Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2006

Supplementary Information (ESI)

for

Acid-base properties of the nucleic-acid model 2'-deoxyguanylyl(5'→3')-2'-deoxy-5'-guanylate, d(pGpG)³⁻, and of related guanine derivatives

Bernd Knobloch,^{*a,b*} Helmut Sigel,^{*b*} Andrzej Okruszek,^{*c*} and Roland K. O. Sigel*^{*a*}

^a Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. E-mail: Roland.Sigel@aci.unizh.ch

^b Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland

^c Department of Bioorganic Chemistry, Center for Molecular & Macromolecular Studies, Polish Academy of Sciences, PL-90-363 Lódz, Poland, and Institute of Technical Biochemistry, Faculty of Biotechnology & Food Sciences, Technical University of Lódź, PL-90-924 Lódź, Poland The following section numbers refer to those of the main paper; in this way it is made clear to which section the Supporting Information belongs. The reference numbers are those of the main paper; further references are numbered as 1S and 2S.

2S Results

The release of the first proton of the 5'-P(O)(OH)₂ group of H₄[d(pGpG)]⁺ [eqn. (2)] could not be measured, but there are three ways to obtain an estimate based on the results listed in Table 1: (i) The acidity difference for the release of the final H⁺ from the phosphate group in H[d(pGpG)]²⁻ [eqn. (5)] and H(dGMP)⁻ amounts to $\Delta pK_a = 0.27 \pm 0.03 [= (6.56 \pm 0.03) - (6.29 \pm 0.01);$ Table 1, entries 5 and 9]; because experience shows ^{1S,33a} that the same difference also holds for the release of the primary phosphate proton, a value for H₄[d(pGpG)]⁺ can be estimated based on the data for H₃(dGMP)⁺, that is, $pK_{H_4[d(pGpG)]}^H = pK_{H_3(dGMP)}^H + \Delta pK_a = (0.35 \pm 0.2) + (0.27 \pm 0.03) = 0.62 \pm 0.20.$ (ii) If one adds the difference (0.3 ± 0.4) between the pKa values of H₂(pUpU)⁻ (1.0 ± 0.3; Table 1, entry 6) and H₂(UMP) (0.7 ± 0.3; Table 1, entry 7) to the value of H₃(dGMP)⁺ (0.35 ± 0.2; Table 1, entry 9), one obtains for $pK_{H_4[d(pGpG)]}^H = (0.35 \pm 0.2) + (0.3 \pm 0.4) = 0.65 \pm 0.45.$ (iii) By subtracting the difference between the pKa values of H₂(pUPU) - (0.35 ± 0.2; Table 1, entry 9), which gives $\Delta pK_a' = 0.35 \pm 0.36$, from the value for H₂(pUpU)⁻ (Table 1, entry 6), one obtains $pK_{H_4[d(pGpG)]}^H = pK_{H_2(pUpU)}^H - \Delta pK_a' = (1.0 \pm 0.3) - (0.35 \pm 0.36) = 0.65 \pm 0.47.$ From these values we conclude that $pK_{H_4[d(pGpG)]}^H = 0.65 \pm 0.3$ and this estimate is listed in entry 5 of Table 1 (column 3).

That this estimated acidity constant is of a reasonable order, is confirmed by a different reasoning based on different data: It has recently been shown^{2S} for several adenine-nucleotide analogues that $pK_{P(O)(OH)_2}^H = pK_{P(O)_2(OH)}^H - (5.68 \pm 0.05)$ [the corresponding difference for $H_3(AMP)^+$ also fits into this picture].^{2S} Application of this result to guanine derivatives is possible if the distance effect between (N1)H⁺ and (N7)H⁺ is taken into account; evidently in the *anti* conformation the charge at (N7)H⁺ of $H_3(GMP)^+$ is somewhat closer to the P(O)(OH)₂ group than that at (N1)H⁺ in $H_3(AMP)^+$; this distance effect amounts to 0.14 ± 0.07 log units.²³ Hence, for the acidity constant of $H_4[d(pGpG)]^+$ one obtains $pK_{H_4[d(pGpG)]}^H = pK_{H[d(pGpG)]}^H - (5.68 \pm 0.05) - (0.14 \pm 0.07) = (6.56 \pm 0.03) - (5.68 \pm 0.05) - (0.14 \pm 0.07) = 0.74 \pm 0.09$. This value is within the error limits identical with the one estimated above and given in Table 1.

