Supporting Information for

Selective transannular ring transformations in azirino-fused eight-membered O,N- or S,Nheterocycles

Alexander F. Khlebnikov,*^a Mikhail S. Novikov,^a Ekaterina Yu. Shinkevich,^a and Denis Vidovic^b

^a Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Petrodvorets, Russia. Fax: 007 812 4286939; Tel: 007 812 4286939; E-mail: Alexander.Khlebnikov@pobox.spbu.ru

^b Institute of Inorganic Chemistry of Georg-August University, Tammannstr. 4, 37077 Göttingen, Germany.

Pages S1–S5: Experimental procedures and characterization data.

Pages S6–S9: Structure of 1-Benzyl-4a-phenyl-2,3,4,4a-tetrahydro-1*H*-pyrido[3,2-*b*][1,4]benzoxazine.

Pages S10–S18: ¹³C NMR spectra of **2a-d**, **3a,b**, **4a,b**, **5-10**, **11a,b**, **12**.

General methods. Melting points were determined on a hot stage microscope (Boetius) and are uncorrected. IR spectra were recorded on a Carl-Zeiss UR 20 spectrometer. ¹H NMR spectra were recorded on a Bruker DPX 300 spectrometer at 300 MHz with internal standard TMS ($\delta = 0$) and ¹³C NMR spectra – at 75 MHz with internal standard CDCl₃ ($\delta = 77$). Mass spectra were measured with Varian MAT 731, MAT CH 7 spectrometers (70 eV). Elemental analysis was performed on a Hewlett-Packard 185B CHN-analyser. Methylene chloride was dried by distillation over phosphorus pentoxide. Silica gel LS 5/40 (Chemapol) was used for column chromatography. Compounds 1a,b were prepared by the reported procedure.¹ Anhydrous ZnCl₂ was prepared according to the reported procedure.²

1,1-Dichloro-1a-phenyl-1a,2,3,4-tetrahydro-1H-azirino[2,1-e][1,6]benzoxazocine (2a). Pellets of KOH (2.4 g, 42.8 mmol) were added to a solution of benzoxazocine **1a** (1.2 g, 5.06 mmol) and benzyltriethylammonium chloride (TEBA) (0.2 g, 0.879 mmol) in chloroform (20 mL) and the mixture was vigorously stirred at 21-23°C for 0.5 h. After addition of hexane (10 mL) the reaction mixture was stirred for 0.5 h, then passed through a short silica plug, which was subsequently washed with hexane (30 mL). The solvent was removed under reduced pressure, and crystallization of the residue from diethyl ether yielded 1.42 g (88%) of azirinobenzoxazocine **2a**. White solid; mp 148-150 °C (Et₂O). ¹H NMR (CDCl₃): δ 1.45-1.60 (m, 1H), 1.70-1.85 (m, 2H), 2.60-2.68 (m, 1H), 3.61-3.69 (m, 1H), 4.58-4.63 (m, 1H), 7.10–7.30 (m, 4H), 7.40-7.50 (m, 3H), 7.55-7.65 (m, 2H). ¹³C NMR (CDCl₃): δ 26.4 (CH₂), 28.9 (CH₂), 60.2 (CPh), 78.8 (CCl₂), 79.0 (OCH₂), 121.9, 123.3, 124.19, 124.21, 127.8, 128.27, 128.33, 135.4, 137.6, 151.8. Anal. Calcd. for C₁₇H₁₅Cl₂NO, %: C 63.77, H 4.72, N 4.37. Found, %: C 63.79, H 4.83, N 4.35.

1,1-Dichloro-1a-phenyl-1a,2,3,4-tetrahydro-1H-azirino[2,1-e][1,6]benzothiazocine (2b). Pellets of KOH (4 g, 71 mmol) were added to a solution of benzothiazocine **1b** (2 g, 7.91 mmol) and benzyltriethylammonium chloride (TEBA) (0.4 g, 1.758 mmol) in chloroform (25 mL) and the mixture was vigorously stirred at 21-23°C for 2 h. After addition of hexane (20 mL) the reaction mixture was stirred for 0.5 h, then passed through a basic alumina plug, which was subsequently washed with hexane

Press, J. B.; Eudy, N. H. J. Org. Chem. 1984, 49, 116-122.
 Weberg, R. T.; Haltiwanger, R. C.; Laurie, J. C. V.; Dubois, M. R. J. Am. Chem. Soc. 1986, 108, 6442-6450.

(30 mL). The solvent was removed under reduced pressure, and crystallization of the residue from diethyl ether yielded 1.25 g (48%) of azirinobenzotiazocine **2b**. White solid; mp 144-146 °C (Et₂O). ¹H NMR (CDCl₃): 1.46-1.59 (m, 1H), 1.60-1.77 (m, 1H), 1.85-1.95 (m, 1H), 2.40-2.53 (m, 1H), 2.75-2.85 (m, 1H), 3.03-3.12 (m, 1H), 7.06-7.14 (m, 1H), 7.33-7.51 (m, 5H), 7.63-7.71 (m, 3H). ¹³C NMR (CDCl₃): δ 26.6 (CH₂), 30.3 (CH₂), 40.8 (SCH₂), 61.3 (CPh), 78.3 (CCl₂), 121.5, 123.6, 124.5, 127.7, 128.0, 129.1, 129.8, 137.3, 138.9, 146.3. Anal. Calcd. for C₁₇H₁₅Cl₂NS, %: C 60.72, H 4.50, N 4.17. Found, %: C 60.72, H 4.76, N 3.90.

1-Chloro-1-fluoro-1a-phenyl-1a,2,3,4-tetrahydro-1*H***-azirino[2,1-***e***][1,6]benzoxazocine (2c). Dichlorofluoromethane was bubbled through a vigorously stirred mixture of benzoxazocine 1a** (1 g, 4.2 mmol), powdery KOH (2.5 g, 44.6 mmol), and TEBA (0.2 g, 0.879 mmol) in CH₂Cl₂ (10 mL) at 8-11°C for 40 min. The reaction mixture was passed through a short silica plug, which was subsequently washed with hexane (30 mL). The solvent was removed under reduced pressure, and crystallization of the residue from diethyl ether yielded 0.851 g (66%) of azirinobenzoxazocine **2c** as a single stereoisomer. White solid; mp 118-119 °C (Et₂O). ¹H NMR (CDCl₃): δ 1.42-1.54 (m, 1H), 1.56-1.70 (m, 1H), 1.74-1.92 (m, 1H), 2.57-2.63 (m, 1H), 3.63-3.73 (m, 1H), 4.60-4.65 (m, 1H), 7.11-7.24 (m, 4H), 7.34-7.50 (m, 3H), 7.60-7.66 (m, 2H). ¹³C NMR (CDCl₃): δ 25.6 (d, *J*_{HF} 2 Hz), 28.6 (d, *J*_{HF} 4 Hz), 60.1 (d, *J*_{HF} 13 Hz, CPh), 78.9 (OCH₂), 98.9 (d, *J*_{HF} 294 Hz, CFCl), 122.1, 123.4, 124.1, 124.4, 127.8, 128.3, 128.4, 135.2, 135.9 (d, *J*_{HF} 4 Hz), 152.1 (d, *J*_{HF} 3 Hz). Anal. Calcd. for C₁₇H₁₅ClFNO, %: C 67.22, H 4.98, N 4.61. Found, %: C 67.41, H 4.94, N 4.48.

