Supplementary Material for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

Supplementary data

Synthesis and "double-faced" antioxidant activity of polyhydroxylated 4-thiaflavans

Stefano Menichetti,*^a Maria Chiara Aversa,^b Francesco Cimino,^c Caterina Viglianisi,^b and Antonio Tomaino^c

^aDipartimento di Chimica Organica, Polo Scientifico-Università di Firenze, via della Lastruccia 13, 50019, Sesto Fiorentino, Firenze, Italy, Tel:+39-055-4573535, Fax: +39-055-4573531, e-mail: <u>stefano.menichetti@unifi.it</u> ^bDipartimento di Chimica Organica e Biologica, Università di Messina, Salita Sperone 31, 98166, Messina, Italy ^cDipartimento Farmaco-Biologico, Università di Messina, Viale SS Annunziata, Messina, Italy

Experimental

General: ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 spectrometer at 300 and 75 MHz respectively, in CDCl₃ for silylated compounds and acetone-d₆ for hydroxy thiaflavans, unless otherwise specified, using signals of residual non-deuterated solvents as reference lines. Melting points are uncorrected. CHCl₃, DCM, THF, DMF, and Et₃N were dried following standard procedures. All the other commercial reagents were used as obtained from freshly opened containers. Silylated phenols **4a-d**, and **4f** were prepared by reaction of the commercially available hydroxy arenes with TBDMSCl and imidazole in dry DMF. Styrenes **7a-b** were obtained from 3-hydroxy- and 3,4-dihydroxy-benzaldehyde by silylation and subsequent Wittig reaction.¹⁷ PhthNSCl and N-thiophthalimides **5** were prepared as reported elsewhere.^{15,17}

Cycloaddition Reactions. General Procedure

To a solution of thiophthalimides **5** in dry CHCl₃ (roughly 0.1 M) styrenes **7** (1 equiv) and freshly distilled Et₃N (1 equiv) were added in sequence, the reaction mixtures heated at 60 °C and monitored, either by ¹H NMR or TLC, till the disappearance of **5**. Evaporation of the solvent and flash chromatography on silica gel allowed the isolation of cycloadducts **8**. Spectroscopic data of silylated derivatives **8** are as follows:

6-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin (8a)

Compound **8a** was obtained as a white solid by flash chromatography on silica gel with petroleum ether/DCM 4:1 as eluent; mp 89-90 °C, (67%). ¹H-NMR δ : 0.17 (s, 6H), 0.97 (s, 9H), 3.01 (dd, J = 13.0, 1.8 Hz, 1H), 3.28 (dd, J = 13.0, 9.6 Hz, 1H), 3.82 (s, 3H), 5.05 (dd, J = 9.6, 1.8 Hz, 1H), 6.51 (dd, J = 8.7, 2.7 Hz, 1H), 6.61 (d, J = 2.7 Hz, 1H), 6.77 (d, J = 8.7 Hz, 1H), 6.93-6.95 (m, 2H), 7.32-7.35 (m, 2H); ¹³C-NMR δ : -4.5 (q, 2C), 18.1 (s, 1C), 25.6 (q, 3C), 31.8 (t, 1C), 55.2 (q, 1C), 76.1 (d, 1C), 114.0 (d, 2C), 117.3 (d, 1C), 117.6 (1s, 1d, 2C), 119.1 (d, 1C), 127.3 (d, 2C), 132.6 (s, 1C), 147.0 (s, 1C), 149.7 (s, 1C), 159.6 (s, 1C).

7-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin (8b)

Compound **8b** was obtained as a colourless oil by flash chromatography on silica gel with petroleum ether/DCM 3:1 as eluent; (63%). ¹H-NMR δ : 0.20 (s, 6H), 0.99 (s, 9H), 3.02 (dd, J = 13.2, 1.8 Hz, 1H), 3.25 (dd, J = 13.2, 9.6 Hz, 1H), 3.84 (s, 3H), 5.15 (dd, J = 9.6, 1.8 Hz, 1H), 6.44-6.49 (m, 2H), 6.93-6.98 (m, 3H), 7.34-7.36 (m, 2H); ¹³C-NMR δ : -4.5 (q, 2C), 18.1 (s, 1C), 25.6 (q, 3C), 31.6 (t, 1C), 55.3 (q, 1C), 76.6 (d, 1C), 108.7 (s, 1C), 110.4 (d, 1C), 114.0 (d, 2C), 114.3 (d, 1C), 127.3 (d, 2C), 127.5 (d, 1C), 132.5 (s, 1C), 152.9 (s, 1C), 153.8 (s, 1C), 159.7 (s, 1C).

6-(tert-Butyl-dimethyl-silanyloxy)-2-[4-(tert-butyl-dimethyl-silanyloxy)-phenyl]-2,3-dihydro-1,4-benzoxathiin (8c)

Compound **8c** was obtained as a white solid by flash chromatography on silica gel with petroleum ether/DCM 6:1 as eluent; mp 80-83 °C, (70%). ¹H-NMR δ : 0.20 (s, 6H), 0.23 (s, 6H), 1.00 (s, 9H), 1.02 (s, 9H), 3.01 (dd, J = 13.2, 1.8 Hz, 1H), 3.27 (dd, J = 13.2, 9.9 Hz, 1H), 5.05 (dd, J = 9.9, 1.8 Hz, 1H), 6.52 (dd, J = 9.0, 2.7 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 6.79 (d, J = 9.0 Hz, 1H), 6.87-6.91 (m, 2H), 7.27-7.30 (m, 2H); ¹³C-NMR δ : -4.5 (q, 2C), -4.4 (q, 2C), 18.1 (s, 1C), 18.2 (s, 1C), 25.6 (q, 3C), 25.7 (q, 3C), 31.9 (t, 1C), 76.3 (d, 1C), 117.4 (d, 1C), 117.6 (d, s, 2C), 119.1 (d, 1C), 120.2 (d, 2C), 127.2 (d, 2C), 133.2 (s, 1C), 147.1 (s, 1C), 149.7 (s, 1C), 155.8 (s, 1C).

