[DIOXANE] _{total}	[β-CD] _{total}	k_{obs} /s ⁻¹
1.56x10 ⁻²	0	1.37x10 ⁻²
1.56x10 ⁻²	5.00x10 ⁻⁴	1.16x10 ⁻²
1.56x10 ⁻²	1.00x10 ⁻³	1.02×10^{-2}
1.56x10 ⁻²	2.00x10 ⁻³	8.34x10 ⁻³
1.56x10 ⁻²	3.00x10 ⁻³	7.14x10 ⁻³
1.56x10 ⁻²	4.00x10 ⁻³	6.17x10 ⁻³
1.56x10 ⁻²	5.00x10 ⁻³	5.85x10 ⁻³
1.56x10 ⁻²	6.00x10 ⁻³	4.69×10^{-3}
1.56x10 ⁻²	7.00x10 ⁻³	4.40×10^{-3}
1.56x10 ⁻²	8.00x10 ⁻³	4.24×10^{-3}
3.90x10 ⁻²	0	1.66x10 ⁻²
3.90x10 ⁻²	5.00x10 ⁻⁴	1.44×10^{-2}
3.90x10 ⁻²	1.00x10 ⁻³	1.27x10 ⁻²
3.90x10 ⁻²	2.00x10 ⁻³	1.15x10 ⁻²
3.90x10 ⁻²	3.00x10 ⁻³	1.00×10^{-2}
3.90x10 ⁻²	4.00x10 ⁻³	8.82x10 ⁻³
3.90x10 ⁻²	5.00x10 ⁻³	7.97x10 ⁻³
3.90x10 ⁻²	6.00x10 ⁻³	7.13x10 ⁻³
3.90x10 ⁻²	7.00x10 ⁻³	6.53x10 ⁻³
3.90x10 ⁻²	8.00x10 ⁻³	5.93x10 ⁻³
1.17x10 ⁻¹	0	1.66×10^{-2}
1.17x10 ⁻¹	5.00x10 ⁻⁴	1.52×10^{-2}
1.17x10 ⁻¹	1.00x10 ⁻³	1.44x10 ⁻²
1.17x10 ⁻¹	2.00x10 ⁻³	1.33x10 ⁻²
1.17x10 ⁻¹	3.00x10 ⁻³	1.24×10^{-2}
1.17x10 ⁻¹	4.00x10 ⁻³	1.17x10 ⁻²
1.17x10 ⁻¹	5.00x10 ⁻³	1.09×10^{-2}
$1.17 \text{x} 10^{-1}$	6.00x10 ⁻³	1.01×10^{-2}
1.17x10 ⁻¹	7.00x10 ⁻³	9.31x10 ⁻³

Table S.1. Influence of dioxane and cyclodextrin concentration on k_{obs} for the basic hydrolysis of MNTS at 25.0°C. [NaOH] = 0.175 M.

- r - r

г

Table S.1.			
[DIOXANE] _{total}	[β-CD] _{total}	k_{obs} /s ⁻¹	
1.17x10 ⁻¹	8.00x10 ⁻³	8.84x10 ⁻³	
2.34x10 ⁻¹	0	1.64x10 ⁻²	
2.34x10 ⁻¹	5.00x10 ⁻⁴	1.55x10 ⁻²	
2.34x10 ⁻¹	1.00x10 ⁻³	1.47x10 ⁻²	
2.34x10 ⁻¹	2.00x10 ⁻³	1.42×10^{-2}	
2.34x10 ⁻¹	3.00x10 ⁻³	1.35x10 ⁻²	
2.34x10 ⁻¹	4.00x10 ⁻³	1.30×10^{-2}	
2.34x10 ⁻¹	5.00x10 ⁻³	1.23x10 ⁻²	
2.34x10 ⁻¹	6.00x10 ⁻³	1.17x10 ⁻²	
2.34x10 ⁻¹	7.00x10 ⁻³	1.11x10 ⁻²	
2.34x10 ⁻¹	8.00x10 ⁻³	1.05×10^{-2}	
5.86x10 ⁻¹	0	1.69×10^{-2}	
5.86x10 ⁻¹	5.00x10 ⁻⁴	1.67x10 ⁻²	
5.86x10 ⁻¹	1.00x10 ⁻³	1.63×10^{-2}	
5.86x10 ⁻¹	2.00x10 ⁻³	1.59x10 ⁻²	
5.86x10 ⁻¹	3.00x10 ⁻³	1.55x10 ⁻²	
9.37x10 ⁻¹	0	1.70x10 ⁻²	
9.37x10 ⁻¹	5.00x10 ⁻⁴	1.66x10 ⁻²	
9.37x10 ⁻¹	1.00x10 ⁻³	1.66x10 ⁻²	
9.37x10 ⁻¹	2.00×10^{-3}	1.66x10 ⁻²	
9.37x10 ⁻¹	3.00×10^{-3}	1.63x10 ⁻²	
9.37x10 ⁻¹	4.00x10 ⁻³	1.64x10 ⁻²	
9.37x10 ⁻¹	5.00x10 ⁻³	1.62×10^{-2}	
9.37x10 ⁻¹	6.00x10 ⁻³	1.61x10 ⁻²	
9.37x10 ⁻¹	7.00×10^{-3}	1.61x10 ⁻²	
9.37x10 ⁻¹	8.00x10 ⁻³	1.59x10 ⁻²	

