Supporting Information for

# Synthesis and evaluation of potent, highly-selective, 3-aryl-piperazinone

# inhibitors of protein geranylgeranyltransferase-I

<sup>1</sup>Department of Chemistry Yale University P.O. Box 208107 New Haven, CT 06520

<sup>2</sup>Drug Discovery Program H. Lee Moffitt Cancer Center University of South Florida Tampa, FL, 33612

#### Syntheses of compounds 30 and 31

1, 2-Dibromoethane (0.94 g, 5 mmol) and a solution of  $K_2CO_3$  (0.7 g, 5 mmol) in 10 mL water were alternately added dropwise to a solution of L-phenylalanine (1.65 g, 10 mmol) and NaOH (0.4 g, 10 mmol) in water with stirring at 90 °C. After 5 h, the reaction mixture was cooled and neutralized with concentrated HCl. The resulting precipitate was filtered off and dried under reduced pressure to give crude **18** (1 g, 4 mmol), which without further purification was refluxed with concentrated H<sub>2</sub>SO<sub>4</sub> (0.79 g, 8 mmol) in 25 mL anhydrous methanol for 24 h to afford the piperazinone scaffold **19** as its H<sub>2</sub>SO<sub>4</sub> salt after removal of the solvent. The solid was treated with saturated NaHCO<sub>3</sub> solution and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> to afford compound **18** as a colorless oil (1.07 g, 75%):  $\delta_H$  (500 MHz, d4-methanol) 1.16 (3H, t, *J* 7.0), 2.49 (1H, dd, *J* 13.5 and 9.7), 2.66 (1H, ddd, *J* 13.5, 10.0 and 3.5), 2.82 (2H, m), 3.01 (1H, dd, *J* 14.5 and 11.0), 3.23 (3H, m), 3.52 (1H, dd, *J* 10.0 and 3.5), 4.41 (2H, m), 5.00 (1H, dd, *J* 10.5 and 5.5), 7.05-7.28 (10 H, m);  $\delta_C$  (125 MHz, d4-methanol) 14.6, 34.6, 38.6, 42.2, 47.0, 59.0, 60.9, 61.7, 126.9, 127.1, 128.9, 128.9, 129.0, 129.0, 129.2, 129.3, 129.6, 129.6, 137.5, 138.7, 170.1, 170.9; *m*/z (FAB) 367.2021 (M<sup>+</sup>+1) 367.2022.

A mixture of compound **19** (146 mg, 0.4 mmol), N-1-trityl-deaminohistidine (150 mg, 0.4 mmol), EDCI (85 mg, 0.44 mmol), DIEA (0.09 mL, 0.44 mmol) in 3 mL anhydrous methylene chloride was stirred at rt for 5 h. The reaction mixture was diluted with 20 mL methylene chloride, and the solution was washed with 1N HCl, saturated sodium bicarbonate solution, and brine. The organic phase was dried over sodium sulfate and the solvent was removed on a rotavap to give an oil, which was purified by silica gel column chromatography with 2.5-5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> as eluant to afford **20** as a colorless oil (124 mg, 85%):  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.23 (3H, t, *J* 7.0), 1.42 (0.5H, m), 2.14 (0.5H, m), 2.32 (0.5H, m), 2.50-2.72 (2.5H, m), 2.75-2.86 (1.5H, m), 2.95-3.12 (2.5H, m), 3.17 (0.5H, m), 3.26 (0.5H, dd, *J* 14.0 and 6.5), 3.51 (0.5H, brd, *J* 13.5), 4.17 (2H, q, *J* 7.0), 4.40 (0.5H, m), 4.49 (0.5H, m), 5.11 (0.5H, m), 5.25 (0.5H, m), 6.28 (0.5H, m), 6.60 (0.5H, m), 6.90-7.40 (26H, m); m/z (FAB) 731.3600 (M<sup>+</sup>+1, C<sub>47</sub>H<sub>47</sub>N<sub>4</sub>O<sub>4</sub> requires 731.3597.

Deprotection of compound **20** following the general procedure described previously afforded **30** as a colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.23 (3H, t, J 7.0), 1.36 (0.5 H, m), 2.33 (0.5 H, m), 2.55 (3H, m), 2.76-3.20 (8H, m), 3.56 (0.5H, brd, J 12.5), 4.17 (2H, q, J 7.0), 4.31 (0.5H, m), 4.36 (0.5H, m), 4.94 (0.5H, m), 5.02 (0.5H, m), 6.86 (0.5H, s), 6.90 (0.5H, s), 7.00-7.30 (10H, m), 8.67 (0.5H, s), 8.63 (0.5H, s); m/z (FAB) 489.2502 (M<sup>+</sup>+1, C<sub>28</sub>H<sub>33</sub>N<sub>4</sub>O<sub>4</sub> requires 489.2502).

Saponification of **30** following general procedure described previously afforded **31** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.33 (0.5H, m), 2.10 (0.5H, m), 2.26 (0.5H, m), 2.34 (0.5H, m), 2.47 (1.5 H, m), 2.60-2.84 (3.5H, m), 2.92 (1H, m), 3.07 (0.5H, dt, J 13.0 and 3.5 Hz), 3.23-3.40 (3H, m), 3.62 (0.5H, brd, J 13.2), 4.17 (0.5H, dd, J 10.0 and 3.3), 4.35 (0.5H, brd, J 13.5), 4.91 (0.5H, t, J 6.5), 5.21 (0.5H, dd, J 11.3 and 5.0), 5.26 (0.5H, dd, J 12.0 and 5.0), 6.40 (0.5H, s), 6.63 (0.5H, s), 6.72-7.25 (10H, m), 7.38 (0.5H, s), 7.45 (0.5H, s); m/z (FAB) 461.2187 (M<sup>+</sup>+1, C<sub>26</sub>H<sub>29</sub>N<sub>4</sub>O<sub>4</sub> requires 461.2189).

## Syntheses of compounds 35 and 37

Reaction of scaffold **12a** with 4-(4-chloromethyl-imidazol-1-ylmethyl)-benzonitrile following previously described procedure for **13a2** gave **36** as a colorless oil (193 mg, 24%):  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.77-2.96 (2H, m), 4.52-4.64 (2.5H, m), 4.83-5.12 (2.5H, m), 5.25 (2H, s), 5.69

(0.5H, d, J 5.9), 5.91 (0.5H, d, J 6.0), 6.20 (0.5H, dd, J 1.2 and 5.9), 6.34 (0.5H, dd, J 1.4 and 6.0), 6.99-7.34 (13H, m), 7.63 (2H, d, J 8.0), 7.75 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 37.3, 44.1, 51.4, 59.8, 69.4, 110.0, 110.1, 113.3, 114.0, 119.8, 120.3, 128.3, 129.5, 129.7, 129.8, 129.8, 129.9, 130.0, 131.1, 134.2, 138.9, 139.5, 144.0, 154.8, 166.3; *m*/*z* (FAB) 518.2192 (M<sup>+</sup>+1, C<sub>31</sub>H<sub>27</sub>N<sub>5</sub>O<sub>3</sub> requires 518.2192).

Reaction of scaffold **13a2** with 4-bromomethyl-benzonitrile following previously described procedure for **35** gave **37** as a colorless oil (36%):  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.63-2.87 (2H, m), 3.99 (0.5H, d, *J* 15.6), 4.11 (0.5Hz, d, *J* 15.6), 4.45-4.67 (1.5H, m), 4.91-5.30 (5H, m), 5.37 (0.5H, d, *J* 5.9), 5.92 (0.5H, d, *J* 5.9), 6.19 (0.5H, d, *J* 5.9), 6.85-7.60 (16H, m);  $\delta_{\rm C}$  (500 MHz, MeOH) 36.7, 48.2, 58.1, 58.9, 68.7, 109.6, 109.8, 110.2, 110.7, 126.7, 127.4, 128.6, 128.8, 128.8, 128.9, 129.0, 129.8, 129.9, 132.7, 132.8, 135.7, 142.0, 152.1, 164.3; *m/z* (FAB) 518.2193 (M<sup>+</sup>+1, C<sub>31</sub>H<sub>27</sub>N<sub>5</sub>O<sub>3</sub> requires 518.2192).

## Syntheses of compounds 38, 39, and compounds 46-49

Deprotection of the trityl-protected **38** following the general procedure described above afforded **38** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.56 (1H, m), 1.79 (1H, m), 1.96 (3H, m), 2.18 (2H, t, *J* 7.2), 2.94 (1H, m), 3.02 (2H, m), 3.20 (1H, brd, *J* 12.0), 3.39 (1H, m), 3.59 (3H, s), 4.02 (1H, brd, *J* 13.0), 4.25 (1H, dd, *J* 12.5 and 7.0), 4.42 (1H, d, *J* 15.4), 4.63 (2H, m), 5.02 (1H, brs), 7.06-7.30 (6H, m), 8.58 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol)15.6, 30.4, 31.8, 37.8, 37.4, 41.5, 47.0, 52.7, 53.3, 60.2, 118.5, 126.6, 127.7, 129.2, 129.2, 129.8, 129.9, 134.5, 137.4, 156.6, 168.8, 173.6; *m*/*z* (FAB) 460.2018 (M<sup>+</sup>+1, C<sub>22</sub>H<sub>30</sub>N<sub>5</sub>O<sub>4</sub>S requires 460.2019).

Saponification of **38** following the general procedure afforded **39** as a colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol)1.66 (1H, m), 1.88 (1H, m), 1.92 (3H, m), 2.20 (2H, m), 2.75 (1H, ddd, *J* 14.0, 10.5 and 3.5), 2.86 (1H, brd, *J* 12.3), 3.10-3.15 (2H, m), 3.20 (1H, m), 3.75 (1H, brd, *J* 13.0), 4.04 (1H, dd, *J* 8.0 and 4.5), 4.35 (1H, d, *J* 14.8), 4.48 (1H, d, *J* 14.8), 4.65 (1H, t, *J* 5.2), 6.92 (1H, s), 7.04-7.14 (5H, m), 7.58 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 15.7, 31.8, 34.1, 38.7, 39.5, 44.5, 47.1, 56.7, 60.4, 119.2, 128.4, 130.0, 130.0, 131.3, 131.3, 134.9, 137.1, 139.1, 158.6, 170.0, 179.0; *m/z* (FAB) 446.1862 (M<sup>+</sup>+1, C<sub>21</sub>H<sub>28</sub>N<sub>5</sub>O<sub>4</sub>S requires 446.1862).

Reaction of trityl-protected **40**, with bromomethyl-benzene following previously described procedure for **35** gave **46** as a colorless oil (25.1 mg, 30%):  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.79 (6H, dd, *J* 6.1 and 22.8), 1.33-1.47 (3H, m), 2.55-2.63 (2H, m), 2.82-3.03 (2.5H, m), 3.38-3.52 (0.5H, m), 3.58 (3H, s), 4.04-4.13 (0.5H, m), 4.42-4.57 (2.5H, m), 4.79 (2.5H, brs), 5.21 (1.5H, brs), 6.89-7.29 (11H, m), 7.75 (1H, brs);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 22.1, 23.7, 26.2, 38.5, 39.5, 40.4, 41.4, 45.8, 52.9, 54.0, 54.1, 59.9, 127.8, 128.0, 128.4, 129.1, 129.5, 129.7, 129.9, 130.4, 131.3, 138.8, 138.9, 158.8, 169.9, 176.3; *m*/*z* (FAB) 532.2923 (M<sup>+</sup>+1, C<sub>30</sub>H<sub>37</sub>N<sub>5</sub>O<sub>4</sub> requires 532.2924).

Saponification of **46** following the general procedure described previously afforded **47** (GGTI-2543) as a colorless oil in 87% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.77 (6H, dd, *J* 2.0 and 6.3), 1.17-1.44 (3H, m), 2.53-2.70 (2H, m), 2.76-2.84 (1H, m), 2.91-3.03 (2H, m), 3.56 (1H, brd, *J* 13.3), 3.98-4.04 (1H, m), 4.40-4.58 (3H, m), 5.23 (2H, s), 6.90-7.27 (11H, m), 7.71 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 22.70, 24.23, 26.30, 38.68, 39.18, 40.32, 44.14, 45.96, 56.39, 60.46, 127.76, 128.40, 129.49, 129.79, 130.03, 130.42, 131.27, 138.91, 139.09, 141.22, 158.42, 170.05, 181.48; *m/z* (FAB) 540.2585 (M<sup>+</sup>+Na, C<sub>29</sub>H<sub>36</sub>N<sub>5</sub>O<sub>4</sub>Na requires 540.2587).

Reaction of trityl-protected **40**, with 4-bromomethyl-benzonitrile following previously described procedure for **35** gave **48** as a colorless oil (26 mg, 24%): <sup>1</sup>H NMR (500 MHz, d4-methanol)  $\delta$  0.79 (dd, J = 6.1, 23.3 Hz, 6H), 1.35-1.48 (m, 3H), 2.59-2.75 (m, 2H), 2.86-3.03 (m, 2.5H), 3.49-3.58 (br m, 0.5H), 3.58 (s, 3H), 4.06-4.16 (m, 1H), 4.35-4.57 (m, 2.5H), 4.77 (s, 2H), 5.34 (br s, 1.5H), 6.91-7.23 (m, 8H), 7.58-7.72 (m, 2H), 7.77 (br s, 1H); <sup>13</sup>C NMR (125 MHz, d4-methanol)  $\delta$  22.2, 23.7, 23.8, 26.3, 38.5, 39.6, 40.3, 41.4, 46.0, 52.9, 54.2, 59.7, 113.3, 119.7, 128.4, 128.6, 129.8, 129.9, 130.0, 131.2, 131.3, 134.2, 138.8, 144.5, 158.8, 169.9, 176.4; *m/z* (FAB) 557.2876 (M<sup>+</sup>+1, C<sub>31</sub>H<sub>36</sub>N<sub>6</sub>O<sub>4</sub> requires 557.2876).

Saponification of **48** following the general procedure described previously afforded **49** as a colorless oil in 100% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.88 (6H, dd, *J* 4.7 and 6.3), 1.28-1.55 (3H, m), 2.70-2.95 (3H, m), 3.05-3.27 (2H, m), 3.83 (1H, d, *J* 14.7), 4.06-4.16 (1H, m), 4.45 (1H, d, *J* 15.5), 4.63-4.73 (2H, m), 5.41-5.51 (2H, m), 7.06-7.29 (8H, m), 7.73-7.91 (3H, m);  $\delta_{\rm C}$  (125 MHz, MeOH)  $\delta$  22.6, 24.2, 26.3, 38.6, 39.2, 40.4, 43.9, 46.2, 56.4, 60.5, 113.2, 119.7, 127.8, 128.4, 128.8, 129.8, 130.0, 131.2, 134.3, 139.0, 143.0, 144.7, 158.5, 170.1, 181.5; *m/z* (FAB) 565.2546 (M<sup>+</sup>+Na, C<sub>30</sub>H<sub>34</sub>N<sub>6</sub>O<sub>4</sub>Na requires 565.2539).

## Syntheses of compounds 50-51

Scaffold **14a4** was coupled to the L-methionine methyl ester isocyanate following the previously described general procedures to give trityl-protected **50** as a colorless oil in 86% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.42 (3H, s), 1.48 (1H, m), 1.75 (1H, m), 1.99 (1H, s), 2.14 (2H, m), 2.90 (1H, ddd, *J* 14.5, 11.0 and 3.2), 2.99 (1H, dd, *J* 13.5 and 9.0), 3.15 (1H, brd, *J* 12.0), 3.30 (1H, dd, *J* 13.5 and 3.5), 3.36 (1H, dt, *J* 12.0, 12.0 and 4.0), 3.62 (3H, s), 4.00 (1H, brd, *J* 13.0), 4.20-4.34 (2H, m), 4.38 (1H, d, *J* 14.5), 4.40-4.42 (2H, m), 4.54 (1H, d, *J* 14.5), 7.00-7.35 (21H, m); *m/z* (FAB) 716.3269 (M<sup>+</sup>+1, C<sub>42</sub>H<sub>46</sub>N<sub>5</sub>O<sub>4</sub>S requires 716.3270).

Deprotection of the above mentioned compound following the general procedure described previously afforded **50** as a colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.62 (1H, m), 1.79 (1H, m), 2.06 (3H, s), 2.24 (2H, t, *J* 7.2), 2.40 (3H, s), 3.12 (3H, m), 3.31 (1H, brd, *J* 12.0), 3.48 (1H, m), 3.68 (3H, s), 4.11 (1H, brd, *J* 12.0), 4.33 (1H, dd, *J* 12.5 and 7.2), 4.59 (2H, brs), 4.63 (1H, m), 4.88 (1H, brs), 7.15-7.35 (5H, m), 8.46 (1H, s);  $\delta_{\rm C}$  (125 MHz, MeOH) 9.5, 15.7, 30.3, 31.9, 37.8, 37.9, 40.4, 47.0, 52.7, 53.2, 60.5, 124.6, 127.7, 128.7, 129.2, 129.3, 129.9, 129.9, 132.7, 137.6, 156.5, 168.4, 173.4; *m*/*z* (FAB) 474.2173 (M<sup>+</sup>+1, C<sub>23</sub>H<sub>32</sub>N<sub>5</sub>O<sub>4</sub>S requires 474.2175).

