ELECTRONIC SUPPLEMENTARY INFORMATIO (ESI)

A facile and chemoselective conjugate reduction using polymethylhydrosiloxane (PMHS) and catalytic $\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

Srivari Chandrasekhar,* Gudise Chandrashekar, Marepally Srinivasa Reddy and Pabbaraja Srihari
Organic Division-1, Indian Institute of Chemical Technology, Hyderabad-500007, India.

General Methods: Methylene chloride was distilled over CaH_{2} prior to use. Crude products were purified by column chromatography on silica gel of $60-120$ mesh. IR spectra were recorded on Perkin-Elmer 683 spectrometer. Optical rotations were obtained on Jasco Dip 360 digital polarimeter. Melting points (uncorrected) were obtained using a Buchi 535 melting point apparatus. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution on a Varian Gemini 200, Brucker Avance 300 or Varian Unity 400. Chemical shifts were reported in ppm with respect to internal TMS. Coupling constants (J) are quoted in Hz. Mass spectra were obtained on an Agilent Technologies LC/MSD Trap SL.

General Procedure for chemoselective Reduction: To a solution of the α, β unsaturated ketone (2 mmol) in anhydrous methylene chloride (5 mL) was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(5 \mathrm{mg}, 0.01 \mathrm{mmol})$ and PMHS $(4 \mathrm{mmol})$ and the solution was stirred at room temperature for a period of time (monitored by TLC). Water was added to the reaction mixture and was extracted with methylene chloride ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous sodium sulphate, concentrated under vacuo and the crude product was purified by flash chromatography.

This procedure is followed for the reduction of all the substrates listed in Table 1. Spectroscopic (IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) data for the new compounds are presented below in order of their entries in Table 1.

4-(4-Methoxyphenyl) butan-2-one (entry 1b): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76,(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.65$
(m, 2H), $2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 207.8,158.0,133.0,129.2$ (2C), 113.9 (2C), 55.2, 45.4, 30.0 and 28.9. IR (KBr): 1713, 1615, 1513 and $1246 \mathrm{~cm}^{-1}$. ESI (MS): $179[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}: 201.0891[\mathrm{M}+\mathrm{Na}]^{+}$, Found: $201.0889[\mathrm{M}+\mathrm{Na}]^{+}$.

Ethyl 3-(4-chlorophenyl)-2-cyanopropanoate (entry 2b): ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.34-7.18(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.11(\mathrm{~m}$, $2 \mathrm{H}), 1.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.1,133.7,133.6,130.3$ (2C), 128.9 (2C), 115.8, 62.9, 39.3, 34.8, and 13.8. IR (KBr): 2984, 2251, 1746, 1493, 1264, 1094 and $1016 \mathrm{~cm}^{-1}$. ESI (MS): $260[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{NaCl}: 260.0454[\mathrm{M}+\mathrm{Na}]^{+}$, Found: $260.0450[\mathrm{M}+\mathrm{Na}]^{+}$.

Ethyl 3-[3-(allyloxy)-4-methoxyphenyl]-2-cyanopropanoate (entry 3b): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.79-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.10-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.06(\mathrm{~m}$, $2 \mathrm{H}), 1.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.4,149.5,147.5,133.2$, $128.1,121.1,117.7,116.1,113.7,112.7,69.8,62.5,55.8,39.7,35.3$ and 13.8. IR (KBr): 2939, 2251, 1744, 1515, 1263, 1143, 1032, 931 and $805 \mathrm{~cm}^{-1}$. ESI (MS): $288[\mathrm{M}-\mathrm{H}]^{+}$. HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}: 290.1392[\mathrm{M}+\mathrm{H}]^{+}$, Found: $290.1395[\mathrm{M}+\mathrm{H}]^{+}$.
(E)-Ethyl 2-cyano-5-phenylpent-4-enoate (entry 4b): See reference 1.

