ELECTRONIC SUPPLEMENTARY MATERIAL

Synthesis of the bis-spiroacetal moiety of the shellfish toxins spirolides B and D using an iterative radical oxidative cyclization strategy

Kai Meilert and Margaret A. Brimble*

Department of Chemistry, University of Auckland, 23 Symonds St., Auckland, New Zealand. FAX: +64 9 3737422; EMAIL: m.brimble@auckland.ac.nz

Experimental

General

All reactions were carried out under an N_{2} atmosphere using oven-dried glassware using standard syringe and septum techniques, unless otherwise stated. Diethyl ether and tetrahydrofuran were distilled from $\mathrm{Na} /$ benzophenone under N_{2}. Hexane, toluene, cyclohexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and NEt_{3} were distilled from CaH_{2} under N_{2}. Butyllithium (1.6 M in hexane) was purchased from the Aldrich Chemical Co. Flash chromatography was performed using Riedelde Häen or Merck 0.032-0.063 mm silica gel and preparative layer chromatography with Merck silica gel 60 PF on glass plates, with the indicated solvents. Analytical TLC was performed with 0.20 mm silica gel 60 aluminium-backed plates and analyzed using 365 nm ultraviolet irradiation followed by staining with either alkaline permanganate or vanillin/sulphuric acid solution. High resolution mass spectra were obtained using EI, CI and FAB techniques on a VG70-SE spectrometer. NMR spectra were recorded on either a Bruker DRX300 spectrometer operating at 300 MHz for ${ }^{1} \mathrm{H}$ nuclei and 75 MHz for ${ }^{13} \mathrm{C}$ nuclei or on a Bruker DRX400 spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ nuclei and 100 MHz for ${ }^{13} \mathrm{C}$ nuclei. ${ }^{1} \mathrm{H}$ NMR data is reported as chemical shift in $\delta \mathrm{ppm}$ from tetramethylsilane as an internal standard, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or overlap of non-equivalent resonances, $\mathrm{br}=$ broadening), integration and assignment. ${ }^{13} \mathrm{C}$ NMR data is reported as follows: chemical shift in ppm from tetramethylsilane with the solvent as an internal indicator $\left(\mathrm{CDCl}_{3} 77.0 \mathrm{ppm}\right)$, multiplicity with respect to proton (deduced from DEPT experiments). Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. Optical rotations were determined on a Perkin-Elmer 341 polarimeter.

(2S)-2-Benzyloxymethyloxirane 12

To a mixture of $(R)-(+)$-glycidol $(1.8 \mathrm{~mL}, 27.0 \mathrm{mmol})$ and benzyl bromide $(6.4 \mathrm{~mL}, 54.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ was added tetrabutylammonium iodide ($997 \mathrm{mg}, 2.7 \mathrm{mmol}$). After stirring for 10 min NaH ($713 \mathrm{mg}, 29.7 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added portion-wise. After 3 hours flash silica (20 g) was added and the solution filtered over through a Celite ${ }^{\circledR}$ pad and evaporated until dryness. Flash chromatography using hexane-ethyl acetate (95:5) as eluent afforded the title compound (3.20 $\mathrm{g}, 72 \%$) as a colorless liquid for which the spectroscopic data agreed with the literature; ${ }^{\text {i }}$
$[\alpha]_{589}^{20}-3.0\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3060,3030,2860,1495,1455,1385,1335$, 1255, 1206, 1095, 1025, 910, 860, 740, 700; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, $4.64\left(\mathrm{~d}, 1 \mathrm{H}, J 11.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(\mathrm{~d}, 1 \mathrm{H}, J 11.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{dd}, 1 \mathrm{H}, J 3.1\right.$ and $\left.11.3,1^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $3.46\left(\mathrm{dd}, 1 \mathrm{H}, J 5.6\right.$ and 11.3, 1'- H_{b}), 3.20 (dddd, $1 \mathrm{H}, J 2.8,3.1,4.1$ and $5.6,2-\mathrm{H}$), 2.81 (dd, 1 H , $\left.J 4.1, J 5.1,1-\mathrm{H}_{\mathrm{a}}\right)$ and $2.63\left(\mathrm{dd}, 1 \mathrm{H}, J 2.8\right.$ and $\left.5.1,1-\mathrm{H}_{\mathrm{b}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.9(\mathrm{C}$, $\left.\mathrm{C}_{\text {arom }}\right), 128.4\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 127.7\left(3 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 73.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 70.8\left(\mathrm{CH}_{2}, \mathrm{C}-1\right.$ '), 50.8 $(\mathrm{CH}, \mathrm{C}-2), 44.3$ and $\left(\mathrm{CH}_{2}, \mathrm{C}-1\right)$.