Saponification of **50** following the general procedure described previously afforded **51** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.62 (1H, m), 1.82 (1H, m), 1.89 (3H, s), 2.12 (3H, s), 2.15 (2H, t, *J* 7.0), 2.78 (2H, m), 3.06-3.18 (3H, m), 3.72 (1H, brd, *J* 12.0), 3.98 (1H, dd, *J* 8.0 and 4.8), 4.34 (1H, d *J* 14.8), 4.42 (1H, d *J* 14.8), 4.61 (1H, t, *J* 5.6), 7.00-7.10 (5H, m), 7.47 (1H, s);  $\delta_{\rm C}$  (125 MHz, MeOH) 10.3, 15.7, 31.8, 34.3, 38.8, 39.4, 42.9, 46.9, 57.0, 60.5, 128.4, 129.1, 129.6, 130.0, 130.0, 131.2, 131.2, 135.4, 138.1, 158.5, 169.9, 179.4; *m/z* (FAB) 460.2019 (M<sup>+</sup>+1, C<sub>22</sub>H<sub>30</sub>N<sub>5</sub>O<sub>4</sub>S requires 460.2019).

### Syntheses of compounds 52-59

Scaffold **14a4** was coupled to the D-leucine methyl ester isocyanate following the previously described general procedures to give trityl-protected **52** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.81 (3H, d, *J* 6.2), 0.85 (3H, d, *J* 6.2), 1.39 (3H, s), 1.40-1.60

(3H, m), 2.55 (1H, m), 2.86 (1H, brd, *J* 12.0), 3.17 (3H, m), 3.59 (3H, s), 3.68 (1H, brd, *J* 13.0), 4.23 (1H, m), 4.40 (2H, m), 4.67 (1H, m), 6.30 (1H, brs), 7.00-7.14 (11H, m), 7.16 (1H, s), 7.25-7.36 (9H, m); *m*/*z* (FAB) 498.3706 (M<sup>+</sup>+1, C<sub>43</sub>H<sub>48</sub>N<sub>5</sub>O<sub>4</sub> requires 498.3706).

Deprotection of the above mentioned compound following the general procedure described previously afforded **52** as a colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.84 (3H, d, *J* 6.2), 0.88 (3H, d, *J* 6.2), 1.50 (3H, m), 2.32 (3H, s), 2.76 (1H, m), 2.86 (1H, dt, *J* 11.5 and 4.5), 3.21 (1H, m), 3.39 (2H, m), 3.63 (3H, s), 3.78 (1H, brd, *J* 14.0), 4.24 (1H, dd, *J* 10.0 and 5.0), 4.55 (2H, m), 4.77 (1H, m), 7.02-7.20 (5H, m), 8.72 (1H, s); *m/z* (FAB) 456.2612 (M<sup>+</sup>+1, C<sub>24</sub>H<sub>34</sub>N<sub>5</sub>O<sub>4</sub> requires 456.2611).

Saponification of **52** following the general procedure described previously afforded **53** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.82 (3H, d, *J* 4.5 ), 0.84 (3H, d, *J* 4.5), 1.50 (3H, m), 2.16 (3H, s), 2.61 (1H, ddd, *J* 13.5, 10.0 and 4.0), 2.73 (1H, dt, *J* 12.5 and 4.0), 3.17 (2H, m), 3.20 (1H, m), 3.56 (1H, dt, *J* 13.5 and 4.0), 4.13 (1H, dd, *J* 10.0 and 4.5), 4.34 (1H, d, *J* 14.5), 4.46 (1H, d, *J* 14.5), 4.71 (1H, t, *J* 5.5), 6.98-7.07 (5H, m), 7.44 (1H, s); *m/z* (FAB) 442.2455 (M<sup>+</sup>+1, C<sub>23</sub>H<sub>32</sub>N<sub>5</sub>O<sub>4</sub> requires 442.2454).

Scaffold **14a4** was coupled to the L-valine methyl ester isocyanate following the previously described general procedures to give trityl-protected **54** as a colorless oil in 80% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.76 (6H, d, *J* 7.0), 1.39 (3H, s), 1.89 (1H, m), 2.75 (1H, ddd, *J* 14.0, 10.5 and 4.0), 2.89 (1H, dt, *J* 12.5 and 3.5), 3.09-3.20 (3H, m), 3.59 (3H, s), 3.76 (1H, brd, *J* 14.0), 3.92 (1H, m), 4.41 (2H, brs), 4.68 (1H, t, *J* 5.6), 5.94 (1H, brs), 7.00-7.18 (11H, m), 7.20 (1H, s), 7.26-7.40 (9H, m); m/z (FAB) 484.3552 (M<sup>+</sup>+1, C<sub>42</sub>H<sub>46</sub>N<sub>5</sub>O<sub>4</sub> requires 484.3550).

Deprotection of the above mentioned compound following the general procedure described previously afforded **54** as a colorless oil in 88% yield:  $\delta_H$  (500 MHz, d4-methanol) 0.74 (6H, d, J 7.0), 1.85 (1H, m), 2.27 (3H, s), 2.85 (1H, ddd, J 14.0, 10.5 and 3.5), 2.93 (1H, dt, J 12.0 and 3.5), 3.11 (2H, m), 3.30 (1H, ddd, J 12.0, 11.0 and 4.5), 3.59 (3H, s), 3.80 (1H, brd, J 14.0), 3.86 (1H, d, J 7.2), 4.48 (1H, d, J 15.8), 4.52 (1H, d, J 15.8), 4.70 (1H, t, J 5.7), 7.00-7.05 (2H, m), 7.08-7.13 (3H, m), 8.65 (1H, s); m/z (FAB) 442.2455 (M<sup>+</sup>+1, C<sub>23</sub>H<sub>32</sub>N<sub>5</sub>O<sub>4</sub> requires 442.2454).

Saponification of **54** following the general procedure described previously afforded **55** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.67 (3H, d, J 7.0), 0.72 (3H, d, J 6.6), 1.90 (1H, m), 2.15 (3H, s), 2.80 (2H, m), 3.13 (2H, d, J 5.7), 3.17 (1H, m), 3.59 (3H, s), 3.80 (1H, brd, J 14.0), 3.86 (1H, d, J 7.2), 4.48 (1H, d, J 15.8), 4.52 (1H, d, J 15.8), 4.70 (1H, t, J 5.7), 7.00-7.05 (2H, m), 7.08-7.13 (3H, m), 7.49 (1H, s); m/z (FAB) 428.2297 (M<sup>+</sup>+1, C<sub>22</sub>H<sub>29</sub>N<sub>5</sub>O<sub>4</sub> requires 428.2298).

Scaffold **14a4** was coupled to the L-phenylalanine methyl ester isocyanate following the previously described general procedures to give trityl-protected **56** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.36 (3H, s), 2.42 (1H, m), 2.78 (2H, m), 2.90 (1H, dd, *J* 13.5 and 5.5), 3.07 (3H, m), 3.56 (1H, m), 3.60 (3H, s), 4.36 (2H, m), 4.40 (1H, m), 4.61 (1H, t, *J* 5.2), 6.87 (1H, brs), 7.00-7.40 (25H, m); *m*/*z* (FAB) 732.3547 (M<sup>+</sup>+1, C<sub>46</sub>H<sub>46</sub>N<sub>5</sub>O<sub>4</sub> requires 732.3550)

Deprotection of the above mentioned compound following the general procedure described previously afforded **56** as colorless oil in 86% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.26 (3H, s), 2.53 (1H, m), 2.79 (2H, m), 2.92 (1H, dd, *J* 13.5 and 5.0), 3.09 (3H, m), 3.59 (3H, s), 3.64 (1H, m), 4.37 (1H, dd, *J* 10.2 and 5.5), 4.47 (2H, brs), 4.65 (1H, t, *J* 5.2), 6.84 (1H, brs), 7.01-7.22 (10H, m), 8.69 (1H, s); *m/z* (FAB) 490.2456 (M<sup>+</sup>+1, C<sub>27</sub>H<sub>32</sub>N<sub>5</sub>O<sub>4</sub> requires 490.2454.

Saponification of **56** following the general procedure described previously afforded **57** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.14 (3H, s), 2.40 (1H, m), 2.67 (1H, dt, *J* 12.5 and 3.7), 2.84 (1H, dd, *J* 13.5 and 8.0), 2.89 (1H, m), 2.99 (1H, ddd, *J* 12.5, 10.0 and 4.5), 3.09 (2H, m), 3.44 (1H, brd, *J* 13.0), 4.33 (1H, m), 4.37 (2H, m), 4.64 (1H, t, *J* 5.0), 6.84 (1H, brs), 6.98-7.20 (10H, m), 7.46 (1H, s);  $\delta_{\rm C}$  (125 MHz, MeOH) 10.4, 38.6, 39.9, 40.1, 42.9, 46.7, 58.7, 59.5, 127.7, 128.2, 129.6, 129.6, 129.7, 129.7, 129.7, 130.9, 130.9,131.3, 131.3, 135.4, 138.8, 140.3, 145.8, 158.3, 169.9, 179.6; *m/z* (FAB) 476.2298 (M<sup>+</sup>+1, C<sub>26</sub>H<sub>30</sub>N<sub>5</sub>O<sub>4</sub> requires 476.2298).

Scaffold **14a4** was coupled to the  $\beta$ -cyclohexyl-L-alanine methyl ester isocyanate following the previously described general procedures to give trityl-protected **58** as colorless oil in 87% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.79 (1H, m), 0.87 (1H, m), 1.11 (2H, m), 1.19 (2H, m), 1.40 (3H, s), 1.45 (2H, m), 1.61 (4H, m), 2.63 (1H, ddd, *J* 14.0, 10.8 and 3.5), 2.85 (1H, dt, *J* 12.1 and 3.5), 3.09 (1H, dd, *J* 13.5 and 5.0), 3.16 (2H, m), 3.59 (3H, s), 3.72 (1H, brd, *J* 14.0), 4.18 (1H, m), 4.41 (2H, brs), 4.70 (1H, t, *J* 5.5), 6.31 (1H, brs), 7.00-7.19 (11H, m), 7.21 (1H, s), 7.23-7.39 (9H, m); m/z (FAB) 738.4021 (M<sup>+</sup>+1, C<sub>46</sub>H<sub>52</sub>N<sub>5</sub>O<sub>4</sub> requires 738.4019).

Deprotection of the above mentioned compound following the general procedure described previously afforded **58** as a colorless oil in 89% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.78 (1H, m), 0.86 (1H, m), 1.10 (2H, m), 1.17 (2H, m), 1.43 (2H, m), 1.60 (4H, m), 2.27 (3H, s), 2.72 (1H, ddd, *J* 14.0, 10.5 and 3.5), 2.88 (1H, dt, *J* 12.0 and 3.5), 3.13 (2H, m), 3.28 (1H, ddd, *J* 12.5, 10.5 and 4.0), 3.58 (3H, s), 3.76 (1H, brd, *J* 14.0), 4.14 (1H, dd, *J* 10.0 and 5.5), 4.48 (1H, d, *J* 15.5), 4.52 (1H, d, *J* 15.5), 4.71(1H, t, *J* 5.2), 6.98-7.22 (5H, m), 8.68 (1H, s); *m/z* (FAB) 496.2922 (M<sup>+</sup>+1, C<sub>27</sub>H<sub>38</sub>N<sub>5</sub>O<sub>4</sub> requires 496.2924).

Saponification of **58** following the general procedure described previously afforded **59** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.78 (2H, m), 1.05 (2H, m), 1.13 (2H, m), 1.27 (1H, m), 1.43 (1H, m), 1.56 (3H, m), 1.69 (1H, m), 2.14 (3H, s), 2.64 (1H, ddd, *J* 14.0, 10.5 and 3.5), 2.78 (1H, brd, *J* 12.0), 3.09-3.16 (3H, m), 3.68 (1H, brd, *J* 14.0), 4.07 (1H, dd, *J* 10.0 and 4.5), 4.35 (1H, d, *J* 15.0), 4.42 (1H, d, *J* 15.0), 4.66(1H, t, *J* 5.0), 7.00-7.06 (5H, m), 7.46 (1H, s);  $\delta_{\rm C}$  (125 MHz, MeOH) 10.37, 27.7, 27.8, 28.1, 33.9, 35.4, 35.9, 38.8, 39.7, 41.9, 42.9, 46.9, 55.4, 60.2, 128.4, 129.0, 129.6, 129.9, 129.9, 131.3, 131.3, 135.4, 139.1, 158.8, 169.9, 181.2; m/z (FAB) 482.2766 (M<sup>+</sup>+1, C<sub>26</sub>H<sub>36</sub>N<sub>5</sub>O<sub>4</sub> requires 482.2767).

### Syntheses of compounds 60-66

Scaffold **14a4** was coupled to commercial available tert-butyl isocyanate following the previously described general procedures to give trityl-protected **61** as a colorless oil in 90% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.02 (9H, s), 1.39 (3H, s), 2.88 (1H, ddd, *J* 14.0, 11.0 and 3.5), 2.97 (1H, m), 2.99 (1H, dd, *J* 13.5 and 8.5), 3.13 (1H, dd, *J* 13.5 and 4.5), 3.18 (1H, m), 3.84 (1H, brd, *J* 14.0), 4.40 (1H, d, *J* 14.8), 4.45 (1H, d, *J* 14.8), 4.49 (1H, dd, *J* 8.5 and 4.0), 7.00-7.32 (21H, m); *m/z* (FAB) 626.3492 (M<sup>+</sup>+1, C<sub>40</sub>H<sub>44</sub>N<sub>5</sub>O<sub>2</sub> requires 626.3495).

Deprotection of the above mentioned compound following the general procedure described previously afforded **61** as a colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.25 (9H, s), 2.54 (3H, s), 2.88 (1H, ddd, *J* 14.5, 11.0 and 4.5), 3.27 (2H, m), 3.40 (1H, dd, *J* 13.5 and 3.8), 3.58 (1H, ddd, *J* 11.6, 10.8 and 4.2), 4.13 (1H, brd, *J* 14.0), 4.78 (2H, brs), 4.79 (1H, m), 7.32-7.44 (5H, m), 8.91 (1H, s); *m*/*z* (FAB) 384.2401 (M<sup>+</sup>+1, C<sub>21</sub>H<sub>30</sub>N<sub>5</sub>O<sub>2</sub> requires 384.2400).

Scaffold **14a4** was coupled to commercial available *p*-tolyl isocyanate following the previously described general procedures to give trityl-protected **60** as colorless oil in 90% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.40 (3H, s), 2.17 (3H, s), 2.90 (1H, ddd, J = 14.5, 10.0 and 3.2), 2.98 (1H, dd, J 12.0 and 3.2), 3.15 (2H, d, J 5.5), 3.26 (2H, m), 3.90 (1H, brd, J 13.0), 4.40 (1H, d, J 14.5), 4.48 (1H, d, J 14.5), 6.90-7.40 (21H, m); m/z (FAB) 660.3342 (M<sup>+</sup>+1, C<sub>43</sub>H<sub>42</sub>N<sub>5</sub>O<sub>2</sub> requires 660.3339).

Deprotection of the above mentioned compound following the general procedure described previously afforded **60** as colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.16 (3H, s), 2.29 (3H, s), 3.01 (2H, m), 3.17 (2H, m), 3.38 (1H, ddd, *J* 12.0, 12.0 and 4.0), 3.94 (1H, brd, *J* 13.0), 4.54 (2H, m), 4.84 (2H, m), 6.92 (4H, m), 7.10 (5H, m), 8.66 (1H, s); *m/z* (FAB) 418.2242 (M<sup>+</sup>+1, C<sub>24</sub>H<sub>28</sub>N<sub>5</sub>O<sub>2</sub> requires 418.2243).

Scaffold **14a4** was coupled to commercial available propyl isocyanate following the previously described general procedures to give trityl-protected **62** as colorless oil in 77% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.86 (3H, t, *J* 7.4), 1.38-1.46 (2H, m), 1.48 (3H, s), 2.86-2.94 (1H, m), 2.99-3.10 (3H, m), 3.19 (2H, brd, *J* 5.0), 3.28-3.34 (1H, m), 3.87 (1H, brd, *J* 13.4), 4.50 (1H, d, *J* 14.8), 4.54 (1H, d, *J* 14.9), 4.76 (1H, t, *J* 5.6), 6.30 (1H, t, *J* 5.0), 6.92 (2H, t, *J* 8.7), 7.14-7.17 (8H, m), 7.28 (1H, s), 7.37-7.38 (9H, m);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 12.1, 12.7, 24.7, 37.9, 39.6, 43.9, 44.1, 47.0, 59.7, 77.1, 116.4, 116.6, 129.7, 129.7, 130.6, 131.5, 132.9, 132.9, 135.0, 135.0, 136.2, 139.2, 143.2, 159.1, 159.1, 162.7, 164.7, 169.7; *m*/*z* (FAB) 630.3245 (M<sup>+</sup>+1, C<sub>39</sub>H<sub>40</sub>FN<sub>5</sub>O<sub>2</sub> requires 630.3244).

