 (1"-С), 97.8 (1-C), 85.0, 79.2, 78.6, 77.8, $75.8\left(\mathrm{PhCH}_{2}\right), 75.7,75.2\left(\mathrm{PhCH}_{2}\right), 75.0\left(\mathrm{PhCH}_{2}\right), 72.8,72.2,71.6,71.0,68.0,62.7$ (2-C), 61.7 (6"-C), 60.7, 59.4, $51.1(6-\mathrm{C}), 32.4\left(2^{\prime}-\mathrm{C}\right), 21.0\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$ and $20.5\left(\mathrm{CH}_{3}\right)$; m / z (ES) $1049.3\left(100 \%, \mathrm{MNa}^{+}\right)$; Found $\mathrm{MNa}^{+} 1049.3770 ; \mathrm{C}_{47} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{O}_{15}$ requires MNa^{+}1049.3729.

5'-(2', $\mathbf{3}^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}-$ tetra- O-acetyl- β-L-glucopyranosyl)-1',3',2,6,-tetraazido-6',3,4-tri-Obenzyl Neamine 30GH'

By Method C, the trichloroacetimidate donor $\mathbf{2 1 H}{ }^{\prime}(176 \mathrm{mg}, 0.36 \mathrm{mmol})$ and the acceptor 30G ($300 \mathrm{mg}, 0.43 \mathrm{mmol}$) gave a crude product which was purified by column
chromatography (gradient elution: $1: 9 \rightarrow 3: 7 \mathrm{EtOAc}-$ petrol) to yield $\mathbf{3 0 G H}{ }^{\prime}(0.141 \mathrm{~g}$, 38%) as a colourless oil, $R_{\mathrm{f}} 0.15$ (2:8 EtOAc-petrol); $[\alpha]_{\mathrm{D}}+84.7$ (c $0.67, \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1}$ (Thin film) 3032, 2939, 2105 (azide), $1758(\mathrm{C}=\mathrm{O})$ and $1367 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.41-7.25$ $(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3), 5.53(1 \mathrm{H}, \mathrm{d}, J 3.9,1-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{d}, J 8.0,1 "-\mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{t}, J 9.5,3 \mathrm{H}-\mathrm{H})$, $5.05\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8.0,2^{\prime \prime}-\mathrm{H}\right), 5.03(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $9.2,4 "-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{d}, J 11.1$, $\left.\mathrm{PhCH}_{\mathrm{A}}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{PhCH}_{\mathrm{B}}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{PhCH}_{\mathrm{B}}\right), 4.88(1 \mathrm{H}, \mathrm{d}, J 11.2$, $\left.\mathrm{PhCH}_{\mathrm{C}}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{PhCH}_{\mathrm{A}}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{PhCH}_{\mathrm{C}}\right), 4.37-4.34(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $4.06\left(1 \mathrm{H}, \mathrm{dd}, J 12.2\right.$ and $\left.4.7,6^{\prime \prime}{ }_{\mathrm{A}}-\mathrm{H}\right), 4.00-3.94\left(3 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\right.$, $3-$ and $\left.6^{\prime \prime}{ }_{\mathrm{B}}-\mathrm{H}\right), 3.70-3.66(1 \mathrm{H}, \mathrm{m}$, $5 "-\mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{t}, J 9.5,4-\mathrm{H}), 3.61\left(1 \mathrm{H}, \mathrm{t}, J 9.7,4^{\prime}-\mathrm{H}\right), 3.54(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $3.9,2-\mathrm{H})$, 3.55-3.52 ($1 \mathrm{H}, \mathrm{m}, 6_{\mathrm{A}}-\mathrm{H}$), 3.44-3.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{I}^{\prime}-\mathrm{H}$), 3.39-3.36 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\prime}$), 3.33-3.32 ($1 \mathrm{H}, \mathrm{m}$, $\left.6_{\mathrm{B}}-\mathrm{H}\right), 3.30\left(1 \mathrm{H}, \mathrm{t}, J 9.5,6{ }^{\prime}-\mathrm{H}\right), 2.26\left(1 \mathrm{H}\right.$, app dt, $\left.J 13.0,4.5,2^{\prime}{ }_{\mathrm{A}}-\mathrm{H}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.01$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ and $1.42\left(1 \mathrm{H}, \mathrm{app} \mathrm{q}, J 13.0,2_{\mathrm{B}}{ }_{\mathrm{B}}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.5\left(\mathrm{CH}_{3} \mathrm{CO}\right), 169.9\left(\mathrm{CH}_{3} \mathrm{CO}\right), 169.4\left(\mathrm{CH}_{3} \mathrm{CO}\right), 169.0\left(\mathrm{CH}_{3} \mathrm{CO}\right), 137.9$, $137.5,137.4,128.5,128.5,128.2,128.1,128.0,127.8,127.7,99.3$ (1"-C), 96.8 (1-C), 81.7, $81.5,80.2,78.5,78.2,75.7,75.5,75.2,72.9,72.1,71.9,71.6,68.7,63.7$ (2-C), 62.0 (6"-C), 59.5, 59.0, $50.7(6-\mathrm{C}), 32.2\left(2^{\prime}-\mathrm{C}\right), 20.6\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.6\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.6\left(\mathrm{CH}_{3} \mathrm{CO}\right)$ and 20.5 $\left(\mathrm{CH}_{3} \mathrm{CO}\right)$ (two aromatic peaks overlapped or missing); m / z (ES) 1049.2 ($100 \%, \mathrm{MNa}^{+}$); Found MNa^{+}1049.3710; $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{O}_{15}$ requires MNa^{+}1049.3729.

General procedure for the deprotection of benzylated aminoglycoside derivatives (Method D)

The perbenzylated azidoaminoglycoside (0.12 mmol) was dissolved in a solution of THF (3.6 mL), and 0.1 M aqueous sodium hydroxide solution $(0.3 \mathrm{~mL})$ and trimethylphosphine (0.82 $\mathrm{mL}, 1 \mathrm{M}$ in THF, 6 eq., 0.82 mmol) were added. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 2 h and followed by TLC (elution: 2:1 $1 \mathrm{PrOH}-\mathrm{NH}_{4} \mathrm{OH}$). The reaction mixture was cooled to room temperature and loaded onto a short column (4 cm silica and 1 cm of celite) and eluted (gradient elution 1:0:0 \rightarrow 1:1:0 $\rightarrow 0: 1: 0 \rightarrow 0: 2: 1 \mathrm{THF}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$). The fractions containing required product were collected, concentrated under reduced pressure, dissolved in a degassed solution of $1: 1 \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \%$ Degussa type $)$ was
added. The reaction was stirred at room temperature under atmospheric pressure of hydrogen. After 2 days, the reaction mixture was filtered through a short pad of celite, eluted with water, and the filtrate was concentrated under reduced pressure.

General procedure for the debenzoylation (Method E)

Sodium methoxide (0.5 eq.) was added to a solution of benzylated aminoglycoside (0.22 $\mathrm{mmol})$ in dry $\mathrm{MeOH}(1.4 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 18 h and concentrated under reduced pressure.

General procedure for the removal of a phthalimide group (Methods F)

Hydrazine acetate ($83.0 \mathrm{mg}, 0.90 \mathrm{mmol}$) was added in one portion to a stirred solution of the protected aminoglycoside ($55.6 \mathrm{mg}, 0.45 \mathrm{mmol}$) in toluene (0.8 ml) and ethanol (1.2 ml). The reaction mixture was heated at reflux at $110^{\circ} \mathrm{C}$ for 5 days. The reaction was allowed to cool to room temperature and the solvent was removed under reduced pressure. The resulting residue was redissolved in 1:1 dichloromethane-ethanol (1:1) and washed with water (20 ml), and the aqueous layer was back-washed with dichloromethane-ethanol ($10 \mathrm{ml}, 1: 1$). The combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure to give the crude product which was purified by column chromatography (elution: 7:3 petrol-EtOAc) to yield a solution of the crude product which was evaporated under reduced pressure.

