A Straightforward Approach towards Thiazoles and Endothiopeptides via Ugi Reaction

Uli Kazmaier,* Stefanie Ackermann

Institut für Organische Chemie, Universität des Saarlandes, D-66123 Saarbrücken, Germany. Fax: +49 681302 2409; Tel: +49 681302 2409; E-mail: u.kazmaier@mx.uni-saarland.de

Table of contents

Analytical / Spectroscopic Data of Endothiopeptides and Thiazoles

Ethyl [2-(benzoyl-benzylamino)-3-methyl-thiobutyryl]-glycinate (2b) 2
Ethyl [2-(acetyl-benzylamino)-3,3-dimethyl-thiobutyryl]-glycinate (2c) 2
Ethyl [2-(benzoyl-benzylamino)-3,3-dimethyl-thiobutyryl]-glycinate (2d) 2
Ethyl [2-(benzoyl-benzylamino)-2-phenylthioacetyl]-glycinate (2e) 3
Ethyl [1-(benzoyl-benzylamino)-cyclohexanecarbothioyl]-glycinate (2f) 3
Ethyl (2-acetylamino-3,3-dimethyl-thiobutyryl)-glycinate (2g) 3
Ethyl (2-benzoylamino-3,3-dimethyl-thiobutyryl)-glycinate (2h) 3
N-(2,2-Dimethoxy-ethyl)-2-(acetyl-benzylamino)-3-methyl-thiobutyric acid amide (3b) 4
N-(2,2-Dimethoxy-ethyl)-2-(benzoyl-benzylamino)-3,3-dimethyl-thiobutyric acid amide (3c) 4
N-(2,2-Dimethoxy-ethyl)-2-(acetyl-benzylamino)-1-cyclohexyl-thiobutyric acid amide (3d) 4
N-(2,2-Dimethoxy-ethyl)-2-(acetyl-methylamino)-3,3-dimethyl-thiobutyric acid amide (3e) 4
N-(2,2-Dimethoxy-ethyl)-2-(benzoyl-methylamino)-3,3-dimethyl-thiobutyric acid amide (3f) 5
N-(2,2-Dimethoxy-ethyl)-2-(benzoyl-amino)-3,3-dimethyl-thiobutyric acid amide (3g) 5
2-[1-(Acetyl-benzylamino)-2-metyl-propyl]-thiazole (6b) 5
2-[1-(Benzoyl-benzylamino)-2,2-dimethyl-propyl]-thiazole (6c) 6
2-[1-(Acetyl-methylamino)-2,2-dimethyl-propyl]-thiazole (6e) 6
2-[1-(Benzoyl-amino)-2,2-dimethyl-propyl]-thiazole (6g) 6

Due to the formation of rotamers and a resulting poor resolution of some NMR spectra, a few signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (mainly quarternary centers) are missing.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

The Ugi products were obtained according to:

Ethyl [2-(benzoyl-benzylamino)-3-methyl-thiobutyryl]-glycinate (2b)

According to the general procedure for thio Ugi reactions, 2b was obtained after purification by column chromatography (hexanes/EtOAc 8:2) and recrystallisation (PE/EtOAc 1:1) in a 2.00 mmol range as white rhombic crystals in 82% yield, $\mathrm{m}_{\mathrm{p}}=93-95^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.0,3 \mathrm{H})$, $3.04(\mathrm{bs}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.70(\mathrm{~m}, 8 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 10.4(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=14.2,20.4,28.2,44.1,47.3,60.4,61.5,126.7,127.9,128.4,128.6,130.0$, 136.5, 168.1, 174.7, 202.8. HRMS (CI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ ([M] ${ }^{+}$), 412.1821; found, 412.1850. Elemental analysis: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (412.55) . calcd.: C 66.96 H 6.79 N 6.79 ; found: C 67.33 H 6.76 N 6.19 .

Ethyl [2-(acetyl-benzylamino)-3,3-dimethyl-thiobutyryl]-glycinate (2c)

According to the general procedure for thio Ugi reactions, 2c was obtained after purification by column chromatography (hexanes/EtOAc 7:3) and recrystallisation (PE/EtOAc 3:7) in a 2.00 mmol range as orange crystals in 72% yield, $\mathrm{m}_{\mathrm{p}}=106-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta=1.07(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 4.15-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.22-$ $4.35(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=14.1,29.7,36.8,45.0$, 61.5, 62.1, 128.8, 168.2, 174.5, 201.1. HRMS (CI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ ([M] ${ }^{+}$), 364.1821; found, 364.1819. Elemental analysis: $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(364.51)$ calcd.: C 62.61 H 7.74 N 7.69 ; found: C 62.10 H 7.74 N 7.57 .