1-Chloro-1-fluoro-1a-phenyl-1a,2,3,4-tetrahydro-1*H***-azirino[2,1-***e***][1,6]benzothiazocine (2d). Sodium dichlorofluoroacetate (16 g, 94.7 mmol) was added by small portions to a gently refluxed and vigorously stirred solution of benzothiazocine 1b** (1.2 g, 4.74 mmol) and TEBA (0.2 g, 0.879 mmol) in dichloroethane (100 mL) over 3 h. Then the solvent was evaporated under reduced pressure, CH₂Cl₂ (50 mL) was added to the residue and the mixture was filtered through a short silica plug, which was subsequently washed with hexane (30 mL). The solvent was removed under reduced pressure, and crystallization of the residue from diethyl ether yielded 0.482 g (32%) of azirinobenzothiazocine **2d** as a single stereoisomer. White solid; mp 123-125 °C (Et₂O). ¹H NMR (CDCl₃): δ 1.38-1.85 (m, 3H), 2.42-2.53 (m, 1H), 2.65-2.77 (m, 1H), 3.05-3.11 (m, 1H), 7.08-7.14 (m, 1H), 7.28-7.49 (m, 5H), 7.62-7.75 (m, 3H). ¹³C NMR (CDCl₃): δ 25.8 (d, *J*_{HF} 1 Hz), 29.8 (d, *J*_{HF} 3 Hz), 40.8 (CH₂S), 61.3 (d, *J*_{HF} 13 Hz, CPh), 98.2 (d, *J*_{HF} 294 Hz, CFCl), 121.6, 123.8, 123.9, 127.6, 128.1, 128.9, 129.7, 135.5 (d, *J*_{HF} 4 Hz), 139.0, 146.2. Anal. Calcd. for C₁₇H₁₅ClFNS, %: C 63.84, H 4.73, N 4.38. Found, %: C 63.89, H 4.75, N 4.23.

Procedure for Reaction of benzoxazocine 2a with Methanol. A solution of azirinobenzoxazocine **2a** (0.13 g, 0.406 mmol) in methanol (2 mL) was refluxed for 1.4 h. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compounds **3b** (0.081 g, 24%), **3a** (0.162 g, 50%), **4b** (0.021 g, 6%), and **4a** (0.021 g, 6%).

3-Methoxy-2-(3-methoxypropyl)-2-phenyl-2H-1,4-benzoxazine (3a). White solid; mp 69-70 °C (hexane-Et₂O). ¹H NMR (CDCl₃): δ 1.36-1.50 (m, 1H), 1.51-1.65 (m, 1H), 2.46-2.58 (m, 1H), 2.72-2.84 (m, 1H), 3.30 (s, 6H, OCH₃), 3.34-3.40 (m, 2H), 7.22-7.34 (m, 5H), 7.46–7.53 (m, 3H), 7.77-7.82 (m, 1H). ¹³C NMR (CDCl₃): δ 22.6 (CH₂), 31.9 (CH₂), 51.6 (OCH₃), 58.4 (OCH₃), 72.3 (OCH₂), 80.8 (CPh), 110.9, 120.3, 124.3, 125.3, 126.0, 127.7, 128.2, 140.4, 140.6, 150.8, 167.0 (C=N). Anal. Calcd. for C₁₉H₂₁NO₃, %: C 73.29, H 6.80, N 4.50. Found, %: C 73.39, H 6.93, N 4.67.

2-(3-Chloropropyl)-3-methoxy-2-phenyl-2H-1,4-benzoxazine (3b). White solid; mp 75-76 °C (hexane-Et₂O). ¹H NMR (CDCl₃): δ 1.56-1.71 (m, 1H), 1.72-1.86 (m, 1H), 2.53-2.65 (m, 1H), 2.82-2.94 (m, 1H), 3.33 (s, 3H, OCH₃), 3.52-3.60 (m, 2H), 7.30-7.42 (m, 5H), 7.47–7.52 (m, 3H), 7.79-7.83 (m, 1H). ¹³C NMR (CDCl₃): δ 25.9 (CH₂), 32.7 (CH₂), 44.9 (CH₂), 51.8 (OCH₃), 80.5 (CPh), 111.0, 120.3,

124.4, 125.4, 125.9, 127.9, 128.4, 140.1, 140.5, 150.9, 166.6 (C=N). Anal. Calcd. for $C_{18}H_{18}CINO_2$, %: C 68.46, H 5.74, N 4.44. Found, %: C 68.47, H 5.86, N 4.45.

2-(3-Methoxypropyl)-2-phenyl-2H-1,4-benzoxazin-3(4H)-one (4a). White solid; mp 138-140 °C (Et₂O). ¹H NMR (CDCl₃): δ 1.76-1.96 (m, 2H), 2.15-2.27 (m, 1H), 2.38-2.51 (m, 1H), 3.32 (s, 3H, OCH₃), 3.39-3.47 (m, 2H), 6.65-6.73 (m, 1H), 6.85-6.93 (m, 1H), 6.95-7.03 (m, 1H), 7.09-7.15 (m, 1H), 7.20-7.30 (m, 3H), 7.48-7.53 (m, 2H), 8.38 (s, 1H, NH). ¹³C NMR (CDCl₃): δ 24.0 (CH₂), 36.8 (CH₂), 58.4 (OCH₃), 72.5 (OCH₂), 84.3 (CPh), 115.4, 117.3, 122.3, 124.0, 125.4, 126.2, 127.9, 128.3, 139.0, 143.2, 167.7 (C=O). IR v (cm⁻¹): 1700 (C=O), 3400 (NH). Anal. Calcd. for C₁₈H₁₉NO₃, %: C 72.71, H 6.44, N 4.71. Found, %: C 73.02, H 6.42, N 4.73.

2-(3-Chloropropyl)-2-phenyl-2H-1,4-benzoxazin-3(4H)-one (4b). White solid; mp 126-128 °C (hexane-Et₂O). ¹H NMR (CDCl₃): δ 2.00-2.12 (m, 2H), 2.24-2.34 (m, 1H), 2.49-2.54 (m, 1H), 3.55-3.62 (m, 2H), 6.77-6.80 (m, 1H), 6.89–6.95 (m, 1H), 6.98-7.04 (m, 1H), 7.13-7.15 (m, 1H), 7.22-7.32 (m, 3H), 7.50-7.52 (m, 2H), 9.47 (s, 1H, NH). ¹³C NMR (CDCl₃): δ 27.3 (CH₂), 37.6 (CH₂), 45.0 (CH₂), 84.1 (CPh), 115.6, 117.4, 122.5, 124.2, 125.4, 126.1, 128.2, 128.5, 138.6, 143.0, 167.7 (C=O). IR v (cm⁻¹): 1700 (C=O), 3390 (NH). Anal. Calcd. for C₁₇H₁₆CINO₂, %: C 67.66, H 5.34, N 4.64. Found, %: C 67.71, H 5.30, N 4.52.

Procedure for Reaction of benzoxazocine 2a in trifluoroacetic acid. A solution of azirinobenzoxazocine **2a** (0.2 g, 0.625 mmol) in CF_3CO_2H (2 mL) was stirred at room temperature for 2 h. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound **4b** (0.160 g, 85%).

1-Benzyl-4a-phenyl-2,3,4,4a-tetrahydro-1*H***-pyrido**[**3,2-***b*][**1,4**]**benzoxazine** (**5**). A solution of azirinobenzoxazocine **2a** (0.2 g, 0.625 mmol) and benzylamine (0.2 g, 1.87 mmol) in DMSO (2 mL) was heated in an oil bath at 100 °C for 2 h, and then allowed to cool to ambient temperature. The reaction mixture was poured into water, and extracted with ethyl acetate. The extract was washed with brine and dried over Na₂SO₄. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound **5** (0.080 g, 36%). White solid; mp 155-157 °C (hexane-Et₂O). ¹H NMR (CDCl₃): δ 1.53-1.83 (m, 2H), 2.30-2.47 (m, 2H), 3.22-3.40 (m, 2H), 4.99 and 5.14 (AB, *J* =14.5 Hz, 2H, CH₂Ph), 6.77-6.88 (m, 3H), 7.00–7.05 (m, 1H), 7.18-7.53 (m, 10H). ¹³C NMR (CDCl₃): δ 18.9 (CH₂), 35.6 (CH₂), 47.2 (CH₂), 51.2 (CH₂), 76.0 (OCPh), 115.7, 122.3, 122.7, 123.4, 127.0, 127.3, 127.98, 128.04, 128.6, 128.7, 136.5, 137.7, 140.3, 144.8, 155.9 (C=N). Anal. Calcd. for C₂₄H₂₂N₂O, %: C 81.33, H 6.26, N 7.90. Found, %: C 81.27, H 6.10, N 7.90.