[DIOXANE] _{total}	[β-CD] _{total}	k_{obs} /s ⁻¹
1.95x10 ⁻²	0	5.03x10 ⁻³
1.95x10 ⁻²	5.00x10 ⁻⁴	3.02x10 ⁻³
1.95x10 ⁻²	1.00x10 ⁻³	2.34x10 ⁻³
1.95x10 ⁻²	2.00x10 ⁻³	1.59x10 ⁻³
1.95x10 ⁻²	4.00x10 ⁻³	1.03x10 ⁻³
1.95x10 ⁻²	6.00x10 ⁻³	7.11x10 ⁻⁴
3.90x10 ⁻²	0	5.03x10 ⁻³
3.90x10 ⁻²	5.00x10 ⁻⁴	3.47x10 ⁻³
3.90x10 ⁻²	1.00x10 ⁻³	2.71x10 ⁻³
3.90x10 ⁻²	2.00x10 ⁻³	1.95x10 ⁻³
3.90x10 ⁻²	4.00x10 ⁻³	1.31x10 ⁻³
3.90x10 ⁻²	6.00x10 ⁻³	9.42x10 ⁻⁴
7.03x10 ⁻²	0	4.86x10 ⁻³
7.03x10 ⁻²	5.00x10 ⁻⁴	3.84x10 ⁻³
7.03x10 ⁻²	1.00x10 ⁻³	2.90x10 ⁻³
7.03x10 ⁻²	2.00x10 ⁻³	2.29x10 ⁻³
7.03x10 ⁻²	4.00x10 ⁻³	1.48x10 ⁻³
7.03x10 ⁻²	6.00x10 ⁻³	1.12×10^{-3}
1.17x10 ⁻¹	0	4.73x10 ⁻³
1.17x10 ⁻¹	5.00x10 ⁻⁴	4.01x10 ⁻³
1.17x10 ⁻¹	1.00x10 ⁻³	3.42×10^{-3}
1.17x10 ⁻¹	2.00x10 ⁻³	2.71x10 ⁻³
1.17x10 ⁻¹	4.00x10 ⁻³	1.90x10 ⁻³
1.17x10 ⁻¹	6.00x10 ⁻³	1.43×10^{-3}
1.72x10 ⁻¹	0	4.47x10 ⁻³
1.72x10 ⁻¹	5.00x10 ⁻⁴	3.98x10 ⁻³
1.72x10 ⁻¹	1.00x10 ⁻³	3.64x10 ⁻³
1.72x10 ⁻¹	2.00x10 ⁻³	2.96x10 ⁻³
1.72x10 ⁻¹	4.00x10 ⁻³	2.26x10 ⁻³
1.72x10 ⁻¹	6.00x10 ⁻³	1.79x10 ⁻³
2.32x10 ⁻¹	0	4.64×10^{-3}

Table S.2. Influence of dioxane and cyclodextrin concentration on k_{obs} for the acid hydrolysis of MNTS at 25.0°C. [HCl] = 0.160 M.

Table S.2.		
[DIOXANE] _{total}	[β-CD] _{total}	k _{obs} /s ⁻¹
2.32x10 ⁻¹	5.00x10 ⁻⁴	4.13x10 ⁻³
2.32x10 ⁻¹	1.00x10 ⁻³	3.72x10 ⁻³
2.32x10 ⁻¹	2.00x10 ⁻³	3.11x10 ⁻³
2.32x10 ⁻¹	4.00x10 ⁻³	2.43x10 ⁻³
2.32x10 ⁻¹	6.00x10 ⁻³	1.98x10 ⁻³

Figure S.1. (A) Influence of [β -CD] on k_{obs} for the basic hydrolysis of MNTS in the presence of dioxane at 25.0°C and [NaOH]=0.175M. (\bigcirc) [Dioxane]=1.56x10⁻²M; (\bigcirc) [Dioxane]=3.90x10⁻²M; (\square) [Dioxane]=0.117M; (\blacksquare) [Dioxane]=0.234M; (\triangle) [Dioxane]=0.586M; and (\blacktriangle) [Dioxane]=0.937M. (B) Data fitted according to equation (4).