(2S)-1-Benzyloxy-5-(trimethylsilyl)pent-4-yn-2-ol 13

To a solution of trimethylsilyl acetylene ($7.4 \mathrm{~mL}, 51.8 \mathrm{mmol}$) in dry toluene $(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of $\operatorname{BuLi}(1.6 \mathrm{M}$ in hexane, $28.1 \mathrm{~mL}, 45.7 \mathrm{mmol})$. After stirring for 30 min the solution was cooled to $-78^{\circ} \mathrm{C}$ and epoxide $12(5.0 \mathrm{~g}, 30.5 \mathrm{mmol})$ was added dropwise, followed by slow addition of $\mathrm{Me}_{3} \mathrm{Al}(1.5 \mathrm{~mL}, 3.0 \mathrm{mmol})$. The solution was allowed to warm to room temperature overnight then $10 \% \mathrm{HCl}$ was added (150 mL). After extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and drying over MgSO_{4} the solvent was removed at reduced pressure. Flash chromatography of the residue using using hexane-ethyl acetate (80:20) as eluent afforded the title compound $(7.73 \mathrm{~g}, 98 \%)$ as a pale yellow liquid; $[\alpha]_{589}^{20}+17.0(\mathrm{c}=0.27$, CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3430,2960,2175,1454,1420,1365,1250,1205,1115,1030,945$, $840,760,700,650 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.30-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; 3.87$ (m, 1H, 2-H), $3.54(\mathrm{dd}, 1 \mathrm{H}, J 3.9$ and 9.6, 1-H), $3.42(\mathrm{dd}, 1 \mathrm{H}, J 6.4$ and 9.6, 1-H), 2.62 (d, 1H, $J 4.6,2-\mathrm{H}), 2.44(\mathrm{dd}, 1 \mathrm{H}, J 4.6,15.4,3-\mathrm{H}), 2.38(\mathrm{dd}, 1 \mathrm{H}, J 5.4 \mathrm{and} 15.4,3-\mathrm{H})$ and $0.08(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.9\left(\mathrm{C}, \mathrm{C}_{\text {arom }}\right), 128.4\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 127.8\left(\mathrm{CH}, \mathrm{C}_{\text {arom }}\right)$, $127.7\left(\mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 102.5(\mathrm{C}, \mathrm{C}-5), 87.3(\mathrm{C}, \mathrm{C}-4) ; 73.4\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 72.7\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 68.8$ (CH, C-2), $25.0\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$ and $0.10\left(\mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$; MS (EI) $m / z(\%) 280\left(100,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{\dagger}\right)$, 263 (44, [M + H] ${ }^{+}$), 245 (5), 218 (11), 189 (19), 173 (59), 155 (8), 129 (8), 108 (28), 105 (25), 91 (98) and 70 (21); HRMS (CI) $m / z 263.1465$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si} 263.1467$).
(2S,4Z)-1-(Benzyloxy)-5-(trimethylsilyl)pent-4-en-2-ol (Z)-14 and (2S,4E)-1-(Benzyloxy)-5-(trimethylsilyl)pent-4-en-2-ol (E)-14

To a solution of 1-benzyloxy-5-(trimethylsilyl)pent-4-yn-2-ol 13 (2 g, 7.62 mmol) in dry $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added drop-wise a solution of DIBALH (1 M in hexane, $22.9 \mathrm{~mL}, 22.9$ mmol). The solution was allowed to warm to room temperature then heated under reflux for 24 hours. The cooled mixture was poured into a mixture of water-crushed ice 1:1 $(30 \mathrm{~mL})$ with vigorous stirring, followed by the addition of $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. After filtration through a Celite pad, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and the organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$. Flash chromatography of the residue obtained after concentration of the solvent using hexane-ethyl acetate (95:5) as eluent afforded the title olefins ($1.46 \mathrm{~g}, 72 \%$) as a $92: 8 \mathrm{Z} / \mathrm{E}$ mixture of diastereomers.