Ethyl [2-(benzoyl-benzylamino)-3,3-dimethyl-thiobutyryl]-glycinate (2d)

According to the general procedure for thio Ugi reactions, $\mathbf{2 d}$ was obtained after purification by column chromatography (hexanes/EtOAc 8:2) and recrystallisation (PE/EtOAc 3:7) in a 2.00 mmol range as white needles in 89% yield, $\mathrm{m}_{\mathrm{p}}=144-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.19(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.18-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{dd}, J=18.3 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.77$ (bs, 1 H$), 7.06-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.72(\mathrm{~m}, 2$ H), 10.30 (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2,29.8,36.9,47.7,61.5,126.8$, 127.9, 128.5, 128.8, 130.1, 136.7, 168.3, 175.4, 201.4. HRMS (CI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $\left([M]^{+}\right), 426.1977$; found, 426.1971. Elemental analysis: $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (426.58) calcd.: C 67.58 H 7.09 N 6.57; found: C 67.45 H 6.89 N 6.87.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

Ethyl [2-(benzoyl-benzylamino)-2-phenylthioacetyl]-glycinate (2e)

According to the general procedure for thio Ugi reactions, $\mathbf{2 e}$ was obtained after purification by column chromatography (hexanes/EtOAc 6:4) and recrystallisation (tert-butyl-methylether) in a 2.00 mmol range as white cubes in 65% yield, $\mathrm{m}_{\mathrm{p}}=132-134^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.24(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{dd}, J=18.2 \mathrm{~Hz}, J$ $=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=18.2 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1$ H), 7.15-7.78 (m, 15 H$), 8.45$ (bs, 1 H$).{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,44.9,60.4$, 61.9, 72.3, 126.7, 127.1, 128.4, 129.1, 135.1, 137.0, 138.2, 168.5, 173.6, 201.4. Elemental analysis: $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(446.57)$ calcd.: C 69.93 H 5.87 N 6.27 ; found: C 69.93 H 5.90 N 6.31 .

Ethyl [1-(benzoyl-benzylamino)-cyclohexanecarbothioyl]-glycinate (2f)

According to the general procedure for thio Ugi reactions, $\mathbf{2 f}$ was obtained after purification by column chromatography (hexanes/EtOAc 8:2) and recrystallisation (tert-butylmethylether) in a 2.00 mmol range as white cubes in 55% yield, $\mathrm{m}_{\mathrm{p}}=120-122^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.79(\mathrm{~m}, 8 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J$ $=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.14(\mathrm{~m}, 3 \mathrm{H})$, $7.42-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 10.54(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2$, $22.4,25.4,35.3,47.9,52.2,61.5,69.8,127.4,128.0,128.4,128.7,130.9,137.2,168.5,176.9$, 208.4. HRMS (CI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}]^{+}\right), 438.1977$; found, 438.1972. Elemental analysis: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(438.59)$ calcd.: C 68.46 H 6.89 N 6.39 ; found: C 68.53 H 6.76 N 6.34 .

Ethyl (2-acetylamino-3,3-dimethyl-thiobutyryl)-glycinate (2g)

2g was obtained according to the general procedure for thio Ugi reactions. As amine served a 2 M solution of ammonia in methanol. So 2 g could be isolated after purification by column chromatography (hexanes/EtOAc 1:1) and recrystallisation (tert-butyl-methylether) in a 2.00 mmol range as a white solid in 31% yield, $\mathrm{m}_{\mathrm{p}}=148-149^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=0.96(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.12(\mathrm{dd}, J=18.3 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=18.3 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.96 (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1,22.7,25.8,35.4,46.0,59.4$, 63.8, 167.1, 168.6, 202.1. HRMS (CI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ ([M] ${ }^{+}$), 275.1429; found, 275.1400. Elemental analysis: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(274.39)$ calcd.: C 52.53 H 8.08 N 10.21 ; found: C 52.39 H 7.86 N 10.05.