7-(tert-Butyl-dimethyl-silanyloxy)-2-[4-(tert-butyl-dimethyl-silanyloxy)-phenyl]-2,3-dihydro-1,4-benzoxathiin (8d)

Compound **8d** was obtained as a yellow oil by flash chromatography on silica gel with petroleum ether/DCM 6:1 as eluent; (42%). ¹H-NMR δ : 0.18 (s, 6H), 0.21 (s, 6H), 0.97 (s, 9H), 1.00 (s, 9H), 3.00 (dd, J = 13.2, 1.8 Hz, 1H), 3.23 (dd, J = 13.2, 9.6 Hz, 1H), 5.12 (dd, J = 9.6, 1.8 Hz, 1H), 6.42-6.47 (m, 2H), 6.85-6.95 (m, 3H), 7.24-7.29 (m, 2H); ¹³C-NMR δ : -4.5 (q, 2C), -4.4 (q, 2C), 18.1 (s, 1C), 18.2 (s, 1C), 25.6 (q, 6C), 31.6 (t, 1C), 76.7 (d, 1C), 108.7 (s, 1C), 110.4 (d, 1C), 114.3 (d, 1C), 120.2 (d, 2C), 127.2 (d, 2C), 127.4 (d, 1C) 133.0 (s, 1C), 152.9 (s, 1C), 153.7 (s, 1C), 155.8 (s, 1C).

8-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-3-(4-methoxy-phenyl)-naphth[2,1-b][1,4]oxathiin (8e)

Compound **8e** was obtained as a white solid by flash chromatography on silica gel with petroleum ether/ethyl acetate 10:1 as eluent; (75%). ¹H-NMR δ : 0.25 (s, 6H), 1.03 (s, 9H), 3.21 (dd, *J* = 14.0, 2.6 Hz, 1H), 3.64 (dd, *J* = 14.0, 9.2 Hz, 1H), 3.84 (s, 3H), 5.23 (dd, *J* = 9.2, 2.6 Hz, 1H), 6.94-6.98 (m, 2H), 7.06-7.15 (m, 3H), 7.37-7.43 (m 3H), 7.79 (d, *J* = 8.6 Hz, 1H); ¹³C-NMR δ : -4.4 (q, 2C), 18.2 (s, 1C), 25.7 (q, 3C), 31.5 (t, 1C), 55.2 (q, 1C), 76.1 (d, 1C), 110.3 (s, 1C), 114.1 (d, 2C), 115.8 (d, 1C), 120.3 (d, 1C), 122.0 (d, 1C), 123.9 (d, 1C) 124.5 (d, 1C), 127.3 (d, 2C), 130.5 (s, 2C), 132.5 (s, 1C), 148.7 (s, 1C), 152.2 (s, 1C), 159.7 (s, 1C).

9-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-3-(4-methoxy-phenyl)-naphth[2,1-b][1,4]oxathiin (8f)

Compound **8f** was obtained as a white solid by flash chromatography on silica gel with petroleum ether/DCM 3:1 as eluent; mp 113-115 °C, (79%). ¹H-NMR δ : 0.30 (s, 6H), 1.05 (s, 9H), 3.23 (dd, J = 13.2, 2.1 Hz, 1H), 3.34 (dd, J = 13.2, 9.3 Hz, 1H), 3.84 (s, 3H), 5.25 (dd, J = 9.3, 2.1 Hz, 1H), 6.95-7.02 (m, 4H), 7.28 (d, J = 2.4 Hz, 1H), 7.37-7.41 (m, 2H), 7.47 (d, J = 8.7 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H); ¹³C-NMR δ : -4.3 (q, 2C), 18.3 (s, 1C), 25.8 (q, 3C), 31.4 (t, 1C), 55.3 (q, 1C), 76.2 (d, 1C), 108.6 (s, 1C), 110.6 (d, 1C), 114.1 (d, 2C), 117.3 (d, 1C), 119.8 (d, 1C), 124.8 (s, 2C), 125.5 (d, 1C), 127.3 (d, 2C), 129.7 (d, 1C), 132.5 (s, 1C), 150.5 (s, 1C), 154.3 (s, 1C), 159.7 (s, 1C).

5,7-Bis-(tert-butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin (8g)

Compound **8g** was obtained as a white solid by flash chromatography on silica gel with petroleum ether/ethyl acetate from 100:1 to 6:1 as eluent; mp 96-99 °C, (64%). ¹H-NMR δ : 0.17 (s, 6H), 0.26 (s, 6H), 0.96 (s, 9H), 1.04 (s, 9H), 3.00 (dd, 1H, J = 13.0, 1.8 Hz); 3.16 (dd, 1H, J = 13.0, 9.4 Hz); 3.82 (s, 3H); 5.05 (dd, 1H, J = 9.4, 1.8 Hz); 6.02 (d, 1H, J = 2.4 Hz); 6.15 (d, 1H, J = 2.4 Hz); 6.91-6.96 (m, 2H); 7.31-7.35 (m, 2H); ¹³C-NMR δ : -4.9 (q, 2C); -4.3 (q, 2C); 18.2 (s, 1C); 18.3 (s, 1C); 25.6 (q, 3C); 25.7 (q, 3C); 31.1 (t, 1C); 55.3 (q, 1C); 76.5 (d, 1C); 102.2 (d, 1C); 103.8 (d, 1C); 104.6 (s, 1C); 114.1 (d, 2C); 127.4 (d, 2C); 132.8 (s, 1C); 152.1 (s, 1C); 153.3 (s, 1C); 153.7 (s, 1C); 159.7 (s, 1C). *m/z* (EI): 518 (M⁺, 19); 461 (50); 73 (100).