Spectroscopic data for (\boldsymbol{Z})-(14):
$[\alpha]_{589}^{20}+3\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3435,3030,2950,2860,1605,1495,1455,1410$, $1365,1250,1095,860,830,765,740,700,605 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, $6.34(\mathrm{td}, 1 \mathrm{H}, J 7.3$ and $14.4,4-\mathrm{H}), 5.66(\mathrm{~d}, 1 \mathrm{H}, J 14.4,5-\mathrm{H}), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.90(\mathrm{~m}, 1 \mathrm{H}$, $2-\mathrm{H}), 3.53\left(\mathrm{dd}, 1 \mathrm{H}, J 3.3\right.$ and $\left.9.4,1-\mathrm{H}_{\mathrm{a}}\right), 3.39\left(\mathrm{dd}, 1 \mathrm{H}, J 7.5\right.$ and $\left.9.4,1-\mathrm{H}_{\mathrm{b}}\right), 2.27-2.43(\mathrm{~m}, 2 \mathrm{H}, 3-$ H), $0.15\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.6(\mathrm{CH}, \mathrm{C}-4), 137.8\left(\mathrm{C}, \mathrm{C}_{\text {arom }}\right), 132.1$ (CH, C-5); $128.3\left(3 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right)$, $127.6(2 \times \mathrm{CH} \mathrm{C}$ arom $)$, $74.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 74.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $70.1(\mathrm{CH}, \mathrm{C}-2), 37.1\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$ and $-1.73\left(\mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$; MS (CI) $m / z(\%) 282(93,[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$), 265 (13, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 249$ (4), 157 (28), 108 (82), 91 (100) and 73 (12); HRMS (CI): m / z 265.1626 (calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si} 265.1624$).

Spectroscopic data for (\boldsymbol{E})-(14):
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.05(\mathrm{td}, 1 \mathrm{H}, J 6.7$ and $18.5,4-\mathrm{H}), 5.70(\mathrm{td}, 1 \mathrm{H}$, $J 1.3$ and $18.5,5-\mathrm{H}), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.90(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.50\left(\mathrm{dd}, 1 \mathrm{H}, J 6.2\right.$ and $\left.9.4,1-\mathrm{H}_{\mathrm{a}}\right)$, $3.33\left(\mathrm{dd}, 1 \mathrm{H}, J 7.9\right.$ and $\left.9.4,1-\mathrm{H}_{\mathrm{b}}\right), 2.26-2.34(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H})$ and $0.05\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right) ; \delta_{\mathrm{H}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.0(\mathrm{CH}, \mathrm{C}-4), 138.0\left(\mathrm{C}, \mathrm{C}_{\text {arom }}\right), 133.9(\mathrm{CH}, \mathrm{C}-5), 128.4$ (2 x CH, Carom), 127.7 $\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 126.5\left(\mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 74.7,73.3\left(2 \times \mathrm{CH}_{2}, \mathrm{C}-1, \mathrm{CH}_{2} \mathrm{Ph}\right), 69.6(\mathrm{CH}, \mathrm{C}-2), 40.8$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$ and -1.68 $\left(\mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$.

To a solution of (Z)-olefin $\mathbf{1 4}(2.0 \mathrm{~g}, 7.6 \mathrm{mmol}$) and 2-(2-bromoethyl)-1,3-dioxolane 15 (906 $\mu \mathrm{L}, 7.56 \mathrm{mmol})$ in dry dichloromethane $(40 \mathrm{~mL})$ was added $\mathrm{InCl}_{3}(1.7 \mathrm{~g}, 7.6 \mathrm{mmol})$. After 48 hours at room temperature the mixture was diluted with dichloromethane $(20 \mathrm{~mL})$ and water was added (50 mL). The organic phase was extracted with brine (40 mL) then dried over MgSO_{4}. Flash chromatography of the residue obtained after removal of the solvent at reduced pressure using hexane-ethyl acetate (95:5) as eluent afforded the title compound $\mathbf{1 0}(1.71 \mathrm{~g}$, 73%) of as a 77:23 mixture of cis/trans diastereomers as a colourless liquid.