Figure S.2. Influence of $K_{Dioxane}^{\beta-CDH}$ and $K_{Dioxane}^{\beta-CD^{-}}$ values on the correlation coeffcient for fitting experimental results to equation (9) in the acid (\bullet) and basic (\bigcirc) hydrolysis of MNTS.

[DMSO] _{total}	[β-CD] _{total}	$k_{obs}/{ m s}^{-1}$
0.038	0	1.57x10 ⁻²
0.038	5.00x10 ⁻⁴	1.21x10 ⁻²
0.038	1.00x10 ⁻³	9.84x10 ⁻³
0.038	2.00x10 ⁻³	7.43x10 ⁻³
0.038	4.00x10 ⁻³	5.37x10 ⁻³
0.038	6.00x10 ⁻³	4.40x10 ⁻³
0.232	0	1.58x10 ⁻²
0.232	5.00x10 ⁻⁴	1.29x10 ⁻²
0.232	1.00x10 ⁻³	1.12x10 ⁻²
0.232	2.00x10 ⁻³	8.95x10 ⁻³
0.232	4.00x10 ⁻³	6.66x10 ⁻³
0.232	6.00x10 ⁻³	5.42x10 ⁻³
0.504	0	1.67x10 ⁻²
0.504	5.00x10 ⁻⁴	1.52x10 ⁻²
0.504	1.00x10 ⁻³	1.33x10 ⁻²
0.504	2.00x10 ⁻³	1.13x10 ⁻²
0.504	4.00x10 ⁻³	9.43x10 ⁻³
0.504	6.00x10 ⁻³	7.99x10 ⁻³
1.110	0	1.95x10 ⁻²
1.110	5.00x10 ⁻⁴	1.93x10 ⁻²
1.110	1.00x10 ⁻³	1.73x10 ⁻²
1.110	2.00x10 ⁻³	1.60x10 ⁻²
1.110	4.00x10 ⁻³	1.30x10 ⁻²
1.110	6.00x10 ⁻³	1.10x10 ⁻²
1.550	0	1.75x10 ⁻²
1.550	5.00x10 ⁻⁴	1.69x10 ⁻²
1.550	1.00x10 ⁻³	1.63x10 ⁻²
1.550	2.00x10 ⁻³	1.51x10 ⁻²
1.550	4.00x10 ⁻³	1.35x10 ⁻²
1.550	6.00x10 ⁻³	1.20x10 ⁻²

Table S.3. Influence of DMSO and cyclodextrin concentration on k_{obs} for the basic hydrolysis of MNTS at 25.0°C. [NaOH] = 0.175 M.

Table S.4. Influence of DMSO and cyclodextrin concentration on k_{obs} for the acid hydrolysis of MNTS at 25.0°C. [HCl] = 0.160 M

[DMSO] _{total}	[β-CD] _{total}	k_{obs}/s^{-1}
0.116	0	3.89x10 ⁻³
0.116	5.00x10 ⁻⁴	2.46x10 ⁻³
0.116	1.00x10 ⁻³	1.72×10^{-3}
0.116	2.00x10 ⁻³	1.09x10 ⁻³
0.116	4.00x10 ⁻³	6.83x10 ⁻⁴
0.116	6.00x10 ⁻³	4.33x10 ⁻⁴
0.194	0	4.46×10^{-3}
0.194	5.00x10 ⁻⁴	2.70×10^{-3}
0.194	1.00x10 ⁻³	1.94x10 ⁻³
0.194	2.00x10 ⁻³	1.22×10^{-3}
0.194	4.00x10 ⁻³	7.77x10 ⁻⁴
0.194	6.00x10 ⁻³	5.87x10 ⁻⁴
0.310	0	3.70×10^{-3}
0.310	5.00x10 ⁻⁴	2.35x10 ⁻³
0.310	1.00x10 ⁻³	1.68×10^{-3}
0.310	2.00x10 ⁻³	1.12×10^{-3}
0.310	4.00x10 ⁻³	7.94x10 ⁻⁴
0.310	6.00x10 ⁻³	5.75x10 ⁻⁴
0.465	0	4.38x10 ⁻³
0.465	5.00x10 ⁻⁴	2.94x10 ⁻³
0.465	1.00x10 ⁻³	2.26x10 ⁻³
0.465	2.00x10 ⁻³	1.57×10^{-3}
0.465	4.00x10 ⁻³	9.90x10 ⁻⁴
0.465	6.00x10 ⁻³	7.55x10 ⁻⁴
0.698	0	4.47x10 ⁻³
0.698	5.00x10 ⁻⁴	3.35x10 ⁻³
0.698	1.00x10 ⁻³	2.73x10 ⁻³
0.698	2.00x10 ⁻³	2.00x10 ⁻³
0.698	4.00x10 ⁻³	1.19x10 ⁻³
0.698	6.00x10 ⁻³	9.96x10 ⁻⁴
1.000	0	3.63x10 ⁻³
1.000	5.00x10 ⁻⁴	2.93x10 ⁻³
1.000	1.00x10 ⁻³	2.47x10 ⁻³

