The dihydrofuran template approach to furofuran synthesis

David J. Aldous, ${ }^{\text {b }}$ Andrei S. Batsanov, ${ }^{\text {a }}$ Dmitrii S. Yufit, ${ }^{\text {a }}$ Anne J. Dalençon, ${ }^{\text {a }}$ William M. Dutton, ${ }^{\text {a }}$ Patrick G. Steel ${ }^{\text {a** }}$
${ }^{\text {a D Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK. Phone }}$ +44-(0)191-334-2131; Fax +44-(0)191-384-4737; email p.g.steel@durham.ac.uk
${ }^{\text {b }}$ Sanofi-Aventis Pharma Inc, Route 202-206, Bridgewater, P.O. Box 6800, New Jersey 08807, USA

3-(3',4'-Methylenedioxyphenyl)prop-2-en-1-ol' 7b

A solution of carboethoxytriphenylphosphorane ($30 \mathrm{~g}, 84 \mathrm{mmol}$) in benzene (5 mL) was added to a solution of piperonal ($7.2 \mathrm{~g}, 48 \mathrm{mmol}$) under N_{2}. The reaction mixture was then heated under reflux for 60 hours. The mixture was then concentrated and the residue suspended in ether : petrol (1:1). Filtration through a bed of silica and Celite removed the insoluble phosphorus by-products and afforded ethyl 3-(3', 4^{\prime} -methylenedioxyphenyl)prop-2-enoate ${ }^{2}$ ($9.3 \mathrm{~g}, 88 \%$). Mp $68-70{ }^{\circ} \mathrm{C}$ (lit. ${ }^{2} 68-69{ }^{\circ} \mathrm{C}$); found: $\mathrm{C}, 65.35 \%$; $\mathrm{H}, 5.49 \%$; calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$: $\mathrm{C}, 65.45 \%$; $\mathrm{H}, 5.49 \%$; $v_{\max } 1709$, $1603,1174 \mathrm{~cm}^{-1}$; $\delta_{H}(300 \mathrm{MHz}): 7.59(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, 3-H), 7.03(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$, $7.00(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \operatorname{Ar}-H), 6.80(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{d}, J=15.9$ $\mathrm{Hz}, 2-\mathrm{H}), 6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.25\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.32(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(63 \mathrm{MHz}): 167.2(\mathrm{C}-1), 149.5,148.3,144.2,128.9,124.3,116.2$, $108.5(\mathrm{C}-2), 106.4(\mathrm{C}-3), 101.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 60.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{El}): 220$ (100\%, M ${ }^{+}$), 175 (90), 148 (55), 145 (70), 89 (57).
A solution of DIBAL-H 1 M in hexanes ($106 \mathrm{~mL}, 106 \mathrm{mmol}$) was added slowly to a solution of ethyl 3-($3^{\prime}, 4^{\prime}$-methylenedioxyphenyl)prop-2-enoate ($9 \mathrm{~g}, 41 \mathrm{mmol}$) in THF $(150 \mathrm{~mL})$ under argon and the resultant mixture was stirred at $-80^{\circ} \mathrm{C}$ for 4 hours.
The reaction was quenched with $\mathrm{MeOH}(30 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$, stirred for 1 hour then water (14 mL) was added. Celite was added and the resulting granular suspension was filtered through a celite plug and the residue washed with ethyl acetate. The filtrate was then concentrated to yield the alcohol $\mathbf{7 b}(5.8 \mathrm{~g}, 80 \%) . \mathrm{Mp} 77-79^{\circ} \mathrm{C}$ (lit. ${ }^{1}$ $78-79{ }^{\circ} \mathrm{C}$); found: $\mathrm{C}, 67.44 \%$; $\mathrm{H}, 5.69 \%$; calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$: $\mathrm{C}, 67.41 \%$; $\mathrm{H}, 5.66 \%$; $v_{\max } 3400-3300 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}): 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 6.82(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Ar}-$ $H), 6.75(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Ar}-H), 6.52(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, 3-H), 6.20(1 \mathrm{H}, \mathrm{dt}, J=$
5.7, $15.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, 1-\mathrm{H}), 1.46(1 \mathrm{H}$, broad s, OH); $\delta_{\mathrm{C}}(63 \mathrm{MHz}): 148.0,147.3,131.1,130.9,126.7,121.1,108.3(\mathrm{C}-2)$, 105.7 (C-3); 101.4 ($\mathrm{OCH}_{2} \mathrm{O}$), 63.7 (C-1); m/z (EI): 178 (100\%, M+), 135 (95), 122 (78), 91 (88), 77 (65).