Spectroscopic data for cis-10:
$[\alpha]_{589}^{20}-31\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3030,2925,2855,1495,1455,1365,1345,1255$, $1205,1190,1130,1090,1030,950,909,735,700 ; \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}$, ArH), $5.86(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.63(\mathrm{tdd}, 1 \mathrm{H}, J 1.4,2.7$ and $10.2,4-\mathrm{H}), 4.66\left(\mathrm{~d}, 1 \mathrm{H}, J 12.2, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.61 (d, 1H, J12.2, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.34 (brm, 1H, 6-H), 3.84 (tdd, 1H, J 3.9, 5.9 and 10.1, 2-H), 3.613.46 (m, 4H, 1'-H), 2'’-H) and 2.13-1.91 (m, 4H, 1’'-H, 3-H); $\delta_{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.3$ (C, $\mathrm{C}_{\text {arom }}$), $129.1(\mathrm{CH}, \mathrm{C}-4), 128.3\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 127.6\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 127.5\left(\mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 125.2$ (CH, C-5), $73.4\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 73.3(\mathrm{CH}, \mathrm{C}-2), 73.0\left(\mathrm{CH}_{2}, \mathrm{C}-1\right.$ '), $72.7(\mathrm{CH}, \mathrm{C}-6), 38.7\left(\mathrm{CH}_{2}\right.$,
 $310\left(3,\left[\mathrm{M}\left(\mathrm{C}_{15} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{2}\right)^{+}\right]\right), 221$ (11), 219 (11), 137 (5), 135 (5), 91 (100), 81 (33, [$\left.\left.{ }^{81} \mathrm{Br}^{+}\right]\right), 79$ (11, $\left[{ }^{79} \mathrm{Br}^{+}\right]$); HRMS (CI) m/z 310.0564 (calcd for $\mathrm{C}_{15} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{2} 310.0568$), 312.0539 (calcd for $\mathrm{C}_{15} \mathrm{H}_{19}{ }^{81} \mathrm{BrO}_{2} 312.0548$).

Spectroscopic data for trans-10:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.27-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.87(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.69(\mathrm{bd}, 1 \mathrm{H}, J 10.6,4-\mathrm{H})$, $4.62\left(\mathrm{~d}, 1 \mathrm{H}, J 12.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.58$ (d, 1H, $J 12.1, \mathrm{CH}_{2} \mathrm{Ph}$), 4.41 (brd, 1H, $J 9.8,6-\mathrm{H}$), 3.87 (td, $1 \mathrm{H}, J 4.3$ and 13.3, 2-H), 3.45-3.64 (m, 4H, 1'-H, $\left.2^{\prime \prime}-\mathrm{H}\right)$ and 1.87-2.30 (m, 4H, $\left.1^{\prime ’}-\mathrm{H}, 3-\mathrm{H}\right) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 138.3 (C, Carom), $128.6(\mathrm{CH}, \mathrm{C}-4)$, 128.4 ($2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}$), 127.6 (3 x CH , $\left.\mathrm{C}_{\text {arom }}\right), 124.4(\mathrm{CH}, \mathrm{C}-5), 73.5\left(\mathrm{CH}_{2}, \mathrm{C}-1\right.$ '), $72.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 70.6(\mathrm{CH}, \mathrm{C}-6), 67.2(\mathrm{CH}, \mathrm{C}-2)$, $36.6\left(\mathrm{CH}_{2}, \mathrm{C}-1\right.$ ''), $30.0\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$ and $27.1\left(\mathrm{CH}_{2}, \mathrm{C}-2\right.$ '' $)$.