Table S.4.			
[DMSO] _{total}	[β-CD] _{total}	k_{obs} /s ⁻¹	
1.000	2.00x10 ⁻³	1.82x10 ⁻³	
1.000	4.00x10 ⁻³	1.24x10 ⁻³	
1.000	6.00x10 ⁻³	9.72x10 ⁻⁴	
1.474	0	3.35x10 ⁻³	
1.474	5.00x10 ⁻⁴	2.81x10 ⁻³	
1.474	1.00x10 ⁻³	2.39x10 ⁻³	
1.474	2.00x10 ⁻³	1.35x10 ⁻³	
1.474	4.00x10 ⁻³	1.16x10 ⁻³	

Table S.5. Kinetic constants obtained by fitting eq. (2) to the experimental results for the acid and basic hydrolysis of MNTS in the presence of β -CD and variable concentrations of DMSO at 25.0°C.

	[NaOH] = 0.17	0M		[HCl] = 0.160M	[
[DMSO]/M	$K_{app}^{~eta-CD^-}$ /M $^{-1}$	$10^2 k_w / \mathrm{M}^{-1} \mathrm{s}^{-1}$	[DMSO]/M	$K_{app}^{~eta-CDH}$ /M $^{-1}$	$10^2 k_w / \mathrm{M}^{-1} \mathrm{s}^{-1}$
			0	1690±280	3.21±0.54
0.038	379±23	8.21±0.49	0.116	1405±140	2.55±0.25
0.233	294±10	8.67±0.29	0.194	935±70	2.29±0.17
0.504	172±7	9.40±0.40	0.310	728±55	1.85±0.14
1.110	135±3	11.8±0.30	0.465	725±29	2.40±0.10
1.550	76±1	10.3±0.10	0.698	574±44	2.58±0.20
			1.000	449±11	2.15±0.05
			1.474	306±19	1.93±0.12

Figure S.3. (A) Influence of [β -CD] on k_{obs} for the acid hydrolysis of MNTS in the presence of DMSO at 25.0°C and [HCl]=0.160M. (\bigcirc) [DMSO]=0.116M; (\bigcirc) [DMSO]=0.194M; (\Box) [DMSO]= 0.310M; (\blacksquare) [DMSO]=465M; (\triangle) [DMSO]=0.698M; (\blacktriangle) [DMSO]=1.000M; and (\bigtriangledown) 1.474M (B) Data fitted according to equation (4).

Figure S.4. (A) Influence of [β -CD] on k_{obs} for the Basic hydrolysis of MNTS in the presence of DMSO at 25.0°C and [NaOH]=0.175M. (\bigcirc) [DMSO]=3.80x10⁻²M; (\bigcirc) [DMSO]=0.233M; (\Box) [DMSO]= 0.504M; (\blacksquare) [DMSO]=1.110M; and (\triangle) [DMSO]=1.550M. (B) Data fitted according to equation (4).

Figure S.5. Influence of [DMSO] on K_{app} (o) for the acid (A) and basic (B) hydrolysis of MNTS in the presence of β -CD. (—) Data fitted according to equation (5).

Figure S.6. Influence of $K_{DMSO}^{\beta-CDH}$ and $K_{DMSO}^{\beta-CD^-}$ values on the correlation coeffcient of fitting equation (9) to the experimental results for the acid (\bullet) and basic (\bigcirc) hydrolysis of MNTS.

Figure S.7. [A] (o) Influence of the concentration of free β -CD on k_{obs}/k_w for the acid hydrolysis of MNTS in the presence of variable concentrations of DMSO. (•) Fitting of the data to eq. (5). [B] Analysis of the experimental results for the basic hydrolysis of MNTS.