Deprotection of the trityl protected **62** following the general procedure described previously afforded **62** as colorless oil in 100% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.85 (3H, t, J 7.4), 1.37-1.45 (2H, m), 2.40 (3H, s), 2.99-3.05 (3H, m), 3.13 (1H, dt, J 3.5 and 11.9), 3.21 (2H, d, J 6.0), 3.41-3.48 (1H, m), 3.91 (1h, brd, J 13.9), 4.64 (2H, s), 4.81 (1H, t, J 5.8), 6.97 (2H, t, J 8.8), 7.12-7.16 (2H, m), 8.79 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 9.4, 11.9, 24.6, 37.8, 39.5, 41.1, 43.9, 48.1, 59.7, 116.4, 116.5, 126.0, 129.9, 132.8, 134.4, 159.1, 162.8, 164.7, 170.7; *m/z* (FAB) 388.2148 (M<sup>+</sup>+1, C<sub>20</sub>H<sub>26</sub>FN<sub>5</sub>O<sub>2</sub> requires 388.2149).

Scaffold **14a4** was coupled to commercial available isocyanato-cyclohexane following the previously described general procedures to give trityl-protected **63** as colorless oil in 70% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.00-1.85 (13H, m), 2.85-2.98 (1H, m), 3.02-3.50 (5H, m), 3.91 (1H, brd, *J* 14.2), 4.54 (2H, s), 4.75 (1H, t, *J* 6.0), 5.77 (1H, brd, *J* 5.77), 6.90-7.21 (9H, m), 7.27 (1H, s), 7.31-7.45 (10H, m);  $\delta_{\rm C}$  (125 MHz, d4-methanol)  $\delta$  12.6, 26.9, 27.1, 34.8, 37.8, 39.4, 44.1, 47.1, 51.7, 59.9, 77.1, 116.5, 116.7, 129.7, 130.6, 131.5, 132.9, 135.1, 136.2, 139.2, 143.2, 158.4, 162.8, 164.7, 169.7; *m*/*z* (FAB) 670.3556 (M<sup>+</sup>+1, C<sub>42</sub>H<sub>44</sub>FN<sub>5</sub>O<sub>2</sub> requires 670.3557).

Deprotection of the trityl protected **63** following the general procedure described previously afforded **63** as colorless oil in 100% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.86-1.12 (3H, m), 1.12-1.28 (2H, m), 1.49-1.74 (5H, m), 2.32 (3H, s), 2.92-2.99 (1H, m), 3.04-3.14 (3H, m), 3.25-3.39 (2H, m), 3.87 (1H, brd, *J* 13.9), 4.55 (2H, s), 4.71 (1H, t, *J* 6.2), 6.90 (2H, t, *J* 8.8), 7.04-7.09 (2H, m), 8.70 (1H, s);  $\delta_{\rm C}$  (100 MHz, d4-methanol)  $\delta$  9.4, 26.8, 27.0, 34.6, 34.8, 37.7, 39.3, 41.1, 51.6, 59.7, 116.4, 116.6, 126.0, 129.9, 132.8, 134.5, 158.3, 162.6, 165.0, 170.7; *m/z* (FAB) 428.2463 (M<sup>+</sup>+1, C<sub>23</sub>H<sub>30</sub>FN<sub>5</sub>O<sub>2</sub> requires 428.2462).

Scaffold **14a4** was coupled to commercial available isocyanatomethyl-benzene following the previously described general procedures to give trityl-protected **64** as colorless oil in 67% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.48 (3H, s), 2.92-2.99 (1H, m), 3.02-3.09 (1H, m), 3.20 (2H, d, *J* 6.0), 3.29-3.32 (1H, m), 3.90 (1H, brd, *J* 13.3), 4.27 (2H, s), 4.50 (1H, d, *J* 14.7), 4.54 (1H,

d, J 14.8), 4.81 (1H, t, J 5.9), 6.91 (2H, t, J 8.8), 7.12-7.16 (10H, m), 7.19-7.23 (1H, m), 7.26-7.29 (3H, m), 7.37-7.39 (9H, m);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 12.6, 37.8, 39.7, 44.1, 45.6, 47.0, 59.7, 77.1, 116.4, 116.6, 128.3, 128.6, 129.7, 129.7, 130.6, 131.5, 132.8, 132.9, 134.9, 136.2, 139.2, 141.6, 143.2, 159.0, 162.7, 164.6, 169.7; *m*/z (FAB) 678.3244 (M<sup>+</sup>+1, C<sub>43</sub>H<sub>40</sub>FN<sub>5</sub>O<sub>2</sub> requires 678.3244).

Deprotection of the trityl protected **64** following the general procedure described previously afforded **64** as colorless oil in 100% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.30 (3H, s), 2.96-3.09 (2H, m), 3.13 (2H, d, *J* 6.0), 3.33-3.41 (1H, m), 3.86 (1H, brd, *J* 13.7), 4.14 (1H, d, *J* 15.4), 4.18 (1H, d, *J* 15.4), 4.52 (1H, d, *J* 15.6), 4.57 (1H, d, *J* 15.6), 4.78 (1H, t, *J* 6.0), 6.86 (2H, t, *J* 8.8), 7.00-7.07 (4H, m), 7.10-7.23 (3H, m), 8.66 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 9.4, 37.7, 39.6, 41.1, 45.5, 48.1, 59.7, 116.4, 116.6, 125.9, 128.3, 128.5, 129.7, 132.8, 134.4, 134.8, 141.5, 159.1, 162.5, 164.9, 170.7; *m*/*z* (FAB) 436.2150 (M<sup>+</sup>+1, C<sub>24</sub>H<sub>26</sub>FN<sub>5</sub>O<sub>2</sub> requires 436.2149).

Scaffold **14a4** was coupled to commercial available 1-bromo-4-isocyanatomethylbenzene following the previously described general procedures to give trityl-protected 65 as colorless oil in 66% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.45 (3H, s), 2.85-2.92 (1H, m), 3.01-3.07 (1H, m), 3.16 (1H, d, *J* 12.2), 3.27 (1H, dd, *J* 3.7 and 13.7), 3.37-3.42 (1H, m), 4.03-4.19 (3H, m), 4.41 (1H, d, *J* 14.6), 4.46 (1H, brd, *J* 5.4), 4.58 (1H, d, *J* 14.6), 6.84 (2H, t, *J* 8.5), 6.91 (2H, d, *J* 8.2), 7.08-7.13 (8H, m), 7.23 (1H, s), 7.32-7.44 (11H, m);  $\delta_{\rm C}$  (125 MHz, d4methanol)12.6, 37.8, 39.6, 44.1, 44.9, 47.0, 59.7, 77.1, 116.4, 116.6, 121.9, 129.7, 129.7, 130.5, 130.6, 131.2, 131.5, 131.8, 132.8, 132.8, 132.9, 134.9, 134.9, 136.2, 139.2, 141.0, 143.2, 158.9, 162.5, 164.9, 169.6; *m/z* (FAB) 756.2351 (M<sup>+</sup>+1, C<sub>43</sub>H<sub>39</sub>BrFN<sub>5</sub>O<sub>2</sub> requires 756.2349).

Deprotection of the trityl protected **65** following the general procedure described previously afforded **65** as colorless oil in 100% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.40 (3H, s), 3.08-3.24 (4H, m), 3.37-3.49 (1H, m), 3.96 (1H, brd, *J* 14.8), 4.19 (2H, s), 4.64 (2H, s), 4.85 (1H, t, *J* 6.2), 6.96 (2H, t, *J* 8.6), 7.03 (2H, d, *J* 7.8), 7.07-7.16 (2H, m), 7.42 (2H, d, *J* 7.5), 8.79 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol)  $\delta$  9.4, 37.7, 39.5, 41.1, 44.9, 48.1, 59.6, 116.4, 116.6, 121.9, 125.9, 129.9, 130.5, 132.7, 134.5, 134.8, 140.9, 158.9, 162.5, 165.0, 170.6; *m/z* (FAB) 514.1254 (M<sup>+</sup>+1, C<sub>24</sub>H<sub>25</sub>BrFN<sub>5</sub>O<sub>2</sub> requires 514.1254).

Scaffold **14a4** was coupled to commercial available 1-isocyanatomethyl-naphthalene following the previously described general procedures to give trityl-protected **66** as colorless oil in 68% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 1.39 (3H, s), 2.97-3.11 (2H, m), 3.17 (1H, dt, *J* 2.6 and 11.9), 3.34 (1H, dd, *J* 3.6 and 13.8), 3.41-3.49 (1H, m), 4.16 (1H, brd, *J* 13.6), 4.39 (1H, d, *J* 14.6), 4.57 (1H, d, *J* 14.6), 4.61-4.68 (1H, m), 6.06 (1H, s), 6.94 (2H, t, *J* 8.6), 7.00-7.05 (7H, m), 7.18-7.37 (16H, m), 7.51 (1H, dd, *J* 1.8 and 7.3), 7.70 (1H, d, *J* 8.5);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 12.1, 37.3, 38.0, 43.6, 45.7, 61.4, 75.5, 116.3, 116.5, 121.3, 121.4, 125.6, 125.9, 126.2, 126.3, 128.2, 128.4, 128.4, 128.7, 128.8, 130.3, 131.6, 131.7, 133.7, 135.4, 138.3, 142.0, 155.6, 161.3, 163.8, 166.7; *m*/*z* (FAB) 714.3244 (M<sup>+</sup>+1, C<sub>46</sub>H<sub>40</sub>FN<sub>5</sub>O<sub>2</sub> requires 714.3244).

Deprotection of the trityl protected **66** following the general procedure described previously afforded **66** as colorless oil in 100% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 2.33 (3H, s), 3.17-3.31 (4H, m), 3.51-3.58 (1H, m), 4.14 (1H, brd, *J* 14.0), 4.60 (2H, s), 4.96-4.99 (1H, m), 6.98 (2H, t, *J* 8.8), 7.11 (1H, dd, *J* 0.9 and 7.4), 7.19-7.23 (2H, m), 7.31-7.43 (4H, m), 7.66 (1H, d, *J* 8.3), 7.77 (1H, d, *J* 8.6), 8.66 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 9.5, 37.8, 39.7, 41.1, 48.3, 59.8, 116.6, 116.8, 124.4, 125.6, 126.0, 126.8, 127.4, 128.0, 129.5, 130.0, 130.8, 132.0,

133.1, 134.5, 135.7, 136.1, 158.2, 162.7, 165.1, 170.6; *m/z* (FAB) 472.2149 (M<sup>+</sup>+1 requires 472.2149).

## Syntheses of compounds 67, 68, 71 and 72

Compounds **11b** and **11d** were synthesized using conditions similar to that described for the synthesis of compound **11a**, and were purified using the same chromatographic condition. Using Cbz- $\beta$ -(1-naphthyl)-L-alanine, compound **11b** was obtained as a white solid in 80% yield: m.p. 131-132 °C;  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 3.10 (3H, s), 3.15 (3H, s), 3.39 (1H, m), 3.61 (1H, m), 3.82 (1H, t, *J* 5.5), 4.50 (1H, m), 5.10 (2H, brs), 5.28 (1H, m), 5.59 (1H, m), 7.28-7.38 (7H, m), 7.48 (1H, t, *J* 7.5), 7.54 (1H, t, *J* 7.5), 7.75 (1H, d, *J* 8.0), 7.84 (1H, d, *J* 8.0), 8.21 (1H, d, *J* 8.5); *m/z* (FAB) 437.2075 (M<sup>+</sup>+1, C<sub>25</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub> requires 437.2076).

Using Cbz-D-phenylalanine, compound **11d** was obtained as a white solid in 99% yield: m.p. 123-124 °C;  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 2.99 (1H, m), 3.09 (1H, m), 3.26 (3H, s), 3.27 (3H, s), 4.16 (1H, t, *J* 5.5), 4.35 (1H, m), 5.07 (2H, brs), 5.31 (1H, m), 5.74 (1H, m), 7.15-7.36 (10H, m); *m/z* (FAB) 387.1921 (M<sup>+</sup>+1, C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub> requires 387.1920).

The naphthyl-derived scaffold **12b** was synthesized using conditions slightly different from that described for the synthesis of compound **12a**. Compound **11b** (3.1 g, 7.1 mmol) was dissolved in 100 mL 70% TFA/H<sub>2</sub>O and the solution was stirred at rt overnight. The solvent was removed under reduced pressure to give a yellow oil, which was dissolved in 150 mL ethyl acetate and washed with saturated NaHCO<sub>3</sub> and brine. The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed to give a mixture of the uncyclized aldehyde and the desired product. The mixture was subjected to silica gel column chromatography using hexanes/EtOAc (2:1 – 1:1) as eluant to afford compound **12b** as a yellowish oil (700 mg, 25%):  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 3.23 (0.6H, dd, *J* 14.0 and 10.2), 3.23 (0.4H, dd, *J* 14.0 and 7.3), 3.56 (1H, m), 3.82 (0.6H, d, *J* 12.0), 4.72 (0.6H, d, *J* 12.0), 4.97 (0.4H, d, *J* 12.0), 5.03 (0.4H, d, *J* 12.0), 5.08 (0.6H, dd, *J* 9.5 and 3.5), 5.25 (0.4H, t, *J* 6.5), 5.35 (0.2H, d, *J* 5.5), 5.36 (0.2H, d, *J* 5.5), 5.76 (0.3H, d, *J* 5.5), 6.05 (0.4H, d, *J* 6.0), 6.43 (0.6H, d, *J* 6.0), 6.61 (1H, d, *J* 7.5), 7.10-8.15 (11H, m); *m/z* (FAB) 373.1551 (M<sup>+</sup>+1, C<sub>23</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub> requires 373.1552).

Compound **12d** was synthesized using conditions similar to that described for the synthesis of compound **12a**. Compound **12d** was obtained in 88% yield as a colorless solid: m.p. 141-142 °C;  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 2.91-3.07 (2H, m), 4.48 (0.5H, d, *J* 12.0), 4.66 (0.5H, t, *J* 6.8), 4.95 (0.5H, d, *J* 12.0), 5.03 (0.5H, d, *J* 12.0), 5.05 (0.5H, t, *J* 6.8), 5.11 (0.5H, d, *J* 12.0), 5.40 (0.25H, d, *J* 5.0), 5.41 (0.25H, d, *J* 5.0), 5.65 (0.25H, d, *J* 5.0), 5.66 (0.25H, d, *J* 5.0), 6.16 (0.5H, d, *J* 5.5), 6.38 (0.5H, d, *J* 5.5), 7.07-7.36 (10H, m), 7.56 (1H, s); *m/z* (FAB) 323.1396 (M<sup>+</sup>+1, C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub> requires 323.1396).

Alkylation of compounds **12b** or **12d** with 4-chloromethyl-5-methyl-1-tritylimidazole<sup>26</sup> (9) using conditions similar to that described for the synthesis of compound **13a2**, afforded compounds **13b** and **13d** as colorless oils with 65-70% yields.

Compound **13b**  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 1.45 (1.2H, s), 1.46 (1.8H, s), 3.08-3.48 (2H, m), 3.72 (0.5H, d, *J* 12.0), 4.51 (0.5H, d, *J* 14.5), 4.53 (1H, m), 4.67 (0.5H, d, *J* 12.0), 4.76 (0.5H, d, *J* 14.5), 4.91 (0.5H, d, *J* 12.5), 4.95 (0.5H, d, *J* 12.5), 5.08 (0.5H, m), 5.22 (0.5H, m), 5.73 (0.4H, d, *J* 6.0), 6.03 (0.6, d, *J* 6.0), 6.07 (0.4H, d, *J* 6.0), 6.42 (0.6H, d, *J* 6.0), 6.56 (1H, d, *J* 7.0), 7.07-8.14 (28H, m); m/z (FAB) 709.3181 (M<sup>+</sup>+1, C<sub>47</sub>H<sub>41</sub>N<sub>4</sub>O<sub>3</sub> requires 709.3179).

Compound **13d**  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>)  $\delta$  1.44 (1.5 H, s), 1.48 (1.5H, s), 2.77-2.95 (2H, m), 4.39 (0.5 H, d, *J* 12.0), 4.47 (0.5H, d, *J* 15.0), 4.49 (0.5 H, d, *J* 15.0), 4.62 (0.5H, d, *J* 14.5),

4.73 (0.5H, d, J 4.5), 4.88 (0.5H, t, J 7.0), 5.06 (0.5H, d, J 2.0), 4.90 (0.5H, d, J 12.0), 4.98 (0.5H, d, J 12.0), 5.03 (0.5H, t, J 7.0), 5.75 (0.5H, d, J 6.0), 5.92 (0.5H, d, J 6.0), 6.14 (0.5H, d, J 6.0), 6.36 (0.5H, d, J 6.0), 7.04-7.35 (26H, m); m/z (FAB) 659.3025 (M<sup>+</sup>+1, C<sub>43</sub>H<sub>39</sub>N<sub>4</sub>O<sub>3</sub> requires 659.3022).

Compounds **14b** and **14d** were obtained as colorless oils in 95-99% yields by hydrogenation of compounds **13b** or **13d**, using similar conditions described previously. Compound **14b**:  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 1.45 (3H, s), 2.71 (1H, m), 2.90-3.01 (2H, m), 3.27 (1H, dt, *J* 12.0 and 3.5), 3.39 (1H, m), 3.67 (1H, dd, *J* 11.0 and 3.0), 3.52 (1H, dd, *J* 14.0 and 2.5), 4.42 (1H, d, *J* 14.5), 4.63 (1H, d, *J* 14.5), 7.04-7.35 (17H, m), 7.39-7.48 (3H, m), 7.68 (1H, dd, *J* 7.5 and 1.5), 7.78 (1H, d, *J* 7.5), 8.17 (1H, d, *J* 7.5); *m/z* (FAB) 577.2968 (M<sup>+</sup>+1, C<sub>39</sub>H<sub>37</sub>N<sub>4</sub>O requires 577.2967).