3-[(4-Methoxybenzyl)oxy]propanal 17

To a solution of oxalyl chloride ($1.4 \mathrm{~mL}, 16.2 \mathrm{mmol}$) in dichloromethane (15 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of dimethyl sulfoxide $(1.9 \mathrm{~mL}, 27.0 \mathrm{mmol})$ in dichloromethane $(6 \mathrm{~mL})$. After 30 minutes, a solution of 3-[(4-methoxybenzyl)oxy]-1-propanol $\mathbf{1 6}^{\mathrm{ii}}(1 \mathrm{~g}, 6.0$ $\mathrm{mmol})$ in dichloromethane (1 mL) was added dropwise. After stirring for 1 hour at $-78{ }^{\circ} \mathrm{C}$, $\mathrm{Et}_{3} \mathrm{~N}(6.7 \mathrm{~mL}, 48.1 \mathrm{mmol})$ was added dropwise and the solution allowed to warm to room temperature. After 30 minutes, $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ was added and the aqueous phase extracted with dichloromethane ($2 \times 50 \mathrm{~mL}$). The organic extracts were washed with sat. NaHCO_{3} and dried over MgSO_{4}. Flash chromatography of the residue obtained after removal of the solvent at reduced pressure using hexane-ethyl acetate $(80: 20)$ as eluent afforded the title aldehyde $\mathbf{1 7}^{\text {iii }}$ ($949 \mathrm{mg}, 96 \%$) as a colorless oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2905,2835,1725,1615,1585,1515,1465$, $1360,1300,1245,1175,1090,1035,820,760 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.78(\mathrm{t}, 1 \mathrm{H}, J 1.9,1-\mathrm{H})$, 7.25 (d, 2H, J 8.5, ArH), 6.88 (d, 2H, J 8.5, ArH), 4.46 (s, 2H, CH2Ar), 3.80 (s, 3H, CH $H_{3} \mathrm{OAr}$), $3.78(\mathrm{t}, 2 \mathrm{H}, J 6.2,3-\mathrm{H})$ and $2.67(\mathrm{dt}, 2 \mathrm{H}, J 1.9$ and $6.2,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 201.2$ (C, C-1), 159.2 (C, C $\mathrm{C}_{\text {arom }}$), 129.9 ($\mathrm{C}, \mathrm{C}_{\text {arom }}$), 129.3 ($2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}$), 113.8 ($2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}$), 72.9 $\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ar}\right), 63.5\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 55.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{OAr}\right)$ and $43.8\left(\mathrm{CH}_{2}, \mathrm{C}-2\right) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (\%)194 (16, [M] $]^{+}$), $137\left(78,\left[\mathrm{OPMBn}^{+}\right), 121\left(100,\left[\mathrm{PMBn}^{+}\right), 109\right.\right.$ (17) and 77 (16); HRMS (EI) $m / z 194.0939$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} 194.0943$).

(+)-(3R,4R)-1-[(4-Methoxybenzyl)oxy]-4-methylhex-5-en-3-ol 18

(Z)-butene (5 mL) was condensed and transferred to a mixture of ${ }^{t} \mathrm{BuOK}(1.4 \mathrm{~g}, 11.3 \mathrm{mmol})$ in dry THF (24 mL). BuLi ($7.1 \mathrm{~mL}, 11.3 \mathrm{mmol}$) was added dropwise and the yellow solution allowed to warm to $-45{ }^{\circ} \mathrm{C}$ for 15 minutes. After cooling to $-78{ }^{\circ} \mathrm{C}$, a solution of (-)-B$(\mathrm{Ipc})_{2} \mathrm{~B}(\mathrm{OMe})(3.90 \mathrm{~g}, 12.4 \mathrm{mmol})$ in THF $(22 \mathrm{~mL})$ was added dropwise to afford a colourless solution. After 45 minutes, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.8 \mathrm{~mL}, 13.2 \mathrm{mmol})$ was added, followed immediately by a solution of 3-[(4-methoxybenzyl)oxy]propanal $17(2.0 \mathrm{~g}, 10.3 \mathrm{mmol})$ in THF (28 mL). After 2 hours at $-78^{\circ} \mathrm{C}$, a solution of $1 \mathrm{M} \mathrm{NaOH}(12 \mathrm{~mL})$ in water $(2 \mathrm{~mL})$ was added and the mixture heated under reflux for 1 hour. The aqueous phase was extracted with EtOAc ($3 \times 80 \mathrm{~mL}$) and the organic extracts were dried over MgSO_{4}. Flash chromatography of the residue obtained after removal of the solvent at reduced pressure using hexane-ethyl acetate $(80: 20)$ as eluent afforded the title product ($1.90 \mathrm{~g}, 72 \%$) as a single diastereomer and as a colourless liquid; $[\alpha]_{589}^{20}+7.5\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3450,2960,2870,1615,1515,1465,1365$,
$1305,1250,1175,1090,1085,1000,915,820,735 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.26(\mathrm{~d}, 2 \mathrm{H}, J 8.6$, ArH), 6.88 (d, 2H, $J 8.6, \mathrm{ArH}$), 5.79 (ddd, 1H, $J 7.6,10.4$ and $17.3,5-\mathrm{H}), 5.03-5.08(\mathrm{~m}, 2 \mathrm{H}, 6-$ $\mathrm{H}), 4.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OAr}\right), 3.59-3.73(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}), 2.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $3.2, \mathrm{OH}), 2.18-2.34(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 1.64-1.82(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H})$ and $1.06\left(\mathrm{~d}, 3 \mathrm{H}, J 6.9, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 152.7$ (C, $\mathrm{C}_{\text {arom }}$), $141.0(\mathrm{CH}, \mathrm{C}-5), 130.0\left(\mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 129.3$ ($2 \mathrm{x} \mathrm{CH}, \mathrm{C}_{\text {arom }}$), $114.9(\mathrm{CH}, \mathrm{C}-6), 113.8\left(2 \mathrm{x} \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 74.6(\mathrm{CH}, \mathrm{C}-3), 73.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ar}\right), 69.2\left(\mathrm{CH}_{2}, \mathrm{C}-1\right)$, $55.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{OAr}\right), 43.8(\mathrm{CH}, \mathrm{C}-4), 33.5\left(\mathrm{CH}_{2}, \mathrm{C}-2\right)$ and $15.0\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right)$; MS (EI) m/z (\%) $250\left(1,[\mathrm{M}]^{+}\right), 232\left(0.5,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 194(2), 137\left(22,[\mathrm{OPMBn}]^{+}\right)$and 121 (100); HRMS (EI) $m / z 250.1567$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} 250.1569$).