[CH ₃ CN] _{total}	[β-CD] _{total}	k _{obs} /s ⁻¹
9.57x10 ⁻²	5.00x10 ⁻⁴	1.20x10 ⁻²
9.57x10 ⁻²	1.00x10 ⁻³	1.02x10 ⁻²
9.57x10 ⁻²	2.00x10 ⁻³	8.00x10 ⁻³
9.57x10 ⁻²	3.00x10 ⁻³	6.75x10 ⁻³
9.57x10 ⁻²	4.00x10 ⁻³	5.67x10 ⁻³
9.57x10 ⁻²	5.00x10 ⁻³	5.00x10 ⁻³
9.57x10 ⁻²	6.00x10 ⁻³	4.50x10 ⁻³
9.57x10 ⁻²	7.00x10 ⁻³	4.17x10 ⁻³
9.57x10 ⁻²	8.00x10 ⁻³	3.85x10 ⁻³
9.57x10 ⁻²	9.00x10 ⁻³	3.62x10 ⁻³
0.638	5.00x10 ⁻⁴	1.23x10 ⁻²
0.638	1.00x10 ⁻³	1.10x10 ⁻²
0.638	2.00x10 ⁻³	8.70x10 ⁻³
0.638	3.00x10 ⁻³	7.31x10 ⁻³
0.638	4.00x10 ⁻³	6.54x10 ⁻³
0.638	5.00x10 ⁻³	5.75x10 ⁻³
0.638	6.00x10 ⁻³	5.32x10 ⁻³
0.638	7.00x10 ⁻³	4.75x10 ⁻³
0.638	8.00x10 ⁻³	4.51x10 ⁻³
0.957	5.00x10 ⁻⁴	1.30x10 ⁻²
0.957	1.00x10 ⁻³	1.16x10 ⁻²
0.957	2.00x10 ⁻³	9.56x10 ⁻³
0.957	3.00x10 ⁻³	8.30x10 ⁻³
0.957	4.00x10 ⁻³	7.15x10 ⁻³
0.957	5.00x10 ⁻³	6.44x10 ⁻³
0.957	6.00x10 ⁻³	5.85x10 ⁻³
1.910	5.00x10 ⁻⁴	1.44x10 ⁻²
1.910	1.00x10 ⁻³	1.34x10 ⁻²
1.910	2.00x10 ⁻³	1.22x10 ⁻²
1.910	3.00x10 ⁻³	1.07x10 ⁻²
1.910	4.00x10 ⁻³	9.61x10 ⁻³
1.910	5.00x10 ⁻³	9.03x10 ⁻³
1.910	6.00x10 ⁻³	8.18x10 ⁻³

Table S.6. Influence of acetonitrile and cyclodextrin concentration on k_{obs} for the basic hydrolysis ofMNTS at 25.0°C. [NaOH] = 0.175 M.

Table S.6.			
[CH ₃ CN] _{total}	[β-CD] _{total}	k_{obs} /s ⁻¹	
1.910	7.00x10 ⁻³	7.64x10 ⁻³	
1.910	8.00x10 ⁻³	7.17x10 ⁻³	
1.910	9.00x10 ⁻³	6.81x10 ⁻³	
2.870	5.00x10 ⁻⁴	1.16x10 ⁻²	
2.870	1.00x10 ⁻³	1.12x10 ⁻²	
2.870	2.00x10 ⁻³	1.09x10 ⁻²	
2.870	3.00x10 ⁻³	1.03x10 ⁻²	
2.870	4.00x10 ⁻³	9.52x10 ⁻³	
2.870	5.00x10 ⁻³	9.55x10 ⁻³	
2.870	6.00x10 ⁻³	9.04x10 ⁻³	
2.870	7.00x10 ⁻³	8.55x10 ⁻³	
2.870	8.00x10 ⁻³	8.40x10 ⁻³	
2.870	9.00x10 ⁻³	8.04x10 ⁻³	
3.830	5.00x10 ⁻⁴	9.55x10 ⁻³	
3.830	1.00x10 ⁻³	9.19x10 ⁻³	
3.830	2.00x10 ⁻³	9.07x10 ⁻³	
3.830	3.00x10 ⁻³	8.69x10 ⁻³	
3.830	4.00x10 ⁻³	8.54x10 ⁻³	
3.830	5.00x10 ⁻³	8.51x10 ⁻³	
3.830	6.00x10 ⁻³	8.15x10 ⁻³	
3.830	7.00x10 ⁻³	7.92x10 ⁻³	
3.830	8.00x10 ⁻³	7.71x10 ⁻³	
3.830	9.00x10 ⁻³	7.66x10 ⁻³	

