Electronic Supplementary Information 3

Non-identical Electronic Characters of the Internucleotidic Phosphates in RNA Modulate the Chemical Reactivity of the Phosphodiester Bonds

Jharna Barman¹, Sandipta Acharya¹, Chuanzheng Zhou¹, Subhrangsu Chatterjee¹, Åke Engström², and Jyoti Chattopadhyaya¹*

¹Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden

²Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden

jyoti@boc.uu.se

Content:

Figure S12B. Panels (e1) – (e2j), (f1) – (f2i) and (g1) – (g2j) show the RP-Hplc and SMARTTM RP-Hplc profiles of N^{1-Me}-G containing heptameric ssRNAs at neutral state (0.0 h) and at 1h of alkaline digestion. p. S2 – S15

Figure S12(e1): Hplc analysis of alkaline Hydrolysis products of 5'- $r(CAAG^{Me}AAC)$ -3' (5c) [after digestion for 0h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.

Notes:

Non-nucleot(s)idic impurity § 5'-r(AAG^{Me}AAC)-3' contamination

Result Table - Calculation Method Uncal

Peak	Reten.	Area	Height	W05	Area	Height
No.	time	[mV.s]	[mV]	[min.]	[8]	[8]
1	6,447	17,5850	2,416	0,140	0,100	0,194
2	6,867	153,4773	7,810	0,273	0,869	0,628
3	10,447	244,5266	25,133	0,147	1,385	2,019
4	17,507	32,0126	2,161	0,247	0,181	0,174
5	20,387	22,8094	1,731	0,213	0,129	0,139
6	20,467	47,8386	1,574	0,660	0,271	0,126
7	21,360	145,8206	9,212	0,247	0,826	0,740
8	22,893	36,3542	2,152	0,293	0,206	0,173
9	23,367	141,5256	10,232	0,220	0,802	0,822
10	25,507	112,3750	8,280	0,100	0,637	0,665
11	25,700	272,9954	16,895	0,327	1,546	1,358
12	26,160	15562,4896	1101,595	0,227	88,157	88,512
13	26,907	327,4041	15,847	0,307	1,855	1,273
14	28,447	535,9914	39,529	0,213	3,036	3,177
-	Total	17653,2055	1244,567			

Figure S12(e2): Hplc analysis of alkaline Hydrolysis products of 5'r(CAAG^{Me}AAC)-3' (**5c**) [after digestion for **1h** at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text. Peaks at R_T = 25.51 and R_T = 25.70 min were further separated by SMARTTM Hplc, see below S12(e2i) and (e2j) for the separation profiles.

Figure S12(e2i): SMARTTM RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_{T=}$ 25.50 min in Figure S12(e2) for (5c). Note the separation of 5'-CAAG^{Me}A_{2^{'/} 3'-P} peak at R_{T} = 29.41 min from 5'-CAAG^{Me}AA_{2^{'/} 3'-P} peak at R_{T} = 30.08 min (See Table S9(E) for Maldi Tof mass-spec characterization). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH₃CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min⁻¹.

Figure S12(e2j): SMARTTM RP-Hplc analysis of the alkaline hydrolysis products co-eluted at R_{T} = 25.70 min in Figure S12(e2) for (5c). Note the separation of 5'-G^{Me}AAC-3' peak at R_T = 27.71 min from 5'-CAAG^{Me}A_{2', 3'-cMP} peak at R_T = 29.24 min (See Table S9(E) for Maldi Tof mass-spec characterization). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH₃CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min⁻¹.

Result	Table	-	Calculation	Method	Uncal
--------	-------	---	-------------	--------	-------

Peak	Reten.	Area	Height	W05	Area	Height
No.	time	[mV.s]	[mV]	[min.]	[8]	[%]
1	24,553	241,2062	10,085	0,387	1,313	0,954
2	25,693	18133,2053	1046,506	0,260	98,687	99,046
-	Total	18374,4115	1056,591			

Figure S12(f1): Hplc analysis of alkaline Hydrolysis products of 5'- $r(CACG^{Me}AAC)$ -3' (7c) [after digestion for **0h** at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.

Notes:

Non-nucleot(s)idic impurity § 5'-r(CACG^{Me} $A_{2', 3'-cMP}$) contamination

Figure S12(f1i): SMARTTM RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_{T=}$ **25.69 min in Figure S12(f1)** for (7c). Note the separation of 5'-GAAC-3' peak at $R_T = 28.21$ min from the parent heptameric peak. Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH₃CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min⁻¹.