Alternative procedure for the deprotection of benzylated aminoglycosides (Method G)

 The perbenzylated azidoaminoglycoside ($142.4 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in 1:1:1 EtOAc- $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}), \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(150 \mathrm{mg})$ was added and the reaction was stirred under an atmospheric pressure of hydrogen. After two days, the reaction mixture was filtered through a short pad of celite, eluting sequentially with ethyl acetate, methanol and water. The filtrate was concentrated under reduced pressure, redissolved in a degassed solution of 1:1 $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL}), \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \%$ Degussa type $)$ added and the reaction mixture stirred under an atmospheric of hydrogen. After 2 days, the reaction mixture was filtered under ashort pad of celite, eluting with water. The filtrate was concentrated under reduced pressure to give a crude product.
($1 R, 2 S, 3 S, 4 R, 6 S)-1-O-\left(6^{\prime}-A m i n o-6 '-d e o x y-2 ', 3^{\prime}, 4 '\right.$ 'triol- $\left.\alpha-D-g l u c o p y r a n o s y l\right)-4,6-$ diamino-cyclohexan-2,3-ol, tri-acetate salt 6A

By method D, 31A ($78.7 \mathrm{mg}, 0.12 \mathrm{mmol}$) gave the aminoglycoside $\mathbf{6 A}(51.9 \mathrm{mg}, 86 \%)$ as an orange oil, $[\alpha]_{\mathrm{D}}+13.3\left(\mathrm{c} .0 .15\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.46\left(1 \mathrm{H}, \mathrm{d}, J 3.1,1^{\prime}-\mathrm{H}\right)$, $3.96(1 \mathrm{H}, \mathrm{t}, J 8.2,1-\mathrm{H}), 3.69$ ($1 \mathrm{H}, \mathrm{dd}, J 9.7$ and 9.2, 4'-H), 3.64-3.24 (6H, m, 2'-H, $3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$, 6 '-H, 4-H and $6-\mathrm{H}), 3.18-3.00(3 \mathrm{H}, \mathrm{m}, 6 \cdot \mathrm{H}, 2-\mathrm{H}$ and $3-\mathrm{H}), 2.21\left(1 \mathrm{H}, \operatorname{broad} \mathrm{d}, J 12.3,5-\mathrm{H}_{\mathrm{A}}\right)$, $1.85\left(9 \mathrm{H}, \mathrm{s}, 3 \mathrm{OCOCH}_{3}\right)$ and $1.51-1.40\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 182(\mathrm{C}=\mathrm{O}), 97.9$ ($\left.1^{\prime}-\mathrm{C}\right), 82.6$ (1-C), 75.2 (2'-C), 74.3 ($3^{\prime}-\mathrm{C}$), 72.6 ($\left.4^{\prime}-\mathrm{C}\right), ~ 71.5-71.4$ (2-C and 3-C), 61.3 ($5^{\prime}-\mathrm{C}$), 50.7, 48.7 (4-C and 6-C), 40.8 (6'-C), 31.8 (5-C), 23.7, 23.2 (CH_{3}); m/z (ES) 324.3 (40\%, MH^{+}), 203.7 (100); (Found: $\mathrm{MNa}^{+}, 346.1588 . \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $M N a, 346.1590$).

(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2',3',4'-triol- α-L-glucopyranosyl)-4,6-

 diamino-cyclohexan-2,3-ol, tri-acetate salts $6 \mathrm{~A}^{\prime}$By method D, 31A' ($57.9 \mathrm{mg}, 0.09 \mathrm{mmol}$) gave the aminoglycoside 6A' $(23.3 \mathrm{mg}$, 51%) as an orange oil, $[\alpha]_{\mathrm{D}}-26.7$ (c. 0.15 in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.03\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right)$, $4.07(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.68-3.55\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 3.47-3.35\left(5 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 2-\mathrm{H}\right.$, $4-\mathrm{H}$ and $6-\mathrm{H}), 3.18-3.00(2 \mathrm{H}, \mathrm{m}, 6 '-\mathrm{H}$ and $3-\mathrm{H}), 2.18\left(1 \mathrm{H}\right.$, broad d, $\left.J 13.0,5-\mathrm{H}_{\mathrm{A}}\right), 1.88(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCOCH}_{3}\right)$ and 1.54-1.45 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 181.0(\mathrm{C}=\mathrm{O}), 101.4(1 \mathrm{l}-\mathrm{C}), 85.6$ (1-C), 74.7 (2'-C), 74.3 ($3^{\prime}-\mathrm{C}$), 73.1 ($4^{\prime}-\mathrm{C}$), 71.9, 71.2 (3-C and 2-C), 68.4 ($5^{\prime}-\mathrm{C}$), 51.1, 50.7 (4-C and 6-C), 40.6 (6'-C), 31.8 (5-C), 23.6, $23.1\left(\mathrm{CH}_{3}\right)$; m / z (ES) $324.3\left(40 \%, \mathrm{MH}^{+}\right)$and 203.7 (100); (Found: $\mathrm{MNa}^{+}, 346.1584 . \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $M N a, 346.1590$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-L-glucopyranosyl)-3-O-(6',-Amino-6',-deoxy-2', 3', 4''-triol- α-L-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol, tetra-acetate salt $\mathbf{6 A} \mathbf{A}^{\prime} \mathbf{A}^{\prime}$

By method D, $27 \mathbf{A}^{\prime} \mathbf{A}^{\prime}(142 \mathrm{mg}, 0.13 \mathrm{mmol})$ gave the aminoglycoside $\mathbf{6 A}^{\prime} \mathbf{A}^{\prime}$ (37.3 $\mathrm{mg}, 41 \%)$ as an orange oil; $[\alpha]_{\mathrm{D}}-26.7$ (c. 0.18 in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, 1"-H), $5.06\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.1^{\prime}-\mathrm{H}\right), 4.11(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.92\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.75-3.50\left(10 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right.$, $3^{\prime}-\mathrm{H}, 3$ "-H, $4^{\prime}-\mathrm{H}, 4$ "-H, $5^{\prime}-\mathrm{H}, 5$ "-H, 3-H, 4-H and 6-H), 3.40-3.25 (4H, m, 6'-H, 6 "-H and 2-H), 3.20-3.15 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, 6$ ' -H), 2.20-2.35 $\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.88\left(12 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right)$ and $1.60-$ $1.50\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; m / z(\mathrm{ES}) 506.9\left(100 \%, \mathrm{MNa}^{+}\right), 484.9\left(70, \mathrm{MH}^{+}\right)$; (Found: MNa^{+}, 507.2272. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M N a, 507.2278$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-D-glucopyranosyl)-3-O-(6'’-Amino-6''-deoxy-2', 3'',4''-triol- $\alpha-D-g l u c o p y r a n o s y l)-4,6-d i a m i n o-c y c l o h e x a n-1,2,3-o l$, tetra-acetate salt 6AA

By method D, 27AA ($135 \mathrm{mg}, 0.12 \mathrm{mmol}$ gave the aminoglycoside 6AA (21.7 mg , 25%) as a brown oil, $[\alpha]_{\mathrm{D}}+20.2$ (c. 0.21 in $\mathrm{H}_{2} \mathrm{O}$), spectroscopically identical to the enantiomer ($\mathbf{2 7 A}^{\prime} \mathbf{A}^{\prime}$) prepared previously.
($1 R, 2 S, 3 S, 4 R, 6 S$)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- $\alpha-D-g l u c o p y r a n o s y l)-3-O-(6 ',-$ Amino-6',-deoxy-2', 3 '",4',-triol- $\alpha-L-g l u c o p y r a n o s y l)-4,6-d i a m i n o-c y c l o h e x a n-1,2,3-o l, ~$ tetra-acetate salt 6AA,

By method D, 27AA' ($130 \mathrm{mg}, 0.12 \mathrm{mmol}$) gave the aminoglycoside $\mathbf{6 A A} \mathbf{A}^{\prime}(66.8 \mathrm{mg}, 77 \%)$ as a brown oil, $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.50\left(2 \mathrm{H}\right.$, broad s, $1^{\prime}-\mathrm{H}$ and 1 "-H), $3.91(1 \mathrm{H}$, broad s, 1-H), 3.71-3.51 (7H, m, 2'-H, 2"-H, 3'-H, 3"-H, 4'-H, 4"-H, and 2-H), 3.45-3.20 (8H, m, 5'-H, 5"-H, 6'-H, 6"-H, 4-H and 6-H), 3.18-3.00 (1H, m, 3-H), 2.40-2.30 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}$), $1.82(12 \mathrm{H}, \mathrm{s}$, OCOCH_{3}) and 1.70-1.60 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 181.9(\mathrm{C}=\mathrm{O}), 103.9(1$ '-C), 80.6 (1-C), 75.6, 73.7, 72.7 ($2^{\prime}-\mathrm{C}, 3^{\prime}-\mathrm{C}$ and $4^{\prime}-\mathrm{C}$), 71.2, 71.1 (3-C and 2-C), 69.1 (5'-C), 48.2 (4-C and 6-C), 40.6 (6'-C), 29.4 (5-C) and $23.5\left(\mathrm{CH}_{3}\right) ; ~ m / z(E S) 485.5$ ($\left.60 \%, \mathrm{MH}^{+}\right), 324.3$ (53), 203.7 (100) and 143.1 (84); (Found: MNa^{+}, 507.2153. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M N a, 507.2150$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- $\alpha-$ L-glucopyranosyl)-3-O-(6' ${ }^{\prime}$ Amino-6''-deoxy-2', $\mathbf{3}^{\prime \prime}, 4$ ''-triol- α-D-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol, tetra-acetate salt 6A'A