Compound **14d**:  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 1.41 (3H, s), 2.42 (1H, br), 2.76 (2H, m), 2.98 (1H, dt, *J* 12.5 and 4.0), 3.29 (2H, m), 3.38 (1H, dd, *J* 13.7 and 3.5), 3.52 (1H, dd, *J* 10.0 and 3.5), 4.33 (1H, d, *J* 14.5), 4.61 (1H, d, *J* 14.5), 7.04-7.26 (21H, m); *m*/*z* (FAB) 527.2812 (M<sup>+</sup>+1, C<sub>35</sub>H<sub>35</sub>N<sub>4</sub>O requires 527.2811).

Scaffold **14b** was coupled to L-leucine methyl ester isocyanate following the previously described general procedures to give trityl-protected **67** as a colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 0.58 (3H, d, *J* 6.0), 0.60 (3H, d, *J* 6.0), 1.43 (3H, s), 3.07-3.26 (4H, m), 3.36 (1H, m), 3.43 (3H, s), 3.81 (1H, dd, *J* 14.0 and 7.0), 4.00 (1H, dd, *J* 14.0 and 3.0), 4.16 (1H, brd, *J* 13.5), 4.37 (1H, d, *J* 14.7), 4.55 (1H, brd, *J* 9.3), 4.60 (1H, d, *J* 14.7), 7.03-7.32 (19H, m); 7.45 (1H, t, *J* 7.5), 7.55 (1H, t, *J* 7.5), 7.69 (1H, d, *J* 8.0), 7.79 (1H, d, *J* 8.0); *m*/*z* (FAB) 748.3861 (M<sup>+</sup>+1, C<sub>47</sub>H<sub>50</sub>N<sub>5</sub>O<sub>4</sub> requires 748.3863).

Deprotection of the above mentioned compound following the general procedure described previously afforded **67** as a colorless oil in 88% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.43 (1H, m), 0.61 (3H, d, *J* 6.5), 0.63 (3H, d, *J* 6.5), 0.81 (1H, m), 0.89 (1H, m), 2.28 (3H, s), 3.11 (1H, m), 3.18-3.33 (2H, m), 3.43 (1H, m), 3.47 (3H, s), 3.87 (2H, m), 4.02 (1H, m), 4.16 (1H, brd, *J* 11.0), 4.40 (1H, d, *J* 15.0), 4.53 (1H, d, *J* 15.0), 4.82 (1H, m), 7.18 (1H, d, *J* 7.0), 7.29 (1H, t, *J* 7.5), 7.45 (1H, t, *J* 7.5), 7.51 (1H, t, *J* 7.5), 7.70 (1H, d, *J* 8.5), 7.79 (1H, d, *J* 8.5), 8.13 (1H, d, *J* 8.5), 8.31 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 9.23, 22.07, 22.61, 24.48, 35.12, 37.10, 40.48, 41.10, 47.06, 52.38, 54.70, 69.68, 123.34, 124.32, 126.05, 126.55, 127.38, 128.61, 128.73, 128.92, 129.53, 131.76, 132.94, 132.94, 134.27, 156.86, 168.97, 174.06; *m/z* (FAB) 506.2767 (M<sup>+</sup>+1, C<sub>28</sub>H<sub>36</sub>N<sub>5</sub>O<sub>4</sub> requires 506.2767).

Saponification of **67** following the general procedure described previously afforded **68** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.61 (3H, d, *J* 6.5), 0.63 (3H, d, *J* 6.5), 0.80 (1H, m), 0.89 (1H, m), 1.12 (1H, m), 2.15 (3H, s), 2.89 (2H, m), 3.16 (1H, m), 3.40 (1H, dd, *J* 14.0 and 8.5), 3.78 (3H, m), 4.40 (2H, s), 7.16 (1H, d, *J* 7.0 Hz), 7.20 (1H, t, *J* 7.8), 7.36 (1H, t, *J* 7.8), 7.43 (1H, t, *J* 7.5), 7.60 (1H, s), 7.63 (1H, d, *J* 8.0), 7.73 (1H, d, *J* 8.0), 8.12 (1H, d, *J* 8.0);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 10.2, 22.4, 23.9, 25.9, 35.6, 38.8, 42.7, 43.0, 46.9, 55.6, 60.4, 125.1, 126.9, 127.2, 128.0, 129.1, 129.2, 129.2, 129.9, 130.3, 133.9, 135.2, 135.3, 135.7, 158.7, 170.1, 180.5; *m/z* (FAB) 492.2613 (M<sup>+</sup>+1, C<sub>27</sub>H<sub>34</sub>N<sub>5</sub>O<sub>4</sub> requires 492.2611).

Scaffold **14d** was coupled to D-leucine methyl ester isocyanate following the previously described general procedures to give trityl-protected **71** as colorless oil in 87% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.82 (3H, d, *J* 6.5), 0.85 (3H, d, *J* 6.5), 1.11 (1H, m), 1.33 (1H, m), 1.44 (3H, s), 1.47 (1H, m), 2.84 (1H, ddd, *J* 13.5, 10.0 and 3.0), 3.05 (1H, dd, *J* 14.0 and 8.5), 3.10 (1H, dt, *J* 12.0 and 3.0), 3.38 (2H, m), 3.64 (3H, s), 3.82 (1H, brd, *J* 8.5), 3.98 (1H, brd, *J* 14.0), 4.06

(1H, m), 4.38 (1H, m), 4.41 (1H, d, J 14.5), 4.60 (1H, d, J 14.5), 7.07-7.37 (21H, m); m/z (FAB) 698.3706 (M<sup>+</sup>+1, C<sub>43</sub>H<sub>48</sub>N<sub>5</sub>O<sub>4</sub> requires 698.3706).

Deprotection of the above mentioned compound following the general procedure described previously afforded **71** as a colorless oil in 86% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.80 (3H, d, *J* 6.7), 0.83 (3H, d, *J* 6.7), 1.20 (1H, m), 1.34 (1H, m), 1.47 (1H, m), 2.34 (3H, s), 2.94 (1H, ddd, *J* 14.0, 10.5 and 3.5), 3.05 (1H, m), 3.30 (1H, dd, *J* 13.5 and 3.5), 3.44 (1H, ddd, *J* 2.0, 12.0 and 4.0), 3.59 (3H, s), 3.93 (1H, brd, *J* 13.0), 4.05 (1H, m), 4.41 (1H, m), 4.51 (1H, m), 4.53 (2H, s), 7.12-7.24 (5H, m), 8.39 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 9.5, 22.0, 23.1, 25.1, 38.1, 38.2, 40.4, 41.1, 46.8, 52.4, 52.8, 60.7, 124.7, 127.6, 128.7, 129.3, 129.8, 129.8, 132.7, 137.6, 157.3, 168.4, 174.6; *m*/*z* (FAB) 456.2612 (M<sup>+</sup>+1, C<sub>24</sub>H<sub>34</sub>N<sub>5</sub>O<sub>4</sub> requires 456.2611).

Saponification of **71** following the general procedure described previously afforded **72** as a colorless oil in 85% yield:  $\delta_{\rm H}$  (500 MHz, d4-methanol) 0.82 (3H, d, *J* 6.5), 0.83 (3H, d, *J* 6.0), 1.42-1.60 (3H, m), 2.17 (3H, s), 2.61 (1H, ddd, *J* 13.5, 10.0, and 3.5), 2.75 (1H, dd, *J* 12.5 and 3.5), 3.15-3.26 (2H, m), 3.57 (1H, dt, *J* 13.5 and 4.0), 4.12 (1H, dd, *J* 10.0 and 4.8), 4.35 (1H, d, *J* 14.8), 4.47 (1H, d, *J* 14.8), 4.71 (1H, t, *J* 5.5), 6.97-7.10 (5H, m), 7.53 (1H, s);  $\delta_{\rm C}$  (125 MHz, d4-methanol) 10.3, 22.6, 24.1, 26.5, 38.9, 40.3, 42.8, 43.4, 46.8, 55.8, 59.5, 128.2, 129.1, 129.5, 129.7, 129.7, 131.2, 131.2, 135.3, 139.0, 158.7, 170.3, 180.5; *m*/*z* (FAB) 442.2455 (M<sup>+</sup>+1, C<sub>23</sub>H<sub>32</sub>N<sub>5</sub>O<sub>4</sub> requires 442.2454).

#### X-ray Structure Report Reference Number: Compound **3**

#### Data Collection

A colorless column crystal of  $C_{23}H_{25}N_2O_3F$  having approximate dimensions of 0.15 x 0.24 x 0.24 mm was mounted on a glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K $\alpha$  radiation.

Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using ten (1° in  $\omega$ , 10s exposure, de-zingered) data frames, corresponded to a primitive orthorhombic cell with dimensions: a = 12.174(1) Å, b = 21.549(1) Å, c = 7.6755(3) Å, and V = 2013.6(4) Å<sup>3</sup>. For Z = 4 and F.W. = 396.46, the calculated density is 1.31 g/cm<sup>3</sup>. The systematic absences of: h00: h = 2n+1, 0k0: k = 2n+1, 001: l = 2n+1; uniquely determine the space group to be: P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (#19).

The data were collected at a temperature of  $-90 \pm 1^{\circ}$ C to a maximum 20 value of 55.0°. Two omega scans consisting of 65 and 18 data frames, respectively, were collected with a scan width of 1.6° and a detector-to-crystal distance, Dx, of 35mm. Each frame was exposed twice (for the purpose of de-zingering) for 32s. The data frames were processed and scaled using the DENZO software package. (Z. Otwinowski and W. Minor, "Processing of X-Ray Diffraction Data Collected in Oscillation Mode," Methods in Enzymology, vol. 276: Macromolecular Crystallography, part A, 307-326, 1997, C.W. Carter, Jr. & R.M. Sweet, Eds., Academic Press).

#### Data Reduction

Of the 4459 reflections which were collected, 2639 were unique ( $R_{int} = 0.043$ ). No decay correction was applied. The linear absorption coefficient,  $\mu$ , for Mo-K $\alpha$  radiation is 0.9 cm<sup>-1</sup> and no absorption correction was applied. The data were corrected for Lorentz and polarization effects.

#### Structure Solution and Refinement

The structure was solved by direct methods<sup>1</sup> and expanded using Fourier techniques<sup>2</sup>. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. In the case of the methyl group hydrogen atoms, one hydrogen was located in the difference map and included at an idealized distance to set the orientation of the other two hydrogen atoms. The final cycle of full-matrix least-squares refinement<sup>3</sup> was based on 1645 observed reflections (I >  $3.00\sigma$ (I)) and 262 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

# $$\begin{split} R &= \Sigma \; ||Fo| - |Fc|| \; / \; \Sigma \; |Fo| = 0.041 \\ R_W &= [(\; \Sigma \; w \; (|Fo| - |Fc|)^2 \; / \; \Sigma \; w \; Fo^2)]^{1/2} = 0.040 \end{split}$$

The standard deviation of an observation of unit weight<sup>4</sup> was 1.48. The weighting scheme was based on counting statistics and included a factor (p = 0.020) to downweight the intense reflections. Plots of  $\Sigma$  w (|Fo| - |Fc|)<sup>2</sup> versus |Fo|, reflection order in data collection, sin  $\theta/\lambda$ , and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.20 and -0.18 e<sup>-</sup>/Å<sup>3</sup>, respectively.

Neutral atom scattering factors were taken from Cromer and Waber<sup>5</sup>. Anomalous dispersion effects were included in Fcalc<sup>6</sup>; the values for  $\Delta f'$  and  $\Delta f''$  were those of Creagh and McAuley<sup>7</sup>. The values for the mass

attenuation coefficients are those of Creagh and Hubbel<sup>8</sup>. All calculations were performed using the teXsan<sup>9</sup> crystallographic software package of Molecular Structure Corporation.

#### References

(1) <u>SIR92</u>: Altomare, A., Burla, M.C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A., & Polidori, G.; J. Appl. Cryst., 27, 435-436 (1994).

(2) <u>DIRDIF94</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., de Gelder, R., Israel, R. and Smits, J.M.M.(1994). The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

(3) Least-Squares:

Function minimized  $Sw(|F_0|-|F_c|)^2$ 

where 
$$w = 4F_0^{2/2}(F_0^2)$$
  
and  $s^2(F_0^2) = [S^2(C+R^2B) + (pF_0^2)^2]/Lp^2$   
 $S = Scan rate$   
 $C = Total integrated peak count$   
 $R = Ratio of scan time to background counting time $B = Total background count$   
 $Lp = Lorentz-polarization factor$   
 $p = p$ -factor$ 

(4) Standard deviation of an observation of unit weight:

 $[Sw(|F_0|-|F_c|)^2/(N_0-N_V)]^{1/2}$ 

where  $N_0$  = number of observations and  $N_V$  = number of variables (5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992).

## EXPERIMENTAL DETAILS

# A. Crystal Data

| Empirical Formula            | $C_{23}H_{25}N_2O_3F$                                                                 |
|------------------------------|---------------------------------------------------------------------------------------|
| Formula Weight               | 396.46                                                                                |
| Crystal Color, Habit         | colorless, column                                                                     |
| Crystal Dimensions           | 0.15 X 0.24 X 0.24 mm                                                                 |
| Crystal System               | orthorhombic                                                                          |
| Lattice Type                 | Primitive                                                                             |
| Lattice Parameters           | $a = 12.174(1)\text{\AA}$<br>$b = 21.549(1) \text{\AA}$<br>$c = 7.6755(3) \text{\AA}$ |
|                              | $V = 2013.6(4) \text{ Å}^3$                                                           |
| Space Group                  | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> (#19)                                   |
| Z value                      | 4                                                                                     |
| Dcalc                        | 1.308 g/cm <sup>3</sup>                                                               |
| F000                         | 840.00                                                                                |
| μ(ΜοΚα)                      | 0.93 cm <sup>-1</sup>                                                                 |
| B. Intensity                 | Measurements                                                                          |
| Diffractometer               | Nonius KappaCCD                                                                       |
| Radiation                    | MoK $\alpha$ ( $\lambda = 0.71069$ Å) graphite monochromated                          |
| Take-off Angle               | 2.8 <sup>0</sup>                                                                      |
| Crystal to Detector Distance | 35 mm                                                                                 |
| Temperature                  | -90.0 <sup>o</sup> C                                                                  |
| Scan Rate                    | 32s/frame                                                                             |
| Scan Width                   | 1.6 <sup>0</sup> /frame                                                               |
| 20 <sub>max</sub>            | 55.0 <sup>0</sup>                                                                     |

No. of Reflections Measured

Corrections

Total: 4459 Unique: 2639 (Rint = 0.043) Lorentz-polarization

C. Structure Solution and Refinement

| Structure Solution                                                           | Direct Methods (SIR92)                                                      |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Refinement                                                                   | Full-matrix least-squares                                                   |
| Function Minimized                                                           | $\Sigma \le ( Fo  -  Fc )^2$                                                |
| Least Squares Weights                                                        | $1/\sigma^2$ (Fo)                                                           |
| p-factor                                                                     | 0.0200                                                                      |
| Anomalous Dispersion                                                         | All non-hydrogen atoms                                                      |
| No. Observations (I>3.00σ(I))<br>No. Variables<br>Reflection/Parameter Ratio | 1645<br>262<br>6.28                                                         |
| Residuals: R; Rw                                                             | 0.041 ; 0.040                                                               |
| Goodness of Fit Indicator                                                    | 1.48                                                                        |
| Max Shift/Error in Final Cycle                                               | 0.00                                                                        |
| Maximum peak in Final Diff. Map<br>Minimum peak in Final Diff. Map           | 0.20 e <sup>-</sup> /Å <sup>3</sup><br>-0.18 e <sup>-</sup> /Å <sup>3</sup> |