3-(3',4'-Methylenedioxyphenyl)prop-2-enal' 8b

Manganese dioxide 90% ($325 \mathrm{mg}, 3.4 \mathrm{mmol}$) was added slowly to the solution of the vinylic alcohol 7b ($100 \mathrm{mg}, 0.56 \mathrm{mmol}$) in DCM $(7.5 \mathrm{~mL})$. The reaction mixture was stirred for 24 hours at rt , filtered through a Celite plug and washed with DCM. The solvent was removed under reduced pressure to yield the aldehyde $\mathbf{8 b}$ ($94 \mathrm{mg}, 95 \%$). Mp 84.7-85.8 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} 85-86.5^{\circ} \mathrm{C}$); found: $\mathrm{C}, 68.20 \%$; $\mathrm{H}, 4.59 \%$; calc. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}$: C , 68.18%; H, 4.58%; $v_{\max } 1666,1600 \mathrm{~cm}^{-1}$; $\delta_{H}(200 \mathrm{MHz})$: $9.64(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 1-$ H), $7.38(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, 3-H), 7.2-6.8(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar-H}), 6.56(1 \mathrm{H}, \mathrm{dd}, J=7.5$, $15.6 \mathrm{~Hz}, 2-\mathrm{H}), 6.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{C}}(63 \mathrm{MHz}): 193.5(1-\mathrm{C}), 152.5,150.5,148.5$, 128.5, 126.8, 125.2, 108.7 (3-C), 106.7 (2-C), $101.8\left(\mathrm{OCH}_{2} \mathrm{O}\right) ; ~ m / z(E I): 176$ (100\%, M^{+}), 147 (60), 89 (60), 63 (41).

3-Phenyloxirane-2-carboxaldehyde ${ }^{3}$ 10a.

A solution of cinnamaldehyde ($132 \mathrm{~g}, 1 \mathrm{~mol}$) in methanol (400 ml) was added dropwise over 60 minutes to a stirred solution of tert-butyl hydroperoxide (154 ml , 108 g in a $70 \%(\mathrm{w} / \mathrm{v})$ aqueous solution, 1.2 mol) in methanol $(500 \mathrm{ml})$ maintained at pH 10.5 by the addition of 1 M sodium hydroxide $(\mathrm{NaOH})(\mathrm{ca} .30 \mathrm{ml})$, at $35-40^{\circ} \mathrm{C}$. After stirring for 4 hours, a second portion of tert-butyl hydroperoxide ($103 \mathrm{ml}, 72 \mathrm{~g}$ in a $70 \%(\mathrm{w} / \mathrm{v})$ aqueous solution, 0.8 mol$)$ was added. The pH was again maintained at 10.5 by addition of $\mathrm{NaOH}(20 \mathrm{ml})$. After stirring for a further 48 hours, water (500 ml) was added, and the reaction mixture was extracted with DCM ($3 \times 200 \mathrm{ml}$). The organic extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Vacuum distillation, yielded the title compound 10a as a colourless oil ($127.4 \mathrm{~g}, 86 \%$). (Epoxide isomer ratio by ${ }^{1} \mathrm{H}$ NMR trans : cis 6.5 : 1), bp $70-75^{\circ} \mathrm{C}, 0.5 \mathrm{mbar}$ (lit. ${ }^{3} 66-$ $\left.68^{\circ} \mathrm{C}, 0.2 \mathrm{mmHg}\right) . \quad V_{\max }(\mathrm{LF}) 2820,1723,1459 \mathrm{~cm}^{-1} . \mathrm{m} / \mathrm{z}\left(\mathrm{CI}_{2} \mathrm{NH}_{3}\right): 149\left(100 \%, \mathrm{MH}^{+}\right)$, 119, 106, 91; trans: $\delta_{H}(200 \mathrm{MHz}): 9.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, 1-H), 7.5-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ H), $4.16(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, 3-H), 3.44(1 \mathrm{H}, \mathrm{dd}, J=6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, \mathrm{C} 2-H)$; $\delta_{\mathrm{C}}(50 \mathrm{MHz})$: 199 (C-1), 131, 130, 130, 128, 65 (C-3), 59 (C-2); cis: $\delta_{H}(200 \mathrm{MHz}): 9.09$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=6 \mathrm{~Hz}, 1-H), 7.5-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H), 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}, 3-H), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $6,5 \mathrm{~Hz}, 2-H)$; $\delta_{\mathrm{C}}(63 \mathrm{MHz}): 197(C-1), 130,129,128,126,63(C-3), 57(C-2)$.