2-[3,4-Bis-(tert-butyl-dimethyl-silanyloxy)-phenyl]-2,3-dihydro-5,7-dimethoxy-1,4-benzoxathiin (8h)

Compound **8h** was obtained as a white solid by flash chromatography on silica gel with petroleum ether/ethyl acetate from 100:1 to 6:1 as eluent; mp 96-99 °C, (29%). ¹H-NMR δ : 0.18, 0.19, 0.20, (4s, 12H), 0.98 (s, 9H), 0.10 (s, 9H), 3.00-3.15 (m, 2H), 3.74 (s, 3H), 3.85 (s, 3H), 5.05 (dd, J = 9.0, 2.4 Hz, 1H), 6.14 (d, J = 2.4 Hz, 1H), 6.19 (d, J = 2.4, 1H), 6.84-6.85 (m, 3H); ¹³C-NMR δ : -4.0 (q, 4C), 18.4 (s, 2C), 25.9 (q, 6C), 30.9 (t, 1C), 55.5 (q, 1C), 56.0 (q, 1C), 77.2 (d, 1C), 92.9 (d, 1C), 96.0 (d, 1C), 119.0 (d, 2C), 121.1 (d, s, 2C), 133.5 (s, 1C), 147.1 (s, 2C), 153.6 (s, 1C), 156.5 (s, 1C), 158.3 (s, 1C).

5,7-Bis-(tert-butyl-dimethyl-silanyloxy)-2-[3,4-bis-(tert-butyl-dimethyl-silanyloxy)-phenyl]-2,3-dihydro-1,4-benzoxathiin (8i)

Compound **8i** was obtained as a white solid by flash chromatography on silica gel with petroleum ether/ethyl acetate from 100:1 to 6:1 (or with petroleum ether/DCM 5:1) as eluent; mp 85-89 °C, (40%). ¹H-NMR δ : 0.18 (s, 6H), 0.19-0.21 (m, 12H), 0.26 (s, 6H), 0.96 (s, 9H), 0.99 (2s, 18H), 1.04 (s, 9H), 2.97-3.14 (m, 2H), 4.98 (dd, J = 9.3, 2.1 Hz, 1H), 6.02 (d, J = 2.4 Hz, 1H), 6.16 (d, J = 2.4 Hz, 1H), 6.84-6.85 (m, 3H); ¹³C-NMR δ : -4.5 (q, 2C), -4.3 (q, 2C), -4.1 (q, 2C), -4.1 (q, 2C), 18.2 (s, 1C), 18.3 (s, 1C), 18.4 (s, 2C), 25.6 (q, 3C), 25.7 (q, 3C), 25.9 (q, 6C), 31.2 (t, 1C), 76.3 (d, 1C), 102.1 (s, 1C), 103.8 (d, 1C), 104.4 (d, 1C), 118.9 (d, 2C), 121.0 (d, 1C), 133.6 (s, 1C), 146.9 (s, 2C), 152.1 (s, 1C), 153.2 (s, 1C).

Oxidation Reactions to Silylated Sulfoxides (indicated as 10a' and 10b'). General Procedure

To a solution of cycloadducts **8a** or **8b**, in DCM (0.04 M) kept at 0°C, a solution of MCPBA (1 equiv.) in DCM was added and the reactions monitored by TLC till the disappearance of sulfides **8** (30-40 min). The mixtures were diluted with DCM, washed with 10% Na₂S₂O₃, saturated NaHCO₃ and water. The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness. ¹H NMR of the crude mixture allowed the attribution of the *cis/trans* ratio, purification by flash chromatography on silica gel allowed the isolation of *trans*-10a' and *cis*- and *trans*-10b'.

trans-6-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin 4-Oxide (trans-10a')

Compound *trans*-10a' was obtained as a white solid by flash chromatography on silica gel with petroleum ether/ethyl acetate 2:1 as eluent; mp 139 °C dec., (65%). ¹H-NMR δ : 0.20 (s, 6H), 0.99 (s, 9H), 3.07 (dd, J = 14.4, 12.0 Hz, 1H), 3.24 (dd, J = 14.4, 1.5 Hz, 1H), 3.84 (s, 3H), 5.61 (br d, 1H), 6.94-6.98 (m, 4H), 7.13-7.14 (m, 1H), 7.40-7.45 (m, 2H), ¹³C-NMR δ : -4.5 (q, 2C), 18.1 (s, 1C), 25.6 (q, 3C), 49.8 (t, 1C), 55.3 (q, 1C), 67.4 (d, 1C), 114.2 (d, 2C), 120.2 (d, 1C), 122.1 (d, 1C), 122.4 (s, 1C), 126.9 (d, 1C), 127.9 (d, 2C), 130.6 (s, 1C), 147.7 (s, 1C), 149.7 (s, 1C).

trans-7-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin 4-Oxide (trans-10b')

Compound *trans*-10b' was obtained as a white solid by flash chromatography on silica gel with petroleum ether/ethyl acetate 3:1 as eluent; mp 146 °C dec., (72%). ¹H-NMR δ : 0.21 (s, 6H), 0.97 (s, 9H), 3.05 (dd, J = 14.4, 11.8 Hz, 1H), 3.22 (dd, J = 14.4, 1.5 Hz, 1H), 3.84 (s, 3H), 5.67 (dd, J = 11.8, 1.5 Hz, 1H), 6.52 (d, J = 2.4 Hz, 1H), 6.59 (dd, J = 8.7, 2.4 Hz, 1H), 6.96-6.98 (m, 2H), 7.42-7.45 (m, 2H), 7.54 (d, J = 8.7 Hz, 1H). ¹³C-NMR δ : -4.5 (q, 2C), 18.2 (s, 1C), 25.5 (q, 3C), 49.4 (t, 1C), 55.4 (q, 1C), 67.3 (d, 1C), 109.8 (d, 1C), 114.3 (d, 2C), 114.8 (d, 1C), 115.7 (s, 1C), 128.0 (d, 2C), 130.5 (s, 1C), 133.8 (d, 1C), 154.9 (s, 1C), 160.1 (s, 1C).

cis-7-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin 4-Oxide (cis-10b')

Compound *cis*-10b' was obtained as a yellow oil by flash chromatography on silica gel with petroleum ether/ethyl acetate 3:1 as eluent; (18%). ¹H-NMR δ : 0.20 (s, 6H), 0.97 (s, 9H), 3.36 (ap t, J = 12.0 Hz, 1H), 3.66 (dd, J = 12.6, 1.2 Hz, 1H), 3.84 (s, 3H), 5.21 (br d, J = 11.4 Hz, 1H), 6.41 (d, J = 2.4 Hz, 1H), 6.66 (dd, J = 8.7, 2.4 Hz, 1H), 6.94-6.99 (m, 2H), 7.34-7.39 (m, 2H), 7.58 (d, J = 8.7 Hz, 1H). ¹³C-NMR δ : -4.5 (q, 2C), 18.2 (s, 1C), 25.5 (q, 3C), 51.9 (t, 1C), 55.4 (q, 1C), 74.2 (d, 1C), 108.8 (d, 1C), 114.4 (d, 2C), 115.5 (d, 1C), 118.8 (s, 1C), 127.7 (d, 2C), 129.4 (d, 1C), 129.8 (s, 1C), 154.3 (s, 1C), 159.7 (s, 1C), 160.3 (s, 1C).