# Table 1. Atomic coordinates and $B_{iSO}\!/Beq$

| atom  | X         | У           | Z          | Beq      |
|-------|-----------|-------------|------------|----------|
| F(1)  | 0.6883(2) | 0.43533(10) | 1.2060(2)  | 4.42(5)  |
| O(1)  | 0.2904(2) | 0.3702(1)   | 0.5359(3)  | 3.26(5)  |
| O(2)  | 0.3227(2) | 0.15429(9)  | 0.4989(3)  | 3.01(5)  |
| O(3)  | 0.5075(2) | 0.14654(9)  | 0.5265(3)  | 2.84(5)  |
| N(1)  | 0.4364(2) | 0.2342(1)   | 0.4271(3)  | 1.93(5)  |
| N(2)  | 0.4731(2) | 0.3588(1)   | 0.4797(3)  | 2.18(5)  |
| C(1)  | 0.3661(2) | 0.3394(1)   | 0.4781(4)  | 2.28(7)  |
| C(2)  | 0.3472(2) | 0.2781(1)   | 0.3855(4)  | 2.16(6)  |
| C(3)  | 0.5433(2) | 0.2583(1)   | 0.4125(4)  | 2.15(7)  |
| C(4)  | 0.5590(2) | 0.3184(2)   | 0.4323(4)  | 2.28(7)  |
| C(5)  | 0.3395(2) | 0.2898(1)   | 0.1879(3)  | 2.26(6)  |
| C(6)  | 0.2873(2) | 0.2384(1)   | 0.0803(4)  | 2.45(7)  |
| C(7)  | 0.1635(3) | 0.2359(2)   | 0.1082(4)  | 3.75(8)  |
| C(8)  | 0.3129(3) | 0.2480(2)   | -0.1112(4) | 3.68(9)  |
| C(9)  | 0.4138(2) | 0.1765(1)   | 0.4866(3)  | 2.18(7)  |
| C(10) | 0.4998(3) | 0.0834(2)   | 0.5927(4)  | 3.32(8)  |
| C(11) | 0.5490(3) | 0.0808(1)   | 0.7708(4)  | 2.50(7)  |
| C(12) | 0.4902(3) | 0.0999(2)   | 0.9147(5)  | 3.77(9)  |
| C(13) | 0.5368(4) | 0.0987(2)   | 1.0776(5)  | 5.2(1)   |
| C(14) | 0.6417(5) | 0.0771(2)   | 1.0990(5)  | 5.3(1)   |
| C(15) | 0.7008(3) | 0.0574(2)   | 0.9583(5)  | 4.22(10) |
| C(16) | 0.6550(3) | 0.0593(2)   | 0.7945(4)  | 3.15(8)  |
| C(17) | 0.4999(2) | 0.4221(2)   | 0.5391(4)  | 2.74(7)  |
| C(18) | 0.5511(3) | 0.4242(1)   | 0.7187(4)  | 2.23(6)  |
| C(19) | 0.6613(2) | 0.4380(1)   | 0.7385(4)  | 2.67(7)  |
| C(20) | 0.7075(2) | 0.4423(2)   | 0.9022(4)  | 2.94(8)  |
| C(21) | 0.6425(3) | 0.4321(2)   | 1.0430(4)  | 2.84(7)  |
| C(22) | 0.5328(2) | 0.4174(2)   | 1.0307(4)  | 2.68(7)  |
| C(23) | 0.4889(2) | 0.4136(2)   | 0.8651(4)  | 2.66(7)  |
| H(1)  | 0.2796    | 0.2610      | 0.4244     | 2.5868   |
| H(2)  | 0.6035    | 0.2316      | 0.3886     | 2.5782   |
| H(3)  | 0.6304    | 0.3350      | 0.4140     | 2.7311   |
| H(4)  | 0.2975    | 0.3265      | 0.1707     | 2.7173   |
| H(5)  | 0.4119    | 0.2961      | 0.1453     | 2.7173   |
| H(6)  | 0.3180    | 0.1999      | 0.1159     | 2.9359   |
| H(7)  | 0.1330    | 0.2759      | 0.0899     | 4.4981   |
| H(8)  | 0.1320    | 0.2074      | 0.0281     | 4.4981   |
| H(9)  | 0.1484    | 0.2227      | 0.2238     | 4.4981   |
| H(10) | 0.3901    | 0.2519      | -0.1262    | 4.4117   |
| H(11) | 0.2871    | 0.2134      | -0.1761    | 4.4117   |
| H(12) | 0.2777    | 0.2847      | -0.1512    | 4.4117   |

| Table 1. Atomic | coordinates | and | Biso/Beq | (continued) |
|-----------------|-------------|-----|----------|-------------|
|                 |             |     |          |             |

| Х      | У                                                                                                                                   | Z                                                                                                                                                              | Beq                                                                                                                                                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.4248 | 0.0713                                                                                                                              | 0.5981                                                                                                                                                         | 3.9785                                                                                                                                                                                                                                        |
| 0.5385 | 0.0561                                                                                                                              | 0.5173                                                                                                                                                         | 3.9785                                                                                                                                                                                                                                        |
| 0.4168 | 0.1140                                                                                                                              | 0.9010                                                                                                                                                         | 4.5238                                                                                                                                                                                                                                        |
| 0.4962 | 0.1129                                                                                                                              | 1.1755                                                                                                                                                         | 6.2106                                                                                                                                                                                                                                        |
| 0.6734 | 0.0758                                                                                                                              | 1.2121                                                                                                                                                         | 6.3043                                                                                                                                                                                                                                        |
| 0.7736 | 0.0423                                                                                                                              | 0.9734                                                                                                                                                         | 5.0647                                                                                                                                                                                                                                        |
| 0.6965 | 0.0457                                                                                                                              | 0.6969                                                                                                                                                         | 3.7763                                                                                                                                                                                                                                        |
| 0.5500 | 0.4399                                                                                                                              | 0.4586                                                                                                                                                         | 3.2855                                                                                                                                                                                                                                        |
| 0.4341 | 0.4458                                                                                                                              | 0.5411                                                                                                                                                         | 3.2855                                                                                                                                                                                                                                        |
| 0.7057 | 0.4445                                                                                                                              | 0.6383                                                                                                                                                         | 3.2056                                                                                                                                                                                                                                        |
| 0.7831 | 0.4521                                                                                                                              | 0.9160                                                                                                                                                         | 3.5242                                                                                                                                                                                                                                        |
| 0.4893 | 0.4102                                                                                                                              | 1.1314                                                                                                                                                         | 3.2129                                                                                                                                                                                                                                        |
| 0.4135 | 0.4033                                                                                                                              | 0.8520                                                                                                                                                         | 3.1870                                                                                                                                                                                                                                        |
|        | x<br>0.4248<br>0.5385<br>0.4168<br>0.4962<br>0.6734<br>0.7736<br>0.6965<br>0.5500<br>0.4341<br>0.7057<br>0.7831<br>0.4893<br>0.4135 | xy0.42480.07130.53850.05610.41680.11400.49620.11290.67340.07580.77360.04230.69650.04570.55000.43990.43410.44580.70570.44450.78310.45210.48930.41020.41350.4033 | xyz0.42480.07130.59810.53850.05610.51730.41680.11400.90100.49620.11291.17550.67340.07581.21210.77360.04230.97340.69650.04570.69690.55000.43990.45860.43410.44580.54110.70570.44450.63830.78310.45210.91600.48930.41021.13140.41350.40330.8520 |

Beq =  $8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$ 

| atom  | U11      | U22      | U33      | U12        | U13       | U23       |
|-------|----------|----------|----------|------------|-----------|-----------|
| F(1)  | 0.067(1) | 0.067(2) | 0.033(1) | -0.021(1)  | -0.015(1) | 0.003(1)  |
| O(1)  | 0.037(1) | 0.045(1) | 0.043(1) | 0.013(1)   | 0.002(1)  | -0.010(1) |
| O(2)  | 0.034(1) | 0.036(1) | 0.044(1) | -0.009(1)  | 0.001(1)  | 0.001(1)  |
| O(3)  | 0.037(1) | 0.028(1) | 0.043(1) | 0.0011(10) | -0.009(1) | 0.008(1)  |
| N(1)  | 0.021(1) | 0.025(1) | 0.027(1) | 0.002(1)   | 0.000(1)  | 0.005(1)  |
| N(2)  | 0.030(1) | 0.027(1) | 0.026(1) | 0.002(1)   | 0.000(1)  | -0.002(1) |
| C(1)  | 0.031(2) | 0.032(2) | 0.023(2) | 0.006(1)   | -0.002(2) | 0.004(2)  |
| C(2)  | 0.023(2) | 0.032(2) | 0.027(1) | 0.001(1)   | 0.000(1)  | 0.003(2)  |
| C(3)  | 0.022(2) | 0.032(2) | 0.028(2) | -0.002(1)  | 0.001(1)  | 0.004(2)  |
| C(4)  | 0.027(2) | 0.033(2) | 0.027(2) | -0.003(1)  | 0.002(1)  | 0.002(2)  |
| C(5)  | 0.030(2) | 0.030(2) | 0.026(1) | 0.000(1)   | -0.003(1) | 0.002(2)  |
| C(6)  | 0.035(2) | 0.029(2) | 0.029(2) | 0.004(1)   | -0.005(2) | 0.000(2)  |
| C(7)  | 0.045(2) | 0.059(2) | 0.039(2) | -0.015(2)  | -0.007(2) | -0.008(2) |
| C(8)  | 0.046(2) | 0.061(3) | 0.032(2) | 0.002(2)   | -0.006(2) | -0.010(2) |
| C(9)  | 0.033(2) | 0.030(2) | 0.020(1) | 0.001(2)   | -0.003(2) | -0.003(2) |
| C(10) | 0.055(2) | 0.026(2) | 0.045(2) | -0.003(2)  | -0.011(2) | 0.003(2)  |
| C(11) | 0.040(2) | 0.022(2) | 0.033(2) | -0.004(2)  | -0.004(2) | 0.003(2)  |
| C(12) | 0.052(2) | 0.044(2) | 0.048(2) | 0.007(2)   | 0.008(2)  | 0.003(2)  |
| C(13) | 0.109(4) | 0.048(3) | 0.039(2) | -0.003(3)  | 0.013(3)  | -0.005(2) |
| C(14) | 0.103(3) | 0.056(3) | 0.041(2) | -0.031(3)  | -0.032(3) | 0.012(2)  |
| C(15) | 0.044(2) | 0.049(2) | 0.067(3) | -0.014(2)  | -0.022(2) | 0.024(2)  |
| C(16) | 0.035(2) | 0.034(2) | 0.051(2) | -0.005(2)  | -0.001(2) | 0.009(2)  |
| C(17) | 0.044(2) | 0.027(2) | 0.033(2) | 0.001(2)   | -0.003(2) | -0.003(2) |
| C(18) | 0.039(2) | 0.021(2) | 0.025(1) | 0.001(1)   | 0.002(2)  | -0.004(1) |
| C(19) | 0.036(2) | 0.032(2) | 0.034(2) | -0.005(2)  | 0.004(2)  | 0.000(2)  |
| C(20) | 0.035(2) | 0.037(2) | 0.039(2) | -0.007(2)  | -0.004(2) | 0.004(2)  |
| C(21) | 0.046(2) | 0.032(2) | 0.029(2) | -0.007(2)  | -0.012(2) | -0.001(2) |
| C(22) | 0.042(2) | 0.034(2) | 0.025(2) | -0.003(2)  | 0.003(2)  | -0.002(2) |
| C(23) | 0.032(2) | 0.034(2) | 0.034(2) | -0.001(2)  | -0.001(2) | -0.005(2) |

The general temperature factor expression:  $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$ 

# Table 3. Bond Lengths(Å)

| atom  | atom distance |          | atom  | atom  | distance |  |
|-------|---------------|----------|-------|-------|----------|--|
| F(1)  | C(21)         | 1.371(3) | O(1)  | C(1)  | 1.219(3) |  |
| O(2)  | C(9)          | 1.211(3) | O(3)  | C(9)  | 1.346(3) |  |
| O(3)  | C(10)         | 1.454(4) | N(1)  | C(2)  | 1.475(4) |  |
| N(1)  | C(3)          | 1.406(3) | N(1)  | C(9)  | 1.354(4) |  |
| N(2)  | C(1)          | 1.368(4) | N(2)  | C(4)  | 1.409(4) |  |
| N(2)  | C(17)         | 1.473(4) | C(1)  | C(2)  | 1.518(4) |  |
| C(2)  | C(5)          | 1.540(4) | C(3)  | C(4)  | 1.318(4) |  |
| C(5)  | C(6)          | 1.520(4) | C(6)  | C(7)  | 1.523(4) |  |
| C(6)  | C(8)          | 1.517(4) | C(10) | C(11) | 1.494(4) |  |
| C(11) | C(12)         | 1.378(4) | C(11) | C(16) | 1.383(4) |  |
| C(12) | C(13)         | 1.373(6) | C(13) | C(14) | 1.369(6) |  |
| C(14) | C(15)         | 1.366(6) | C(15) | C(16) | 1.376(4) |  |
| C(17) | C(18)         | 1.513(4) | C(18) | C(19) | 1.383(4) |  |
| C(18) | C(23)         | 1.374(4) | C(19) | C(20) | 1.380(4) |  |
| C(20) | C(21)         | 1.357(4) | C(21) | C(22) | 1.376(4) |  |
| C(22) | C(23)         | 1.381(4) |       |       |          |  |

Table 4. Bond Lengths(Å) for the Hydrogen Atoms

| atom  | atom  | distance | atom  | atom  | distance |
|-------|-------|----------|-------|-------|----------|
| C(2)  | H(1)  | 0.95     | C(3)  | H(2)  | 0.95     |
| C(4)  | H(3)  | 0.95     | C(5)  | H(4)  | 0.95     |
| C(5)  | H(5)  | 0.95     | C(6)  | H(6)  | 0.95     |
| C(7)  | H(7)  | 0.95     | C(7)  | H(8)  | 0.95     |
| C(7)  | H(9)  | 0.95     | C(8)  | H(10) | 0.95     |
| C(8)  | H(11) | 0.95     | C(8)  | H(12) | 0.95     |
| C(10) | H(13) | 0.95     | C(10) | H(14) | 0.95     |
| C(12) | H(15) | 0.95     | C(13) | H(16) | 0.95     |
| C(14) | H(17) | 0.95     | C(15) | H(18) | 0.95     |
| C(16) | H(19) | 0.95     | C(17) | H(20) | 0.95     |
| C(17) | H(21) | 0.95     | C(19) | H(22) | 0.95     |
| C(20) | H(23) | 0.95     | C(22) | H(24) | 0.95     |
| C(23) | H(25) | 0.95     |       |       |          |

# Table 5. Bond Angles(<sup>0</sup>)

| atom  | atom  | atom  | angle    | atom  | atom  | atom  | angle    |
|-------|-------|-------|----------|-------|-------|-------|----------|
| C(9)  | O(3)  | C(10) | 118.2(2) | C(2)  | N(1)  | C(3)  | 115.3(2) |
| C(2)  | N(1)  | C(9)  | 120.9(2) | C(3)  | N(1)  | C(9)  | 123.7(2) |
| C(1)  | N(2)  | C(4)  | 121.0(2) | C(1)  | N(2)  | C(17) | 119.8(2) |
| C(4)  | N(2)  | C(17) | 119.1(2) | O(1)  | C(1)  | N(2)  | 123.3(3) |
| O(1)  | C(1)  | C(2)  | 122.0(3) | N(2)  | C(1)  | C(2)  | 114.5(2) |
| N(1)  | C(2)  | C(1)  | 110.2(2) | N(1)  | C(2)  | C(5)  | 111.3(2) |
| C(1)  | C(2)  | C(5)  | 109.1(3) | N(1)  | C(3)  | C(4)  | 119.2(3) |
| N(2)  | C(4)  | C(3)  | 122.0(3) | C(2)  | C(5)  | C(6)  | 116.1(3) |
| C(5)  | C(6)  | C(7)  | 111.3(3) | C(5)  | C(6)  | C(8)  | 109.9(3) |
| C(7)  | C(6)  | C(8)  | 110.1(3) | O(2)  | C(9)  | O(3)  | 124.7(3) |
| O(2)  | C(9)  | N(1)  | 125.1(3) | O(3)  | C(9)  | N(1)  | 110.2(2) |
| O(3)  | C(10) | C(11) | 109.2(3) | C(10) | C(11) | C(12) | 120.9(3) |
| C(10) | C(11) | C(16) | 120.5(3) | C(12) | C(11) | C(16) | 118.6(3) |
| C(11) | C(12) | C(13) | 120.6(3) | C(12) | C(13) | C(14) | 120.1(4) |
| C(13) | C(14) | C(15) | 120.1(3) | C(14) | C(15) | C(16) | 120.0(3) |
| C(11) | C(16) | C(15) | 120.6(3) | N(2)  | C(17) | C(18) | 113.7(3) |
| C(17) | C(18) | C(19) | 120.4(3) | C(17) | C(18) | C(23) | 120.9(2) |
| C(19) | C(18) | C(23) | 118.7(3) | C(18) | C(19) | C(20) | 120.7(3) |
| C(19) | C(20) | C(21) | 118.5(3) | F(1)  | C(21) | C(20) | 118.8(3) |
| F(1)  | C(21) | C(22) | 118.0(3) | C(20) | C(21) | C(22) | 123.2(3) |
| C(21) | C(22) | C(23) | 116.9(3) | C(18) | C(23) | C(22) | 122.0(3) |

| atom  | atom  | atom  | angle | atom  | atom  | atom  | angle |
|-------|-------|-------|-------|-------|-------|-------|-------|
| N(1)  | C(2)  | H(1)  | 108.7 | C(1)  | C(2)  | H(1)  | 108.7 |
| C(5)  | C(2)  | H(1)  | 108.7 | N(1)  | C(3)  | H(2)  | 120.4 |
| C(4)  | C(3)  | H(2)  | 120.4 | N(2)  | C(4)  | H(3)  | 119.0 |
| C(3)  | C(4)  | H(3)  | 119.0 | C(2)  | C(5)  | H(4)  | 107.8 |
| C(2)  | C(5)  | H(5)  | 107.8 | C(6)  | C(5)  | H(4)  | 107.8 |
| C(6)  | C(5)  | H(5)  | 107.8 | H(4)  | C(5)  | H(5)  | 109.5 |
| C(5)  | C(6)  | H(6)  | 108.4 | C(7)  | C(6)  | H(6)  | 108.4 |
| C(8)  | C(6)  | H(6)  | 108.4 | C(6)  | C(7)  | H(7)  | 109.5 |
| C(6)  | C(7)  | H(8)  | 109.5 | C(6)  | C(7)  | H(9)  | 109.5 |
| H(7)  | C(7)  | H(8)  | 109.5 | H(7)  | C(7)  | H(9)  | 109.5 |
| H(8)  | C(7)  | H(9)  | 109.5 | C(6)  | C(8)  | H(10) | 109.5 |
| C(6)  | C(8)  | H(11) | 109.5 | C(6)  | C(8)  | H(12) | 109.5 |
| H(10) | C(8)  | H(11) | 109.5 | H(10) | C(8)  | H(12) | 109.5 |
| H(11) | C(8)  | H(12) | 109.5 | O(3)  | C(10) | H(13) | 109.5 |
| O(3)  | C(10) | H(14) | 109.5 | C(11) | C(10) | H(13) | 109.5 |
| C(11) | C(10) | H(14) | 109.5 | H(13) | C(10) | H(14) | 109.5 |
| C(11) | C(12) | H(15) | 119.7 | C(13) | C(12) | H(15) | 119.7 |
| C(12) | C(13) | H(16) | 120.0 | C(14) | C(13) | H(16) | 120.0 |
| C(13) | C(14) | H(17) | 119.9 | C(15) | C(14) | H(17) | 119.9 |
| C(14) | C(15) | H(18) | 120.0 | C(16) | C(15) | H(18) | 120.0 |
| C(11) | C(16) | H(19) | 119.7 | C(15) | C(16) | H(19) | 119.7 |
| N(2)  | C(17) | H(20) | 108.4 | N(2)  | C(17) | H(21) | 108.4 |
| C(18) | C(17) | H(20) | 108.4 | C(18) | C(17) | H(21) | 108.4 |
| H(20) | C(17) | H(21) | 109.5 | C(18) | C(19) | H(22) | 119.7 |
| C(20) | C(19) | H(22) | 119.7 | C(19) | C(20) | H(23) | 120.8 |
| C(21) | C(20) | H(23) | 120.8 | C(21) | C(22) | H(24) | 121.5 |
| C(23) | C(22) | H(24) | 121.5 | C(18) | C(23) | H(25) | 119.0 |
| C(22) | C(23) | H(25) | 119.0 |       |       |       |       |