[CH ₃ CN] _{total}	[β-CD] _{total}	k _{obs} /s ⁻¹
6.38x10 ⁻²	0	4.96x10 ⁻³
6.38x10 ⁻²	5.00x10 ⁻⁴	2.83x10 ⁻³
6.38x10 ⁻²	1.00x10 ⁻³	1.98x10 ⁻³
6.38x10 ⁻²	2.00x10 ⁻³	1.24x10 ⁻³
6.38x10 ⁻²	4.00x10 ⁻³	7.10x10 ⁻⁴
6.38x10 ⁻²	6.00x10 ⁻³	5.00x10 ⁻⁴
0.510	0	4.85x10 ⁻³
0.510	5.00x10 ⁻⁴	2.77x10 ⁻³
0.510	1.00x10 ⁻³	1.98x10 ⁻³
0.510	2.00x10 ⁻³	1.32x10 ⁻³
0.510	4.00x10 ⁻³	7.60x10 ⁻⁴
0.510	6.00x10 ⁻³	5.50x10 ⁻⁴
0.957	0	4.33x10 ⁻³
0.957	5.00x10 ⁻⁴	2.89x10 ⁻³
0.957	1.00x10 ⁻³	2.22x10 ⁻³
0.957	2.00x10 ⁻³	1.52x10 ⁻³
0.957	4.00x10 ⁻³	8.70x10 ⁻⁴
0.957	6.00x10 ⁻³	6.30x10 ⁻⁴
1.468	0	3.58x10 ⁻³
1.468	5.00x10 ⁻⁴	2.62x10 ⁻³
1.468	1.00x10 ⁻³	2.12x10 ⁻³
1.468	2.00x10 ⁻³	1.50x10 ⁻³
1.468	4.00x10 ⁻³	9.58x10 ⁻⁴
1.468	6.00x10 ⁻³	7.35x10 ⁻⁴
1.978	0	3.16x10 ⁻³
1.978	5.00x10 ⁻⁴	2.71x10 ⁻³
1.978	1.00x10 ⁻³	2.20x10 ⁻³
1.978	2.00x10 ⁻³	1.65x10 ⁻³
1.978	4.00x10 ⁻³	1.13x10 ⁻³
1.978	6.00x10 ⁻³	8.40x10 ⁻⁴
2.872	0	2.92x10 ⁻³
2.872	5.00x10 ⁻⁴	2.62x10 ⁻³
2.872	1.00x10 ⁻³	2.30x10 ⁻³

Table S.7. Influence of acetonitrile and cyclodextrin concentration on k_{obs} for the acid hydrolysis ofMNTS at 25.0°C. [HCl] = 0.160 M

Table S.7			
[CH ₃ CN] _{total}	[β-CD] _{total}	$k_{obs}/{ m s}^{-1}$	
2.872	2.00x10 ⁻³	2.01x10 ⁻³	
2.872	4.00x10 ⁻³	1.48x10 ⁻³	
2.872	6.00x10 ⁻³	1.18x10 ⁻³	

Figure S.8. (A) Influence of [β -CD] on k_{obs} for the basic hydrolysis of MNTS in the presence of acetonitrile at 25.0°C and [NaOH]=0.175M. (O) [CH₃CN]=9.57x10⁻²M; (\bullet) [CH₃CN]=0.638M; (\Box) [CH₃CN]= 0.957M; (\blacksquare) [CH₃CN]=1.910M; (\triangle) [CH₃CN]=2.870; and (\blacktriangle) [CH₃CN]=3.830M. Data fitted according to equation (4).

Figure S.9. Influence of $K_{Acetonitrile}^{\beta-CD^{+}}$ and $K_{Acetonitrile}^{\beta-CD^{-}}$ values on the correlation coeffcient for fitting equation 9 to the experimental results for the acid (\bullet) and basic (\bigcirc) hydrolysis of MNTS.

Table S.8. Influence of α -cyclodextrin concentration on k_{obs} for the basic hydrolysis of MNTS at 25.0°C. [NaOH] = 0.162 M.