3S Discussion

Regarding the validity of the estimated value of 2.4 ± 0.2 for $pK_{H_3[d(pGpG)]}^H$ (Table 1; entry 5; column 4) it may be noted that the *average* pK_a value $[2.69 = 0.5 \times (2.4 + 2.98)]$ excellently agrees with the expected charge effect of singly negatively charged phosphate groups, as it amounts to $0.39 (= 2.69 - pK_{H(dGuo)}^H = 2.69 - 2.30) pK$ units. The *expected* charge effect follows from the comparison of $pK_{H_2(GMP)}^H - pK_{H(Guo)}^H = (2.48 \pm 0.04) - (2.11 \pm 0.04) = 0.37 \pm 0.06$ (Table 1; entries 1,8; column 4) and $pK_{H_2(dGMP)}^H - pK_{H(dGuo)}^H = (2.69 \pm 0.03) - (2.30 \pm 0.04) = 0.39 \pm 0.05$. The average of these expected effects, i.e., $0.38 \pm 0.06 pK$ units, is evidently in perfect agreement with the above value, supporting thus the estimation made in the text in Section 3.

The acidity constants for $H_4(pGpG)^+$ given in entry 12 of Table 1 have been estimated as follows: (i) The p K_a value for $H_4[d(pGpG)]^+$ was reduced for the effect of the 2'-OH group (see text in Section 3) to give $pK_{H_4(pGpG)}^H = (0.65 \pm 0.3) - (0.05 \pm 0.02) = 0.6 \pm 0.3$. (ii) The effect of the 2'-OH group on the acidity of the (N7)H⁺ site amounts to $\Delta pK_a = 0.20 \pm 0.06$ (average of entries 1,2 and 8,9 in column 4 of Table 1); hence, one obtains $pK_{H_3(pGpG)}^H = pK_{H_3[d(pGpG)]}^H - \Delta pK_a = (2.4 \pm 0.2) - (0.20 \pm 0.06) = 2.2 \pm 0.2$ and for $pK_{H_2(pGpG)}^H$, due to the second (N7)H⁺ site, follows [2.98 (or 2.4 + 0.6 = 3.0) \pm 0.13] - (0.20 \pm 0.06) = 2.80 \pm (0.14 + 0.02) = 2.80 \pm 0.16 by also considering the statistical effect of 0.6 (and adding to the error limit 0.02 = 0.60 - 0.58). (iii) In the third paragraph of Section 3 we have seen that the effect of the 2'-OH group on the P(O)₂(OH)⁻ residue amounts to $0.04 \pm 0.02 \ pK$ units, hence, $pK_{H(pGpG)}^H = pK_{H(d(pGpG))}^H = (0.04 \pm 0.02) = (6.56 \pm 0.03) - (0.04 \pm 0.02) = 6.52 \pm 0.04$. (iv) Similarly, the effect of the 2'-OH group on the deprotonation of the (N1)H sites amounts to 0.04 ± 0.05 (3 σ) pK units which gives $pK_{PGPG}^H = (9.54 \pm 0.08) - (0.04 \pm 0.05) = 9.50 \pm 0.09$ and $pK_{(pGpG-H)}^H = [10.11 (or 9.54 + 0.6 = 10.14) \pm 0.14] - (0.04 \pm 0.05) = 10.10 \pm (0.15 + 0.03) = 10.10 \pm 0.18$ (see (ii) for the explanation).

- A. Fernández-Botello, R. Griesser, A. Holý, V. Moreno and H. Sigel, *Polyhedron*, 2003, 22, 1067-1076.
- A. Fernández-Botello, R. Griesser, A. Holý, V. Moreno and H. Sigel, *Inorg. Chem.*, 2005, 44, 5104-5117.