Table 6. Bond Angles(<sup>0</sup>) for the Hydrogen Atoms

| Table 7. Torsion Angles( <sup>0</sup> ) |  |
|-----------------------------------------|--|
|-----------------------------------------|--|

| atom  | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                    | angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(21) | C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 178.9(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -179.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C(1)  | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 171.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.6(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(1)  | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -144.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.5(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(9)  | O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.3(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.6(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C(9)  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -179.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -175.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C(9)  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.7(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.4(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(10) | C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -99.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.5(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(2)  | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C(9)  | O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -179.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -82.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(17) | C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -73.0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N(2)  | C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11.3(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(2)  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -47.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(2)  | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -162.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.4(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(1)  | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -12.9(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 169.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(5)  | C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -164.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| N(1)  | C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 165.9(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N(2)  | C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -72.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -149.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C(2)  | N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -110.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -119.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C(11) | C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -178.4(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 179.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C(12) | C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.5(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(11) | C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.4(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C(12) | C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C(18) | C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -177.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C(19) | C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(18) | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C(19) | C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.4(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | atom<br>C(21)<br>C(1)<br>C(9)<br>C(9)<br>C(9)<br>C(10)<br>C(2)<br>C(0)<br>C(17)<br>N(2)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(2)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1)<br>C(1 | atomatom $C(21)$ $C(20)$ $C(1)$ $N(2)$ $C(1)$ $C(2)$ $C(9)$ $O(3)$ $C(9)$ $N(1)$ $C(9)$ $N(1)$ $C(10)$ $C(11)$ $C(2)$ $C(5)$ $C(9)$ $O(3)$ $C(17)$ $C(18)$ $N(2)$ $C(4)$ $C(2)$ $N(1)$ $C(2)$ $N(1)$ $C(2)$ $C(5)$ $C(1)$ $N(2)$ $C(5)$ $C(6)$ $N(1)$ $C(2)$ $N(2)$ $C(17)$ $C(2)$ $N(1)$ $C(12)$ $C(17)$ $C(2)$ $N(1)$ $C(11)$ $C(12)$ $C(11)$ $C(12)$ $C(11)$ $C(16)$ $C(12)$ $C(11)$ $C(13)$ $C(11)$ $C(14)$ $C(20)$ $C(18)$ $C(23)$ $C(19)$ $C(18)$ | atomatomatom $C(21)$ $C(20)$ $C(19)$ $C(1)$ $N(2)$ $C(4)$ $C(1)$ $C(2)$ $N(1)$ $C(9)$ $O(3)$ $C(10)$ $C(9)$ $N(1)$ $C(3)$ $C(10)$ $C(11)$ $C(16)$ $C(2)$ $C(5)$ $C(6)$ $C(9)$ $N(1)$ $C(3)$ $C(10)$ $C(11)$ $C(16)$ $C(2)$ $C(5)$ $C(6)$ $C(9)$ $O(3)$ $C(10)$ $C(17)$ $C(18)$ $C(19)$ $N(2)$ $C(4)$ $C(3)$ $C(2)$ $N(1)$ $C(2)$ $N(1)$ $C(2)$ $C(17)$ $N(1)$ $C(2)$ $C(17)$ $N(1)$ $C(2)$ $C(13)$ $C(1)$ $C(13)$ $C(14)$ $C(1)$ $C(13)$ $C(14)$ $C(11)$ $C(16)$ $C(15)$ $C(12)$ $C(11)$ $C(16)$ $C(13)$ $C(19)$ $C(20)$ $C(19)$ $C(20)$ $C(21)$ $C(19)$ $C(23)$ $C(22)$ $C(19)$ $C(18)$ $C(23)$ | atomatomatomangle $C(21)$ $C(20)$ $C(19)$ $178.9(3)$ $C(1)$ $N(2)$ $C(4)$ $171.7(3)$ $C(1)$ $C(2)$ $N(1)$ $-144.0(3)$ $C(9)$ $O(3)$ $C(10)$ $-1.3(4)$ $C(9)$ $N(1)$ $C(3)$ $-179.2(3)$ $C(9)$ $N(1)$ $C(3)$ $-0.7(4)$ $C(10)$ $C(11)$ $C(16)$ $-99.3(3)$ $C(2)$ $C(5)$ $C(6)$ $76.0(3)$ $C(2)$ $C(5)$ $C(6)$ $76.0(3)$ $C(2)$ $C(5)$ $C(6)$ $76.0(3)$ $C(2)$ $C(5)$ $C(6)$ $-179.9(2)$ $C(17)$ $C(18)$ $C(19)$ $108.0(3)$ $N(2)$ $C(4)$ $C(3)$ $-11.3(4)$ $C(2)$ $N(1)$ $C(3)$ $-47.6(3)$ $N(2)$ $C(17)$ $C(18)$ $-72.0(3)$ $N(1)$ $C(2)$ $C(5)$ $73.6(3)$ $N(2)$ $C(17)$ $C(18)$ $-72.0(3)$ $C(11)$ $C(16)$ $C(15)$ $-0.4(5)$ $C(11)$ $C(16)$ $C(15)$ $-0.4(5)$ $C(12)$ $C(11)$ $C(16)$ $1.3(5)$ $C(18)$ $C(23)$ $C(22)$ $1.3(5)$ $C(18)$ $C(23)$ $C(22)$ $1.3$ | atomatomatomangleatomC(21)C(20)C(19) $178.9(3)$ F(1)C(1)N(2)C(4) $171.7(3)$ O(1)C(1)C(2)N(1) $-144.0(3)$ O(2)C(9)O(3)C(10) $-1.3(4)$ O(2)C(9)N(1)C(3) $-179.2(3)$ O(3)C(10)C(11)C(16) $-99.3(3)$ N(1)C(2)C(5)C(6) $76.0(3)$ N(1)C(2)C(5)C(6) $76.0(3)$ N(1)C(2)C(5)C(6) $76.0(3)$ N(1)C(2)C(5)C(6) $76.0(3)$ N(1)C(2)C(5)C(6) $76.0(3)$ N(1)C(2)C(5)C(6) $76.0(3)$ N(2)N(2)C(4)C(3) $-11.3(4)$ C(1)C(2)N(1)C(3) $-47.6(3)$ C(1)C(2)N(1)C(3) $-47.6(3)$ C(1)C(2)N(1)C(3) $-47.6(3)$ C(1)C(2)N(1)C(3) $-47.6(3)$ C(1)C(2)N(1)C(3) $-47.6(3)$ C(1)C(2)N(1)C(2)C(5) $73.6(3)$ C(2)N(1)C(2)C(5) $73.6(3)$ C(2)N(1)C(2)C(5) $73.6(3)$ C(3)N(2)C(17)C(18) $-72.0(3)$ C(4)C(2)N(1)C(9) $-110.8(3)$ C(9)C(11)C(12)C(13) $-178.4(4)$ C(10)C(12) | atomatomatomangleatomatom $C(21)$ $C(20)$ $C(19)$ $178.9(3)$ $F(1)$ $C(21)$ $C(1)$ $N(2)$ $C(4)$ $171.7(3)$ $O(1)$ $C(1)$ $C(1)$ $C(2)$ $N(1)$ $-144.0(3)$ $O(1)$ $C(1)$ $C(9)$ $O(3)$ $C(10)$ $-1.3(4)$ $O(2)$ $C(9)$ $C(9)$ $N(1)$ $C(3)$ $-179.2(3)$ $O(3)$ $C(10)$ $C(9)$ $N(1)$ $C(3)$ $-0.7(4)$ $O(3)$ $C(10)$ $C(10)$ $C(11)$ $C(16)$ $-99.3(3)$ $N(1)$ $C(2)$ $C(2)$ $C(5)$ $C(6)$ $76.0(3)$ $N(1)$ $C(2)$ $C(2)$ $C(5)$ $C(6)$ $76.0(3)$ $N(1)$ $C(3)$ $C(9)$ $O(3)$ $C(10)$ $-179.9(2)$ $N(2)$ $C(1)$ $C(17)$ $C(18)$ $C(19)$ $108.0(3)$ $N(2)$ $C(1)$ $C(17)$ $C(18)$ $C(19)$ $108.0(3)$ $N(2)$ $C(1)$ $C(2)$ $N(1)$ $C(3)$ $-47.6(3)$ $C(1)$ $N(2)$ $C(2)$ $N(1)$ $C(3)$ $-47.6(3)$ $C(1)$ $C(2)$ $C(2)$ $N(1)$ $C(3)$ $-47.6(3)$ $C(1)$ $C(2)$ $C(1)$ $N(2)$ $C(4)$ $-12.9(4)$ $C(2)$ $C(1)$ $C(1)$ $N(2)$ $C(4)$ $-12.9(4)$ $C(2)$ $C(1)$ $C(1)$ $N(2)$ $C(17)$ $C(18)$ $-72.0(3)$ $C(4)$ $C(3)$ $C(2)$ $N(1)$ $C(2)$ $C(5)$ <td>atomatomatomangleatomatomatom<math>C(21)</math><math>C(20)</math><math>C(19)</math><math>178.9(3)</math><math>F(1)</math><math>C(21)</math><math>C(22)</math><math>C(1)</math><math>N(2)</math><math>C(4)</math><math>171.7(3)</math><math>O(1)</math><math>C(1)</math><math>N(2)</math><math>C(1)</math><math>C(2)</math><math>N(1)</math><math>-144.0(3)</math><math>O(1)</math><math>C(1)</math><math>N(2)</math><math>C(9)</math><math>O(3)</math><math>C(10)</math><math>-1.3(4)</math><math>O(2)</math><math>C(9)</math><math>N(1)</math><math>C(9)</math><math>N(1)</math><math>C(3)</math><math>-179.2(3)</math><math>O(3)</math><math>C(10)</math><math>C(11)</math><math>C(9)</math><math>N(1)</math><math>C(3)</math><math>-0.7(4)</math><math>O(3)</math><math>C(10)</math><math>C(11)</math><math>C(10)</math><math>C(11)</math><math>C(16)</math><math>-99.3(3)</math><math>N(1)</math><math>C(2)</math><math>C(1)</math><math>C(2)</math><math>C(5)</math><math>C(6)</math><math>76.0(3)</math><math>N(1)</math><math>C(3)</math><math>C(4)</math><math>C(9)</math><math>O(3)</math><math>C(10)</math><math>-179.9(2)</math><math>N(2)</math><math>C(1)</math><math>C(2)</math><math>C(17)</math><math>C(18)</math><math>C(19)</math><math>108.0(3)</math><math>N(2)</math><math>C(17)</math><math>C(18)</math><math>N(2)</math><math>C(4)</math><math>C(3)</math><math>-11.3(4)</math><math>C(1)</math><math>N(2)</math><math>C(17)</math><math>C(2)</math><math>N(1)</math><math>C(3)</math><math>-47.6(3)</math><math>C(1)</math><math>N(2)</math><math>C(17)</math><math>C(2)</math><math>N(1)</math><math>C(3)</math><math>-47.6(3)</math><math>C(1)</math><math>N(2)</math><math>C(17)</math><math>C(2)</math><math>N(1)</math><math>C(3)</math><math>-47.6(3)</math><math>C(1)</math><math>C(2)</math><math>N(1)</math><math>C(2)</math><math>N(1)</math><math>C(3)</math><math>-172.9(4)</math><math>C(2)</math><math>C(1)</math><math>N(2)</math><math>C(1)</math><math>N(2)</math><math>C(17)</math><math>C(18)</math><math>-72.0(3)</math><math>C(4)</math><math>N(2)</math><math>N(2)</math></td> <td>atomatomatomangleatomatomatomatomatomC(21)C(20)C(19)<math>178.9(3)</math>F(1)C(21)C(22)C(23)C(1)N(2)C(4)<math>171.7(3)</math>O(1)C(1)N(2)C(17)C(1)C(2)N(1)<math>-144.0(3)</math>O(1)C(1)C(2)C(5)C(9)O(3)C(10)<math>-1.3(4)</math>O(2)C(9)N(1)C(2)C(9)N(1)C(3)<math>-0.7(4)</math>O(3)C(10)C(11)C(12)C(10)C(11)C(16)<math>-99.3(3)</math>N(1)C(2)C(1)N(2)C(2)C(5)C(6)<math>76.0(3)</math>N(1)C(3)C(4)N(2)C(2)C(5)C(6)<math>76.0(3)</math>N(1)C(3)C(4)N(2)C(9)O(3)C(10)<math>-179.9(2)</math>N(2)C(1)C(2)C(5)C(17)C(18)C(19)<math>108.0(3)</math>N(2)C(17)C(18)C(23)N(2)C(4)C(3)<math>-11.3(4)</math>C(1)N(2)C(17)C(18)C(2)N(1)C(3)<math>-47.6(3)</math>C(1)N(2)C(17)C(18)C(2)N(1)C(3)<math>-47.6(3)</math>C(1)N(2)C(17)C(18)C(2)N(1)C(3)<math>-11.3(4)</math>C(1)N(1)C(2)C(17)C(1)N(2)C(17)C(18)<math>-22.9(4)</math>C(2)C(1)N(2)C(17)C(5)C(6)C(7)<math>73.6(3)</math>C(3)C(4)&lt;</td> | atomatomatomangleatomatomatom $C(21)$ $C(20)$ $C(19)$ $178.9(3)$ $F(1)$ $C(21)$ $C(22)$ $C(1)$ $N(2)$ $C(4)$ $171.7(3)$ $O(1)$ $C(1)$ $N(2)$ $C(1)$ $C(2)$ $N(1)$ $-144.0(3)$ $O(1)$ $C(1)$ $N(2)$ $C(9)$ $O(3)$ $C(10)$ $-1.3(4)$ $O(2)$ $C(9)$ $N(1)$ $C(9)$ $N(1)$ $C(3)$ $-179.2(3)$ $O(3)$ $C(10)$ $C(11)$ $C(9)$ $N(1)$ $C(3)$ $-0.7(4)$ $O(3)$ $C(10)$ $C(11)$ $C(10)$ $C(11)$ $C(16)$ $-99.3(3)$ $N(1)$ $C(2)$ $C(1)$ $C(2)$ $C(5)$ $C(6)$ $76.0(3)$ $N(1)$ $C(3)$ $C(4)$ $C(9)$ $O(3)$ $C(10)$ $-179.9(2)$ $N(2)$ $C(1)$ $C(2)$ $C(17)$ $C(18)$ $C(19)$ $108.0(3)$ $N(2)$ $C(17)$ $C(18)$ $N(2)$ $C(4)$ $C(3)$ $-11.3(4)$ $C(1)$ $N(2)$ $C(17)$ $C(2)$ $N(1)$ $C(3)$ $-47.6(3)$ $C(1)$ $N(2)$ $C(17)$ $C(2)$ $N(1)$ $C(3)$ $-47.6(3)$ $C(1)$ $N(2)$ $C(17)$ $C(2)$ $N(1)$ $C(3)$ $-47.6(3)$ $C(1)$ $C(2)$ $N(1)$ $C(2)$ $N(1)$ $C(3)$ $-172.9(4)$ $C(2)$ $C(1)$ $N(2)$ $C(1)$ $N(2)$ $C(17)$ $C(18)$ $-72.0(3)$ $C(4)$ $N(2)$ $N(2)$ | atomatomatomangleatomatomatomatomatomC(21)C(20)C(19) $178.9(3)$ F(1)C(21)C(22)C(23)C(1)N(2)C(4) $171.7(3)$ O(1)C(1)N(2)C(17)C(1)C(2)N(1) $-144.0(3)$ O(1)C(1)C(2)C(5)C(9)O(3)C(10) $-1.3(4)$ O(2)C(9)N(1)C(2)C(9)N(1)C(3) $-0.7(4)$ O(3)C(10)C(11)C(12)C(10)C(11)C(16) $-99.3(3)$ N(1)C(2)C(1)N(2)C(2)C(5)C(6) $76.0(3)$ N(1)C(3)C(4)N(2)C(2)C(5)C(6) $76.0(3)$ N(1)C(3)C(4)N(2)C(9)O(3)C(10) $-179.9(2)$ N(2)C(1)C(2)C(5)C(17)C(18)C(19) $108.0(3)$ N(2)C(17)C(18)C(23)N(2)C(4)C(3) $-11.3(4)$ C(1)N(2)C(17)C(18)C(2)N(1)C(3) $-47.6(3)$ C(1)N(2)C(17)C(18)C(2)N(1)C(3) $-47.6(3)$ C(1)N(2)C(17)C(18)C(2)N(1)C(3) $-11.3(4)$ C(1)N(1)C(2)C(17)C(1)N(2)C(17)C(18) $-22.9(4)$ C(2)C(1)N(2)C(17)C(5)C(6)C(7) $73.6(3)$ C(3)C(4)< |

| atom  | atom  | distance | ADC   | atom | atom  | distance | ADC   |
|-------|-------|----------|-------|------|-------|----------|-------|
| F(1)  | C(20) | 3 291(4) | 66502 | F(1) | C(19) | 3 296(4) | 66502 |
| F(1)  | O(2)  | 3.396(3) | 55703 | F(1) | C(4)  | 3.441(4) | 55601 |
| F(1)  | C(17) | 3.447(4) | 55601 | O(1) | C(16) | 3.386(4) | 45603 |
| O(1)  | O(3)  | 3.496(3) | 45603 | O(1) | C(14) | 3.525(4) | 45703 |
| O(2)  | C(4)  | 3.306(3) | 45603 | O(2) | C(19) | 3.337(4) | 45603 |
| C(11) | C(18) | 3.587(4) | 64604 |      |       |          |       |