2-(1,4-Dichloro-1-phenylbutyl)-1,3-benzoxazole (6). A mixture of $ZnCl_2x1.5H_2O$ (0.1 g, 0.613 mmol), azirinobenzoxazocine **2a** (0.2 g, 0.625 mmol), and CH_2Cl_2 (5 mL) was stirred under argon atmosphere at room temperature for 1h. Then $ZnCl_2$ was filtered, the solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound **6** (0.135 g, 68%). Pale-yellow oil. ¹H NMR (CDCl_3): δ 1.82-1.96 (m, 1H), 2.06-2.20 (m, 1H), 2.84-3.03 (m, 2H), 3.58-3.63 (m, 2H), 7.37-7.43 (m, 5H), 7.47-7.53 (m, 3H), 7.81-7.84 (m, 1H). ¹³C NMR (CDCl_3): δ 27.8 (CH₂), 40.7 (CH₂), 44.5 (CH₂), 70.5 (CPh), 111.0, 120.7, 124.7, 125.9, 126.4, 128.5, 128.6, 139.4, 140.4, 151.0, 165.5 (C=N). MS (EI) *m/z* (%): 323 [M + 4]⁺ (1), 321 [M + 2]⁺ (8), 319 [M]⁺ (12), 286 [M + 2 - CI]⁺ (33), 284 [M - CI]⁺ (100), 248 (22), 242 (7), 233 (5), 220 (20), 207 (30), 180 (3), 149 (3), 146 (3), 133 (11), 129 (17), 115 (18), 103 (19), 91 (13), 77 (20).

2-(1,4-Dichloro-1-phenylbutyl)-1,3-benzothiazole (7). A mixture of $ZnCl_2x1.5H_2O$ (0.1 g, 0.613 mmol), azirinobenzoxazocine **2b** (0.2 g, 0.595 mmol), and CH_2Cl_2 (5 mL) was vigorously stirred under argon atmosphere at room temperature for 1h. Then $ZnCl_2$ was filtered, the solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound (7) (0.141 g, 70%). Pale-

yellow oil. ¹H NMR (CDCl₃): δ 1.88-2.16 (m, 2H), 2.90-3.11 (m, 2H), 3.59-3.64 (m, 2H), 7.34–7.61 (m, 7H), 7.86 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃): δ 28.3 (CH₂), 41.5 (CH₂), 44.6(CH₂), 76.1 (CPh), 121.5, 123.7, 125.6, 126.2, 126.6, 128.38, 128.40, 136.0, 141.8, 152.7, 175.0 (C=N). MS (DCI, NH₃) *m*/*z* (%):MS (DCI, NH₃) *m*/*z* (%): 340 [M + 4 + H]⁺ (11), 338 [M + 2 + H]⁺ (65), 337 [M + 2]⁺ (22), 336 [M + H]⁺ (100), 304 (14), 302 (40), 300 (9).

2-(4-Chloro-1-methoxy-1-phenylbutyl)-1,3-benzothiazole (8). A solution of azirinobenzothiazocine **2b** (0.1 g, 0.297 mmol) in methanol (1 mL) was refluxed for 0.5 h. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound **8**, (0.055 g, 55%). White solid; mp 144-146 °C (hexane-Et₂O). ¹H NMR (CDCl₃): δ 1.68-1.80 (m, 2H), 2.66-2.78 (m, 1H), 2.88-3.00 (m, 1H), 3.35 (s, 3H, OCH₃), 3.56-3.62 (m, 2H), 7.25–7.40 (m, 4H), 7.44-7.50 (m, 1H), 7.54-7.60 (m, 2H), 7.84-7.88 (m, 1H), 8.01-8.05 (m, 1H). ¹³C NMR (CDCl₃): δ 26.3 (CH₂), 32.0 (CH₂), 45.1 (CH₂), 51.0 (OCH₃), 83.2 (CPh), 121.6, 123.2, 125.0, 125.7, 126.2, 127.7, 128.4, 135.7, 141.9, 152.9, 177.1 (C=N). Anal. Calcd. for C₁₈H₁₈ClNOS, %: C 65.15, H 5.47, N 4.22. Found, %: C 65.22, H 5.44, N 4.07

2-(3-Hydroxypropyl)-2-phenyl-2H-1,4-benzothiazin-3(4H)-one (9). A solution of azirinobenzothiazocine **2b** (0.2 g, 0.595 mmol) in CF₃CO₂H (2 mL) was stirred at room temperature for 2 h. The solvent was evaporated, a solution of KOH (0.13 g, 2.32 mmol) in methanol (5 mL) was added to the residue and the mixture was refluxed for 2 h. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound 9, (0.131 g, 73%). White solid; mp 142-143 °C (hexane-Et₂O). ¹H NMR (CDCl₃): δ 1.53-1.81 (m, 3H, CH₂, OH), 2.22-2.42 (m, 2H), 3.61-3.63 (m, 2H), 6.67–6.70 (m, 1H), 6.92-6.97 (m, 1H), 7.03-7.09 (m, 1H), 7.14-7.25 (m, 3H), 7.33-7.36 (m, 1H), 7.51-7.54 (m, 2H), 8.24 (s, 1H, NH). ¹³C NMR (CDCl₃): δ 28.3 (CH₂), 34.7 (CH₂), 55.1 (CPh), 62.5 (CH₂OH), 116.4, 119.8, 123.7, 126.6, 127.2, 127.6, 127.8, 128.3, 135.9, 137.9, 169.1 (C=O). IR v (cm⁻¹): 1700 (C=O), 3390 (NH), 3630 (OH). Anal. Calcd. for C₁₇H₁₇NO₂S, %: C 68.20, H 5.72, N 4.68. Found, %: C 68.33, H 5.77, N 4.67.

Procedures for Reactions of Fluorinated Aziridines 2c,d.

(1) A mixture of azirinobenzoxazocine 2c (0.108 g, 0.355 mmol), $ZnCl_2 \cdot 1.5H_2O$ (0.1 g, 0.613 mmol), and CH_2Cl_2 (5 mL) was stirred at room temperature for 1h. The salt was filtered, the solvent was removed and the residue was crystallized from a mixture of hexane-EtOAc to give compound 4b (0.101 g, 93%).

(2) A solution of azirinobenzoxazocine 2c (0.095 g, 0.313 mmol) in MeOH (2 mL) was refluxed for 2 h. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compounds 4a (0.050 g, 53%) and 4b (0.030 g, 32%).

(3) A mixture of anhydrous ZnCl₂ (0.1 g, 0.735 mmol), azirinobenzoxazocine **2c** (0.1 g, 0.329 mmol), and CH₂Cl₂ (5 mL) was stirred under argon atmosphere at room temperature for 0.5 h. After evaporation of methylene chloride anhydrous DMSO (5 mL) and a solution of benzylamine (0.18 g, 1.68 mmol) in anhydrous DMSO (5 mL) were subsequently added. The reaction mixture was heated at 100 °C for 0.5 h, and then allowed to cool to ambient temperature. The mixture was poured into saturated aqueous Na₂CO₃ and extracted with ethyl acetate. The extract was washed with water and dried over Na₂SO₄. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compounds **5** (0.081 g, 68%) and **4b** (0.025 g, 25%).