By method D, 27A'A (101 mg, 0.09 mmol) gave the aminoglycoside $\mathbf{~ 6 A}^{\prime} \mathbf{A}(29.6 \mathrm{mg}$, $46 \%)$ as an orange oil, $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.07\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 1^{\prime}-\mathrm{H}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}\right), 4.06(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, 3.88-3.60 (8H, m, $3^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 5{ }^{\prime \prime}-\mathrm{H}, 4-\mathrm{H}$ and $\left.6-\mathrm{H}\right), 3.50-3.10\left(7 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$, 2"-H, $6^{\prime}-\mathrm{H}, 6$ "-H and $\left.2-\mathrm{H}\right), 2.20-2.30\left(1 \mathrm{H}\right.$, br m, $\left.5-\mathrm{H}_{\mathrm{A}}\right), 1.90\left(12 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right)$ and 1.60-1.50 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; m / z(\mathrm{ES}) 506.9\left(100 \%, \mathrm{MNa}^{+}\right), 484.9$ (85, $\left.\mathrm{MH}^{+}\right)$and 298.9 (68); (Found: $\mathrm{MH}^{+}, 485.2473 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $\left.M H, 485.2459\right)$.
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3', 4'-triol- α-D-glucopyranosyl)-3-O-(6',-Amino-6',-deoxy-2', 3', 4 ''-triol- β-D-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol, tetra-acetate salt 6AB

By methods E and D, 27AB ($69 \mathrm{mg}, 0.06 \mathrm{mmol}$) gave the aminoglycoside 6AB ($16 \mathrm{mg}, 37 \%$) as a brown oil, $[\alpha]_{\mathrm{D}}-126\left(\mathrm{c} .1 .00\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.40(1 \mathrm{H}$, broad s, 1'-H or 1"H), $4.75(1 \mathrm{H}$, broad s, 1'-H or 1"-H), 3.95-3.20 ($10 \mathrm{H}, \mathrm{m}$), 3.20-3.05 ($1 \mathrm{H}, \mathrm{m}$), 2.40-2.30 (1 H , $\left.\mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.20\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.80-1.70\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; m / z(\mathrm{ES}) 485.1\left(10 \%, \mathrm{MH}^{+}\right)$, 177.7 (60) and 141.7 (100); (Found: MH^{+}, 485.2452. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H, 485.2459$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', $\mathbf{3}^{\prime}, 4^{\prime}$ 'triol- α-D-glucopyranosyl)-3-O-(6'’-Amino-6''-deoxy-2', 3 ',',4'’-triol- β-L-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt 6AB'

By methods E and D, 27AB' ($51 \mathrm{mg}, 0.04 \mathrm{mmol}$) gave the aminoglycoside 6AB' (16.9 mg , 58%) as a brown oil, $[\alpha]_{\mathrm{D}} 20.0$ (c. 0.58 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 4.80-4.65(2 \mathrm{H}$, broad m, $1^{\prime}-\mathrm{H}$ and $\left.1^{\prime \prime}-\mathrm{H}\right), 3.90-3.10(11 \mathrm{H}, \mathrm{m}), 2.50-2.40\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.01\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.60-$ $1.50\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; m / z(\mathrm{ES}) 485.1\left(8 \%, \mathrm{MH}^{+}\right), 346.7$ (25) and 231.7 (50); (Found: MH^{+}, 485.2456. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $\left.M H, 485.2459\right)$.
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-L-glucopyranosyl)-3-O-(6'’-Amino-6''-deoxy-2'’,3', 4 ''-triol- β-d-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt 6A'B

By methods E and D, 27A'B ($45 \mathrm{mg}, 0.04 \mathrm{mmol}$) gave the aminoglycoside 6A'B (14 mg , 48%) as a brown oil; $[\alpha]_{\mathrm{D}}-40.0$ (c. 1.3 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 4.75\left(1 \mathrm{H}, \operatorname{broad} \mathrm{s}, 1^{\prime}-\mathrm{H}\right)$, 4.52 ($1 \mathrm{H}, \mathrm{d}, J 7.2,1$ "-H), 3.79-3.50 ($2 \mathrm{H}, \mathrm{m}$), 3.50-3.28 ($5 \mathrm{H}, \mathrm{m}$), 3.28-2.78 ($10 \mathrm{H}, \mathrm{m}$), 2.23$2.09\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.63\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.53-1.38\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $183.0(\mathrm{C}=\mathrm{O}), 102.8,101.3$ (1 '-C and 1"-C), 83.8, 75.3, 74.0, 73.3, 73.0, 71.9, 71.0, 68.8, 50.8, 49.2, $40.6\left(\mathrm{CH}_{2}\right), 30.6$ and $23.6\left(\mathrm{CH}_{3}\right)$; $m / z(\mathrm{ES}) 485.1\left(32 \%, \mathrm{MH}^{+}\right)$; (Found: $\mathrm{MH}^{+}, 485.2455$. $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H, 485.2459$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2',3',4'-triol- α-L-glucopyranosyl)-3-O-(6',-Amino-6''-deoxy-2', 3 '', 4 ''-triol- β-L-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt $6 A^{\prime} \mathbf{B}^{\prime}$

By methods E and D, 27A'B' ($36 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave the aminoglycoside $\mathbf{6 A} \mathbf{A}^{\prime} \mathbf{B}$ ' (7.2 mg , 33%) as a brown oil, $[\alpha]_{\mathrm{D}}-57.2$ (c. $0.72 \mathrm{in}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.25-5.11\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right.$ or 1"-H), 4.86-4.75 (1H, m, 1'-H or 1"-H), 4.19-3.69 (4H, m), 3.69-3.25 (13H, m), 2.59-2.50 $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.13\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and 2.13-1.90 (1H, m, 5-H); m/z (ES) $485.1\left(10 \%, \mathrm{MH}^{+}\right)$ and 143.0 (100); (Found: MH^{+}, 485.2463. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H, 485.2459$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2',3',4'-triol- α-D-glucopyranosyl)-3-O-(3''-Amino-3'’-deoxy-2'’,4', $\mathbf{6}^{\prime \prime}$-triol- β-d-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt 6AD

By methods E and D, 27AD ($61.2 \mathrm{mg}, 0.06 \mathrm{mmol}$) gave the aminoglycoside 6AD (22 mg , 51%) as a brown oil, $[\alpha]_{\mathrm{D}}-43.3$ (c. 0.12 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.58-5.48(1 \mathrm{H}, \mathrm{m}, 1 "-$ H), 5.00-4.88 (1H, m, 1'-H), 4.00-3.48 (12H, m), 3.48-3.29 (3H, m), 3.29-3.08 (2H, m, 3"-H and $\left.6 "-\mathrm{H}_{\mathrm{A}}\right), 2.55-2.39\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.05-1.81\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right)$ and $1.93\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 180.0(\mathrm{C}=\mathrm{O}), 106.1-103.9$ (1"-C and 1'-C), 77.2, 71.1, 69.9, 66.1, 60.4, 57.9
$\left(\mathrm{CH}_{2}\right), 49.2,40.7\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right)$ and $22.8\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 507.2(50 \%, \mathrm{MNa})$ and 485.1 $\left(100 \%, \mathrm{M}^{+}+\mathrm{H}\right)$; (Found: MNa^{+}, 507.2300. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M N a, 507.2278$).
($1 R, 2 S, 3 S, 4 R, 6 S)-1-O-(6 '-A m i n o-6 '-d e o x y-2 ', 3 ', 4 '-t r i o l-\alpha-L-g l u c o p y r a n o s y l)-3-O-(3 '$ ' -Amino-3'’-deoxy-2', 4 ',', 6 ''-triol- β-D-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt 6A'D

By methods E and D, 27A'D ($43.6 \mathrm{mg}, 0.04 \mathrm{mmol}$) gave the aminoglycoside 6A'D (19.4 mg , 67%) as a brown oil, $[\alpha]_{\mathrm{D}}-32.8$ (c. 1.28 in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.07-5.00(1 \mathrm{H}, \mathrm{m}, 1$ "H), 4.85-4.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}$), 4.07-3.96 ($1 \mathrm{H}, \mathrm{m}$), 3.96-3.42 ($12 \mathrm{H}, \mathrm{m}$), 3.42-3.25 ($2 \mathrm{H}, \mathrm{m}$), 3.25$3.10(2 \mathrm{H}, \mathrm{m}), 2.50-2.38\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 2.00\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $2.00-1.83\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \mathrm{m} / \mathrm{z}$ (ES) $507.1\left(23 \%, \mathrm{MNa}^{+}\right)$and $485.1\left(65 \%, \mathrm{MH}^{+}\right)$; (Found: MH^{+}, 485.2467. $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H, 485.2459)$.
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-L-glucopyranosyl)-3-O-(3'’-Amino-3'’-deoxy-2', 4 ',', $\mathbf{6}^{\prime}$ '-triol- α-D-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt $6 \mathrm{~A}^{\prime} \mathrm{C}$