Oxidation Reactions to Silylated Sulfones (indicated as 11a', 11b', 11g', 11h'). General Procedure

To a solution of cycloadducts **8**, in DCM (0.04 M) at rt, a solution of MCPBA (2.2 equiv.) in DCM was added and the reactions monitored by TLC till the disappearance of sulfides **8** (4-8 h). The mixtures were diluted with DCM, washed with $10\% \text{ Na}_2\text{S}_2\text{O}_3$, saturated NaHCO₃ and water. The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness to give sulfones **11'** not needing of purification before desilylation.

6-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin 4,4-Dioxide (11a')

Compound **11a'** was obtained as a white solid; mp 93-96 °C, (99%). ¹H-NMR δ : 0.21 (s, 6H), 0.98 (s, 9H), 3.46 (dd, J = 14.1, 1.5 Hz, 1H), 3.71 (dd, J = 14.1, 12.0 Hz, 1H), 3.84 (s, 3H), 5.70 (dd, J = 12.0, 1.5 Hz, 1H), 6.91-6.99 (m, 4H), 7.24-7.26 (m, 1H), 7.36-7.40 (m, 2H); ¹³C-NMR δ : -4.5 (q, 2C), 18.1 (s, 1C), 25.6 (q, 3C), 55.4 (t, 1C), 55.9 (q, 1C), 77.3 (d, 1C), 113.4 (d, 1C), 114.5 (d, 2C), 120.0 (d, 1C), 125.5 (s, 1C), 127.1 (d, 1C), 127.7 (d, 2C), 129.3 (s, 1C), 147.6 (s, 1C), 150.5 (s, 1C), 160.5 (s, 1C).

7-(tert-Butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin 4,4-Dioxide (11b')

Compound **11b**' was obtained as a colourless oil; (94%). ¹H-NMR δ : 0.22 (s, 6H), 0.97 (s, 9H), 3.43 (dd, J = 13.9, 1.3 Hz, 1H), 3.71 (dd, J = 13.9, 12.1 Hz, 1H), 3.83 (s, 3H), 5.75 (br d, 1H, J = 12.1 Hz), 6.47 (d, J = 2.1 Hz, 1H), 6.64 (dd, J = 8.7, 2.1 Hz, 1H), 6.96-6.99 (m, 2H), 7.37-7.40 (m, 2H), 7.70 (d, J = 8.7 Hz, 1H); ¹³C-NMR δ : -4.5 (q, 2C), 18.1 (s, 1C), 25.4 (q, 3C), 55.3 (t, 1C), 55.5 (q, 1C), 76.6 (d, 1C), 109.1 (d, 1C), 114.4 (d, 2C), 115.4 (d, 1C), 118.5 (s, 1C), 125.1 (d, 1C), 127.7 (d, 2C), 129.1 (s, 1C), 154.9 (s, 1C), 160.4 (s, 1C), 161.0 (s, 1C).

5,7-Bis-(tert-butyl-dimethyl-silanyloxy)-2,3-dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin 4,4-Dioxide (11g')

Compound **11g'** was obtained as a yellow oil; (93%). ¹H-NMR δ : 0.20 (s, 6H), 0.34 (s, 6H), 0.95 (s, 9H), 1.07 (s, 9H), 3.36 (dd, J = 13.9, 1.3 Hz, 1H), 3.71 (dd, J = 13.9, 12.1 Hz, 1H), 3.83 (s, 3H), 5.59 (br d, 1H, J = 11.1 Hz), 6.04 (d, J = 2.2 Hz, 1H), 6.08 (d, J = 2.2 Hz, 1H), 6.94-6.97 (m, 2H), 7.34-7.37 (m, 2H); ¹³C-NMR δ : -4.4 (q, 2C), -4.2 (q, 1C), -4.1 (q, 1C), 18.2 (s, 1C), 18.3 (s, 1C), 25.5 (q, 3C), 25.6 (q, 3C), 55.4 (q, 1C), 55.8 (t, 1C), 77.1 (d, 1C), 102.3 (d, 1C), 103.4 (d, 1C), 114.5 (d, 2C), 127.7 (d, 2C), 127.9 (s, 1C), 129.3 (s, 1C), 154.9 (s, 1C), 156.0 (s, 1C), 160.5 (s, 1C).

2-[3,4-Bis-(tert-butyl-dimethyl-silanyloxy)-phenyl]-2,3-dihydro-5,7-dimethoxy-1,4-benzoxathiin 4,4-Dioxide (11h')

Compound **11h**' was obtained as a white solid; mp 63-65 °C, (90%). ¹H-NMR δ : 0.20-0.21 (m, 12H), 0.99 (s, 18H), 3.42 (dd, J = 13.9, 1.2 Hz, 1H), 3.70 (dd, J = 13.9, 12.1 Hz, 1H), 3.78 (s, 3H), 3.95 (s, 3H), 5.55 (br d, J = 11.4 Hz, 1H), 6.12 (d, J = 2.4 Hz, 1H), 6.17 (d, J = 2.4 Hz, 1H), 6.88 (ap s, 3H); ¹³C-NMR δ : -4.1 (2q, 2C), 18.4 (s, 2C), 25.8 (q, 6C), 55.6 (q, 1C), 56.6 (q, 1C), 58.0 (t, 1C), 77.1 (d, 1C), 94.0 (d, 1C), 94.3 (d, 1C), 119.2 (d, 1C), 119.5 (d, 1C), 121.3 (d, 1C), 129.7 (s, 1C), 147.3 (s, 1C), 148.1 (s, 1C), 156.3 (s, 1C), 159.6 (s, 1C), 164.4 (s, 1C).