Conversion to a Mosher ester derivative established the enantiomeric excess to be 97%.
(+)-(3R,4R)-1-[(4-Methoxybenzyl)oxy]-4-methyl-3-(tert-butyldiphenylsilyloxy)-5-hexene 19
To a solution of alcohol $\mathbf{1 8}(1.8 \mathrm{~g}, 7.2 \mathrm{mmol})$ and imidazole ($2.2 \mathrm{~g}, 31.7 \mathrm{mmol}$) in DMF (15 mL) was added dropwise tert-butyldiphenylsilyl chloride ($5.6 \mathrm{~mL}, 21.6 \mathrm{mmol}$). The mixture was stirred overnight at $100{ }^{\circ} \mathrm{C}$ then the DMF was evaporated under reduced pressure. The residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$, washed with brine (3 x 40 mL) and the organic layer dried over MgSO_{4}. Flash chromatography using hexane-ethyl acetate $(100: 0 \rightarrow 95: 5 \rightarrow 9: 1)$ as eluent afforded the title product ($3.48 \mathrm{~g}, 99 \%$) as a colourless oil;
$[\alpha]_{589}^{20}+11\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2965,1790,1750,1610,1515,1465,1305$, 1265, 1250, 1175, 1100, 1060, 1035, 930, $820 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.67-7.69(\mathrm{~m}, 4 \mathrm{H}$, PhSi);,7.32-7.45 (m, 6H, PhSi), 7.11 (d, 2H, J 8.7, ArH), 6.84 (d, 2H, J 8.7, ArH), 5.98 (ddd, $1 \mathrm{H}, J 6.4,10.6$ and $17.2,5-\mathrm{H}), 5.01\left(\mathrm{td}, J 1.7,1.7\right.$ and $\left.10.6,6-\mathrm{H}_{\mathrm{a}}\right), 4.97(\mathrm{td}, J 1.7,1.7$ and 17.2, $6-\mathrm{H}_{\mathrm{b}}$), 4.18 (s, 2H, CH2Ph), 3.81 (m, 3H, CH3OAr), 3.79-3.85 (m, 1H, 3-H), 3.37 (td, 1H, J7.0, $\left.J 9.2,1-\mathrm{H}_{\mathrm{a}}\right), 3.25\left(\mathrm{td}, 1 \mathrm{H}, J 7.0\right.$ and $\left.9.2,1-\mathrm{H}_{\mathrm{b}}\right), 2.28-2.38(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 1.71(\mathrm{q}, 2 \mathrm{H}, J 7.0,2-\mathrm{H})$, $1.06\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$ and $0.90\left(\mathrm{~d}, 3 \mathrm{H}, J 7.0, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.0\left(\mathrm{C}, \mathrm{C}_{\text {arom }}\right)$, 140.7 (CH, C-5), 136.0 ($4 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}$), 134.5, 134.1 (2 x C, C arom), 130.7 (C, C Carom), 129.5 (2 x $\mathrm{CH}, \mathrm{C}_{\text {arom }}$), $129.4\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 127.4\left(4 \mathrm{x} \mathrm{CH}, \mathrm{C}_{\text {arom }}\right)$, $114.2\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 113.6(2 \times \mathrm{CH}$, $\left.\mathrm{C}_{\text {arom }}\right)$, $74.6(\mathrm{CH}, \mathrm{C}-3), 72.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 67.0\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 55.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{OAr}\right), 42.4(\mathrm{CH}$, C-4), $33.5\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 27.1\left(\mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $19.6\left(\mathrm{C},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$ and $14.5\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right)$; MS (CI) $m / z(\%) 489\left(1,[\mathrm{M}+\mathrm{H}]^{+}\right), 433\left(2,\left[\mathrm{M}-{ }^{t} \mathrm{Bu}\right]^{+}\right), 352(2), 336(2), 216$ (5), 199 (5), 137 (14, [OPMBn] ${ }^{+}$) and 121 (100); HRMS (CI) $m / z 489.2825$ (calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si} 489.2825$).