By method D, 27A'C ($54.9 \mathrm{mg}, 0.05 \mathrm{mmol}$) gave the aminoglycoside 6A'C ($31.9 \mathrm{mg}, 88 \%$) as a brown oil; $[\alpha]_{\mathrm{D}}+10.0\left(\mathrm{c} .0 .84\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.01\left(1 \mathrm{H}, \mathrm{d}, J 3.2,1^{\prime \prime}-\mathrm{H}\right)$, $5.00\left(1 \mathrm{H}\right.$, broad s, $\left.1^{\prime}-\mathrm{H}\right), 4.05-3.95(1 \mathrm{H}, \mathrm{m}), 3.90-3.80\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 3.80-3.50(7 \mathrm{H}, \mathrm{m}), 3.50-$ $3.05(8 \mathrm{H}, \mathrm{m}), 2.45-2.38\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.99\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.99-1.80\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}$ (75 MHz, $\mathrm{D}_{2} \mathrm{O}$) 180.7 (C=O), 102.1, 99.2 (1 '-C and 1 "-C), 83.8, 73.2, 72.0, 70.9, 68.5, 65.9, $60.4\left(\mathrm{CH}_{2}\right), 50.3,40.5\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right)$ and $22.9\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 485.3\left(100 \%, \mathrm{MH}^{+}\right), 396.3$ (50) and 324.2 (40); (Found: $\mathrm{MH}^{+}, 485.2482 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H, 485.2459$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-D-glucopyranosyl)-3-O-(2'’-Amino-2''-deoxy-3', 4 '', 6 ''-triol- α-D-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt 6AE

By method D, 27AE ($29 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave the aminoglycoside $\mathbf{~ 6 A E}(13.8 \mathrm{mg}, 63 \%$) as a brown oil; $[\alpha]_{\mathrm{D}}+34.8$ (c. 1.38 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.51-5.50\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 4.80-$
$4.72(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{l}-\mathrm{H}), 4.12-3.37(14 \mathrm{H}, \mathrm{m}), 3.36-3.10(3 \mathrm{H}, \mathrm{m}), 2.61-2.50\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.98$ $\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and 1.77-1.65 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 181.7,180.5(\mathrm{C}=\mathrm{O}), 104.2(1$ "C), 95.9 (1'-C), 79.4, 73.6, 72.7, 72.1, 69.1, $60.8\left(\mathrm{CH}_{2}\right), 54.4,50.0,40.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right)$ and $20.7\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 507.1\left(20 \%, \mathrm{MNa}^{+}\right), 485.1\left(100 \%, \mathrm{MH}^{+}\right)$and 324.1 (60); (Found: $\mathrm{MH}^{+}, 485.2451 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H, 485.2459$).
($1 R, 2 S, 3 S, 4 R, 6 S)$-1-O-(6'-Amino-6'-deoxy-2', $3^{\prime}, 4^{\prime}$ 'triol- α-L-glucopyranosyl)-3-O-(2'י-Amino-2'’-deoxy-3', ,4', $6 ’ ’-t r i o l-\alpha-D-g l u c o p y r a n o s y l)-4,6-d i a m i n o-c y c l o h e x a n-1,2,3-o l ~$ tetra-acetate salt 6A'E

By method D, 27A'E ($36.2 \mathrm{mg}, 0.32 \mathrm{mmol}$) gave the aminoglycoside $\mathbf{6 A} \mathbf{A}^{\prime} \mathbf{E}(12.9 \mathrm{mg}, 6 \%)$ as a brown oil; $[\alpha]_{\mathrm{D}}, 204.4$ (c. 0.64 in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.42-5.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.04-$ 5.00 ($1 \mathrm{H}, \mathrm{m}, 1$ "-H), 4.00-3.53 (7H, m), 3.53-3.25 (5H, m), 3.17-3.05 (1H, m, 2"-H), 2.43-2.30 $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.93\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.80-1.68\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 485.2\left(100, \mathrm{MH}^{+}\right)$ and 324.2 (40); (Found: $\mathrm{MH}^{+}, 485.2459 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $\mathrm{MH}, 485.2457$).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2',3',4'-triol- α-D-glucopyranosyl)-3-O-(2''-Amino-2'’-deoxy-3', ,4', 6 ''-triol- β-D-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt 6AF

By methods F and D, 27AF ($55.6 \mathrm{mg}, 0.45 \mathrm{mmol}$) gave the aminoglycoside 6AF (13.2 mg , 4%) as a brown oil; $[\alpha]_{\mathrm{D}}+15.7$ (c. 1.32 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.45\left(1 \mathrm{H}, \mathrm{d}, J 3.3,1^{\prime}-\mathrm{H}\right)$, $4.91(1 \mathrm{H}, \mathrm{d}, J 8.3,1 "-\mathrm{H}), 3.96-3.79(4 \mathrm{H}, \mathrm{m}), 3.71-3.25(11 \mathrm{H}, \mathrm{m}), 3.14-3.03(2 \mathrm{H}, \mathrm{m}, 6$ '-H and $2 "-H), 2.50-2.40\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.96\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $1.89-1.79\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; m / z(\mathrm{ES})$ $485.1\left(18 \%, \mathrm{MH}^{+}\right)$and 101.0 (100); (Found: $\mathrm{MH}^{+}, 485.2446 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H$, 485.2459).
(1R,2S,3S,4R,6S)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- $\alpha-$ L-glucopyranosyl)-3-O-(2''-Amino-2'’-deoxy-3', 4 '', 6 ''-triol- β-D-glucopyranosyl)-4,6-diamino-cyclohexan-1,2,3-ol tetra-acetate salt 6A'F

By methods F and D, 27A'F ($62.4 \mathrm{mg}, 0.51 \mathrm{mmol}$) gave the aminoglycoside 6A'F (13.2 mg , 4%) as a brown oil, $[\alpha]_{\mathrm{D}}-53.9$ (c. $0.75 \mathrm{in}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.00\left(1 \mathrm{H}, \mathrm{d}, J 2.5,1^{\prime}-\mathrm{H}\right)$, 4.93 ($1 \mathrm{H}, \mathrm{d}, J 8.4,1 "-\mathrm{H}), 4.08-3.96\left(1 \mathrm{H}, \mathrm{m}, 6 "-\mathrm{H}_{\mathrm{A}}\right), 3.96-3.55\left(7 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 2^{\prime}-\mathrm{H}, 6\right.$ '-H, 4"-H, $5 "-H$ and $6 "-H), ~ 3.55-3.04\left(6 H, ~ m, ~ 1-H, 3-H, 4-H, 6-H, 3 '-H\right.$ and $\left.4^{\prime}-H\right), 2.53-2.39(1 H, ~ m, 5-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.98-1.75\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right)$ and $1.90\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 180.9(\mathrm{C}=\mathrm{O}), 102.2$, 99.8 (1 '-C and 1 "-C), $83.8,79.8,76.9,73.5,73.0,72.1,71.9,70.8,69.8,68.9,60.7\left(\mathrm{CH}_{2}\right)$, 56.0, 50.6, 48.7, $40.5\left(\mathrm{CH}_{2}\right), 30.6,27.9\left(\mathrm{CH}_{2}\right)$ and $23.1\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 507.2\left(16 \%, \mathrm{MNa}^{+}\right)$, 485.1 ($88 \%, \mathrm{MH}^{+}$), 284.2 (78) and 263.7 (100); (Found: MH^{+}, 485.2448. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{4}$ requires $M H, 485.2459)$.
($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Amino- 6^{\prime}-deoxy- $\mathbf{2}^{\prime}, 3^{\prime}, 4$ '-triol- α-D-glucopyranosyl)-4-O-(6',-Amino-6',-deoxy-2', 3 ',,4"-triol- α-D-glucopyranosyl)-2,5-diamino-cyclohexanol, tetraacetate salt 7AA