(4) A mixture of anhydrous $ZnCl_2$ (0.1 g, 0.735 mmol), azirinobenzothiazocine **2d** (0.1 g, 0.313 mmol), and CH_2Cl_2 (5 mL) was stirred under argon atmosphere at room temperature for 0.75 h. After evaporation of methylene chloride anhydrous DMSO (5 mL) and a solution of isobutylamine (0.12 g, 1.64 mmol) in anhydrous DMSO (5 mL) were subsequently added. The reaction mixture was heated at

100 °C for 0.25 h, and then allowed to cool to ambient temperature. The mixture was poured into saturated aqueous Na₂CO₃ and extracted with ethyl acetate. The extract was washed with water and dried over Na₂SO₄. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give **1-isobutyl-4a-phenyl-2,3,4,4a-tetrahydro-1H-pyrido[3,2-***b*][1,4]benzothiazine (10) (0.055 g, 52%). Pale-yellow oil. ¹H NMR (CDCl₃): δ 1.04 (d, *J* = 6.7 Hz, 3H, CH₃), 1.07 (d, *J* = 6.7 Hz, 3H, CH₃), 1.65-1.74 (m, 2H), 2.15-2.25 (m, 1H), 2.36-2.50 (m, 2H), 3.45-3.51 (m, 3H), 3.67-3.74 (m, 1H), 6.64-6.69 (m, 1H), 6.97-7.18 (m, 6H), 7.41 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (CDCl₃): δ 19.6 (CH₂), 20.4 (CH₃), 20.6 (CH₃), 26.4 (CH), 36.1 (CH₂), 46.2 (CPh), 49.8 (CH₂), 57.0 (CH₂), 119.4, 120.9, 123.6, 126.5, 127.0, 127.5, 127.6, 141.2, 145.2, 154.6 (C=N). MS (EI) *m/z* (%): 336 [M]⁺ (11), 281 (5), 280 (30), 236 (5), 223 (5), 203 (6), 149 (13), 133 (17), 121 (19), 119 (83), 117 (72), 105 (26), 97 (18), 91 (26), 71 (49), 69 (32), 57 (94), 55 (45), 43 (100), 41 (75).

Procedures for preparation of 2-pyrrol-2-yl derivatives of 1,3-benzoxazole and 1,3-benzothiazole.

2-(1-Benzyl-2-phenylpyrrolidin-2-yl)-1,3-benzoxazole (11a). A solution of dichloride **6** (0.14 g, 0.437 mmol) and benzylamine (0.14 g, 1.31 mmol) in DMSO (5 mL) was heated in an oil bath at 100 °C for 2 h, and then allowed to cool to ambient temperature. The reaction mixture was poured into water and extracted with ethyl acetate. The extract was washed with brine and dried over Na₂SO₄. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give **11a** (0.131 g, 83%). Pale-yellow oil. ¹H NMR (CDCl₃): δ 1.95-2.25 (m, 3H), 2.38-2.48 (m, 1H), 3.13-3.25 (m, 3H, CH₂, CHPh), 4.29 (m, 1H, CHPh), 7.29-7.59 (m, 13H), 7.84-7.86 (m, 1H). ¹³C NMR (CDCl₃): δ 21.7, 41.4, 50.3, 54.3, 71.7 (CPh), 110.9, 120.3, 124.3, 124.9, 126.6, 126.7, 127.4, 128.1, 128.3, 128.4, 139.9, 140.7, 142.8, 150.8, 167.2 (C=N). MS (EI) *m*/*z* (%): 354 [M]⁺ (33), 235 (19), 156 (30), 104 (23), 91 (100), 81 (31).

2-[1-Phenethyl-2-phenylpyrrolidin-2-yl]-1,3-benzoxazole (11b) A mixture of azirinobenzoxazocine **2a** (0.2 g, 0.625 mmol), ZnCl₂ (0.1 g, 0.735 mmol), and CH₂Cl₂ (5 mL) was stirred at room temperature for 1h. The salt was filtered, the solvent was removed and a solution of phenethylamine (0.16 g, 1.322 mmol) in DMSO (5 mL) was added to the residue. The solution was heated in an oil bath at 100 °C for 2 h, and then allowed to cool to ambient temperature. The reaction mixture was poored to water, and extracted with ethyl acetate. The extract was washed with brine and dried over Na₂SO₄. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound **11b** (0.112 g, 48%). Pale-yellow oil. ¹H NMR (CDCl₃): δ 2.00-2.10 (m, 2H), 2.22-2.42 (m, 2H), 2.54-2.60 (m, 1H), 2.83-2.88 (m, 2H), 3.05-3.10 (m, 1H), 3.15-3.25 (m, 1H), 3.54-3.62 (m, 1H), 7.17-7.35 (m, 12H), 7.45-7.50 (m, 1H), 7.75-7.85 (m, 1H). ¹³C NMR (CDCl₃): δ 21.9, 35.9, 41.5, 50.4, 52.2, 71.8 (CPh), 110.8, 120.1, 124.2, 124.8, 125.9, 126.5, 127.1, 128.2, 128.3, 129.0, 140.4, 140.6, 142.9, 150.7, 167.4 (C=N). MS (EI) *m/z* (%): 368 [M]⁺ (6), 284 (3), 279 (10), 278 (20), 277 (100), 248 (33), 234 (5), 208 (5), 167 (16), 149 (35), 105 (12), 91 (14), 77 (10).

2-(1-Benzyl-2-phenylpyrrolidin-2-yl)-1,3-benzothiazole (12). A solution of dichloride 7 (0.14 g, 0.416 mmol) and benzylamine (0.22 g, 2.06 mmol) in DMSO (2 mL) was heated in an oil bath at 100 °C for 5 h, and then allowed to cool to ambient temperature. The reaction mixture was poored to water, and extracted with ethyl acetate. The extract was washed with brine and dried over Na₂SO₄. The solvent was evaporated and the residue was chromatographed on silica (EtOAc/hexane) to give compound **12** (0.051 g, 32%). Pale-yellow oil. ¹H NMR (CDCl₃): δ 2.03-2.18 (m, 2H), 2.68-2.99 (m, 4H), 3.28 and 3.69 (AB, 1+1H *J* = 13.4 Hz, CH₂Ph), 7.31-7.53 (m, 12H), 7.95 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃): δ 22.6 (CH₂), 42.5 (CH₂), 51.2 (CH₂), 55.4 (CH₂), 74.2 (CPh), 121.5, 123.1, 124.7, 125.7, 126.8, 127.4, 128.0, 128.1, 128.2, 128.3, 135.4, 139.7, 141.5, 154.0, 179.7 (C=N). MS (DCI, NH₃) *m/z* (%): 372 [M+2]⁺ (28), 371 [M+H]⁺, (100).