The ADC (atom designator code) specifies the position of an atom in a crystal. The 5-digit number shown in the table is a composite of three one-digit numbers and one two-digit number: TA (first digit) + TB (second digit) + TC (third digit) + SN (last two digits). TA, TB and TC are the crystal lattice translation digits along cell edges a, b and c. A translation digit of 5 indicates the origin unit cell. If TA = 4, this indicates a translation of one unit cell length along the a-axis in the negative direction. Each translation digit can range in value from 1 to 9 and thus  $\pm$ 4 lattice translations from the origin (TA=5, TB=5, TC=5) can be represented.

The SN, or symmetry operator number, refers to the number of the symmetry operator used to generate the coordinates of the target atom. A list of symmetry operators relevant to this structure are given below. For a given intermolecular contact, the first atom (origin atom) is located in the origin unit cell and its position can be generated using the identity operator (SN=1). Thus, the ADC for an origin atom is always 55501. The position of the second atom (target atom) can be generated using the ADC and the coordinates of the atom in the parameter table. For example, an ADC of 47502 refers to the target atom moved through symmetry operator two, then translated -1 cell translations along the a axis, +2 cell translations along the b axis, and 0 cell translations along the c axis.

An ADC of 1 indicates an intermolecular contact between two fragments (eg. cation and anion) that reside in the same asymmetric unit.

|     |        |        |    | Symmetry Operators: |                 |        |       |
|-----|--------|--------|----|---------------------|-----------------|--------|-------|
| (1) | Х,     | Y,     | Z  | (2)                 | 1/2 <b>-</b> X, | -Y,    | 1/2+Z |
| (3) | 1/2+X, | 1/2-Y, | -Z | (4)                 | -X,             | 1/2+Y, | 1/2-Z |

#### X-ray Structure Report Reference Number: Compound **12a**

#### Data Collection

A colorless plate crystal of  $C_{19}H_{18}N_2O_3$  having approximate dimensions of 0.10 x 0.17 x 0.24 mm was mounted on a glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K $\alpha$  radiation.

Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using ten (1° in  $\omega$ , 10s exposure, de-zingered) data frames, corresponded to a primitive monoclinic cell with dimensions: a = 7.884(1) Å, b = 5.6159(4) Å,  $\beta$  = 90.753(4)°, c = 17.964(1), and V = 795.3(1) Å<sup>3</sup>. For Z = 2 and F.W. = 322.36, the calculated density is 1.35 g/cm<sup>3</sup>. Based on the systematic absences of: 0k0: k = 2n+1; packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be: P2<sub>1</sub> (#4).

The data were collected at a temperature of  $-90 \pm 1^{\circ}$ C to a maximum 20 value of 50.0°. Three omega scans consisting of 54, 55, and 54 data frames, respectively, were collected with a scan width of 2.0° and a detector-to-crystal distance, Dx, of 35 mm. Each frame was exposed twice (for the purpose of de-zingering) for 180s. The data frames were processed and scaled using the DENZO software package. (Z. Otwinowski and W. Minor, "Processing of X-Ray Diffraction Data Collected in Oscillation Mode," Methods in Enzymology, vol. 276: Macromolecular Crystallography, part A, 307-326, 1997, C.W. Carter, Jr. & R.M. Sweet, Eds., Academic Press).

#### Data Reduction

Of the 2796 reflections which were collected, 1563 were unique ( $R_{int} = 0.033$ ). No decay correction was applied. The linear absorption coefficient,  $\mu$ , for Mo-K $\alpha$  radiation is 0.9 cm<sup>-1</sup> and no absorption correction was applied. The data were corrected for Lorentz and polarization effects.

#### Structure Solution and Refinement

The structure was solved by direct methods<sup>1</sup> and expanded using Fourier techniques<sup>2</sup>. The non-hydrogen atoms were refined anisotropically. Some hydrogen atoms were refined isotropically (the N-H hydrogen atom), the rest were included in fixed positions. The final cycle of full-matrix least-squares refinement<sup>3</sup> was based on 1148 observed reflections (I >  $3.00\sigma$ (I)) and 220 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

# $$\begin{split} R &= \Sigma \; ||Fo| - |Fc|| \; / \; \Sigma \; |Fo| = 0.040 \\ R_W &= [(\; \Sigma \; w \; (|Fo| - |Fc|)^2 \; / \; \Sigma \; w \; Fo^2)]^{1/2} = 0.042 \end{split}$$

The standard deviation of an observation of unit weight<sup>4</sup> was 1.51. The weighting scheme was based on counting statistics and included a factor (p = 0.010) to downweight the intense reflections. Plots of  $\Sigma$  w (|Fo| - |Fc|)<sup>2</sup> versus |Fo|, reflection order in data collection, sin  $\theta/\lambda$ , and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.17 and -0.18 e<sup>-</sup>/Å<sup>3</sup>, respectively.

Neutral atom scattering factors were taken from Cromer and Waber<sup>5</sup>. Anomalous dispersion effects were included in Fcalc<sup>6</sup>; the values for  $\Delta f'$  and  $\Delta f''$  were those of Creagh and McAuley<sup>7</sup>. The values for the mass

attenuation coefficients are those of Creagh and Hubbel<sup>8</sup>. All calculations were performed using the teXsan<sup>9</sup> crystallographic software package of Molecular Structure Corporation.

#### References

(1) <u>SIR92</u>: Altomare, A., Burla, M.C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A., & Polidori, G.; J. Appl. Cryst., 27, 435-436 (1994).

(2) <u>DIRDIF94</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., de Gelder, R., Israel, R. and Smits, J.M.M.(1994). The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

(3) Least-Squares:

Function minimized  $Sw(|F_0|-|F_c|)^2$ where  $w = 4F_0^{2/2}(F_0^2)$ and  $s^2(F_0^2) = [S^2(C+R^2B) + (pF_0^2)^2]/Lp^2$  S = Scan rate C = Total integrated peak count R = Ratio of scan time to background counting time B = Total background count Lp = Lorentz-polarization factorp = p-factor

(4) Standard deviation of an observation of unit weight:

$$\label{eq:sw} \begin{split} [Sw(|F_0|-|F_c|)^2/(N_0-N_V)]^{1/2} \\ \text{where} \quad N_0 = \text{number of observations and } N_V = \text{number of variables} \end{split}$$

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992).

## EXPERIMENTAL DETAILS

# A. Crystal Data

| Empirical Formula            | $C_{19}H_{18}N_2O_3$                                                                                                   |
|------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Formula Weight               | 322.36                                                                                                                 |
| Crystal Color, Habit         | colorless, plate                                                                                                       |
| Crystal Dimensions           | 0.10 X 0.17 X 0.24 mm                                                                                                  |
| Crystal System               | monoclinic                                                                                                             |
| Lattice Type                 | Primitive                                                                                                              |
| Lattice Parameters           | a = 7.884(1)Å<br>b = 5.6159(4) Å<br>c = 17.964(1) Å<br>$\beta$ = 90.753(4) <sup>o</sup><br>W = 705.3(1) Å <sup>3</sup> |
| Space Group                  | $V = 793.3(1) R^2$                                                                                                     |
| Space Group                  | r2] (#4)                                                                                                               |
| Z value                      | 2                                                                                                                      |
| Dcalc                        | 1.346 g/cm <sup>3</sup>                                                                                                |
| F000                         | 340.00                                                                                                                 |
| μ(ΜοΚα)                      | 0.92 cm <sup>-1</sup>                                                                                                  |
| B. Intensity N               | leasurements                                                                                                           |
| Diffractometer               | Nonius KappaCCD                                                                                                        |
| Radiation                    | MoK $\alpha$ ( $\lambda = 0.71069$ Å) graphite monochromated                                                           |
| Take-off Angle               | 2.80                                                                                                                   |
| Crystal to Detector Distance | 35 mm                                                                                                                  |
| Temperature                  | -90.0 <sup>o</sup> C                                                                                                   |
| Scan Rate                    | 180s/frame                                                                                                             |
| Scan Width                   | $2.0^{\circ}$ /frame                                                                                                   |

| 20 <sub>max</sub>                                                                     | 50.0 <sup>0</sup>                                                           |         |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|
| No. of Reflections Measured                                                           | Total: 2796<br>1563 (Rint = 0.033)                                          | Unique: |
| Corrections                                                                           | Lorentz-polarization                                                        |         |
| C. Structure Solution and Refinement                                                  |                                                                             |         |
| Structure Solution                                                                    | Direct Methods (SIR92)                                                      |         |
| Refinement                                                                            | Full-matrix least-squares                                                   |         |
| Function Minimized                                                                    | $\Sigma \le ( Fo  -  Fc )^2$                                                |         |
| Least Squares Weights                                                                 | $1/\sigma^2$ (Fo)                                                           |         |
| p-factor                                                                              | 0.0100                                                                      |         |
| Anomalous Dispersion                                                                  | All non-hydrogen atoms                                                      |         |
| No. Observations (I>3.00 $\sigma$ (I))<br>No. Variables<br>Reflection/Parameter Ratio | 1148<br>220<br>5.22                                                         |         |
| Residuals: R; Rw                                                                      | 0.040;0.042                                                                 |         |
| Goodness of Fit Indicator                                                             | 1.51                                                                        |         |
| Max Shift/Error in Final Cycle                                                        | 0.00                                                                        |         |
| Maximum peak in Final Diff. Map<br>Minimum peak in Final Diff. Map                    | 0.17 e <sup>-</sup> /Å <sup>3</sup><br>-0.18 e <sup>-</sup> /Å <sup>3</sup> |         |

# Table 1. Atomic coordinates and $B_{iSO}\!/Beq$

| atom  | х         | У           | Z         | Beq     |
|-------|-----------|-------------|-----------|---------|
| O(1)  | 0.9225(3) | 0.0038      | 0.4274(1) | 3.42(6) |
| O(2)  | 0.2570(3) | 0.3374(8)   | 0.3704(1) | 3.19(6) |
| O(3)  | 0.3960(2) | 0.0261(8)   | 0.3174(1) | 2.72(6) |
| N(1)  | 0.5452(3) | 0.3096(8)   | 0.3771(1) | 2.27(7) |
| N(2)  | 0.8172(3) | 0.3547(9)   | 0.4716(1) | 3.22(8) |
| C(1)  | 0.8229(4) | 0.173(1)    | 0.4229(2) | 2.69(9) |
| C(2)  | 0.7046(4) | 0.196(1)    | 0.3555(1) | 2.29(7) |
| C(3)  | 0.5595(4) | 0.513(1)    | 0.4223(2) | 2.92(8) |
| C(4)  | 0.6951(4) | 0.534(1)    | 0.4667(2) | 3.27(9) |
| C(5)  | 0.8004(4) | 0.3475(10)  | 0.2978(1) | 2.72(8) |
| C(6)  | 0.7158(4) | 0.3657(10)  | 0.2225(2) | 2.21(8) |
| C(7)  | 0.7453(4) | 0.1946(10)  | 0.1690(2) | 2.66(8) |
| C(8)  | 0.6763(4) | 0.212(1)    | 0.0978(2) | 3.12(9) |
| C(9)  | 0.5754(4) | 0.407(1)    | 0.0800(2) | 3.12(9) |
| C(10) | 0.5414(4) | 0.578(1)    | 0.1330(2) | 3.13(9) |
| C(11) | 0.6126(4) | 0.558(1)    | 0.2041(2) | 2.80(9) |
| C(12) | 0.3874(4) | 0.232(1)    | 0.3557(2) | 2.24(9) |
| C(13) | 0.2361(4) | -0.0940(10) | 0.3025(2) | 2.74(8) |
| C(14) | 0.1922(4) | -0.0971(10) | 0.2207(2) | 2.14(8) |
| C(15) | 0.2359(4) | 0.083(1)    | 0.1730(2) | 3.01(9) |
| C(16) | 0.1869(4) | 0.074(1)    | 0.0982(2) | 3.03(9) |
| C(17) | 0.0916(4) | -0.116(1)   | 0.0719(2) | 3.06(9) |
| C(18) | 0.0464(4) | -0.297(1)   | 0.1194(2) | 3.08(9) |
| C(19) | 0.0978(4) | -0.288(1)   | 0.1936(2) | 2.63(8) |
| H(1)  | 0.6819    | 0.0423      | 0.3355    | 2.7469  |
| H(2)  | 0.4745    | 0.6333      | 0.4212    | 3.5058  |
| H(3)  | 0.7091    | 0.6742      | 0.4957    | 3.9275  |
| H(4)  | 0.907(4)  | 0.364(9)    | 0.506(2)  | 4.5(8)  |
| H(5)  | 0.8124    | 0.5039      | 0.3173    | 3.2580  |
| H(6)  | 0.9095    | 0.2791      | 0.2913    | 3.2580  |
| H(7)  | 0.8146    | 0.0615      | 0.1812    | 3.1956  |
| H(8)  | 0.6980    | 0.0930      | 0.0617    | 3.7418  |
| H(9)  | 0.5293    | 0.4222      | 0.0311    | 3.7388  |
| H(10) | 0.4698    | 0.7089      | 0.1210    | 3.7534  |
| H(11) | 0.5903    | 0.6766      | 0.2403    | 3.3620  |
| H(12) | 0.2441    | -0.2535     | 0.3199    | 3.2878  |
| H(13) | 0.1487    | -0.0137     | 0.3283    | 3.2878  |
| H(14) | 0.2999    | 0.2148      | 0.1911    | 3.6151  |
| H(15) | 0.2191    | 0.1978      | 0.0653    | 3.6328  |
| H(16) | 0.0572    | -0.1211     | 0.0210    | 3.6770  |
| H(17) | -0.0196   | -0.4266     | 0.1015    | 3.6937  |
| H(18) | 0.0682    | -0.4142     | 0.2262    | 3.1568  |

| atom  | U11      | U22      | U33      | U12       | U13        | U23       |
|-------|----------|----------|----------|-----------|------------|-----------|
| O(1)  | 0.032(1) | 0.055(2) | 0.043(1) | 0.001(2)  | -0.008(1)  | 0.015(2)  |
| O(2)  | 0.033(1) | 0.037(2) | 0.051(1) | 0.006(2)  | 0.002(1)   | 0.002(2)  |
| O(3)  | 0.025(1) | 0.038(2) | 0.041(1) | -0.003(1) | -0.0058(9) | -0.011(2) |
| N(1)  | 0.026(1) | 0.031(2) | 0.030(1) | 0.001(2)  | -0.002(1)  | -0.001(2) |
| N(2)  | 0.036(2) | 0.055(3) | 0.031(1) | -0.006(2) | -0.010(1)  | -0.002(2) |
| C(1)  | 0.027(2) | 0.045(3) | 0.030(2) | -0.008(2) | -0.003(1)  | 0.011(2)  |
| C(2)  | 0.027(2) | 0.032(3) | 0.028(2) | 0.000(2)  | -0.004(1)  | 0.002(2)  |
| C(3)  | 0.042(2) | 0.034(3) | 0.035(2) | -0.003(2) | 0.002(2)   | -0.003(2) |
| C(4)  | 0.052(2) | 0.040(3) | 0.032(2) | -0.006(3) | 0.000(2)   | -0.003(2) |
| C(5)  | 0.035(2) | 0.038(3) | 0.030(2) | -0.001(2) | -0.002(1)  | 0.000(2)  |
| C(6)  | 0.029(2) | 0.028(3) | 0.027(2) | -0.001(2) | 0.001(1)   | 0.003(2)  |
| C(7)  | 0.032(2) | 0.034(3) | 0.035(2) | 0.005(2)  | -0.001(1)  | 0.007(2)  |
| C(8)  | 0.041(2) | 0.042(3) | 0.036(2) | -0.006(2) | 0.003(2)   | -0.007(3) |
| C(9)  | 0.035(2) | 0.050(3) | 0.034(2) | -0.004(2) | -0.007(2)  | 0.011(3)  |
| C(10) | 0.032(2) | 0.039(3) | 0.048(2) | 0.004(2)  | -0.001(2)  | 0.010(3)  |
| C(11) | 0.038(2) | 0.033(3) | 0.036(2) | -0.003(2) | 0.002(2)   | 0.002(2)  |
| C(12) | 0.033(2) | 0.027(3) | 0.024(2) | 0.001(2)  | -0.002(1)  | 0.004(2)  |
| C(13) | 0.027(2) | 0.035(3) | 0.042(2) | -0.004(2) | -0.006(1)  | 0.002(2)  |
| C(14) | 0.020(2) | 0.026(3) | 0.036(2) | -0.001(2) | -0.003(1)  | 0.003(2)  |
| C(15) | 0.035(2) | 0.035(3) | 0.044(2) | -0.004(2) | -0.005(2)  | 0.002(3)  |
| C(16) | 0.041(2) | 0.033(3) | 0.041(2) | 0.003(2)  | 0.000(2)   | 0.012(2)  |
| C(17) | 0.035(2) | 0.048(3) | 0.033(2) | 0.003(2)  | -0.002(1)  | -0.001(2) |
| C(18) | 0.037(2) | 0.038(3) | 0.042(2) | -0.003(2) | -0.002(2)  | -0.009(3) |
| C(19) | 0.032(2) | 0.028(3) | 0.040(2) | -0.004(2) | 0.003(1)   | 0.000(2)  |
|       |          |          |          |           |            |           |