By method G, 28AA ($142.4 \mathrm{mg}, 0.12 \mathrm{mmol}$) gave the aminoglycoside 7AA (77.0 mg , 85% after two steps) as an orange oil, $[\alpha]_{\mathrm{D}}+47.6$ (c. 1.10 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.00$ $\left(2 \mathrm{H}, \mathrm{d}, J 2.9,1^{\prime}-\mathrm{H}\right.$ and 1 "-H), 4.08-3.96 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}$), 3.88-3.76 (2 H , m, $5^{\prime}-\mathrm{H}$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.69-3.56\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 1-\mathrm{H}\right.$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.56-3.46(2 \mathrm{H}$, $\mathrm{m}, 2^{\prime}-\mathrm{H}$ and $\left.2^{\prime \prime}-\mathrm{H}\right), 3.35-3.21\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 4\right.$ "-H, $6^{\prime}-\mathrm{H}_{\mathrm{A}}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.14-3.02\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $6 \mathrm{H}-\mathrm{H}_{\mathrm{B}}$), 2.34-2.10 $(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.88\left(12 \mathrm{H}, \mathrm{s}, 4 \mathrm{OCOCH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) 180.0(\mathrm{C}=\mathrm{O}), 99.5$ ($1^{\prime}-\mathrm{C}$ and 1 "-C), 73.4, 72.4, 71.3, 71.2, 68.9 (5'-C and 5"-C), 49.1 (2C and 5-C), 40.6 (6 '-C and 6"-C), 29.9 (3-C and 6-C) and $22.7\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 469(100 \%$, MH^{+}); (Found: $\mathrm{MH}^{+} 469.2535 ; \mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
($1 S, 2 S, 4 S, 5 S$)-1-O-(6'-Amino-6'-deoxy-2', $3^{\prime}, 4 '$ 'triol- α-D-glucopyranosyl)-4-O-(6''-Amino-6"'-deoxy-2', 3 ", 4 '’-triol- α-D-glucopyranosyl)-2,5-diamino-cyclohexane-1,4-diol, tetra-acetate salt 7 ' $\mathbf{A A}$

By method G, 28'AA ($93.0 \mathrm{mg}, 0.08 \mathrm{mmol}$) gave the aminoglycoside $\mathbf{7}^{\prime} \mathbf{A A}(50.0 \mathrm{mg}, 84 \%$ after two steps) as an orange oil; $[\alpha]_{\mathrm{D}}+91.2\left(\mathrm{c} .1 .00\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.03(2 \mathrm{H}$, d, $J 2.9,1^{\prime}-\mathrm{H}$ and 1 "-H), 4.09-3.94 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $4-\mathrm{H}$ and $2-\mathrm{H}$ or $5-\mathrm{H}$), 3.75-3.66 ($2 \mathrm{H}, \mathrm{m}, 5$ '-

H and 5 "-H), 3.66-3.54 (4H, m, $3^{\prime}-\mathrm{H}, 3{ }^{\prime \prime}-\mathrm{H}, 1-\mathrm{H}$ or $3-\mathrm{H}$ and $2-\mathrm{H}$ or $\left.5-\mathrm{H}\right), 3.54-3.40\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ H and $2 "-H), 3.31-3.16\left(4 H, m, 4 '-H, 4 "-H, 6^{\prime}-H_{A}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}_{A}\right), 3.11-3.00\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$ and $6^{\prime \prime}-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 2.25-2.00(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.92\left(12 \mathrm{H}, \mathrm{s}, 4 \mathrm{OCOCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 180.0$ ($\mathrm{C}=\mathrm{O}$), 95.9 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 72.2, 71.3, 70.9, 70.3, 68.8, 49.5 ($2-\mathrm{C}$ and 5-C), 40.6 ($6{ }^{\prime}-\mathrm{C}$ and 6 "-C), 27.5 (3-C and 6-C) and $24.4\left(\mathrm{CH}_{3}\right)$; $m / z(\mathrm{ES}) 469\left(100 \%, \mathrm{MH}^{+}\right)$; (Found: MH^{+} 469.2534; $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
($1 S, 2 S, 4 S, 5 S$)-1-O-(6'-Amino-6'-deoxy-2', $3^{\prime}, 4^{\prime}$ '-triol- α-d-glucopyranosyl)-4-O-(6' ${ }^{\prime}$ -Amino-6'-deoxy-2', $\mathbf{3}^{\prime \prime}, 4$ ''-triol- α-L-glucopyranosyl)-2,5-diamino-cyclohexane-1,4-diol, tetra-acetate salt $7^{\prime} \mathbf{A A}^{\prime}$

By method G, $\mathbf{2 8}^{\prime} \mathbf{A A}^{\prime}(40.3 \mathrm{mg}, 36.14 \mu \mathrm{~mol})$ was converted into the acetate salt of aminoglycoside $\mathbf{7}^{\prime} \mathbf{A A}^{\prime}(17.3 \mathrm{mg}, 68 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+12.7$ (c 1.23 in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.05-2.12(20 \mathrm{H}, \mathrm{m})$ and $1.95(12 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ; m / z(\mathrm{ES}) 469$ ($100 \%, \mathrm{MH}^{+}$); (Found: $\mathrm{MH}^{+} 469.2534 ; \mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-D-glucopyranosyl)-4-O-(6',-Amino-6''-deoxy-2', 3 ', 4 ''-triol- β-D-glucopyranosyl)-2,5-diamino-cyclohexane-1,4-diol, tetraacetate salt 7AB

By methods E and $\mathrm{G}, \mathbf{2 8 A B}(185.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ gave the aminoglycoside 7AB (87.6 mg , 77% after two steps) as an orange oil, $[\alpha]_{\mathrm{D}}+11.9$ (c. 0.97 in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 5.08-$ $5.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right.$ or $1^{\prime \prime}-\mathrm{H}$ and H$), 4.64-4.35\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right.$ or $1^{\prime \prime}-\mathrm{H}$ and H$), 4.35-4.00(2 \mathrm{H}, \mathrm{m})$, 4.00-3.00 ($12 \mathrm{H}, \mathrm{m}$), 3.00-2.50 ($4 \mathrm{H}, \mathrm{m}$), 2.34-2.03 ($2 \mathrm{H}, \mathrm{m}$), $1.91\left(12 \mathrm{H}, \mathrm{s}, 4 \mathrm{OCOCH}_{3}\right), 1.91-$ $1.75(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and 1.36-1.09 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 180.6-$ 180.3-179.8 ($\mathrm{C}=\mathrm{O}$), 100.2-98.0 ($1^{\prime}-\mathrm{C}$ and $1^{\prime \prime}-\mathrm{C}$), 75.2, 72.7, 72.4, 71.4, 70.9, 50.1, 49.6, 33.7 (3-C and 6-C) and $22.6\left(\mathrm{CH}_{3}\right)$; $m / z(\mathrm{ES}) 469\left(100 \%, \mathrm{MH}^{+}\right.$); (Found: $\mathrm{MH}^{+} 469.2503$; $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2504$).
($1 R, 2 R, 4 R, 5 R$)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-D-glucopyranosyl)-4-O-(6'’-
Amino-6''-deoxy-2', 3^{\prime} ', 4 ''-triol- β-L-glucopyranosyl)-2,5-diamino-cyclohexane-1,4-diol, tetraacetate salt 7AB'

By methods E and G, 28AB' ($171.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) gave the aminoglycoside 7AB' (87.8 $\mathrm{mg}, 83 \%$ over two steps) as an orange oil, $[\alpha]_{\mathrm{D}}+38.4$ (c. 0.97 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $5.04\left(1 \mathrm{H}\right.$, br s, $\left.1^{\prime}-\mathrm{H}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J 7.7,1$ "-H), 4.21-4.08 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $2-\mathrm{H}$ or $4-\mathrm{H}$ or $5-\mathrm{H}$), 4.08-3.97 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ or $2-\mathrm{H}$ or $4-\mathrm{H}$ or $5-\mathrm{H}$), 3.89-3.78 ($2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}$ and 5 "-H), 3.71-3.43 (5H, m, 1-H or 2-H or 4-H or 5-H, 2'-H, 3'-H and 3"-H), 3.43-3.19 (5H, m, 2"-H, 4'-H, 4"-H, $6^{\prime}-\mathrm{H}_{\mathrm{A}}$ and $\left.6^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right)$, 3.19-3.00 $\left(2 \mathrm{H}, \mathrm{m}, 6\right.$ ' $-\mathrm{H}_{\mathrm{B}}$ and 6 "- $\left.-\mathrm{H}_{\mathrm{B}}\right), 2.37-2.07(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H})$ and $1.89\left(12 \mathrm{H}, \mathrm{s}, 4 \mathrm{OCOCH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 180.1(\mathrm{C}=\mathrm{O}), 102.6,99.7$ (1'-C and 1-C), 75.3, $73.8,73.0,72.4,72.3,71.3,69.9,49.2,40.6,29.9$ and $22.6\left(\mathrm{CH}_{3}\right) ; m / z(E S) 469(100 \%$, MH^{+}); (Found: $\mathrm{MH}^{+} 469.2503 ; \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2504$).
($1 S, 2 S, 4 S, 5 S)$-1-O-(6'-Amino-6'-deoxy-2', $3^{\prime},{ }^{\prime}$ '-triol- α-D-glucopyranosyl)-4-O-(6''-Amino-6''-deoxy-2', 3 '',4''-triol- β-L-glucopyranosyl)-2,5-diamino-cyclohexane-1,4-diol, tetraacetate salt $7^{\prime}{ }^{\prime} \mathbf{A B}^{\prime}$