Bibliographic data

Creation method SHELXL-97

<u>Crystal data</u>	
Formula sum	$C_{24} H_{22} N_2 O$
Formula weight	354.44
Crystal system	triclinic
Space group	<i>P</i> -1 (no. 2)
Unit cell dimensions	a = 9.4130(19) E
	b = 10.281(2) E
	c = 11.618(2) E
	$\alpha = 101.32(3)^{\circ}$
	$\beta = 109.63(3)^{\circ}$
	$\gamma = 112.28(3)^{\circ}$
Cell volume	$909.85(30) E^3$
Z	2
Density, calculated	1.294 g/cm^3
R _{All}	0.062
Pearson code	aP98
Formula type	NO2P22Q24
Wyckoff sequence	i ⁴⁹

Atomic coordinates and isotropic displacement parameters (in E²)

OS $2i$ $0.05277(14)0.46571(12)0.73788(11)$ N1 $2i$ $-0.10673(18)$ $0.21741(15)0.40426(13)$ N10 $2i$ $-0.23241(17)$ $0.33697(15)0.49096(13)$ C2 $2i$ $0.0409(2)$ $0.19538(19)0.41170(18)$ H2A $2i$ 0.11050 0.26960 0.38360 H2B $2i$ -0.00220 0.09290 0.34920 C3 $2i$ $0.1554(2)$ $0.21259(19)0.54719(18)$ H3A $2i$ 0.26750 0.22610 0.55220 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.22750 0.44090 0.63340 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.26260 0.36110 0.73870 0.0390 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.08817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ 0.01690 0.61420 0.92130 C6 $2i$ $-0.03651(2)$ $0.52812(19)0.70511(19)$ H7A $2i$ -0.21760 0.65580 C7 $2i$ $-0.2317(2)$ $0.41530(17)0.70482(16)$ C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46060 0.54380 C9A $2i$ $-0.2317(2)$ $0.41539(17)0.70482(16)$ C9A $2i$ $-0.327(2)$ $0.3940(1)0.51350$ C10A $2i$ -0.46980 $0.3940(1)0.51350$ C11 $2i$ $-0.2287(2)$ 0.3722	Atom	Wyck.	X	у	z	U
N1 $2i$ $-0.10673(18)$ $0.21741(15)0.40426(13)$ N10 $2i$ $-0.23241(17)$ $0.33697(15)0.49096(13)$ C2 $2i$ $0.0409(2)$ $0.19538(19)0.41170(18)$ H2A $2i$ 0.11050 0.26960 0.38360 U2B $2i$ -0.00220 0.09290 0.34920 0.0430 C3 $2i$ $0.1554(2)$ $0.21259(19)0.54719(18)$ H3A $2i$ 0.26750 0.222610 0.55220 0.0430 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.23750 0.44090 0.63340 0.0390 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.0888(2)$ $0.48158(17)0.72844(16)$ C6 $2i$ $-0.0817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ $0.0120(2)$ $0.52812(19)0.70511(19)$ H7A $2i$ $-0.2211(2)$ $0.59421(19)0.82619(18)$ H7A $2i$ -0.21760 0.65580 0.90070 C7 $2i$ $-0.2317(2)$ $0.41539(17)0.60482(16)$ C8 $2i$ $-0.3517(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46060 0.54380 C9A $2i$ $-0.3702(2)$ $0.3920(2).7170.64482(16)$ C9A $2i$ $-0.3702(2)$ $0.3420(2).705859(16)$ C11 $2i$ -0.46060 $0.22570(2).00453(17)$ H1A $2i$ $-0.141(2)$ $0.26631(17)$ H1A $2i$ -0.14600 0.22510 0.22590 <td>05</td> <td>2i</td> <td>0.05277(14</td> <td>0.46571(12</td> <td>)0.73788(11)</td> <td>)</td>	05	2i	0.05277(14	0.46571(12)0.73788(11))
N10 $2i$ $-0.23241(17)$ $0.33697(15)0.49096(13)$ C2 $2i$ $0.0409(2)$ $0.19538(19)0.41170(18)$ H2A $2i$ 0.11050 0.26960 0.38360 0.0430 H2B $2i$ -0.00220 0.0290 0.34920 0.0430 C3 $2i$ $0.1554(2)$ $0.21259(19)0.54719(18)$ H3A $2i$ 0.26750 0.22610 0.55220 0.0430 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.23750 0.44090 0.63340 0.0390 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.0881(2)$ $0.48158(17)0.72844(16)$ C6 $2i$ $-0.08817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ 0.01690 0.61420 0.92130 0.0410 C7 $2i$ $-0.2211(2)$ $0.59421(19)0.82619(18)$ H7A $2i$ -0.21760 0.65580 0.90070 0.0450 C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46060 0.54380 0.69710 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.43726(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.13274(16)$ C12 $2i$ $-0.3274(2)$ $0.13274(16)$	N1	2 <i>i</i>	-0.10673(18	3)	0.21741(15)0.40426(13)
C2 2i $0.0409(2)$ $0.19538(19)0.41170(18)$ H2A 2i 0.1050 0.26960 0.33360 0.0430 H2B 2i 0.00220 0.09290 0.34920 0.0430 C3 2i $0.1554(2)$ $0.21259(19)0.54719(18)$ H3A 2i 0.26750 0.22610 0.55220 0.0430 C4 2i 0.26750 0.24090 0.63340 0.0390 H4A 2i 0.26260 0.36110 0.73870 0.0390 H4B 2i 0.26260 0.36110 0.73870 0.0390 H4B 2i 0.26260 0.36110 0.73870 0.0390 H4A 2i $0.0612(2)$ $0.32372(17)0.64586(16)$ $C6$ C5A 2i $-0.0817(2)$ $0.57026(180.83845(17)$ H6A 2i 0.01690 0.61420 0.92130 0.0410 C7 2i -0.21760 0.65380 0.90070 0.04450 <td>N10</td> <td>2<i>i</i></td> <td>-0.23241(17)</td> <td>7)</td> <td>0.33697(15</td> <td>)0.49096(13)</td>	N10	2 <i>i</i>	-0.23241(17)	7)	0.33697(15)0.49096(13)
H2A $2i$ 0.11050 0.26960 0.38360 0.0430 H2B $2i$ -0.00220 0.09290 0.34920 0.0430 C3 $2i$ $0.1554(2)$ $0.21259(19)0.54719(18)$ H3A $2i$ 0.26750 0.22610 0.55220 0.0430 H3B $2i$ 0.10120 0.11990 0.56420 0.0430 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.23750 0.44090 0.63340 0.0390 H4B $2i$ 0.26260 0.36110 0.73870 0.0390 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.088(2)$ $0.48158(17)0.72844(16)$ C6 $2i$ $-0.0817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ 0.01690 0.61420 0.92130 C7 $2i$ $-0.2211(2)$ $0.5921(19)0.82619(18)$ H7A $2i$ -0.21162 0.55810 0.90070 C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46060 0.54380 0.69710 C9A $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 C10A $2i$ $-0.1141(2)$ 0.22690 0.7320 C10A $2i$ $-0.148(2)$ $-0.66231(17)$ H11A $2i$ $-0.3817(2)$ $-0.1878(19)0.26931(17)$ H11A $2i$ $-0.4319(3)$ $-0.2217(2)$ $0.06627(18)$	C2	2 <i>i</i>	0.0409(2)	0.19538(19	0.41170(18))
H2B $2i$ -0.00220 0.09290 0.34920 0.0430 C3 $2i$ $0.1554(2)$ $0.21259(19)0.54719(18)$ H3A $2i$ 0.26750 0.22610 0.55220 0.0430 H3B $2i$ 0.10120 0.11990 0.56420 0.0430 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.23750 0.44090 0.63340 0.0390 H4B $2i$ 0.26260 0.36110 0.73870 0.0390 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.0881(2)$ $0.48158(17)0.72844(16)$ C6 $2i$ $-0.0817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ 0.01690 0.61420 0.92130 0.0410 C7 $2i$ $-0.2211(2)$ $0.59421(19)0.82619(18)$ H7A $2i$ -0.21760 0.65380 0.90070 0.0450 C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46080 0.54380 0.69710 0.0420 C10A $2i$ $-0.3702(2)$ $0.4326(18)0.59581(18)$ H9A $2i$ $-0.287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 C11 $2i$ $-0.327(2)$ $0.18278(190).18743(16)$ C12 $2i$ $-0.327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ -0.6400 -0.23130 -0.09440 0.0560 C14 $2i$	H2A	2 <i>i</i>	0.11050	0.26960	0.38360	0.0430
C3 $2i$ $0.1554(2)$ $0.21259(19)0.54719(18)$ H3A $2i$ 0.26750 0.22610 0.55220 0.0430 H3B $2i$ 0.10120 0.11990 0.56420 0.0430 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.22750 0.44090 0.63340 0.0390 H4B $2i$ 0.26260 0.36110 0.73870 0.0390 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.0888(2)$ $0.48158(17)0.72844(16)$ C6 $2i$ $-0.0817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ 0.01690 0.61420 0.92130 0.0410 C7 $2i$ $-0.2211(2)$ $0.59421(19)0.82619(18)$ H7A $2i$ -0.21760 0.65580 0.90070 0.0450 C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3781(2)$ $0.0297(2)$ H11A $2i$ -0.44500 $-0.2217(2)$ $0.0174(19)$ H14A $2i$ -0.44500 -0.23130 -0.04400 C12 $2i$ $-0.377(2)$ 0.0	H2B	2 <i>i</i>	-0.00220	0.09290	0.34920	0.0430
H3A $2i$ 0.226750 0.22610 0.55220 0.0430 H3B $2i$ 0.10120 0.11990 0.56420 0.0430 C4 $2i$ $0.1839(2)$ $0.34808(18)0.65039(17)$ H4A $2i$ 0.23750 0.44090 0.63340 0.0390 H4B $2i$ 0.26260 0.36110 0.73870 0.0390 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.0888(2)$ $0.48158(17)0.72844(16)$ C6 $2i$ $-0.0817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ 0.01690 0.61420 0.92130 0.0410 C7 $2i$ -0.21760 0.65580 0.90070 0.0450 C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46060 0.54380 0.69710 0.0450 C9 $2i$ $-0.2317(2)$ $0.41539(17)0.60482(16)$ C9 $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46060 0.54380 0.69710 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 C11 $2i$ $-0.22712(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.22520 0.3640 0.0490 C14 $2i$ -0.42870 $-0.917(2)$ $0.0297(2)$ H13A<	C3	2i	0.1554(2)	0.21259(19	0.54719(18))
H3B $2i$ 0.101200.119900.564200.0430C4 $2i$ 0.1839(2)0.34808(18)0.65039(17)H4A $2i$ 0.237500.440900.633400.0390H4B $2i$ 0.262600.361100.738700.0390C4A $2i$ 0.0122(2)0.32372(17)0.64586(16)C5A $2i$ -0.0888(2)0.48158(17)0.72844(16)C6 $2i$ -0.0817(2)0.57026(18)0.83845(17)H6A $2i$ 0.016900.614200.921300.0410C7 $2i$ -0.2211(2)0.59421(19)0.82619(18)H7A $2i$ -0.217600.655800.900700.0450C8 $2i$ -0.3651(2)0.52812(19)0.70511(19)H8A $2i$ -0.460600.543800.697100.0450C9A $2i$ -0.2317(2)0.41539(17)0.60482(16)C9 $2i$ -0.3702(2)0.43926(18)0.59581(18)H9A $2i$ -0.469800.394000.513500.0420C10A $2i$ -0.164000.235100.225900.0460H11B $2i$ -0.164000.235100.225900.0460C11 $2i$ -0.327(2)0.18278(19)0.26931(17)H11A $2i$ -0.164000.23100.094400.0560C12 $2i$ -0.3327(2)0.01554(18)0.18743(16)C13 $2i$ -0.271400.025200.036400.0490C14 $2i$ -0.4423(2)-0.917(2)0.0297(2)H13A $2i$ -0.612	H3A	2 <i>i</i>	0 26750	0 22610	0 55220	0.0430
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3B	2i	0.10120	0 11990	0 56420	0.0430
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4	$\frac{2i}{2i}$	0.1839(2)	0.34808(18)	0.50120)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H4A	2i	0.23750	0.44090	0.63340	0.0390
HAD $2i$ 0.20200 0.3010 0.3010 0.0300 C4A $2i$ $0.0122(2)$ $0.32372(17)0.64586(16)$ C5A $2i$ $-0.0888(2)$ $0.48158(17)0.72844(16)$ C6 $2i$ $-0.0817(2)$ $0.57026(18)0.83845(17)$ H6A $2i$ 0.01690 0.61420 0.92130 0.0410 C7 $2i$ $-0.2211(2)$ $0.59421(19)0.82619(18)$ H7A $2i$ -0.21760 0.65580 0.90070 0.0450 C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46060 0.54380 0.69710 0.04420 C9A $2i$ $-0.2317(2)$ $0.41339(17)0.60482(16)$ C9 $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3217(2)$ 0.02520 0.03640 0.1420 $-0.2917(2)$ $0.0297(2)$ H13A $2i$ -0.44500 -0.23130 $0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 0.30600 0.07780 0.33460 0.0440 C15 $2i$ $-0.2374(2)$ $0.7390(18)0.61693(17)$ <td< td=""><td></td><td>21</td><td>0.25750</td><td>0.36110</td><td>0.73870</td><td>0.0390</td></td<>		21	0.25750	0.36110	0.73870	0.0390