Desilylation Reactions. General Procedure

To a solution of compounds **8**, **10'**, and **11'**, in dry THF (0.04 M) at 0 °C, a solution of TBAF $3H_2O$ in DCM (1 equiv for each TBDMSO group) was added and the reaction monitored by TLC till the disappearance of silylated starting product. The crude mixture was diluted with ethyl acetate, washed with saturated NH₄Cl and water. The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness. Purification of the residue by flash chromatography on silica gel afforded the required products **9**, **10**, and **11**. Spectroscopic data are as follows:

2,3-Dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin-6-ol (9a)

Compound **9a** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 20:1 as eluent; mp 110-111 °C, (95%). ¹H-NMR δ : 3.12 (dd, J = 13.2, 2.1 Hz, 1H), 3.25 (dd, J = 13.2, 9.3 Hz, 1H), 3.80 (s, 3H), 5.02 (dd, J = 9.3, 2.1 Hz, 1H), 6.51 (dd, J = 8.7, 3.0 Hz, 1H), 6.57 (d, J = 3.0 Hz, 1H), 6.71 (d, J = 8.7 Hz, 1H), 6.93-6.98 (m, 2H), 7.37-7.42 (m, 2H), 8.01 (br s, 1H); ¹³C-NMR δ : 32.1 (t, 1C), 55.5 (q, 1C), 76.8 (d, 1C), 113.3 (d, 1C), 113.6 (d, 1C), 114.7 (d, 2C), 118.9 (s, 1C), 120.0 (d, 1C), 128.3 (d, 2C), 133.8 (s, 1C), 146.7 (s, 1C), 152.5 (s, 1C), 160.6 (s, 1C). Found: C, 65.71; H, 5.17. Calc. for C₁₅H₁₄O₃S: C, 65.67; H, 5.14.

2,3-Dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin-7-ol (9b)

Compound **9b** was obtained as a colourless glassy solid by flash chromatography on silica gel with DCM/ethyl acetate 20:1 as eluent; (96%). ¹H-NMR δ : 3.06-3.23 (m, 2H), 3.79 (s, 3H), 5.13 (dd, J = 9.0, 2.4 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 6.46 (dd, J = 8.5, 2.5 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 6.93-6.96 (m, 2H), 7.36-7.39 (m, 2H), 8.32 (br s, 1H); ¹³C-NMR δ : 31.8 (t, 1C), 55.5 (q, 1C), 77.5 (d, 1C), 106.2 (d, 1C), 107.5 (s, 1C), 110.5 (d, 1C), 114.6 (d, 2C), 128.3 (d, 2C), 128.5 (d, 1C), 133.5 (s, 1C), 154.0 (s, 1C), 156.5 (s, 1C), 160.5 (s, 1C). Found: C, 65.83; H, 5.20. Calc. for C₁₅H₁₄O₃S: C, 65.67; H, 5.14.

2,3-Dihydro-2-(4-hydroxy-phenyl)-1,4-benzoxathiin-6-ol (9c)

Compound **9c** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 10:1 as eluent; mp 180-183 °C, (90%). ¹H-NMR δ : 3.12 (dd, J = 13.0, 1.9 Hz, 1H), 3.23 (dd, J = 13.0, 9.4 Hz, 1H), 4.96 (dd, J = 9.4, 1.9 Hz, 1H), 6.51 (dd, J = 8.8, 2.8 Hz, 1H), 6.58 (d, J = 2.8 Hz, 1H), 6.70 (d, J = 8.8 Hz, 1H), 6.84-6.89 (m, 2H), 7.26-7.30 (m, 2H), 8.25 (br s, 2H); ¹³C-NMR δ : 32.1 (t, 1C), 76.9 (d, 1C), 113.3 (d, 1C), 113.6 (d, 1C), 116.0 (d, 2C), 118.8 (s, 1C), 119.9 (d, 1C), 128.3 (d, 2C), 132.6 (s, 1C), 146.8 (s, 1C), 152.3 (s, 1C), 158.1 (s, 1C). Found: C, 64.77; H, 4.52. Calc. for C₁₄H₁₂O₃S: C, 64.60; H, 4.65.

2,3-Dihydro-2-(4-hydroxy-phenyl)-1,4-benzoxathiin-7-ol (9d)

Compound **9d** was obtained as a colourless oil by flash chromatography on silica gel with DCM/ethyl acetate 10:1 as eluent; (79%). ¹H-NMR δ : 3.06-3.23 (m, 2H), 5.09 (dd, J = 9.1, 2.2 Hz, 1H), 6.39 (d, J = 2.5 Hz, 1H), 6.44 (dd, J = 8.2, 2.5 Hz, 1H), 6.84-6.89 (m, 3H), 7.27-7.32 (m, 2H), 8.39 (br s, 2H); ¹³C-NMR δ : 31.8 (t, 1C), 77.7 (d, 1C), 106.2 (d, 1C), 107.5 (s, 1C), 110.5 (d, 1C), 116.1 (d, 2C), 128.4 (d, 2C), 128.5 (d, 1C), 132.5 (s, 1C), 154.1 (s, 1C), 156.6 (s, 1C), 158.3 (s, 1C). Found: C, 64.68; H, 4.56. Calc. for C₁₄H₁₂O₃S: C, 64.60; H, 4.65.

2,3-Dihydro-3-(4-methoxy-phenyl)-naphth[2,1-b][1,4]oxathiin-8-ol (9e)

Compound **9e** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 20:1 as eluent; (32%). ¹H-NMR (400 MHz) δ : 3.34-3.35 (m, 2H), 3.82 (s, 3H), 5.22 (dd, J = 6.8, 4.4 Hz, 1H), 6.97-7.03 (m, 3H), 7.15-7.18 (m, 2H), 7.40-7.48 (m, 3H), 7.71-7.73 (m, 1H), 8.53 (br s, 1H); ¹³C-NMR (acetone-d₆, 100 MHz) δ : 31.6 (t, 1C), 55.6 (q, 1C), 76.8 (d, 1C), 111.0 (d, 1C), 111.3 (s, 1C), 114.7 (d, 2C), 119.1 (d, 1C), 121.1 (d, 1C), 124.6 (d, 1C), 124.9 (d, 1C), 126.4 (s, 1C), 128.4 (d, 2C), 131.8 (s, 1C), 133.6 (s, 1C), 149.0 (s, 1C), 155.0 (s, 1C), 160.7 (s, 1C). Found: C, 70.28; H, 4.86. Calc. for C₁₉H₁₆O₃S: C, 70.35; H, 4.97.