By method E and G, $\mathbf{2 8}^{\prime} \mathbf{A B}{ }^{\prime}(12.2 \mathrm{mg}, 10.56 \mu \mathrm{~mol})$ was converted into the acetate salt of aminoglycoside $\mathbf{7}^{\prime} \mathbf{A B}{ }^{\prime}{ }^{\prime}(7.3 \mathrm{mg}, 98 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+36.3$ (c 0.39 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 5.18-1.14 (34H, m); m/z (ES) 469 ($100 \%, \mathrm{MH}^{+}$); (Found: MH^{+} 469.2503; $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2504$).
(1R,2R,4R,5R)-1-O-(6'-Amino-6'-deoxy-2', 3',4'-triol- α-D-glucopyranosyl)-4-O-(3'’-
Amino-3''-deoxy-2",4', 6 ''-triol- α-D-glucopyranosyl)-2,5-diamino-cyclohexane-1,4-diol, tetraacetate salt 7AC

By method G, 28AC ($117.2 \mathrm{mg}, 0.11 \mathrm{mmol}$) gave 7AC ($59.0 \mathrm{mg}, 79 \%$ over two steps) as an orange oil, $[\alpha]_{\mathrm{D}}+65.0\left(\mathrm{c} .0 .84\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ 5.16-5.00 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right.$ and 1"H), 4.25-4.00 (2H, m), 3.94-3.44 (8H, m, 2'-H, 3'-H, 4'-H, 5'-H, 2"-H, 3"-H, 4"-H and 5"-H), 3.44-3.00 ($4 \mathrm{H}, \mathrm{m}, 6$ '-H, and 6 "-H), 3.00-2.59 ($2 \mathrm{H}, \mathrm{m}$), 2.41-2.15 ($3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $6-\mathrm{H}$), 1.96 $\left(12 \mathrm{H}, \mathrm{s}, 4 \mathrm{OCOCH}_{3}\right)$ and $1.30-1.34\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right.$ or $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 179.4(\mathrm{C}=\mathrm{O})$,
99.3, 98.8 (1 '-C and 1 "-C), 74.0, 72.9, 72.4, 71.2, 68.8, 68.1, 66.0, 60.2, 55.2, 49.3, 49.1, 40.6, 30.0, 29.8, 27.2 and $22.4\left(\mathrm{CH}_{3}\right) ; ~ m / z(E S) 469\left(100 \%, \mathrm{MH}^{+}\right)$; (Found: $\mathrm{MH}^{+}, 469.2499$; $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
($1 S, 2 S, 4 S, 5 S$)-1-O-(6'-Amino-6'-deoxy-2', $3^{\prime}, 4^{\prime}$ '-triol- α-D-glucopyranosyl)-4-O-(3'’-Amino-3'-deoxy-2', 4', $\mathbf{6}^{\prime}$ '-triol- α-D-glucopyranosyl)-2,5-diamino-cyclohexane-1,4-diol, tetraacetate salt 7'AC

By method G, 28’AC ($15.3 \mathrm{mg}, 13.75 \mu \mathrm{~mol})$ was converted into the acetate salt of aminoglycoside $\mathbf{7}^{\prime} \mathbf{A C}(7.1 \mathrm{mg}, 73 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+3.4$ (c 0.37 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 5.15-1.11 (32H, m); $m / z(\mathrm{ES}) 469$ ($100 \%, \mathrm{MH}^{+}$); (Found: MH^{+} 469.2505; $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2504$).
(1S,3S,4S,6S)-1-O-(6'-Amino-6'-deoxy- α-D-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8A

By method G, 29A ($124.1 \mathrm{mg}, 0.189 \mathrm{mmol}$) was converted into the acetate salt of aminoglycoside $\mathbf{8 A}(38.2 \mathrm{mg}, 42 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+20.0(c 0.96$ in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.11\left(1 \mathrm{H}, \mathrm{d}, J 3.1,1^{\prime}-\mathrm{H}\right), 4.12-3.05\left(10 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 3^{\prime}-\right.$ $\mathrm{H}, 2^{\prime}-\mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}$ and $\left.6-\mathrm{H}\right), 2.72-2.67(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ or $2-\mathrm{H}), 2.22-2.15(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $2-\mathrm{H}$) and 1.84 (9H, s, OAc); $m / z(E S) 307$ (100%, MH ${ }^{+}$); (Found: $\mathrm{MH}^{+} 307.1817 ; \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $M H, 307.1981)$.
($1 R, 3 R, 4 R, 6 R$)-1-O-(6'-Amino-6'-deoxy- α-D-glucopyranosyl)-4,6-diamino-cyclohexane-

1,3-diol 8'A

By method G, 29'A ($22.1 \mathrm{mg}, 33.7 \mu \mathrm{~mol})$ was converted into the acetate salt of aminoglycoside $\mathbf{8}^{\prime} \mathbf{A}(16.8 \mathrm{mg}, 100 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+50.5$ (c 1.68 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.31\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 4.24\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3^{\prime}-\mathrm{H}\right) 4.00-3.96\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ H), 3.87-3.80 $(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 1-\mathrm{H}$ and $4-\mathrm{H}$ or $6-\mathrm{H}), 3.73-3.71(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ or $6-\mathrm{H}), 3.45-3.32$ ($3 \mathrm{H}, \mathrm{m}, 6^{\mathrm{a}}{ }^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}$ and $2^{\prime}-\mathrm{H}$), $3.21\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 13.5\right.$ and $\left.J 6.9,6_{\mathrm{b}}{ }^{\prime}-\mathrm{H}\right), 2.27-2.15(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$
and $2-\mathrm{H}$) and $1.96(9 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 307\left(100 \%, \mathrm{MH}^{+}\right)$; (Found: $\mathrm{MH}^{+} 307.1813$; $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $M H, 307.1981$).

($1 R, 3 R, 4 R, 6 R$)-1-O-(2', 6^{\prime}-Amino-2', $\mathbf{6}^{\prime}$-deoxy- α-d-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8G

By method G, 29G ($31.8 \mathrm{mg}, 53.84 \mu \mathrm{~mol}$) was converted into the acetate salt of aminoglycoside $\mathbf{8 G}(29 \mathrm{mg}, 100 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+10.4$ (c 1.31 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.70-1.25(15 \mathrm{H}, \mathrm{m})$ and $1.77(12 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ; m / z(\mathrm{ES}) 307(100 \%$, MH^{+}); (Found: MH^{+}307.1823; $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $M H, 307.1981$).
(1S,3S,4S,6S)-1-O-(2',6'-Amino-2',6'-deoxy- α-D-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8'G

By method G, 29'G ($57.8 \mathrm{mg}, 97.9 \mu \mathrm{~mol})$ was converted into the acetate salt of aminoglycoside $\mathbf{8}^{\prime} \mathbf{G}(35.9 \mathrm{mg}, 67 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+18.5$ (c 1.64 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.03(1 \mathrm{H}, \mathrm{d}, ~ J 3.1,1$ '- H$), 4.14-4.12(1 \mathrm{H}, \mathrm{m}, 3$ '-H), 4.07-4.01 (1 H , $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.88-3.83(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.69-3.63(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}$ or $6-\mathrm{H}), 3.56\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J\right.$ 11.1 and $\left.J 3.6,6_{\mathrm{a}}{ }^{\prime}-\mathrm{H}\right), 3.42-3.30\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime} \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $4-\mathrm{H}$ or $\left.6-\mathrm{H}\right), 3.15\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J 11.1\right.$ and $\left.J 7.6,6_{b}{ }^{\prime}-H\right), 2.26-2.24(2 H, ~ m, 5-H$ or $2-H), 2.16-2.12(1 H, ~ m, 5-H$ or $2-H), 2.06-2.03(1 H$, $\mathrm{m}, 5-\mathrm{H}$ or $2-\mathrm{H}$) and $1.99(12 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 178.0,95.6,73.6,71.0,69.4,65.9$, $53.6,50.5,47.9,40.3,33.7,26.9$ and 21.4 (one carbon signal missing or overlapped); m / z (ES) $307.4\left(100 \%, \mathrm{MH}^{+}\right)$; (Found: $\mathrm{MH}^{+} 307.1969 ; \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $M H, 307.1981$).
($1 S, 3 S, 4 S, 6 S$)-1-O-(6'-Amino-6'-deoxy- α-D-glucopyranosyl)-3-O-(6',-amino-6',-deoxy- α -D-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8AA
By method G, 29AA ($26 \mathrm{mg}, 22.5 \mu \mathrm{~mol}$) was converted into the acetate salt of aminoglycoside $\mathbf{8 A A}(15.7 \mathrm{mg}, 98 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+2.3$ (c 1.57 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ 5.09-1.14 (34H, m); m/z (ES) 469 (100%, M ${ }^{+}$); (Found: MH^{+} 469.2512; $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
(1R,3R,4R,6R)-1,3-O-(6'-Amino-6'-deoxy- α-D-glucopyranosyl)-4,6-diamino-cyclohexane-