Ethyl (2-benzoylamino-3,3-dimethyl-thiobutyryl)-glycinate (2h)

$\mathbf{2 h}$ was obtained according to the general procedure for thio Ugi reactions. As amine served a 2 M solution of ammonia in methanol. So 2 h could be isolated after purification by column chromatography (hexanes/EtOAc 1:1) and recrystallisation (tert-butyl-methylether) in a 2.00 mmol range as a white solid in 35% yield, $\mathrm{m}_{\mathrm{p}}=160-162^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.06(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.04(\mathrm{dd}, J=18.0 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=18.0 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.44(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H}), 9.27(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta=14.0,26.9,36.5,46.9,61.7,65.1,127.1,128.7,131.8,134.2,166.7,167.9,203.1$. Elemental analysis: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(336.45)$ calcd.: C 60.69 H 7.19 N 8.33 ; found: C 60.66 H 7.10 N 8.31.

N-(2,2-Dimethoxy-ethyl)-2-(acetyl-benzylamino)-3-methyl-thiobutyric acid amide (3b)

According to the general procedure for thio Ugi reactions, $\mathbf{3 b}$ was obtained after purification by column chromatography (hexanes/EtOAc 1:1) in a 2.00 mmol range as a yellow oil in 51 \% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $2,05(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{bs}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 5 \mathrm{H}), 9.39(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.8,22.4,30.4,46.7,49.2,53.2,57.0,103.4,129.5,129.8,130.8,138.2$, 175.7, 204.1. GC-MS(EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, 352; found, 352.

N -(2,2-Dimethoxy-ethyl)-2-(benzoyl-benzylamino)-3,3-dimethyl-thiobutyric acid amide (3c)

According to the general procedure for thio Ugi reactions, $\mathbf{3 c}$ was obtained after purification by column chromatography (hexanes/EtOAc 7:3) in a 2.00 mmol range as a yellow oil in 71 $\%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17$ (s. 9 H), $3.35(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}$, $1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.33(\mathrm{~m}, 10 \mathrm{H}), 10.20(\mathrm{bs}, 1$ H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2,29.8,36.8,47.3,54.3,60.3,100.8,126.6,127.5$, $127.9,128.2,128.5,131.5,136.8,175.3,200.6$. HRMS (CI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}]^{+}\right)$, 428.2134; found, 428.2126.

N-(2,2-Dimethoxy-ethyl)-2-(acetyl-benzylamino)-1-cyclohexyl-thiobutyric acid amide (3d)

The reaction was started according to the general procedure for thio Ugi reactions. When the reaction was complete, the solvent was removed in vacuo and the crude product was purified by recrysallisation from methanol. So 3d could be obtained in a 2.00 mmol range as white rhombic crystals in 55% yield, $\mathrm{m}_{\mathrm{p}}=115^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18-1.55(\mathrm{~m}$, $8 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1$ H), $4.68(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.30(\mathrm{~m}, 5 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (22.9, 24.8, 25.2, 35.1, 47.4, $49.8,54.1,69.3,101.1,125.9,127.1,128.7,138.8,174.4,205.6$. HRMS (CI) calcd. for C_{20} $\mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}]^{+}\right), 378.1977$; found, 378.1948 . Elemental analysis: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(378.58)$ calcd.: C 63.45 H 7.99 N 7.40; found: C 63.95 H 7.81 N 7.23.

N-(2,2-Dimethoxy-ethyl)-2-(acetyl-methylamino)-3,3-dimethyl-thiobutyric acid amide (3e)

According to the general procedure for thio Ugi reactions, $\mathbf{3 e}$ was obtained after purification by column chromatography (hexanes/EtOAc $3: 7$) in a 2.00 mmol range as yellow cubes in 55 $\%$ yield, $\mathrm{m}_{\mathrm{p}}=80-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.09(\mathrm{~s}, 9 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}$, 6 H), 3.65 (m, 2 H), $4.50(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (bs, 1 H), 8.00 (bs, 1 H). 20.9, 22.7, 28.8, 36.2, 46.5, 54.1, 60.3, 100.9, 172.9, 200.1. HRMS (CI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ ([M] ${ }^{+}$), 290.1664; found, 290.1669. Elemental analysis: $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (290.43) calcd.: C 53.76 H 9.02 N 9.65, found: C 53.67 H 8.99 N 9.61 .