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\frac{2i}{2i}$	0.20200	0.30110 0.32372(17)	0.75870	0.0570
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{2i}{2i}$	0.0122(2)	0.32372(17) 0.48158(17)	0.04380(10))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5A C6	21	-0.0808(2)	0.48136(17	0.72844(10))
HOA $2i$ 0.01090 0.01420 0.92130 0.0410 C7 $2i$ $-0.2211(2)$ $0.59421(19)0.82619(18)$ H7A $2i$ -0.21760 0.65580 0.90070 0.0450 C8 $2i$ $-0.3651(2)$ $0.52812(19)0.70511(19)$ H8A $2i$ -0.46060 0.54380 0.69710 0.0450 C9A $2i$ $-0.2317(2)$ $0.41539(17)0.60482(16)$ C9 $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 H11B $2i$ -0.30810 0.22290 0.27320 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ -0.37140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.917(2)$ $0.0297(2)$ H13A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.2374(2)$ 0.7780 0.53460 0.0400 C20 $2i$ -0.30660 $0.$		21	-0.0817(2)	0.57020(18	0.02120	0.0410
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21	0.01090	0.01420	0.92130	0.0410
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		21	-0.2211(2)	0.59421(19	0.02019(10	0.0450
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Π/A	21	-0.21/00	0.03380	0.90070	0.0430
H8A $2i$ -0.46060 0.534380 0.69710 0.0450 C9A $2i$ $-0.2317(2)$ $0.41539(17)0.60482(16)$ C9 $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 O.1412(2) $0.06627(18)$ H13A $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3328(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ -0.09440 0.0560 C15 $2i$ -0.44500 -0.23130 -0.09440 0.0560 C17 $2i$ $-0.4430(2)$ -0.09440 0.0560 C17 $2i$ $-0.4423(2)$ $-0.9917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ -0.30660 0.07780 0.53460 0.0440 C20 $2i$ $-0.305(2)$ $-0.03294(19)$ $0.66164(18)$ H20A $2i$ -0.225560 -0.10770 0.81160 0.0470 C21 </td <td></td> <td>21</td> <td>-0.3651(2)</td> <td>0.52812(19</td> <td>)0./0511(19</td> <td>)</td>		21	-0.3651(2)	0.52812(19)0./0511(19)
C9A $2i$ $-0.2317(2)$ $0.41539(17)0.60482(16)$ C9 $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 H11B $2i$ -0.30810 0.22290 0.27320 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ -0.30660 0.07780 0.53460 0.0440 C20 $2i$ -0.30660 0.07780 0.53460 0.0440 C21 $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H20A $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ $-0.2085(2)$	H8A	21	-0.46060	0.54380	0.69/10	0.0450
C9 $2i$ $-0.3702(2)$ $0.43926(18)0.59581(18)$ H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 H11B $2i$ -0.30810 0.22290 0.27320 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ -0.61230 -0.39610 -0.22400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.3294(19)$ $0.66164(18)$ H20A $2i$ -0.225560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.407(3)$ $0.0839(2)$ $0.85522(19)$ H21A $2i$ -0.22560 -0.10770 0.81160 0.0470 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	C9A	21	-0.231/(2)	0.41539(17)0.60482(16)
H9A $2i$ -0.46980 0.39400 0.51350 0.0420 C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 H11B $2i$ -0.30810 0.22290 0.27320 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ -0.44270 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.3070(2)$ $-0.3294(19)$ $0.66164(18)$ H20A $2i$ $-0.3070(2)$ $-0.3080(19)$ $0.78072(18)$ H21A $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ <td>C9</td> <td>21</td> <td>-0.3/02(2)</td> <td>0.43926(18</td> <td>)0.59581(18</td> <td>)</td>	C9	21	-0.3/02(2)	0.43926(18)0.59581(18)
C10A $2i$ $-0.1141(2)$ $0.29662(17)0.50859(16)$ C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 H11B $2i$ -0.30810 0.22290 0.27320 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.3070(2)$ $-0.3294(19)$ $0.661644(18)$ H20A $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.0	H9A	21	-0.46980	0.39400	0.51350	0.0420
C11 $2i$ $-0.2287(2)$ $0.18278(19)0.26931(17)$ H11A $2i$ -0.16400 0.23510 0.22590 0.0460 H11B $2i$ -0.30810 0.22290 0.27320 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ -0.61230 -0.39610 -0.02400 0.0570 C18 $2i$ $-0.6087(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.30294(19)$ $0.66164(18)$ H20A $2i$ -0.42270 -0.11150 0.60980 0.0440 C21 $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.20770 0.08370 0.93770 0.0560 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.81079(18)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23	CIOA	21	-0.1141(2)	0.29662(17)0.50859(16)
H11A $2i$ -0.164000.235100.225900.0460H11B $2i$ -0.308100.222900.273200.0460C12 $2i$ -0.3327(2)0.01554(18)0.18743(16)C13 $2i$ -0.3388(2)-0.0412(2)0.06627(18)H13A $2i$ -0.271400.025200.036400.0490C14 $2i$ -0.4423(2)-0.1940(2)-0.01174(19)H14A $2i$ -0.44500-0.23130-0.094400.0560C15 $2i$ -0.61230-0.39610-0.024000.0640C17 $2i$ -0.61230-0.39610-0.024000.0640C17 $2i$ -0.4319(3)-0.0848(2)0.22785(19)H17A $2i$ -0.0687(2)0.19545(17)0.69044(15)C19 $2i$ -0.0687(2)0.19545(17)0.69044(15)C19 $2i$ -0.306600.077800.534600.0400C20 $2i$ -0.3070(2)-0.03294(19)0.66164(18)H20A $2i$ -0.2085(2)-0.03080(19)0.78072(18)H21A $2i$ -0.25560-0.107700.811600.0470C22 $2i$ -0.0407(3)0.0837(2)0.85522(19)H22A $2i$ 0.027700.085700.937700.0560C23 $2i$ 0.027700.085700.937700.0560C23 $2i$ 0.0290(2)0.1965(2)0.81079(18)	C11	2i	-0.2287(2)	0.18278(19)0.26931(17)
H11B $2i$ -0.30810 0.22290 0.27320 0.0460 C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.03294(19)$ $0.66164(18)$ H20A $2i$ $-0.2285(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	H11A	2i	-0.16400	0.23510	0.22590	0.0460
C12 $2i$ $-0.3327(2)$ $0.01554(18)0.18743(16)$ C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.03294(19)$ $0.66164(18)$ H20A $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	H11B	2i	-0.30810	0.22290	0.27320	0.0460
C13 $2i$ $-0.3388(2)$ $-0.0412(2)$ $0.06627(18)$ H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.3294(19)$ $0.66164(18)$ H20A $2i$ $-0.2085(2)$ $-0.3080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	C12	2i	-0.3327(2)	0.01554(18)0.18743(16))
H13A $2i$ -0.27140 0.02520 0.03640 0.0490 C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ -0.44500 $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.3294(19)$ $0.66164(18)$ H20A $2i$ $-0.2085(2)$ $-0.3080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	C13	2 <i>i</i>	-0.3388(2)	-0.0412(2)	0.06627(18))
C14 $2i$ $-0.4423(2)$ $-0.1940(2)$ $-0.01174(19)$ H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.03294(19)$ $0.66164(18)$ H20A $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	H13A	2 <i>i</i>	-0.27140	0.02520	0.03640	0.0490
H14A $2i$ -0.44500 -0.23130 -0.09440 0.0560 C15 $2i$ $-0.5409(3)$ $-0.2917(2)$ $0.0297(2)$ H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.3294(19)$ $0.66164(18)$ H20A $2i$ -0.42270 -0.11150 0.60980 0.0440 C21 $2i$ $-0.2085(2)$ $-0.3080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	C14	2i	-0.4423(2)	-0.1940(2)	-0.01174(19))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H14A	2i	-0.44500	-0.23130	-0.09440	0.0560
H15A $2i$ -0.61230 -0.39610 -0.02400 0.0640 C17 $2i$ $-0.4319(3)$ $-0.0848(2)$ $0.22785(19)$ H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.03294(19)$ $0.66164(18)$ H20A $2i$ -0.42270 -0.11150 0.60980 0.0440 C21 $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	C15	2i	-0.5409(3)	-0.2917(2)	0.0297(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H15A	2i	-0.61230	-0.39610	-0.02400	0.0640
H17A $2i$ -0.42870 -0.04850 0.31090 0.0570 C18 $2i$ $-0.0687(2)$ $0.19545(17)0.69044(15)$ C19 $2i$ $-0.2374(2)$ $0.07990(18)0.61693(17)$ H19A $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.03294(19)$ $0.66164(18)$ H20A $2i$ -0.42270 -0.11150 0.60980 0.0440 C21 $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$	C17	2 <i>i</i>	-0.4319(3)	-0.0848(2)	0.22785(19))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H17A	2 <i>i</i>	-0.42870	-0.04850	0.31090	0.0570
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	2 <i>i</i>	-0.0687(2)	0.19545(17)0.69044(15))
H19A $2i$ -0.30660 0.07780 0.53460 0.0400 C20 $2i$ $-0.3070(2)$ $-0.03294(19)$ $0.66164(18)$ H20A $2i$ -0.42270 -0.11150 0.60980 0.0440 C21 $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$ H22A $2i$ 0.12700 0.927200 0.25200	C19	2 <i>i</i>	-0.2374(2)	0.07990(18)0.61693(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H19A	2 <i>i</i>	-0.30660	0.07780	0.53460	0.0400
H20A $2i$ -0.42270 -0.11150 0.60980 0.0440 C21 $2i$ $-0.2085(2)$ $-0.03080(19)$ $0.78072(18)$ H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$ H22A $2i$ $0.0290(2)$ 0.27400 0.26200 0.25200	C20	2 <i>i</i>	-0.3070(2)	-0.03294(19))	0.66164(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H20A	2 <i>i</i>	-0.42270	-0.11150	0.60980	0.0440
H21A $2i$ -0.25560 -0.10770 0.81160 0.0470 C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$ H22A $2i$ $0.0290(2)$ 0.2740 0.27200	C21	2 <i>i</i>	-0.2085(2)	-0.03080(19	€)	0.78072(18)
C22 $2i$ $-0.0407(3)$ $0.0839(2)$ $0.85522(19)$ H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$ H22A $2i$ $0.0290(2)$ 0.2740 0.8220 0.02500	H21A	2 <i>i</i>	-0.25560	-0.10770	0.81160	0.0470
H22A $2i$ 0.02770 0.08570 0.93770 0.0560 C23 $2i$ $0.0290(2)$ $0.1965(2)$ $0.81079(18)$ H22A $2i$ $0.1244(2)$ 0.27402 0.27202	C22	2 <i>i</i>	-0.0407(3)	0.0839(2)	0.85522(19))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H22A	2 <i>i</i>	0.02770	0.08570	0.93770	0.0560
	C23	2 <i>i</i>	0.0290(2)	0.1965(2)	0.81079(18))
$H_{25}A = 2i = 0.14460 = 0.2/490 = 0.86320 = 0.0500$	H23A	2i	0.14460	0.27490	0.86320	0.0500
C16 $2i$ -0.5351(3) -0.2364(2) 0.1502(2)	C16	2i	-0.5351(3)	-0.2364(2)	0.1502(2)	
	H16A	2 <i>i</i>	-0.60260	-0.30310	0.17990	0.0740
	HIOA	<i>21</i>	-0.60260	-0.30310	0.1/990	0.0740