(-)-(3R,4R)-4-[tert-Butyl(diphenyl)silyl]oxy-6-[(4-methoxybenzyl)oxy]-3-methyl-1-hexanol

 20To a solution of alkene $19(3.3 \mathrm{~g}, 6.8 \mathrm{mmol})$ in dry THF (100 mL) was added $\mathrm{BH}_{3} \cdot$ DMS (1.3 $\mathrm{mL}, 13.5 \mathrm{mmol}$) dropwise. After stirring for 6 hours at room temperature MeOH was slowly added followed by $1 \mathrm{M} \mathrm{NaOH}(30 \mathrm{~mL})$ and 30% hydrogen peroxide ($2.7 \mathrm{~mL}, 23.6 \mathrm{mmol}$). The solution was left to stir for 3 hours at room temperature the water (30 mL) was added, the separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(100 \mathrm{~mL})$ and dried over MgSO_{4}. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, using hexane-diethyl ether $70: 30$) afforded the title compound ($2.7 \mathrm{~g}, 78 \%$) as a colourless oil.
$[\alpha]_{589}^{20}-7\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right) v_{\max }($ film $) / \mathrm{cm}^{-1} 3400,2930,2860,1610,1590,1515,1460,1430$, $1360,1300,1250,1175,1110,1040,1005,820,740,705,610 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.34-$ 7.69 (m, 10H, PhSi), 7.10 (d, 2H, J 8.7, ArH), 6.84 (d, 2H, J 8.7, ArH), 4.19 (d, 1H, J 11.6, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right) ; 4.16\left(\mathrm{~d}, 1 \mathrm{H}, J 11.6, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.82(\mathrm{ddd}, 1 \mathrm{H}, J 2.8,5.2$ and $8.3,4-\mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{OPh}$), 3.57 (td, 1H, $J 6.1$ and $9.8,1-\mathrm{H}_{\mathrm{a}}$), 3.46 (td, $1 \mathrm{H}, J 6.6$ and $9.8,1-\mathrm{H}_{\mathrm{b}}$), 3.35 (ddd, $1 \mathrm{H}, J$ 5.9, 7.2 and $\left.9.1,6-\mathrm{H}_{\mathrm{a}}\right), 3.22\left(\mathrm{td}, 1 \mathrm{H}, J 7.0\right.$ and $\left.9.1,6-\mathrm{H}_{\mathrm{b}}\right), 1.66-1.83(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H})$, 1.38-1.44 (m, 1H, 2-H), $1.06\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$ and $0.82\left(\mathrm{~d}, 3 \mathrm{H}, J 6.8, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 159.0\left(\mathrm{C}, \mathrm{C}_{\text {arom }}\right), 136.0(4 \times \mathrm{CH}, \mathrm{PhSi}), 134.4$ (C, PhSi), $134.0(\mathrm{C}, \mathrm{PhSi}), 130.5(\mathrm{C}$, $\mathrm{C}_{\text {arom }}$), 129.7 ($2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}$), $129.5(2 \times \mathrm{CH}, \mathrm{PhSi}), 129.1$ ($2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}$), $127.5(4 \times \mathrm{CH}$, PhSi), $113.6\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 74.4(\mathrm{CH}, \mathrm{C}-4), 72.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 67.3\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 61.5\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-1), 55.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{OPh}\right), 35.2(\mathrm{CH}, \mathrm{C}-3), 35.1\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 33.0\left(\mathrm{CH}_{2}, \mathrm{C}-5\right), 27.1\left(3 \times \mathrm{CH}_{3}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$, $19.5\left(\mathrm{C},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$ and $15.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}(\%) 507\left(1,[\mathrm{M}+\mathrm{H}]^{+}\right)$, 433 (1), 255 (2), 199 (11), 137 (4, [OPMBn] ${ }^{\dagger}$) and 121 (100); HRMS (CI) $m / z 507.2921$ (calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si} 507.2931$).
(+)-(3R,4R)-4-[tert-Butyl(diphenyl)silyl]oxy-6-[(4-methoxybenzyl)oxy]-3-methylhexanal 11
To a solution of alcohol $\mathbf{2 0}(1.2 \mathrm{~g}, 2.36 \mathrm{mmol})$ in dichloromethane (30 mL) is added pyridine ($572 \mathrm{~mL}, 7.08 \mathrm{mmol}$) followed by Dess-Martin periodinane ($2.01 \mathrm{~g}, 4.73 \mathrm{mmol}$). After stirring for 2 hours at room temperature the mixture was diluted with dichloromethane $(50 \mathrm{~mL})$ and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ was added. The organic layer was washed with brine $(100 \mathrm{~mL})$ and dried over MgSO_{4}. Flash chromatography of the residue obtained after removal of the solvent at reduced pressure using hexane-diethyl ether ($90: 10$) as eluent afforded the title compound $(1.60 \mathrm{~g}, 84 \%)$ as a colourless oil; $[\alpha]_{589}^{20}+10\left(\mathrm{c}=0.23, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2930,2860,1725,1615,1515$,