[α-CD] _{total}	k_{obs} /s ⁻¹
0	1.35x10 ⁻²
1.06x10 ⁻²	1.59x10 ⁻²
2.11x10 ⁻²	1.77x10 ⁻²
3.17x10 ⁻²	1.87x10 ⁻²
4.23x10 ⁻²	1.94x10 ⁻²
5.29x10 ⁻²	2.00x10 ⁻²
6.70×10^{-2}	2.11x10 ⁻²
8.46x10 ⁻²	2.09x10 ⁻²
9.87x10 ⁻²	2.13x10 ⁻²
1.13x10 ⁻¹	2.13x10 ⁻²
1.27×10^{-1}	2.08x10 ⁻²
1.55×10^{-1}	1.98x10 ⁻²
2.07x10 ⁻¹	1.88x10 ⁻²
2.58×10^{-1}	1.82×10^{-2}
3.20x10 ⁻¹	1.70x10 ⁻²
2.25x10 ⁻¹	1.88x10 ⁻²
1.75x10 ⁻¹	1.94x10 ⁻²

Table S.9. Influence of acetonitrile and cyclodextrin concentration on k_{obs} for the acid hydrolysis ofMNTS at 25.0°C. [HCl] = 0.160 M

	1	
[CH ₃ CN] _{total}	[a-CD] _{total}	k_{obs} /s ⁻¹
3.19x10 ⁻²	0	4.95x10 ⁻³
3.19x10 ⁻²	1.66x10 ⁻²	3.61x10 ⁻³
3.19x10 ⁻²	4.75x10 ⁻²	2.52x10 ⁻³
3.19x10 ⁻²	7.13x10 ⁻²	2.15x10 ⁻³
3.19x10 ⁻²	1.09x10 ⁻¹	1.86x10 ⁻³
3.19x10 ⁻²	1.35x10 ⁻¹	1.66x10 ⁻³
6.38x10 ⁻²	0	5.13x10 ⁻³
6.38x10 ⁻²	1.66x10 ⁻²	3.77x10 ⁻³
6.38x10 ⁻²	4.75x10 ⁻²	2.63x10 ⁻³
6.38x10 ⁻²	7.13x10 ⁻²	2.28x10 ⁻³
6.38x10 ⁻²	1.09x10 ⁻¹	1.92x10 ⁻³
6.38x10 ⁻²	1.35x10 ⁻¹	1.79x10 ⁻³
1.28x10 ⁻¹	0	4.95x10 ⁻³
1.28x10 ⁻¹	1.66x10 ⁻²	3.94x10 ⁻³
1.28x10 ⁻¹	4.75x10 ⁻²	2.80x10 ⁻³
1.28x10 ⁻¹	7.13x10 ⁻²	2.45x10 ⁻³
1.28x10 ⁻¹	1.09x10 ⁻¹	2.12x10 ⁻³
1.28x10 ⁻¹	1.35x10 ⁻¹	1.92x10 ⁻³
1.95x10 ⁻¹	0	4.85x10 ⁻³
1.95x10 ⁻¹	1.66x10 ⁻²	3.96x10 ⁻³
1.95x10 ⁻¹	4.75x10 ⁻²	2.99x10 ⁻³
1.95x10 ⁻¹	7.13x10 ⁻²	2.62x10 ⁻³
1.95x10 ⁻¹	1.09x10 ⁻¹	2.18x10 ⁻³
1.95x10 ⁻¹	1.35x10 ⁻¹	1.97x10 ⁻³
3.19x10 ⁻¹	0	4.78x10 ⁻³
3.19x10 ⁻¹	1.66x10 ⁻²	4.02×10^{-3}
3.19x10 ⁻¹	4.75x10 ⁻²	3.27x10 ⁻³
3.19x10 ⁻¹	7.13x10 ⁻²	2.86x10 ⁻³
3.19x10 ⁻¹	1.09x10 ⁻¹	2.40x10 ⁻³
3.19x10 ⁻¹	1.35x10 ⁻¹	2.06x10 ⁻³
5.11x10 ⁻¹	0	4.74x10 ⁻³
3.19x10 ⁻¹	1.66×10^{-2}	4.34×10^{-3}

Table S.9		
[CH ₃ CN] _{total}	[a-CD] _{total}	$k_{obs}/{ m s}^{-1}$
3.19x10 ⁻¹	4.75x10 ⁻²	3.51x10 ⁻³
3.19x10 ⁻¹	7.13x10 ⁻²	3.27x10 ⁻³
3.19x10 ⁻¹	1.09x10 ⁻¹	2.74x10 ⁻³
3.19x10 ⁻¹	1.35x10 ⁻¹	2.58x10 ⁻³

Figure S.10. Influence of the $K_{Acetonitrile}^{\alpha-CDH}$ values on the Reduced Chi Squared Value for the fitting of equation 20 to the experimental results in the acid hydrolysis of MNTS.