Ethyl 3-(3'-phenyloxirin-2'-yl)propenoate 11a.

A solution of triethyl phosphonoacetate ($98 \mathrm{~g}, 0.44 \mathrm{~mol}$) in toluene (300 ml) was added over 1 hour to a stirred suspension of $\mathrm{NaH}(13.6 \mathrm{~g}, 0.55 \mathrm{~mol}$) in toluene (400 ml) at $-10^{\circ} \mathrm{C}$ after which the mixture was warmed to room temperature. The mixture was then cooled to $-10^{\circ} \mathrm{C}$ and a solution of epoxy aldehyde (32) (50.0 g, 0.338 mol) in toluene (300 ml) was added dropwise over 45 minutes. The reaction was warmed to room temperature after which water (500 ml) was added. The organic layer was separated and combined with ether extracts ($2 \times 300 \mathrm{ml}$) of the aqueous layer. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Vacuum distillation ($86-95^{\circ} \mathrm{C}, 0.3 \mathrm{mbar}$) gave the title compound 11 as a colourless oil ($58.2 \mathrm{~g}, 79 \%$). At this stage cis and trans epoxide isomers are separable by flash chromatography eluting with 12% ethyl acetate in petrol. Trans-epoxide found: C, $71.23 ; \mathrm{H}, 6.62$; $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$ requires: $\mathrm{C}, 71.54 ; \mathrm{H}, 6.46 \%$; $v_{\max }(\mathrm{LF}) 2983,1713,1655,1094,1038 \mathrm{~cm}^{-1}$; $\delta_{H}(200 \mathrm{MHz})$: 7.5-7.2 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\right), 6.81(1 \mathrm{H}, \mathrm{dd}, J=7,15 \mathrm{~Hz}, 3-H), 6.18(1 \mathrm{H}, \mathrm{d}$, $J=15 \mathrm{~Hz}, 2-H), 4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.83(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, 5-\mathrm{H}), 3.47$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7,1.5 \mathrm{~Hz}, 4-\mathrm{H}$), $1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); $\delta_{\mathrm{C}}(50 \mathrm{MHz}): 160(\mathrm{C}-1)$, 144 (C-3), 139, 136, 129, 127, 124 (C-2), 62, 61, 60, $15\left(\mathrm{CH}_{3}\right) ; ~ m / z\left(\mathrm{CI} / \mathrm{NH}_{3}\right): 236$ ($92 \%, \mathrm{MNH}_{4}{ }^{+}$), $219\left(79, \mathrm{MH}^{+}\right), 203,190,173,145,116$ (100). cis-epoxide $\delta_{H}(200$ MHz): 7.2-7.5 (5 H, m, Ar-H), 6.46 ($1 \mathrm{H}, \mathrm{dd}, J=7,15 \mathrm{~Hz}, 3-H$), 5.95 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15$ $\mathrm{Hz}, 2-H), 4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}, 5-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{dd}$, $J=7,5 \mathrm{~Hz}, 4-H), 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.