1460, 1430, 1360, 1300, 1250, 1175, 1110, 1040, 935, 820, 740, 705, 615; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 9.51(\mathrm{t}, 1 \mathrm{H}, J 1.7,1-\mathrm{H}), 7.65-7.67(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhSi}), 7.34-7.45(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PhSi}), 7.11(\mathrm{~d}, 2 \mathrm{H}$, $J 8.5, \mathrm{ArH}$), 6.84 (d, 2H, $J 8.5, \mathrm{ArH}$), 4.21 (d, 1H, $\left.J 11.9, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.18$ (d, 1H, J11.9, CH $\mathrm{H}_{2} \mathrm{Ar}$), 3.86 (ddd, $1 \mathrm{H}, J 2.5,5.0$ and $7.3,4-\mathrm{H}$), 3.81 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OPh}$), 3.36 (ddd, $1 \mathrm{H}, J 5.9,7.0$ and 9.1, $\left.6-\mathrm{H}_{\mathrm{a}}\right), 3.26\left(\mathrm{td}, 1 \mathrm{H}, J 7.0\right.$ and $\left.9.1,6-\mathrm{H}_{\mathrm{b}}\right), 2.62\left(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.15-2.24\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}\right)$, 1.63-1.79 (m, 2H, 5-H), $1.06\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$ and $0.84\left(\mathrm{~d}, 3 \mathrm{H}, J 6.4, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 202.6(\mathrm{CH}, \mathrm{C}-1), 159.1$ (C, $\mathrm{C}_{\text {arom }}$), 135.9 ($4 \times \mathrm{CH}, \mathrm{PhSi}$), 134.2 (C, PhSi$), 133.8(\mathrm{C}$, $\mathrm{PhSi}), 130.5\left(\mathrm{C}, \mathrm{C}_{\text {arom }}\right), 129.8(2 \times \mathrm{CH}, \mathrm{PhSi}), 129.6\left(\mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 129.1\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 127.6$ ($\mathrm{CH}, \mathrm{PhSi}$), $127.5(4 \times \mathrm{CH}, \mathrm{PhSi}), 113.7\left(2 \times \mathrm{CH}, \mathrm{C}_{\text {arom }}\right), 73.8(\mathrm{CH}, \mathrm{C}-4), 72.4\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ar}\right)$, $67.0\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 55.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{OAr}\right), 46.5\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 33.0\left(\mathrm{CH}_{2}\right.$ and $\mathrm{CH}, \mathrm{C}-5$ and $\left.\mathrm{C}-3\right), 27.1$ $\left(3 \times \mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 19.5\left(\mathrm{C},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right)$ and $14.9\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right)$; MS (CI) $\mathrm{m} / \mathrm{z}(\%) 522(2,[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$), 367 (12), 216 (3), 196 (4), 137 (9), 121 (100), 111 (8); HRMS (CI) $m / z 522.3037$ $\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)\left(\right.$calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNH}_{4} 522.3034\right)$.

References

[^0]
[^0]: i M.-T. Lai, E. Oh, Y. Shih and H.-W. Liu, J. Org. Chem., 1992, 57, 2471.
 ii F. Coelho and G. Diaz, Tetrahedron, 2002, 58, 1647.
 iii F. Matsuda, M. Kito, T. Sakai and N. Okada, Tetrahedron, 1999, 55, 14369.