Supplementary Material for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005
\mathbf{N}-(2,2-Dimethoxy-ethyl)-2-(benzoyl-methylamino)-3,3-dimethyl-thiobutyric acid amide (3f)

According to the general procedure for thio Ugi reactions, $\mathbf{3 e}$ was obtained after purification by column chromatography (hexanes/EtOAc 1:1) and recrystallisation (PE/EtOAc 1:1) in a 2.00 mmol range as yellow cubes in 55% yield, $\mathrm{m}_{\mathrm{p}}=80-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.27(\mathrm{~s}, 9 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{bs}$, 1H), $7.30-7.51$ (m, 5 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.9,36.4,46.8,54.1,100.9$, 127.1, 128.5, 130.2, 136.2, 174.2, 200.2. HRMS (CI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}]^{+}\right)$, 352.1821; found, 352.1820 . Elemental analysis: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(352.50)$ calcd.: C 61.33 H 8.01 N 7.95; found: C 60.94 H 8.03 N 7.47.

N-(2,2-Dimethoxy-ethyl)-2-(benzoyl-amino)-3,3-dimethyl-thiobutyric acid amide (3g)

$\mathbf{3 g}$ was obtained according to the general procedure for thio Ugi reactions. As amine served a 2 M solution of ammonia in methanol. So 3 g could be isolated after purification by column chromatography (hexanes/EtOAc 7:3) and recrystallisation (tert-butyl-methylether) in a 2.00 mmol range as a white solid in 71% yield, $\mathrm{m}_{\mathrm{p}}=142-143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=1.01(\mathrm{~s}, 9 \mathrm{H}), 3.28(\mathrm{~s}, 6 \mathrm{H}), 3.56(\mathrm{dt}, J=14.2 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dt}, J=14.2 \mathrm{~Hz}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H})$, $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 8.88(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta=26.9,36.4,46.9,54.2,64.9,100.9,127.2,128.6,131.7,134.2,166.6,202.4$. HRMS (CI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}]^{+}\right), 338.1664$; found, 338.1656. Elemental analysis: $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(338.47)$ calcd.: C 60.33 H 7.74 N 8.28 ; found: C 60.03 H 7.79 N 8.15.

The thiazoles were obtained according to:

2-[1-(Acetyl-benzylamino)-2-metyl-propyl]-thiazole (6b)

After the general procedure for thiazole synthesis using microwaves, $\mathbf{6 b}$ was obtained after purification by column chromatography (hexanes/EtOAc 7:3) in a 0.10 mmol range as a yellow oil in 87% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1$ H), $5.69(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H}), 6.91-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{~d}, J=3.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=19.5,19.7,22.4,30.1,48.6,60.3,119.2,125.6,126.7,128.3$, 137.6, 142.3, 167.4, 171.9. HRMS (CI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}$ ([M] ${ }^{+}$), 288.1297; found, 288.1281.

2-[1-(Benzoyl-benzylamino)-2,2-dimethyl-propyl]-thiazole (6c)

After the general procedure for thiazole synthesis using microwaves, $\mathbf{6 c}$ was obtained after purification by column chromatography (hexanes/EtOAc 7:3) in a 0.10 mmol range as a white solid in 91% yield, $\mathrm{m}_{\mathrm{p}}=122-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.19(\mathrm{~s}, 9 \mathrm{H}), 5.15(\mathrm{~d}$, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 6.78-7.72(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.0,31.6,51.5,60.4,118.9,125.9,127.5,127.9,128.9,137.5,139.1$, 143.1, 165.6, 173.7. HRMS (CI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}\left([\mathrm{M}]^{+}\right), 364.1609$; found, 364.1627.

2-[1-(Acetyl-methylamino)-2,2-dimethyl-propyl]-thiazole (6e)

After the general procedure for thiazole synthesis using microwaves, $\mathbf{6 e}$ was obtained after purification by column chromatography (hexanes/EtOAc 3:7) in a 0.10 mmol range as a yellow oil in 66% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.06(\mathrm{~s}, 9 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 5.98(\mathrm{~s}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $22.2,28.3,34.2,37.3,59.7,118.8,142.4,167.1,171.5$. HRMS (CI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$ ([M] ${ }^{+}$), 226.1139; found, 226.1153.

2-[1-(Benzoyl-amino)-2,2-dimethyl-propyl]-thiazole (6g)

After the general procedure for thiazole synthesis using microwaves, $\mathbf{6 g}$ was obtained after purification by column chromatography (hexanes/EtOAc 7:3) in a 0.10 mmol range as a white solid in 91% yield, $\mathrm{m}_{\mathrm{p}}=133-135^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.01(\mathrm{~s}, 9 \mathrm{H}), 5.37(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.7,36.2,58.6,118.5$, 127.0, 128.6, 131.6, 134.4, 142.2, 166.8, 168.1. HRMS (CI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}\left([M]^{+}\right)$, 274.1140; found 274.116.