Result Table - Calculation Method Uncal

Peak	Reten.	Area	Height	W05	Area	Height
No.	time	[mV.s]	[mV]	[min.]	[8]	[8]
1	17,927	56,3028	3,176	0,240	0,308	0,302
2	19,680	244,5569	14,556	0,267	1,336	1,383
3	21,807	223,6669	5,586	0,320	1,222	0,531
4	22,893	241,4876	11,535	0,273	1,319	1,096
5	23,853	194,6714	12,152	0,247	1,064	1,154
6	24,773	335,3467	14,013	0,387	1,832	1,331
7	25,933	16246,6609	947,986	0,260	88,770	90,056
8	26,487	759,2864	43,659	0,300	4,149	4,147
-	Total	18301,9797	1052,664			

Figure S12(f2): Hplc analysis of alkaline Hydrolysis products of 5'r(CACG^{Me}AAC)-3' (7c) [after digestion for 1h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text. Peaks at R_T = 25.93 and R_T = 26.49 min were mixed together and further separated by SMARTTM Hplc, see below S12(f2i) for the separation profile.

Figure S12(f2i): SMARTTM RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_{T=}$ **25.93 min** and $R_{T=}$ **26.49 min** in Figure S12(f2) for (7c). Note the separation of 5'-AAC-3' peak at $R_T = 25.15$ and 26.15 min, 5'-G^{Me}AAC-3' peak at $R_T = 27.71$ min, 5'-ACG^{Me}AAC-3' peak at $R_T = 29.0$ min from the parent heptameric peak at $R_T = 29.91$ min (See Table S9(F) for Maldi Tof mass-spec characterization). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH₃CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min⁻¹.

Result Table - Calculation Method Uncal

Peak	Reten.	Area	Height	W05	Area	Height
No.	time	[mV.s]	[mV]	[min.]	[8]	[8]
1	24,033	116,8640	6 , 476	0,327	1,015	0,962
2	24,847	11396,6271	666 , 671	0,260	98,985	99,038
-	Total	11513,4910	673,147			

Figure S12(g1): RP-Hplc analysis of alkaline Hydrolysis products of 5'- $r(CACG^{Me}CAC)$ -3' (8c) [after digestion for 0h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text.

Note: # and § Non-nucleot(s)idic impurity

Peak	Reten.	Area	Height	W05	Area	Height	
No.	time	[mV.s]	[mV]	[min.]	[8]	[8]	
1	17,860	11,7804	0,731	0,260	0,100	0,101	
2	19,680	113,2888	6,279	0,287	0,962	0,865	
3	21,433	44,9898	0,333	0,520	0,382	0,046	
4	21,727	62,3310	3,862	0,260	0,529	0,532	
5	22,547	61,4830	4,169	0,273	0,522	0,575	
6	23,153	288,4676	14,749	0,260	2,450	2,033	
7	24,033	108,5148	6,449	0,320	0,922	0,889	
8	24,867	10786,8465	675 , 370	0,247	91,622	93,084	
9	25,820	295,5221	13,610	0,293	2,511	1,875	
-	Total	11773,2240	725,551				

Result Table -	Calculation	Method	Uncal
----------------	-------------	--------	-------

Figure S12(g2): RP-Hplc analysis of alkaline Hydrolysis products of 5'r(CACG^{Me}CAC)-3' (8c) [after digestion for 1h at pH 12.5 using 0.03N NaOH/ 20°C, followed by quenching with 0.03 N aq. acetic acid]. For Hplc conditions see the experimental section in the text. Peaks at R_T = 19.68 min and R_T = 23.15 min were further separated by SMARTTM Hplc, see below S12(g2i), (g2j) for the separation profiles.

Figure S12(g2i): SMARTTM RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_{T=}$ 23.86 min in Figure S12(g2) for (8c). Note the separation of 5'-CAC-3' peak at $R_T = 20.09$ min from 5'-CAC_{2', 3'-cMP} peak at $R_T = 20.80$ min (See Table S9(G) for Maldi Tof mass-spec characterization). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension. Gradient: linear gradient starting from 0% B Buffer (50% CH₃CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 µl min⁻¹.

Figure S12(g2j): SMARTTM RP-Hplc analysis of the alkaline hydrolysis products co-eluted at $R_{T=}$ 23.15 min in Figure S12(g2) for (8c). (See Table S9(G) for Maldi Tof mass-spec characterization). Hplc conditions: Jupiter 5 µm C18 300Å column with 150 x 2 mm dimension.

Gradient: linear gradient starting from 0% B Buffer (50% CH₃CN in 0.1M TEAA) + 100% A Buffer (0.1M TEAA) to 20% B Buffer + 80% A Buffer in 45 minutes. Flow rate: 100 μ l min⁻¹.