The Conformational Bias of Aryl, Arylsulfonyl Geminally Substituted Tertiary Carbon Centers: Applications in Subtrate-Based Stereocontrol

Jeremy P. Scott, ${ }^{*}{ }^{\dagger}$ Peter R. Mullens, ${ }^{\dagger}$ Sarah E. Brewer, ${ }^{\dagger}$ Karel M. J. Brands, ${ }^{\dagger}$ Jennifer R. Chilenski, ${ }^{\dagger}$ Antony J. Davies, ${ }^{\dagger}$ Andrew D. Gibb, ${ }^{\dagger}$ David R. Lieberman, ${ }^{\dagger}$ Steven F. Oliver ${ }^{\dagger}$ and Ulf-H. Dolling ${ }^{\dagger}$
${ }^{\dagger}$ Department of Process Research, Merck Sharp \& Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU and ${ }^{\ddagger}$ Department of Process Research, Merck Research Laboratories, P.O. BOX 2000, Rahway, New Jersey 07065.
jeremy_scott@merck.com

Supporting Information

All reactions were carried out under a nitrogen atmosphere. All solvents and reagents were purchased from commercial sources and were used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker 400 MHz instrument with chemical shifts reported relative to residual proton solvent peaks. Melting points (open capillary) were performed on a Stuart Scientific SMP3 apparatus and are uncorrected. Crystallographic data for $\mathbf{2}$ and $\mathbf{4}$ have been deposited at the Cambridge Crystallographic Data Centre. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data-request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Single crystal X-ray structures:

Cyclohexanone 2 (CCDC 236716)

Crystal data and structural refinement for cyclohexanone 2. A single crystal was grown from IPAc/heptane (Mpt 449-451 K) was selected for single crystal x-ray data collection on a Bruker Smart Apex system. The crystals were colorless polyhedron with dimensions of $0.44 \mathrm{~mm} \times 0.30 \mathrm{~mm} \times 0.05$ mm . The unit cell was collected on 10 second scan rate and manual indexing gave the cell setting to be orthorhombic. The structure was solved in the orthorhombic Pca2(1) space group after a quadrant of data collection using 10 second scan rate.

Absolute structure parameter
-0.01(9)
Largest diff. peak and hole
0.303 and -0.172 e. A^{-3}

Crystal data and structure refinement for cis cyclohexananol 4. Crystals were grown by evaporation of an acetonitrile solution of 4 . Mpt $456-457 \mathrm{~K}$. The unit cell dimensions are $\mathrm{a}=6.932 \AA ; \mathrm{b}=8.4366 \AA$; $\mathrm{c}=29.3225 \AA$; alpha $=90^{\circ}$; beta $=92.74^{\circ}$; gamma $=90^{\circ}$ with a unit cell volume of $1706.1 \AA^{3}$. A single crystal was selected for single crystal x-ray data collection on a Bruker Smart Apex CCD system at low temperature $\left(-50^{\circ} \mathrm{C}\right)$. The crystal was a colorless polyhedron with dimensions of $0.360 \mathrm{~mm} \times 0.225 \mathrm{~mm}$ x 0.130 mm . The unit cell was collected on 5 second scan rate and auto indexing gave the cell setting to be monoclinic P . The structure was solved in the monoclinic $\mathrm{P} 2_{1} / \mathrm{c}$ space group after a quadrant data collection using 5 second scan rate.

Identification code	jrc2573n	
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClF} \mathrm{F}_{2} \mathrm{O}_{3} \mathrm{~S}$	
Formula weight	386.83	
Temperature	$223(2) \mathrm{K}$	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic,	P $21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=6.9274(5) \mathrm{A}$	alpha $=90$ deg.
	$\mathrm{b}=8.4158(6) \mathrm{A}$	beta $=92.7430(10)$ deg.
	$\mathrm{c}=29.301(2) \mathrm{A}$	gamma $=90$ deg.
Volume	$1706.3(2) \mathrm{A}^{3}$	
Z, Calculated density	4,	
Absorption coefficient	$0.382 \mathrm{~mm}^{-1}$	
F(000)	800	
Crystal size	$0.36 \times 0.225 \mathrm{xg} / \mathrm{m}^{3}$	
Theta range for data collection	1.39 to 26.41 deg.	
Limiting indices	$-8<=\mathrm{h}<=8$,	
	$-10<=\mathrm{k}<=10$,	
Reflections collected $/$ unique	$-36<=1<=36$	$17593 / 3513[\mathrm{R}($ int $)=0.0271]$
Completeness to theta $=26.41$	99.8%	None
Absorption correction	Full-matrix least-squares on F^{2}	
Refinement method		

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

3513 / 0 / 227
1.041
$\mathrm{R} 1=0.0401, \quad \quad \mathrm{wR} 2=0.1009$
$\mathrm{R} 1=0.0472, \quad \quad \mathrm{wR} 2=0.1054$
0.413 and -0.208 e.$~^{-3} \mathrm{~A}^{-3}$