Anisotropic displacement parameters (in E²)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
05	0.0267(6)	0.0254(6)	0.0337(6)	0.0114(5)	0.0109(5)	0.0067(5)
N1	0.0342(8)	0.0293(7)	0.0308(8)	0.0146(6)	0.0153(6)	0.0098(6)
N10	0.0301(7)	0.0283(7)	0.0321(7)	0.0137(6)	0.0128(6)	0.0124(6)
C2	0.0379(10)	0.0300(9)	0.0438(10)	0.0148(8)	0.0244(9)	0.0123(8)
C3	0.0319(9)	0.0316(9)	0.0461(11)	0.0153(8)	0.0208(8)	0.0126(8)
C4	0.0268(9)	0.0289(8)	0.0385(10)	0.0119(7)	0.0140(7)	0.0107(7)
C4A	0.0291(9)	0.0233(8)	0.0305(9)	0.0121(7)	0.0127(7)	0.0070(7)
C5A	0.0271(8)	0.0243(8)	0.0360(9)	0.0122(7)	0.0148(7)	0.0130(7)
C6	0.0360(9)	0.0271(8)	0.0354(9)	0.0123(7)	0.0162(8)	0.0104(7)
C7	0.0414(10)	0.0307(9)	0.0447(10)	0.0168(8)	0.0257(9)	0.0124(8)
C8	0.0339(9)	0.0330(9)	0.0524(11)	0.0174(8)	0.0236(9)	0.0165(8)
C9A	0.0308(9)	0.0248(8)	0.0352(9)	0.0134(7)	0.0155(7)	0.0132(7)
C9	0.0305(9)	0.0321(9)	0.0434(10)	0.0151(7)	0.0163(8)	0.0173(8)
C10A	0.0281(8)	0.0230(8)	0.0306(9)	0.0087(7)	0.0131(7)	0.0100(7)
C11	0.0494(11)	0.0327(9)	0.0290(9)	0.0182(8)	0.0159(8)	0.0124(7)
C12	0.0326(9)	0.0314(9)	0.0321(9)	0.0153(7)	0.0133(7)	0.0116(7)
C13	0.0394(10)	0.0399(10)	0.0379(10)	0.0149(8)	0.0196(8)	0.0096(8)
C14	0.0427(11)	0.0448(11)	0.0385(10)	0.0219(9)	0.0111(9)	0.0009(9)
C15	0.0472(12)	0.0323(10)	0.0501(13)	0.0121(9)	0.0018(10)	0.0070(9)
C17	0.0488(12)	0.0440(11)	0.0379(11)	0.0110(9)	0.0202(9)	0.0151(9)
C18	0.0297(8)	0.0263(8)	0.0301(9)	0.0152(7)	0.0135(7)	0.0091(7)
C19	0.0295(9)	0.0326(9)	0.0339(9)	0.0138(7)	0.0121(7)	0.0126(7)
C20	0.0347(10)	0.0307(9)	0.043(1)	0.0127(8)	0.0188(8)	0.0132(8)
C21	0.0478(11)	0.0310(9)	0.0434(11)	0.0173(8)	0.0248(9)	0.0178(8)
C22	0.0507(12)	0.0434(11)	0.0352(10)	0.0166(9)	0.0118(9)	0.0203(9)
C23	0.0365(10)	0.0379(10)	0.0349(10)	0.0103(8)	0.0083(8)	0.0140(8)
C16	0.0579(14)	0.0439(12)	0.0543(14)	0.0024(10)	0.0176(11)	0.0212(11)