1,3-diol 8'AA

By method G, 29'AA ($70.8 \mathrm{mg}, 63.61 \mu \mathrm{~mol})$ was converted into the acetate salt of aminoglycoside $\mathbf{8} \mathbf{A A}(26 \mathrm{mg}, 58 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+77.5$ (c 0.96 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.05(2 \mathrm{H}, \mathrm{br}$ s, 1 '-H), 4.22-2.23 ($20 \mathrm{H}, \mathrm{m}$) and $1.87(12 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$; m / z (ES) $469\left(100 \%, \mathrm{M}^{+}\right)$; (Found: $\mathrm{MH}^{+} 469.2513 ; \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
($1 R, 3 R, 4 R, 6 R$)-1-O-(6'-Amino-6'-deoxy- α-D-glucopyranosyl)-3-O-(6''-amino-6''-deoxy-α-L-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8'AA'

By method G, 29'AA' $(45.8 \mathrm{mg}, 0.041 \mathrm{mmol})$ was converted into the acetate salt of aminoglycoside $\mathbf{8}^{\mathbf{\prime}} \mathbf{A A}^{\prime}(22.4 \mathrm{mg}, 77 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}-3.8$ (c 0.85 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.24\left(1 \mathrm{H}, \mathrm{d}, J 3.9,1^{\prime}-\mathrm{H}\right.$ or 1 '' -H$), 5.16\left(1 \mathrm{H}, J \mathrm{~d}, 3.9,1^{\prime}-\mathrm{H}\right.$ or $1^{\prime \prime}{ }^{\prime}-$ H), 4.42-1.31 (32H, m, 6''-H, 6'-H, 6-H, 5''-H, 5'-H, 5-H, 4'’-H, 4'-H, 4-H, 3'’-H, 3'-H, 3H, 2'"-H, 2'-H, 2-H, 1-H and OAc); m / z (ES) 469.5 (100%, MH $^{+}$); $m / z(E S) 469$ (100%, M $^{+}$); (Found: $\mathrm{MH}^{+} 469.2513 ; \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
($1 R, 3 R, 4 R, 6 R$)-1-O-(6'-Amino-6'-deoxy- α-D-glucopyranosyl)-3-O-(6''-amino-6''-deoxy-$\boldsymbol{\beta}$-D-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8’AB

By method E and $\mathrm{G}, \mathbf{2 9}^{\prime} \mathbf{A B}(22.9 \mathrm{mg}, 19.8 \mu \mathrm{~mol})$ was converted into the acetate salt of aminoglycoside $\mathbf{8}{ }^{\prime} \mathbf{A B}(8.3 \mathrm{mg}, 59 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+10.6$ (c 0.83 in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.09\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $1^{\prime}-\mathrm{H}$ and $\left.1^{\prime} \mathrm{\prime}-\mathrm{H}\right), 4.46-2.03(20 \mathrm{H}, \mathrm{m})$ and $1.93(12 \mathrm{H}$, s, OAc); m / z (ES) 469 ($100 \%, \mathrm{M}^{+}$); (Found: $\mathrm{MH}^{+} 469.2513 ; \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H$, 469.2510).
($1 R, 3 R, 4 R, 6 R$)-1-O-(6'-Amino- 6 '-deoxy- α-D-glucopyranosyl)-3-O-(6''-amino- 6 '-deoxy-$\boldsymbol{\beta}$-L-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8'AB'

By method E and G, 29'AB' ($67.3 \mathrm{mg}, 58.3 \mu \mathrm{~mol}$) was converted into the acetate salt of aminoglycoside $\mathbf{~}^{\prime} \mathbf{A B}^{\prime}(40.3 \mathrm{mg}, 97 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+8.09(c 0.89$
in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ 5.18-1.75 (34H, m); m/z (ES) $469\left(100 \% \mathrm{M}^{+}\right)$; (Found: MH^{+} 469.2510; $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).
($1 R, 3 R, 4 R, 6 R$)-1-O-(6'-Amino-6'-deoxy- α-D-glucopyranosyl)-3-O-(3',-amino-3'-deoxy-$\boldsymbol{\beta}$-D-glucopyranosyl)-4,6-diamino-cyclohexane-1,3-diol 8'AC

By method G, 29'AC ($79.9 \mathrm{mg}, 0.072 \mathrm{mmol}$) was converted into the acetate salt of aminoglycoside $8^{\prime} \mathbf{A C}(30.3 \mathrm{mg}, 59 \%)$ as a colourless amorphous solid; $[\alpha]_{D}^{20}+63.9$ (c 1.1 in $\mathrm{H}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ 5.20-5.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}$ and 1'’-H), 4.42-2.79 ($14 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}-\mathrm{H}, 6$ 'H, 6-H, 5''-H, 5'-H, 4''-H, 4'-H, 4-H, 3''-H, 3'-H, 3-H, 2''-H, 2'-H and 1-H), 2.45-2.31 (4H, m, $5-\mathrm{H}$ and $2-\mathrm{H}$) and 2.01 (12H, s, OAc); $m / z(E S) 469\left(100 \%, \mathrm{M}^{+}\right)$; (Found: $\mathrm{MH}^{+} 469.2515$; $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{10}$ requires $M H, 469.2510$).

5'-(β-D-Glucopyranosyl)-Neamine, tetraacetate salt 9GH

By Methods E and D, 30GH ($57 \mathrm{mg}, 0.056 \mathrm{mmol}$) gave the aminoglycoside 9GH (19 mg , $48 \%)$ as a yellow-brown oil, $R_{\mathrm{f}} 0.05\left(2: 1^{i} \mathrm{PrOH}-\mathrm{NH}_{4} \mathrm{OH}\right) ;[\alpha]_{\mathrm{D}}+37.7\left(c 0.35, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}(500$ MHz; D2O) 5.92 (1 H, br s, 1-H), 5.01 ($1 \mathrm{H}, \mathrm{d}, ~ J 8.9,1 "-\mathrm{H}$), 4.04 ($1 \mathrm{H}, \mathrm{t}, J 8.9,5$ '-H), 3.94 (1 H , t, $J 8.9,3-\mathrm{H}), 3.92\left(1 \mathrm{H}, \mathrm{t}, J 8.9,4{ }^{\prime}-\mathrm{H}\right), 3.89-3.84(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.83\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.3,6{ }^{\prime \prime}{ }_{\mathrm{B}}-\mathrm{H}\right)$, $3.76(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $8.9,6 '-\mathrm{H}), 3.72\left(1 \mathrm{H}\right.$, br d, $\left.J 12.3,6^{\prime \prime}{ }_{\mathrm{A}}-\mathrm{H}\right), 3.46$ (1 H, br dd, $J 9.4,3{ }^{\prime \prime}-\mathrm{H}$), $3.43\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.42-3.40\left(4 \mathrm{H}, \mathrm{m}, 4-, 2-, 4^{\prime \prime}-\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.39-3.35\left(1 \mathrm{H}, \mathrm{m}, 6_{\mathrm{B}}-\mathrm{H}\right), 3.31$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 9.4$ and $\left.8.9,2^{\prime \prime}-\mathrm{H}\right), 3.27-3.24\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.22\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 13.7$ and $4.7,6_{\mathrm{A}^{-}}$ H), 2.41-2.36 ($\left.1 \mathrm{H}, \mathrm{m}, 2^{\prime}{ }_{\mathrm{A}}-\mathrm{H}\right), 1.89(12 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OAc} \times 4)$ and $1.77\left(1 \mathrm{H}, \mathrm{app} \mathrm{q}, J 12.4,2^{\prime}{ }_{\mathrm{B}}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 180.7(\mathrm{C}=\mathrm{O}), 103.0$ (1"-C), 95.8 (1-C), 81.0 (5'-C), 76.7, 75.9, 73.7, 73.4, $70.8,69.6,69.4,68.5,60.0$ (6"-C), 53.7, 49.9, 49.0, 40.3 (6-C), 28.8 (2'-C) and $23.0\left(\mathrm{CH}_{3}\right)$; $m / z(\mathrm{ES}) 485.2\left(100 \%, \mathrm{MH}^{+}\right)$; Found $\mathrm{MH}^{+} 485.2454 ; \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{11}$ requires $\mathrm{MH}^{+} 485.2459$.