5-phenyl-4,5-epoxypent-2-enoic acid

A solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(250 \mathrm{mg}, 6 \mathrm{mmol})$ in water $(3 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ to a solution of methyl ester 11a ($800 \mathrm{mg}, 3.67 \mathrm{mmol}$) in methanol $(10 \mathrm{~mL})$. The reaction mixture was stirred at rt for 2 hours. The methanol was removed and the residue was treated with a saturated solution of citric acid in water until pH 3 at $0^{\circ} \mathrm{C}$ then extracted with ether. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography (ether : petrol $1: 1$) to give the title acid ($580 \mathrm{mg}, 83 \%$). $\mathrm{Mp}=84.5-89^{\circ} \mathrm{C}$. Recrystallisation from ether-petrol yielded the pure trans, trans isomer as a white solid; $\mathrm{mp} 86-88^{\circ} \mathrm{C}$; found C, 69.31%; H, 5.38%; calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$: C, 69.31\%; H,5.26\%; $v_{\max } 1286 \mathrm{~cm}^{-1}$; $\delta_{H}(200 \mathrm{MHz}): 7.45-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=6.8,15.8 \mathrm{~Hz}, 3-H), 6.20(1$ $\mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 2-H), 3.86(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, 5-H), 3.51(1 \mathrm{H}, \mathrm{dd}, J=1.6,6.8 \mathrm{~Hz}$, $4-H) ; \delta_{\mathrm{C}}(63 \mathrm{MHz}): 171.0(\mathrm{C}-1), 146.4(\mathrm{C}-2), 135.8,128.7,128.6,125.5,123.1(\mathrm{C}-3)$, $61.2(C-5), 60.3(C-4) ; m / z\left(C I, N H_{3}\right): 208(10 \%, M+N H 4), 190(100, M)$.

General procedure for the preparation of modified vinyl epoxides from 5-phenyl-4,5-epoxypent-2-enoic acid

Triethylamine ($300 \mu \mathrm{~L}, 2 \mathrm{mmol}, 4 \mathrm{eq}$.) was slowly added to a solution of 5-phenyl-4,5-epoxypent-2-enoic acid ($95 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ eq.) in THF (5 mL) at $-30^{\circ} \mathrm{C}$ under argon. Then, pivaloyl chloride ($62 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1$ eq.) was added dropwise to the mixture at $-30^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 3 hours under argon, and warmed up to $-20^{\circ} \mathrm{C}$ before adding lithium chloride ($21 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ eq.) and the amine or alcohol ($0.6 \mathrm{mmol}, 1.2 \mathrm{eq}$.). The reaction mixture was then warmed up to rt and stirred for 12 hours. After quenching with sat. NaHCO_{3} solution $(3 \mathrm{~mL})$, water (5 mL) and ether (5 mL) were then added and the layers were separated. The aqueous layer was extracted with ether ($3 \times 5 \mathrm{~mL}$) and the combined organic layers were washed with brine ($3 \times 5 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by Kügelrohr distillation (typically $P=0.2-1 \mathrm{mbar} ; T=100-$ $180^{\circ} \mathrm{C}$, the distillate contained the pivalamide) and/or flash chromatography.

2'-Hydroxyethyl 5-phenyl-4,5-epoxy-pent-2-enoate 19

Obtained in 47% yield after flash chromatography (ether : petrol $2: 1$); $v_{\max } 3083$, $1719 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}): 7.38-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=6.9,15.9 \mathrm{~Hz}, 3-$ H), $6.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, 2-H), 4.33-4.30\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.90-3.86(2 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime}-H_{b}, 2^{\prime}-H_{b}\right), 3.84(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, 5-H), 3.48(1 \mathrm{H}, \mathrm{dd}, J=1.8,6.9 \mathrm{~Hz}, 4-H)$; $m / z\left(\mathrm{ES}^{+}\right): 235.1\left(\mathrm{MH}^{+}\right), 257.1\left(\mathrm{MNa}^{+}\right), 491.2\left(2 \mathrm{MNa}^{+}\right)$.