2,3-Dihydro-3-(4-methoxy-phenyl)-naphth[2,1-b][1,4]oxathiin-9-ol (9f)

Compound **9f** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 20:1 as eluent; mp 160-163 °C, (93%). ¹H-NMR δ : 3.30 (d, J = 5.4 Hz, 2H), 3.79 (s, 3H), 5.22 (t, J = 5.4 Hz, 1H), 6.69 (d, J = 8.7 Hz, 1H), 6.93-6.98 (m, 2H), 7.04 (dd, J = 8.7, 2.4 Hz, 1H), 7.23 (d, J = 2.4 Hz, 1H), 7.39-7.44 (m, 2H), 7.48 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 8.76 (br s, 1H); ¹³C-NMR δ : 31.5 (t, 1C), 55.5 (q, 1C), 76.9 (d, 1C), 105.7 (d, 1C), 109.2 (s, 1C), 114.7 (d, 2C), 116.8 (d, 1C), 117.8 (d, 1C), 124.9 (s, 1C), 126.4 (d, 1C), 128.3 (d, 2C), 130.9 (s, 1C), 133.5 (s, 1C), 133.7 (s, 1C), 151.4 (s, 1C), 156.9 (s, 1C), 160.6 (s, 1C). Found (%): C, 70.17; H, 5.05. Calc. for C₁₉H₁₆O₃S: C, 70.35; H, 4.97.

2,3-Dihydro-2-(4-methoxy-phenyl)-1,4-benzoxathiin-5,7-diol (9g)

Compound **9g** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 3:1 or DCM/methanol 7:1 as eluent; mp 167-170 °C, (84%). ¹H-NMR δ : 3.08-3.11 (m, 2H), 3.83 (s, 3H), 5.05-5.09 (m, 1H), 6.10 (d, J = 2.4 Hz, 1H), 6.11 (d, J = 2.4 Hz, 1H), 6.98 (m, 2H), 7.37-7.41 (m, 2H), 8.09 (s, 1H), 8.66 (s, 1H); ¹³C-NMR δ : 31.1 (t, 1C), 55.5 (q, 1C), 77.4 (d, 1C), 96.3 (s, 1C), 97.1 (d, 1C), 98.1 (d, 1C), 114.7 (d, 2C), 128.3 (d, 2C), 133.9 (s, 1C), 154.8 (s, 1C), 155.0 (s, 1C), 156.3 (s, 1C), 160.6 (s, 1C). Found: C, 61.88; H, 4.73. Calc. for C₁₅H₁₄O₄S: C, 62.05; H, 4.86.

2,3-Dihydro-2-(3,4-dihydroxy-phenyl)-5,7-dimethoxy-1,4-benzoxathiin (9h)

Compound **9h** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 3:1 as eluent; mp 127-130 °C, (83%). ¹H-NMR δ : 3.06-3.08 (m, 2H), 3.73 (s, 3H), 3.81 (s, 3H), 4.95-4.99 (m, 1H), 6.13 (d, J = 2.4 Hz, 1H), 6.20 (d, J = 2.4 Hz, 1H), 6.79 (dd, J = 7.9, 1.9 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.93 (d, J = 1.9 Hz, 1H), 8.00 (br s, 2H); ¹³C-NMR δ : 31.0 (t, 1C), 55.6 (q, 1C), 56.3 (q, 1C), 77.5 (d, 1C), 93.2 (d, 1C), 96.6 (d, 1C), 98.8 (s, 1C), 114.2 (d, 1C), 116.0 (d, 1C), 118.7 (d, 1C), 133.4 (s, 1C), 146.0 (s, 2C), 154.5 (s, 1C), 157.4 (s, 1C), 159.1 (s, 1C). Found: C, 60.11; H, 4.95. Calc. for C₁₆H₁₆O₅S (%): C, 59.99; H, 5.03.

2,3-Dihydro-2-(3,4-dihydroxy-phenyl)-1,4-benzoxathiin-5,7-diol (9i)

Compound **9i** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 1:1 as eluent; mp 203-205°C, (70%). ¹H-NMR δ : 3.04-3.06 (m, 2H), 4.94-4.98 (m, 1H), 5.98 (d, J = 2.4 Hz, 1H), 6.10 (d, J = 2.4 Hz, 1H), 6.79 (dd, J = 8.1, 1.9 Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H), 6.93 (d, J = 1.9 Hz, 1H), 7.98 (s, 1H), 7.00 (s, 1H), 8.11 (s, 1H), 8.67 (s, 1H); ¹³C-NMR δ : 31.2 (t, 1C), 77.6 (d, 1C), 96.3 (s, 1C), 97.0 (d, 1C), 98.0 (d, 1C), 114.2 (d, 1C), 116.0 (d, 1C), 118.7 (d, 1C), 133.7 (s, 1C), 145.9 (s, 2C), 154.8 (s, 1C), 154.9 (s, 1C), 156.3 (s, 1C). Found: C, 57.37; H, 4.07. Calc. for C₁₄H₁₂O₅S: C, 57.53; H, 4.14.

trans-2,3-Dihydro-2-(4-methoxy-phenyl)-4-oxo-1,4-benzoxathiin-6-ol (trans-10a)