<u>Selected geometric parameters (E, °)</u>

O5C5A O5C4A N1C10A N1C2 N1C11 N10C10A N10C9A C2C3 C3C4 C4C4A C4AC10A C4AC18 C5AC6 C5AC9A C6C7 C7C8	$\begin{array}{c} 1.374(6)\\ 1.453(34)\\ 1.360(22)\\ 1.468(7)\\ 1.471(37)\\ 1.298(12)\\ 1.404(22)\\ 1.509(33)\\ 1.515(34)\\ 1.515(34)\\ 1.519(8)\\ 1.528(37)\\ 1.536(24)\\ 1.381(25)\\ 1.400(48)\\ 1.391(8)\\ 1.387(48) \end{array}$	$\begin{array}{c} C8-C9\\ C9A-C9\\ C11-C12\\ C12-C17\\ C12-C13\\ C13-C14\\ C14-C15\\ C15-C16\\ C17-C16\\ C18-C19\\ C18-C23\\ C19-C20\\ C20-C21\\ C21-C22\\ C22-C23\\ \end{array}$	$\begin{array}{c} 1.386(25)\\ 1.390(8)\\ 1.508(48)\\ 1.382(24)\\ 1.387(18)\\ 1.388(47)\\ 1.373(24)\\ 1.378(17)\\ 1.378(46)\\ 1.386(52)\\ 1.387(26)\\ 1.387(26)\\ 1.391(21)\\ 1.373(27)\\ 1.379(52)\\ 1.387(21) \end{array}$
C5A—O5—C4A	114.12(15)	C5A—C9A—N10	121.94(15)
C10A—N1—C2	124.64(17)	C8—C9—C9A	120.98(19)
C10A—N1—C11	119.97(14)	N10—C10A—N1	120.82(18)
C2—N1—C11	113.45(15)	N10—C10A—C4A	121.78(17)
C10A—N10—C9A	116.58(17)	N1—C10A—C4A	117.19(14)
N1—C2—C3	113.80(16)	N1—C11—C12	113.05(14)
C2—C3—C4	110.16(15)	C17—C12—C13	117.95(18)
C3—C4—C4A	109.35(17)	C17—C12—C11	120.92(18)
O5—C4A—C4	104.34(15)	C13—C12—C11	121.05(16)

O5-C4A-C10A	108.94(13) C12-C13-C14	120.70(18)
C4—C4A—C10A	110.77(16) C15—C14—C13	120.49(20)
O5-C4A-C18	108.68(14) C14—C15—C16	119.20(21)
C4—C4A—C18	113.57(16) C16—C17—C12	121.35(20)
C10A—C4A—C18	110.29(14) C19—C18—C23	118.21(16)
O5—C5A—C6	119.31(18) C19—C18—C4A	122.82(17)
O5—C5A—C9A	118.48(17) C23—C18—C4A	118.95(15)
C6—C5A—C9A	122.05(16) C18-C19-C20	121.14(18)
C5A—C6—C7	119.02(19) C21—C20—C19	119.99(18)
C8—C7—C6	119.98(19) C20-C21-C22	119.50(18)
C9—C8—C7	120.24(18) C21—C22—C23	120.61(20)
C9—C9A—C5A	117.71(18) C22—C23—C18	120.55(18)
C9—C9A—N10	120.18(18) C17—C16—C15	120.31(19)

¹³C NMR spectra of compounds **2a-d**, **3a**,**b**, **4a**,**b**, **5-10**, **11a**,**b**, **12**.

S14

S15