The general temperature factor expression:  $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$ 

# Table 3. Bond Lengths(Å)

| atom  | atom  | distance | atom  | atom  | distance |
|-------|-------|----------|-------|-------|----------|
| O(1)  | C(1)  | 1.236(5) | O(2)  | C(12) | 1.218(4) |
| O(3)  | C(12) | 1.349(4) | O(3)  | C(13) | 1.452(4) |
| N(1)  | C(2)  | 1.467(4) | N(1)  | C(3)  | 1.407(5) |
| N(1)  | C(12) | 1.367(4) | N(2)  | C(1)  | 1.344(6) |
| N(2)  | C(4)  | 1.395(6) | C(1)  | C(2)  | 1.523(4) |
| C(2)  | C(5)  | 1.547(5) | C(3)  | C(4)  | 1.330(4) |
| C(5)  | C(6)  | 1.503(4) | C(6)  | C(7)  | 1.382(5) |
| C(6)  | C(11) | 1.389(5) | C(7)  | C(8)  | 1.386(4) |
| C(8)  | C(9)  | 1.385(6) | C(9)  | C(10) | 1.382(6) |
| C(10) | C(11) | 1.393(4) | C(13) | C(14) | 1.506(4) |
| C(14) | C(15) | 1.372(5) | C(14) | C(19) | 1.390(5) |
| C(15) | C(16) | 1.394(4) | C(16) | C(17) | 1.383(6) |
| C(17) | C(18) | 1.377(6) | C(18) | C(19) | 1.388(4) |

Table 4. Bond Lengths(Å) for the Hydrogen Atoms

| atom  | atom  | distance | atom  | atom  | distance |
|-------|-------|----------|-------|-------|----------|
| N(2)  | H(4)  | 0.94(3)  | C(2)  | H(1)  | 0.95     |
| C(3)  | H(2)  | 0.95     | C(4)  | H(3)  | 0.95     |
| C(5)  | H(5)  | 0.95     | C(5)  | H(6)  | 0.95     |
| C(7)  | H(7)  | 0.95     | C(8)  | H(8)  | 0.95     |
| C(9)  | H(9)  | 0.95     | C(10) | H(10) | 0.95     |
| C(11) | H(11) | 0.95     | C(13) | H(12) | 0.95     |
| C(13) | H(13) | 0.95     | C(15) | H(14) | 0.95     |
| C(16) | H(15) | 0.95     | C(17) | H(16) | 0.95     |
| C(18) | H(17) | 0.95     | C(19) | H(18) | 0.95     |

Table 5. Bond Angles(<sup>0</sup>)

| atom  | atom  | atom  | angle    | atom  | atom  | atom  | angle    |
|-------|-------|-------|----------|-------|-------|-------|----------|
| C(12) | O(3)  | C(13) | 116.3(3) | C(2)  | N(1)  | C(3)  | 116.4(3) |
| C(2)  | N(1)  | C(12) | 124.5(3) | C(3)  | N(1)  | C(12) | 119.1(3) |
| C(1)  | N(2)  | C(4)  | 122.3(3) | O(1)  | C(1)  | N(2)  | 124.6(3) |
| O(1)  | C(1)  | C(2)  | 119.8(4) | N(2)  | C(1)  | C(2)  | 115.4(4) |
| N(1)  | C(2)  | C(1)  | 110.1(3) | N(1)  | C(2)  | C(5)  | 111.4(3) |
| C(1)  | C(2)  | C(5)  | 106.2(2) | N(1)  | C(3)  | C(4)  | 118.3(4) |
| N(2)  | C(4)  | C(3)  | 121.6(4) | C(2)  | C(5)  | C(6)  | 115.2(3) |
| C(5)  | C(6)  | C(7)  | 120.1(3) | C(5)  | C(6)  | C(11) | 121.3(4) |
| C(7)  | C(6)  | C(11) | 118.5(3) | C(6)  | C(7)  | C(8)  | 121.6(4) |
| C(7)  | C(8)  | C(9)  | 119.2(4) | C(8)  | C(9)  | C(10) | 120.3(3) |
| C(9)  | C(10) | C(11) | 119.7(4) | C(6)  | C(11) | C(10) | 120.7(4) |
| O(2)  | C(12) | O(3)  | 125.1(3) | O(2)  | C(12) | N(1)  | 123.6(4) |
| O(3)  | C(12) | N(1)  | 111.3(3) | O(3)  | C(13) | C(14) | 111.9(3) |
| C(13) | C(14) | C(15) | 123.0(3) | C(13) | C(14) | C(19) | 117.8(3) |
| C(15) | C(14) | C(19) | 119.2(3) | C(14) | C(15) | C(16) | 120.3(3) |
| C(15) | C(16) | C(17) | 120.0(4) | C(16) | C(17) | C(18) | 120.0(3) |
| C(17) | C(18) | C(19) | 119.7(4) | C(14) | C(19) | C(18) | 120.7(4) |

# Table 6. Bond Angles(<sup>0</sup>) for the Hydrogen Atoms

| atom  | atom  | atom  | angle  | atom  | atom  | atom  | angle  |
|-------|-------|-------|--------|-------|-------|-------|--------|
| C(1)  | N(2)  | H(4)  | 116(2) | C(4)  | N(2)  | H(4)  | 121(2) |
| N(1)  | C(2)  | H(1)  | 109.7  | C(1)  | C(2)  | H(1)  | 109.7  |
| C(5)  | C(2)  | H(1)  | 109.7  | N(1)  | C(3)  | H(2)  | 120.8  |
| C(4)  | C(3)  | H(2)  | 120.8  | N(2)  | C(4)  | H(3)  | 119.2  |
| C(3)  | C(4)  | H(3)  | 119.2  | C(2)  | C(5)  | H(5)  | 108.0  |
| C(2)  | C(5)  | H(6)  | 108.0  | C(6)  | C(5)  | H(5)  | 108.0  |
| C(6)  | C(5)  | H(6)  | 108.0  | H(5)  | C(5)  | H(6)  | 109.5  |
| C(6)  | C(7)  | H(7)  | 119.2  | C(8)  | C(7)  | H(7)  | 119.2  |
| C(7)  | C(8)  | H(8)  | 120.4  | C(9)  | C(8)  | H(8)  | 120.4  |
| C(8)  | C(9)  | H(9)  | 119.8  | C(10) | C(9)  | H(9)  | 119.8  |
| C(9)  | C(10) | H(10) | 120.2  | C(11) | C(10) | H(10) | 120.2  |
| C(6)  | C(11) | H(11) | 119.7  | C(10) | C(11) | H(11) | 119.7  |
| O(3)  | C(13) | H(12) | 108.9  | O(3)  | C(13) | H(13) | 108.9  |
| C(14) | C(13) | H(12) | 108.9  | C(14) | C(13) | H(13) | 108.9  |
| H(12) | C(13) | H(13) | 109.5  | C(14) | C(15) | H(14) | 119.8  |
| C(16) | C(15) | H(14) | 119.8  | C(15) | C(16) | H(15) | 120.0  |
| C(17) | C(16) | H(15) | 120.0  | C(16) | C(17) | H(16) | 120.0  |
| C(18) | C(17) | H(16) | 120.0  | C(17) | C(18) | H(17) | 120.2  |
| C(19) | C(18) | H(17) | 120.2  | C(14) | C(19) | H(18) | 119.6  |
| C(18) | C(19) | H(18) | 119.6  |       |       |       |        |

| Table 7. | Torsion A | ngles( <sup>0</sup> ) |
|----------|-----------|-----------------------|
|----------|-----------|-----------------------|

| atom  | atom  | atom  | atom  | angle     | atom         | atom  | atom  | atom  | angle     |
|-------|-------|-------|-------|-----------|--------------|-------|-------|-------|-----------|
| O(1)  | C(1)  | N(2)  | C(4)  | -175.8(3) | <b>O</b> (1) | C(1)  | C(2)  | N(1)  | 148.3(3)  |
| O(1)  | C(1)  | C(2)  | C(5)  | -91.0(4)  | O(2)         | C(12) | O(3)  | C(13) | -9.4(4)   |
| O(2)  | C(12) | N(1)  | C(2)  | -175.3(3) | O(2)         | C(12) | N(1)  | C(3)  | 4.1(5)    |
| O(3)  | C(12) | N(1)  | C(2)  | 5.2(4)    | O(3)         | C(12) | N(1)  | C(3)  | -175.5(3) |
| O(3)  | C(13) | C(14) | C(15) | -32.6(5)  | O(3)         | C(13) | C(14) | C(19) | 149.7(3)  |
| N(1)  | C(2)  | C(1)  | N(2)  | -36.0(4)  | N(1)         | C(2)  | C(5)  | C(6)  | -67.8(4)  |
| N(1)  | C(3)  | C(4)  | N(2)  | -3.0(5)   | N(1)         | C(12) | O(3)  | C(13) | 170.1(3)  |
| N(2)  | C(1)  | C(2)  | C(5)  | 84.7(4)   | C(1)         | N(2)  | C(4)  | C(3)  | 12.6(6)   |
| C(1)  | C(2)  | N(1)  | C(3)  | 45.7(4)   | C(1)         | C(2)  | N(1)  | C(12) | -135.0(3) |
| C(1)  | C(2)  | C(5)  | C(6)  | 172.4(4)  | C(2)         | N(1)  | C(3)  | C(4)  | -27.5(4)  |
| C(2)  | C(1)  | N(2)  | C(4)  | 8.7(5)    | C(2)         | C(5)  | C(6)  | C(7)  | -86.9(4)  |
| C(2)  | C(5)  | C(6)  | C(11) | 95.7(5)   | C(3)         | N(1)  | C(2)  | C(5)  | -71.9(3)  |
| C(4)  | C(3)  | N(1)  | C(12) | 153.1(3)  | C(5)         | C(2)  | N(1)  | C(12) | 107.5(3)  |
| C(5)  | C(6)  | C(7)  | C(8)  | -176.6(3) | C(5)         | C(6)  | C(11) | C(10) | 177.0(3)  |
| C(6)  | C(7)  | C(8)  | C(9)  | 0.0(5)    | C(6)         | C(11) | C(10) | C(9)  | -0.8(5)   |
| C(7)  | C(6)  | C(11) | C(10) | -0.4(5)   | C(7)         | C(8)  | C(9)  | C(10) | -1.2(6)   |
| C(8)  | C(7)  | C(6)  | C(11) | 0.8(5)    | C(8)         | C(9)  | C(10) | C(11) | 1.6(6)    |
| C(12) | O(3)  | C(13) | C(14) | 113.4(3)  | C(13)        | C(14) | C(15) | C(16) | -177.9(3) |
| C(13) | C(14) | C(19) | C(18) | 177.1(3)  | C(14)        | C(15) | C(16) | C(17) | 1.0(5)    |
| C(14) | C(19) | C(18) | C(17) | 1.0(5)    | C(15)        | C(14) | C(19) | C(18) | -0.7(5)   |
| C(15) | C(16) | C(17) | C(18) | -0.7(5)   | C(16)        | C(15) | C(14) | C(19) | -0.3(5)   |
| C(16) | C(17) | C(18) | C(19) | -0.3(5)   |              |       |       |       |           |

Table 8. Non-bonded Contacts out to 3.60 Å

| atom | atom  | distance | ADC   | atom | atom  | distance | ADC   |
|------|-------|----------|-------|------|-------|----------|-------|
| O(1) | N(2)  | 2.848(3) | 74602 | O(1) | C(4)  | 3.273(6) | 54501 |
| O(1) | O(2)  | 3.403(3) | 65501 | O(1) | C(13) | 3.404(4) | 65501 |
| O(1) | C(4)  | 3.548(4) | 74602 | O(2) | C(4)  | 3.404(4) | 64602 |
| O(2) | C(13) | 3.421(5) | 56501 | C(4) | C(12) | 3.449(5) | 65602 |

The ADC (atom designator code) specifies the position of an atom in a crystal. The 5-digit number shown in the table is a composite of three one-digit numbers and one two-digit number: TA (first digit) + TB (second digit) + TC (third digit) + SN (last two digits). TA, TB and TC are the crystal lattice translation digits along cell edges a, b and c. A translation digit of 5 indicates the origin unit cell. If TA = 4, this indicates a translation of one unit cell length along the a-axis in the negative direction. Each translation digit can range in value from 1 to 9 and thus  $\pm$ 4 lattice translations from the origin (TA=5, TB=5, TC=5) can be represented.

The SN, or symmetry operator number, refers to the number of the symmetry operator used to generate the coordinates of the target atom. A list of symmetry operators relevant to this structure are given below. For a given intermolecular contact, the first atom (origin atom) is located in the origin unit cell and its position can be generated using the identity operator (SN=1). Thus, the ADC for an origin atom is always 55501. The position of the second atom (target atom) can be generated using the ADC and the coordinates of the atom in the parameter table. For example, an ADC of 47502 refers to the target atom moved through symmetry operator two, then translated -1 cell translations along the a axis, +2 cell translations along the b axis, and 0 cell translations along the c axis.

An ADC of 1 indicates an intermolecular contact between two fragments (eg. cation and anion) that reside in the same asymmetric unit.

|     |    |    |   | Symmetry Operators: |     |        |    |  |  |
|-----|----|----|---|---------------------|-----|--------|----|--|--|
| (1) | Х, | Υ, | Ζ | (2)                 | -X, | 1/2+Y, | -Z |  |  |





# HPLC tract Compound 45

# Yale

Breeze

|                                                                                         | SA                                                          | AMPLE                   | INF                              | ORMAT                                                                                         | ION                                                                                                             |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Sample Name:<br>Sample Type:<br>Vial:<br>Injection #:<br>Injection Volume:<br>Run Time: | GGTI-2418<br>Unknown<br>58<br>1<br>30.00 ul<br>22.00 Minute | es                      | Ac<br>Da<br>Ac<br>Da<br>Ch<br>Sa | quired By:<br>ite Acquired:<br>q. Method:<br>ite Processed:<br>iannel Name:<br>imple Set Name | System<br>7/27/2005 6:44:35 PM<br>Grd_0B_2_100B_22_214nm<br>8/2/2005 9:11:37 AM<br>2487Channel 1<br>e: 07_26_05 |
| 3.00-<br>2.50-<br>2.00-<br>2.00-<br>1.50-<br>1.00-<br>0.50-<br>0.00<br>0.00<br>2.00     | 4.00 6                                                      |                         | 10.00<br>Minute                  | Beak<br>12.00 14.0                                                                            | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                     |
|                                                                                         | Peak F<br>Name (n                                           | RT Area<br>nin) (Ⅳ*sec) | % Area                           | Height 9<br>(Ⅳ) He                                                                            | %<br>ight                                                                                                       |
|                                                                                         | 1 Peak1 12                                                  | .999 84643168           | 100.00                           | 3130577 100                                                                                   | 0.00                                                                                                            |





Project Name: March2005 Reported by User: System

2

Peak2

13.629

46439730

98.13

2414654





97.74

Project Name: March2005 Reported by User: System



Breeze













## Compound 25 NOESY