Compound *trans*-10a was obtained as a white solid by flash chromatography on silica gel with ethyl acetate/DCM 2:1 as eluent; mp 178 °C dec., (65%). ¹H-NMR (DMSO-d₆) δ : 3.26 (dd, J = 14.5, 1.2 Hz, 1H), 3.47 (dd, J = 14.5, 12.0 Hz, 1H), 3.77 (s, 3H), 5.38 (br d, J = 11.1 Hz, 1H), 6.94-7.02 (m, 5H), 7.44-7.48 (m, 2H), 9.56 (br s, 1H); ¹³C-NMR (DMSO-d₆, 75 MHz) δ : 48.4 (t, 1C), 55.2 (q, 1C), 67.1 (d, 1C), 114.0 (d, 2C), 116.5 (d, 1C), 119.8 (d, 1C), 122.0 (d, 1C), 123.1 (s 1C), 128.5 (d, 2C), 130.9 (s, 1C), 145.5 (s, 1C), 151.3 (s, 1C), 159.5 (s, 1C). Found: C, 62.25; H, 4.69. Calc. for C₁₅H₁₄O₄S: C, 62.05; H, 4.86.

trans-2,3-Dihydro-2-(4-methoxy-phenyl)-4-oxo-1,4-benzoxathiin-7-ol (trans-10b)

Compound *trans*-10b was obtained as a white solid by flash chromatography on silica gel with ethyl acetate/DCM 2:1 as eluent; mp 162 °C dec., (82%). ¹H-NMR (DMSO-d₆) δ : 3.19-3.47 (m, 2H), 3.78 (s, 3H), 5.47 (br d, J = 11.1, 2.2 Hz, 1H), 6.37 (d, J = 2.4 Hz, 1H), 6.54 (dd, J = 8.4, 2.4 Hz, 1H), 6.98-7.01 (m, 2H), 7.46-7.53 (m, 3H), 10.31 (br s, 1H); ¹³C-NMR (DMSO-d₆, 75 MHz) δ : 48.0 (t, 1C), 55.2 (q, 1C), 67.0 (d, 1C), 103.9 (d, 1C), 109.9 (d, 1C), 114.0 (d, 2C), 114.3 (s, 1C), 128.6 (d, 2C), 130.7 (d, 1C), 133.8 (s, 1C), 154.5 (s, 1C), 159.5 (s, 1C), 162.4 (s, 1C). Found: C, 62.31; H, 5.04. Calc. for C₁₅H₁₄O₄S: C, 62.05; H, 4.86.

cis-2,3-Dihydro-2-(4-methoxy-phenyl)-4-oxo-1,4-benzoxathiin-7-ol (cis-10b)

Compound *cis*-10b was obtained as a white solid by flash chromatography on silica gel with DCM/methanol 10:1 as eluent; mp 137 °C dec., (81%). ¹H-NMR (CDCl₃) δ : 3.42 (dd, J = 12.5, 11.4 Hz, 1H), 3.69 (dd, J = 12.5, 0.9 Hz, 1H), 3.84 (s, 3H), 5.17 (br d, J = 11.4 Hz, 1H), 6.35 (d, J = 2.4 Hz, 1H), 6.58 (dd, J = 9.0, 2.4 Hz, 1H), 6.94-6.97 (m, 2H), 7.35-7.38 (m, 2H), 7.49 (d, J = 9.0 Hz, 1H). Further analysis on *cis*-10b failed due to its instability (see above).

2,3-Dihydro-2-(4-methoxy-phenyl)-4,4-dioxo-1,4-benzoxathiin-6-ol (11a)

Compound **11a** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 1:1 (or DCM/methanol 6:1) as eluent; mp 201-206 °C, (79%). ¹H-NMR δ : 3.63 (dd, J = 14.1, 1.5 Hz, 1H), 3.83 (s, 3H), 3.94 (dd, J = 14.1, 12.1 Hz, 1H), 5.65 (dd, J = 12.1, 1.5 Hz, 1H), 6.95 (d, J = 9.0 Hz, 1H), 6.00-7.08 (m, 3H), 7.17 (d, J = 2.7 Hz, 1H), 7.54-7.56 (m, 2H), 8.71 (br s, 1H); ¹³C-NMR δ : 55.6 (q, 1C), 55.8 (t, 1C), 78.3 (d, 1C), 108.6 (d, 1C), 114.9 (d, 2C), 121.0 (d, 1C), 123.3 (d, 1C), 127.0 (s, 1C), 129.1 (d, 2C), 130.8 (s, 1C), 147.4 (s, 1C), 152.8 (s, 1C), 161.3 (s, 1C). Found: C, 58.97; H, 4.69. Calc. for C₁₅H₁₄O₅S: C, 58.81; H, 4.61.

2,3-Dihydro-2-(4-methoxy-phenyl)-4,4-dioxo-1,4-benzoxathiin-7-ol (11b)

Compound **11b** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 20:1 as eluent; mp 199-203 °C, (38%). ¹H-NMR δ : 3.58 (dd, J = 14.1, 1.5 Hz, 1H), 3.85 (s, 3H), 3.93 (dd, J = 14.1, 12.3 Hz, 1H), 5.73 (dd, J = 12.3, 1.5 Hz, 1H), 6.46 (d, J = 2.2 Hz, 1H), 6.71 (dd, J = 8.8, 2.2 Hz, 1H), 7.01-7.06 (m, 2H), 7.55-7.60 (m, 2H), 7.63 (d, J = 8.8 Hz, 1H), 9.44 (br s, 1H); ¹³C-NMR δ : 55.5 (q, 1C), 55.7 (t, 1C), 78.8 (d, 1C), 104.7 (d, 1C), 111.5 (d, 1C), 115.0 (d, 2C), 118.7 (s, 1C), 126.1 (d, 1C), 129.2 (d, 2C), 130.7 (s, 1C), 156.2 (s, 1C), 161.4 (s, 1C), 163.3 (s, 1C). Found: C, 58.57; H, 4.35. Calc. for C₁₅H₁₄O₅S: C, 58.81; H, 4.61.