EQUATIONS

From Equation (1) to (2):

Since the total concentration of β -CD will be the combination of those of free and bound cyclodextrin, then^[17] $[CD] = [CD]_T - [Solvent - CD]$. By using the binding constant of the cosolvent to β -CD, the following expression for the concentration of free cyclodextrin as a function of the total CD and organic cosolvent concentrations can be obtained:

$$\left[CD\right]_{free} = \frac{\left[CD\right]_{T}}{1 + K_{Dioxane}^{\beta - CDH} \left[Dioxane\right]_{T}}$$
(S1)

A combination of eqs (1) and (2) yields

$$k_{obs} = \frac{k_{w} \left[H^{+} \right]}{1 + K_{MNTS}^{\beta - CDH} \frac{\left[CD \right]_{T}}{1 + K_{Dioxane}^{\beta - CDH} \left[Dioxane \right]_{T}}} = \frac{k_{w} \left[H^{+} \right]}{1 + K_{app} \left[CD \right]_{T}}$$
(S2)

To obtain equation (4):

A general, quantitative analysis can be performed by using the binding mechanism of Scheme 2 and its associated expression for k_{obs} [eq. (1)]. Since the total cyclodextrin concentration will be the combination of the free and bound forms $([\beta - CD]_T = [\beta - CD]_{free} + [MNTS - CD] + [Dioxane - CD])$, it can be expressed as function of the binding constants for MNTS ($K_{MNTS}^{\beta-CDH}$) and dioxane ($K_{Dioxane}^{\beta-CDH}$):

$$\left[\beta - CD\right]_{T} = \left[\beta - CD\right]_{free} \left(1 + \frac{\left[MNTS\right]_{T} K_{MNTS}^{\beta - CDH}}{1 + K_{MNTS}^{\beta - CDH} \left[\beta - CD\right]_{free}}\right) + \left[Dioxane\right]_{T} - \frac{\left[Dioxane\right]_{T}}{1 + K_{Dioxane}^{\beta - CDH} \left[\beta - CD\right]_{free}}$$
(S3)

The low concentration of MNTS used in the kinetic tests allows one to assume that

$$1 \gg \frac{\left[MNTS\right]_{T} K_{MNTS}^{\beta-CDH}}{1 + K_{MNTS}^{\beta-CDH} \left[\beta - CD\right]_{free}}$$

so that eq. (S3) can be reduced to

$$\left[\beta - CD\right]_{T} \approx \left[\beta - CD\right]_{free} + \left[Dioxane\right]_{T} - \frac{\left[Dioxane\right]_{T}}{1 + K_{Dioxane}^{\beta - CDH} \left[\beta - CD\right]_{free}} = 0$$
(S4)

To obtain equation 7:

The mass balances for MNTS, acetonitrile and the cyclodextrin can be expressed as follows:

$$[MNTS]_{total} = [MNTS]_{w} + [MNTS - CD]$$
(S5)

$$\left[\beta - CD\right]_{T} = \left[\beta - CD\right]_{free} + \left[MNTS - CD\right] + \left[\left(CH_{3}CN\right)_{2} - CD\right]$$
(S6)

$$\left[CH_{3}CN\right]_{T} = \left[CH_{3}CN\right]_{free} + 2\left[\left(CH_{3}CN\right)_{2} - CD\right]$$
(S7)

Based on the mass balance for acetonitrile and the formation equilibrium constant for its complex with β -CD one can write the following second-order equation:

$$2 K_{CH_3CN}^{\beta-CDH} \left[\beta - CD\right]_{free} \left[CH_3CN\right]_{free}^2 + \left[CH_3CN\right]_{free} - \left[CH_3CN\right]_T = 0$$
(S8)

Once the concentration of unbound acetonitrile is known, that of free β -CD can be calculated from

$$\left[\beta - CD\right]_{T} = \left[\beta - CD\right]_{free} + \frac{\left[MNTS\right]_{T} K_{MNTS}^{\beta - CDH} \left[\beta - CD\right]_{free}}{1 + K_{MNTS}^{\beta - CDH} \left[\beta - CD\right]_{free}} + \frac{\left[CH_{3}CN\right]_{T} - \left[CH_{3}CN\right]_{free}}{2}$$
(S9)

The second term in which can be assumed to be negligible since $[MNTS]_T$ was very low. Therefore:

$$\left[\beta\text{-CD}\right]_{free} = \left[\beta\text{-CD}\right]_{T} - \frac{\left[CH_{3}CN\right]_{T} - \left[CH_{3}CN\right]_{free}}{2}$$
(S10)