1-Nitro-2 - (2-nitroethyl)benzene (entry 5b): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-$ $8.05(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.37(\mathrm{~m}, 3 \mathrm{H}), 4.75(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.9,133.8,132.7,131.1,128.9,125.4,75.1$, and 31.1. IR (KBr): $3414,1617,1552,1524,1345$ and $772 \mathrm{~cm}^{-1}$. ESI (MS): $219[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 219.0381[\mathrm{M}+\mathrm{Na}]^{+}$, Found: $219.0375[\mathrm{M}+\mathrm{Na}]^{+}$.
(2-Furylmethyl)malononitrile (entry 6b): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.4(\mathrm{~s}, 1 \mathrm{H})$, 6.41-6.38 (m, 2H), $4.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta 149.6,146.4,143.5,111.9,110.9,110.0,29.7$ and 22.7. IR (KBr): 2920, 2260, 2218, 1504, 1146, 1075 and $1017 \mathrm{~cm}^{-1}$. ESI (MS): $145[\mathrm{M}-\mathrm{H}]^{+}$. HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O} 145.0401[\mathrm{M}-\mathrm{H}]^{+}$, Found: $145.0407[\mathrm{M}-\mathrm{H}]^{+}$

4-(2-Furyl)butan-2-one (entry 7b): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23$ (d, $J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.21(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.92(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 2 \mathrm{H})$, 2.78-2.70 (m, 2H), $2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 207.1,141.0,112.5$, $110.5,105.1,41.6,29.8$ and 22.1. IR (KBr): 2930, 1713, 1606, 1271 and $775 \mathrm{~cm}^{-1}$. ESI (MS): $139\left(\mathrm{M}^{+}\right)$.

1-Bromo-4,5-dimethoxy-2-(2-nitroethyl)benzene (entry 8b): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.2,148.2,126.9,116.0,114.1$, $113.7,74.6,56.2,56.1$, and 33.5. IR (neat): $1619,1550,1506,1258$ and $606 \mathrm{~cm}^{-1}$. ESI (MS): 288(M^{+}), $290[\mathrm{M}+2]^{+}$. HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}$: 307.0293 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, Found: $307.0306\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.
(5E)-6-(2-Furyl)hex-5-en-2-one (entry 9b): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, \mathrm{~J}$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.06(\mathrm{~m}, 4 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 207.5,152.8,141.4,127.7,119.5,111.0,106.5,43.0,29.9$, and 26.8. IR (KBr): 2927, 1713, 1361, 1164 and $770 \mathrm{~cm}^{-1}$. ESI (MS): $165[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} 165.0915[\mathrm{M}+\mathrm{H}]^{+}$, Found: $165.0913[\mathrm{M}+\mathrm{H}]^{+}$.

2-Methyl-5-(prop-1-en-2-yl) cyclohexanone (entry 10b): See reference 2.
2-Isopropyl-5-methylcyclohexanone (entry 11b): See reference 3.
3-Methylcyclohexanone (entry 12b): Product was compared with authentic sample (Aldrich).

References:
(1). B. C. Ranu and S. Samanta, J. Org. Chem., 2003, 68, 7130.
(2). E. Keinan and N. Greenspoon, J. Am. Chem. Soc., 1986, 108, 7314.
(3). E. Keinan and D. Perez, J. Org. Chem., 1987, 52, 2576.

$0 \times$ ${ }^{3}{ }^{3} \mathrm{CNMR} / \mathrm{CDCl}_{3}$

> Co

$$
\underbrace{\mathrm{cH}}_{\mathrm{DCNMR} / \mathrm{CDC},}
$$

$$
\begin{aligned}
& \text { " } 50 \\
& { }^{3}{ }^{3} \mathrm{CNMR} / \mathrm{CDCl}_{3}
\end{aligned}
$$

Chycre

${ }^{13} \mathrm{CNMR} / \mathrm{CDCl}_{3}$