2,3-Dihydro-2-(4-methoxy-phenyl)-4,4-dioxo-1,4-benzoxathiin-5,7-diol (11g)

Compound **11g** was obtained as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 2:1 (or DCM/methanol 7:1) as eluent; mp 216-219°C, (92%). ¹H-NMR δ : 3.49 (dd, J = 13.8, 1.5 Hz, 1H), 3.84 (s, 3H), 3.90 (dd, J = 13.8, 1.2 Hz, 1H), 5.62 (dd, J = 12.1, 1.5 Hz, 1H), 6.00 (d, J = 2.1 Hz, 1H), 6.19 (d, J = 2.1 Hz, 1H), 7.00-7.05 (m, 2H), 7.52-7.58 (m, 2H), 9.36 (br s, 1H); ¹³C-NMR δ : 55.6 (q, 1C), 57.8 (t, 1C), 78.1 (d, 1C), 96.7 (d, 1C), 98.3 (d, 1C), 107.9 (s, 1C), 114.9 (d, 2C), 129.2 (d, 2C), 130.6 (s, 1C), 157.1 (s, 1C), 158.6 (s, 1C), 161.3 (s, 1C) 163.1 (s, 1C). Found: C, 55.67; H, 4.17. Calc. for C₁₅H₁₄O₆S: C, 55.89; H, 4.38.

2,3-Dihydro-2-(3,4-dihydroxy-phenyl)-5,7-dimethoxy-1,4-benzoxathiin 4,4-Dioxide (11h)

Compound **11h** was obtained by desilylation of **11h**' as a white solid after purification by flash chromatography on silica gel with DCM/ethyl acetate 3:1 as eluent, mp 127-130 °C, (18%) yield, or, more conveniently, by MCPBA oxidation of the corresponding oxathiin **9h**, (83%). ¹H-NMR δ : 3.45 (dd, J = 13.9, 1.2 Hz, 1H), 3.82 (s, 3H), 3.89 (s, 3H), 3.74-3.90 (m, 1H), 5.49 (dd, J = 12.1, 1.5 Hz, 1H), 6.16 (d, J = 2.4 Hz, 1H), 6.31 (d, J = 2.4 Hz, 1H), 6.87-6.92 (m, 2H), 7.07 (d, J = 2.1 Hz, 1H), 8.24 (br s, 2H); ¹³C-NMR δ : 56.1 (q, 1C), 56.8 (q, 1C), 58.3 (t, 1C), 78.4 (d, 1C), 94.4 (d, 1C), 95.2 (d, 1C), 109.9 (s, 1C), 114.9 (d, 1C), 116.1 (d, 1C), 119.5 (d, 1C), 130.0 (s, 1C), 146.2 (s, 1C), 146.9 (s, 1C), 157.2 (s, 1C), 160.5 (s, 1C), 165.2 (s, 1C). Found: C, 54.67; H, 4.29. Calc. for C₁₆H₁₆O₇S: C, 54.54; H, 4.58.

trans-4-[2-(2-Hydroxy-4,6-dimethoxy-benzenesulfonyl)-vinyl]-benzene-1,2-diol (12h)

Compound **12h** was obtained during desilylation of **11h'**. It becomes the unique product of the reaction when an excess of TBAF at rt is used. **12h** was isolated as a white solid by flash chromatography on silica gel with DCM/ethyl acetate 3:1 as eluent; mp 197 °C dec., (72%). ¹H-NMR δ : 3.82 (s, 3H), 3.88 (s, 3H), 6.08 (d, J = 2.2 Hz, 1H), 6.15 (d, J = 2.2 Hz, 1H), 6.88(d, J = 8.2 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H), 7.14 (d, J = 15.3 Hz, 1H), 7.20 (d, J = 2.1 Hz, 1H), 7.50 (d, J = 15.3 Hz, 1H) 8.43 (br s, 3H); ¹³C-NMR δ : 56.1 (q, 1C), 56.8 (q, 1C), 92.5 (d, 1C), 95.4 (d, 1C), 106.1 (s, 1C), 115.8 (d, 1C), 116.5 (d, 1C), 123.3 (d, 1C), 125.5 (d, 1C), 125.8 (s, 1C), 143.8 (d, 1C), 146.4 (s, 1C), 149.4 (s, 1C), 160.4 (s, 1C), 160.9 (s, 1C), 166.7 (s, 1C). Found: C, 54.76; H, 4.89. Calc. for C₁₆H₁₆O₇S: C, 54.54; H, 4.58.

BDE of compounds 9, 10, 11 and 12.

$BDE = E_{tot} (Radical) + E_{tot} (H') - E_{tot} (Phenol): E_{tot} = Total energy of minimized structure.$
HyperChem 6.3, PM3 UHF in vacuo. Convergence SCF: 10 ⁻⁵ . Gradient: 0.01 kcal/mol/Ang

	Compound	Radical	BDE Kcal/mol
9a	HO S OME	. O S O Me	75.08
9b	HO	· O C C C C C C C C C C C C C C C C C C	75.73
1a	HO L S L OME	· O C C C C C C C C C C C C C C C C C C	76.09
10b	HO COME	· O C O C O C O C O C O C O C O C O C O	79.03
11a	HO S O2	· O C C C C C C C C C C C C C C C C C C	77.12
11b	HO C C C C C C C C C C C C C C C C C C C	O O S O ₂ O Me	81.19
9c	HO S OH	· O C C C C C C C C C C C C C C C C C C	75.11
		HOUS	77.54
9d	HOS	· O C C C C C C C C C C C C C C C C C C	75.83
		HO C S	77.64
9e	HO CONCEPTION OF COME	· O S OME	74.28
9f	OH OH	o.	74.75
9h	Meo OMe	MeO O O O O O O O O O O O O O O O O O O	72.31
	MeO O H OMe	MeO O O O O O O O O O O O O O O O O O O	72.57

11h	MeO	MeO O O O H	72.46
	MeO O H OMe O2	MeO O O O O O O O O O O O O O O O O O O	72.80
12h	MeO H O H	MeO O O O O O O O O O O O O O O O O O O	71.22
		MeO O O O H	77.16
	MeO OH OH H MeO H H	MeO OH	73.30
		MeO O O H	77.71
9g	HO CONCEPTION OF COME	· O C O Me O C O C O Me O H	77.22
		HO COME	76.52
11g	HO OMe	· O O O O O O O O O O O O O O O O O O O	83.06
		HO O. O.	81.14
9i			72.26
			77.07
			76.36
		HO CONTRACTOR HO	72.49
		· O C C C C C C C C C C C C C C C C C C	77.32
			76.56