Major diastereomer: Cis-5-(Phenylsulfonyl)-3,3a,4,5,6,7-hexahydro-2,1-benzisoxazole (9). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 7.72-7.68 (m, 2 x ArH), 7.03-6.93 (m, $3 \times \mathrm{ArH}$), 3.89 (dd, $J=8.3,10.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}$), 3.22 (dd, $1 \mathrm{H}, J=8.3,10.3 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}$), $2.51\left(\mathrm{~m}, \mathrm{H}_{6}\right), 2.43-2.36$ (m, 8-Heq $), 2.22-2.11(\mathrm{~m}, 4-\mathrm{H}) .2 .05-1.98(\mathrm{~m}, 1 \mathrm{H}, 5-$ H_{eq}), 1.91-1.84 (m, $7-\mathrm{H}_{\mathrm{eq}}$), 1.35 (ddt, $J=1.2,5.2,13.4$
 $\left.\mathrm{Hz}, 8-\mathrm{H}_{\mathrm{ax}}\right), 1.32-1.17\left(\mathrm{~m}, 7-\mathrm{H}_{\mathrm{ax}}\right), 1.16-1.06\left(\mathrm{~m}, 5-\mathrm{H}^{\mathrm{ax}}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 156.1\left(\mathrm{C}_{9}\right), 137.8$ $\left(\mathrm{C}_{10}\right), 133.5\left(\mathrm{C}_{13}\right), 129.2\left(\mathrm{C}_{11}\right), 129.1\left(\mathrm{C}_{12}\right), 73.0\left(\mathrm{C}_{3}\right), 61.2\left(\mathrm{C}_{6}\right), 46.7\left(\mathrm{C}_{4}\right), 30.9\left(\mathrm{C}_{5}\right), 25.8\left(\mathrm{C}_{7}\right), 22.9$ $\left(\mathrm{C}_{8}\right)$. Red arrows indicate nOe contacts which confirm cis relative stereochemistry of major diastereomer.

Minor diasteromer: Trans-5-(Phenylsulfonyl)-3,3a,4,5,6,7-hexahydro-2,1-benzisoxazole (10). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.92(\mathrm{~m}, 2 \times 11-\mathrm{H}), 7.74-7.68(\mathrm{~m}, 13-\mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{x}$ $12-\mathrm{H}), 4.56\left(\mathrm{dd}, J=8.0,10.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 4.03-3.91(\mathrm{~m}, 4-\mathrm{H}), 3.77$ (dd, $J=8.0,9.8 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}$), 3.35-3.30 (m, 6-H), 2.96 (dt, $J=14.0$, $\left.5.7 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{A}}\right), 2.79-2.68\left(\mathrm{~m}, 5-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{B}}\right), 2.49-2.41(\mathrm{~m}, 7-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.87-1.80\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{B}}\right), 1.80-1.70\left(\mathrm{~m}, 5-\mathrm{H}_{\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR
 $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3\left(\mathrm{C}_{9}\right), 137.7\left(\mathrm{C}_{10}\right), 134.1\left(\mathrm{C}_{13}\right), 129.5\left(\mathrm{C}_{11}\right), 128.4\left(\mathrm{C}_{12}\right), 73.7\left(\mathrm{C}_{3}\right), 58.4\left(\mathrm{C}_{6}\right)$, $43.9\left(\mathrm{C}_{4}\right), 30.2\left(\mathrm{C}_{5}\right), 24.9\left(\mathrm{C}_{7}\right), 20.7\left(\mathrm{C}_{8}\right)$; mp 155-156 ${ }^{\circ} \mathrm{C}$; HRMS (ES) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})$ 266.0851. Found 266.0844. Red arrows indicate observed nOe contacts which confirm relative stereochemistry.
cis-5-Phenyl-5-(2,5-difluorophenylsulfonyl)-
3,3a,4,5,6,7-hexahydro-2,1-benzisoxazole (14). ${ }^{1} \mathrm{H}$
NMR (600.1 MHz, d ${ }_{7}$-DMF, 350K) $\delta 7.77$ (m, 19H), 7.58 (m, $2 \times 18-\mathrm{H}), 7.52$ (m, $2 \times 17-\mathrm{H}$), 7.35-
7.30 (om, 13-H, 15-H), 7.16 (ddd, $J=13.6,9.1,4.9$
$\mathrm{Hz}, 12-\mathrm{H}), 4.50\left(\mathrm{dd}, J=9.8,7.9 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 3.87$
(dd, $J=10.2,7.9 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}$), 3.32-3.22 (om, 4-H, $5-$
$\left.\mathrm{H}_{\text {eq }}\right), 3.17\left(\mathrm{~m}, 7-\mathrm{H}_{\text {eq }}\right), 2.84\left(\mathrm{~m}, 8-\mathrm{H}_{\text {eq }}\right), 2.23-2.15$

(om, $7-\mathrm{H}_{\mathrm{ax}}, 8-\mathrm{H}_{\mathrm{ax}}$), $2.09\left(\mathrm{td}, J=12.5,1.9 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{ax}}\right)$. Red arrows indicate observed nOe contacts.

OOD $\times \mathrm{ODP}-\mathrm{Ht}$
EIJPJ