5^{\prime}-($\mathbf{2}^{\prime \prime}$ '-amino-2"'-deoxy- β-D-glucopyranosyl)-Neamine, tetraacetate salt 9GF

 By Method F and D, 30GF ($0.128 \mathrm{~g}, 0.1 \mathrm{mmol}$) gave the aminoglycoside 9GF ($42 \mathrm{mg}, 42 \%$) as a yellow-brown oil; $R_{\mathrm{f}} 0.05\left(2: 1{ }^{i} \mathrm{PrOH}-\mathrm{NH}_{4} \mathrm{OH}\right) ;[\alpha]_{\mathrm{D}}+20.0\left(c 0.46, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}(500$ MHz; $\left.\mathrm{D}_{2} \mathrm{O}\right) 5.84$ (1H, d, J 3.4, 1-H), 5.16 ($\left.1 \mathrm{H}, \mathrm{d}, ~ J 8.1,1 "-\mathrm{H}\right), 4.05$ ($1 \mathrm{H}, \mathrm{t}, J 9.1,5$ '-H), 3.97$\left(1 \mathrm{H}, \mathrm{t}, J 9.1,4^{\prime}-\mathrm{H}\right), 3.90(1 \mathrm{H}, \mathrm{t}, J 9.1,3-\mathrm{H}), 3.79-3.68\left(4 \mathrm{H}, \mathrm{m}, 5-, 6^{\prime}-, 6^{\prime \prime}{ }_{A^{-}}\right.$and $\left.6^{\prime \prime}{ }_{\mathrm{B}}-\mathrm{H}\right), 3.60$ ($1 \mathrm{H}, \mathrm{t}, J 8.7,3$ "-H), 3.46-3.41 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-$ and $3^{\prime}-\mathrm{H}$), $3.40-3.34$ ($3 \mathrm{H}, \mathrm{m}, 2-, 4-\mathrm{and} 5^{\prime \prime}-\mathrm{H}$), 3.31 ($1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $3.1,6_{\mathrm{A}}-\mathrm{H}$), $3.24\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J 13.6\right.$ and $\left.5.8,6_{\mathrm{B}}-\mathrm{H}\right), 3.11$ $\left(1 \mathrm{H}, \mathrm{dd}, J 8.7\right.$ and $\left.8.1,2^{\prime \prime}-\mathrm{H}\right), 2.36-2.33\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}{ }_{\mathrm{A}}-\mathrm{H}\right), 1.92(15 \mathrm{H}, \mathrm{s}, \mathrm{AcO} \times 5)$ and $1.76(1 \mathrm{H}$, app q, $\left.J 12.2,2^{\prime}{ }_{\mathrm{B}}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 179.7\left(\mathrm{CH}_{3} \mathrm{CO}\right), 102.3$ (1"-C), 97.8 (1-C), 82.9 (5'C), 79.2 ($\left.5^{\prime \prime}-\mathrm{C}\right), 77.1$ ($4^{\prime}-\mathrm{C}$), 75.3 ($\left.6^{\prime}-\mathrm{C}\right), 74.4$ ($3^{\prime \prime}-\mathrm{C}$), 72.0 ($\left.5-\mathrm{C}\right), 71.7$ (4 "-C), 70.6 (3-C), 61.8 (6 "-C), 58.3 (2"-C), 55.8 (2-C), 52.5 (1'-C), 51.2 ($\left.3^{\prime}-\mathrm{C}\right), 42.5$ ($\left.6-\mathrm{C}\right), 30.7$ (2'-C) and 23.2 $\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; m / z(\mathrm{ES}) 485.2\left(100 \%, \mathrm{MH}^{+}\right)$; Found $\mathrm{MH}^{+} 485.2474 ; \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{11}$ requires MH^{+} 485.2459 .

5'-(β-L-glucopyranosyl)-Neamine, tetraacetate salt 9GH'

By Methods E and D, 30GH' ($129 \mathrm{mg}, 0.13 \mathrm{mmol}$) gave the aminoglycoside 9GH' (44 mg , $61 \%)$ as a yellow-brown oil, $R_{\mathrm{f}} 0.05\left(2: 1^{i} \mathrm{PrOH}-\mathrm{NH}_{4} \mathrm{OH}\right) ;[\alpha]_{\mathrm{D}}+45.0\left(c 0.4\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$;); δ_{H} ($\left.500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.92(1 \mathrm{H}, \mathrm{d}, J 3.6,1-\mathrm{H}), 4.71(1 \mathrm{H}, \mathrm{d}, J 7.9,1 "-\mathrm{H}), 3.98$ ($\left.1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$, 3.94-3.91 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.92-3.89 ($1 \mathrm{H}, \mathrm{m} 5^{\prime}-\mathrm{H}$), $3.89-3.86\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime \prime}{ }_{\mathrm{A}}-\mathrm{H}\right), 3.71(1 \mathrm{H}, \mathrm{t}, J 9.7$, 6'-H), 3.58 (1 H , dd, $J 8.4$ and 4.9, $6^{\prime \prime}$ - -H), 3.47 ($1 \mathrm{H}, \mathrm{t}, J 9.2,3 "-\mathrm{H}$), 3.48-3.45 ($1 \mathrm{H}, \mathrm{m}, 5$ "-H), $3.42(1 \mathrm{H}, \mathrm{t}, J 9.1,4-\mathrm{H}), 3.39-3.34\left(5 \mathrm{H}, \mathrm{m}, 2-, 2^{2}-, 3^{\prime}-, 6_{A^{-}}\right.$and $\left.3-\mathrm{H}\right), 3.31\left(1 \mathrm{H}, \mathrm{t}, J 9.2,4{ }^{\prime \prime}-\mathrm{H}\right)$, 3.29-3.26 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}$), $3.22\left(1 \mathrm{H}, \mathrm{dd}, J 13.7\right.$ and $\left.6.8,6_{\mathrm{B}}-\mathrm{H}\right), 2.35-2.32\left(1 \mathrm{H}, \mathrm{m}_{2} 2^{\prime}{ }_{\mathrm{A}}-\mathrm{H}\right), 1.89$ $(12 \mathrm{H}, \mathrm{s}, \mathrm{AcO} \times 4)$ and $1.77\left(1 \mathrm{H}, \mathrm{app} \mathrm{q}, J 12.5,2_{\mathrm{B}}^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 181.2\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, 102.3 (1"-C), 95.7 (1-C), 86.2 ($\left.5^{\prime}-\mathrm{C}\right), 77.4$ ($\left.4^{\prime}-\mathrm{C}\right), 76.7$ ($5^{\prime \prime}-\mathrm{C}$), 76.2 (3 "-С), 73.8 (2"-C), 72.0 (6'-C), 70.7 (4-C), 69.9 (2-C), 69.8 (4"-C), 68.6 (5-C), 61.0 (6"-C), 53.6 (3-C), 50.1 (1'-C), 48.9 (3'-C), 40.3 (6-C), 29.1 ($\left.2^{\prime}-\mathrm{C}\right)$ and $23.9\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; m / z(\mathrm{ES}) 484.2\left(100 \%, \mathrm{MH}^{+}\right)$; Found MH^{+}484.2639; $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{10}$ requires $\mathrm{MH}^{+} 484.2619$.

1. R. Hodgson, T. Majid and A. Nelson, J. Chem. Soc., Perkin Trans. 1 2002, 1444.
2. (a) G. Kavadias, B. Belleau, U.S. patent 1977, 4003922; (b) J. Rudolph, K. L. Reddy, J. P. Chaing and K. B. Sharpless, J. Am. Chem. Soc. 1997, 119, 6189.
3. H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem., Int. Ed. Engl. 2001, 40, 2004.
4. P. Konradsson, P. J. Garegg, J.-L. Maloisel, and T. Buskas, Tetrahedron: Asymmetry 1994, 5, 2187.
5. D. Vourloumis, G. C. Winters, M. Takahashi, K. B. Simonsen, B. K. Ayida, S. Shandrick, Q. Zhao, and T. Hermann, ChemBioChem 2003, 4, 879.
6. T. W. Craig, G. R. Harvey, G. A. Berchtold, J. Org. Chem., 1967, 32, 3745.