N- ${ }^{n}$ Butyl 5-phenyl-4,5-epoxypent-2-enamide 20

Obtained in 78% yield after flash chromatography (ether : petrol $2: 1$). $\mathrm{Mp}_{\text {syn }}=107-$ $110{ }^{\circ} \mathrm{C}$; $\mathrm{mp}_{\text {anti }}=121-122^{\circ} \mathrm{C}$; $V_{\max } 3286,3086$ (NH), 2958, 2931, 2871 (CH, aromatics), 1667, 1629 (CONH); Syn epoxide isomer $\delta_{H}(400 \mathrm{MHz}): 7.35-7.28$ (5 H , m, Ar-H), 6.36 ($1 \mathrm{H}, \mathrm{dd}, 7.9,15.3 \mathrm{~Hz}, 3-H$), 6.12 ($1 \mathrm{H}, \mathrm{dd}, 0.7,15.3 \mathrm{~Hz}, 2-H$), 5.42 (1 H, broad s, NH), $4.32(1 \mathrm{H}, \mathrm{d}, 4.3 \mathrm{~Hz}, 5-\mathrm{H}), 3.76$ (1 H , ddd, 0.7, 4.7, $7.9 \mathrm{~Hz}, 4-\mathrm{H}$), 3.28-3.22 (2 H, m, 1'- H_{2}), 1.50-1.42 (2 H, m, 2'H2), 1.36-1.26 (2 H, m, 3'- H_{2}), 0.90 (3 $\left.\mathrm{H}, \mathrm{t}, 7.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}): 164.2(\mathrm{C}-1), 136.4(\mathrm{C}-2), 134.0,129.3(\mathrm{C}-3)$, 128.3, 128.1, 126.4, 59.5 (C-5), 58.1 (C-4), 39.3 (C-1'), 31.5 (C-2'), 20.0 (C-3'), 13.7 (C-4'); $m / z\left(\mathrm{ES}^{+}\right): 268.2\left(\mathrm{MNa}^{+}\right), 513.3\left(2 \mathrm{MNa}^{+}\right) ;$HRMS (ES ${ }^{+}$) found MNa^{+}, 268.1319; $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{2}$ requires M , 268.1313. Anti epoxide isomer. found: $\mathrm{C}, 73.39 \% ; \mathrm{H}$,
7.83\%; $\mathrm{N}, 7.83 \%$; calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, $73.44 \% ; \mathrm{H}, 7.81 \% ; \mathrm{N}, 5.71 \% ; \delta_{\mathrm{H}}(400$ MHz): 7.36-7.25 (5 H, m, Ar-H), 6.76 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,15.2 \mathrm{~Hz}, 3-H$), 6.14 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=15.2 \mathrm{~Hz}, 2-H), 5.71(1 \mathrm{H}$, broad s, NH), $3.79(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, 5-H), 3.46(1 \mathrm{H}, \mathrm{dd}$, $J=1.8,6.6 \mathrm{~Hz}, 4-H), 3.36-3.31\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 1.58-1.48\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime} \mathrm{H}_{2}\right), 1.41-1.31$ ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{2}$), $0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{3}\right.$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}): 164.6(\mathrm{C}-1), 139.3(\mathrm{C}-$ 2), 136.2, 128.6, 128.5, 126.0 (C-3), 125.4, 61.2 (C-5), 60.7 (C-4), 39.4 ($C-1$ '), 31.6 (C-2'), 20.0 (C-3'), 13.7 (C-4').

N-Prop-2-enyl 4,5-epoxy-5-phenylpent-2-enamide 21

Obtained in 65% yield after flash chromatography (ether : petrol $2: 1$). Mp 105-106 ${ }^{\circ} \mathrm{C}$; found: $\mathrm{C}, 73.50 \%$; $\mathrm{H}, 6.64 \%$; $\mathrm{N}, 6.04 \%$; calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$: $\mathrm{C}, 73.34 \% ; \mathrm{H}$, 6.59\%; N, 6.11\%; $v_{\max } 3226,2953,2923,2853,1663,1560 \mathrm{~cm}^{-1}$ (CONH); $\delta_{H}(300$ $\mathrm{MHz}): 7.36-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H), 6.80(1 \mathrm{H}, \mathrm{dd}, J=6.6,15.3 \mathrm{~Hz}, 3-H), 617(1 \mathrm{H}, \mathrm{dd}, J$ $=0.6,15.3 \mathrm{~Hz}, 2-H), 5.94-5.78\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.78-5.66(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 5.25-5.13(2$ $\mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{2}$), 4.00-3.94 (2 H, m, 1'- H2), $3.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, 5-H), 3.47(1 \mathrm{H}$, ddd, $J=0.6,1.8,6.6 \mathrm{~Hz}, 4-H)$; $\delta_{\mathrm{C}}(50 \mathrm{MHz}): 164.5(C-1), 139.8(C-3), 136.2\left(C-2^{\prime}\right), 133.8$ (C-3), 128.6, 125.6, 125.5, 116.7, 101.8 (C-3'), 61.3 (C-5), 60.7 (C-4), 42.05 (C-2'); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right): 284.1\left(\mathrm{MNa}^{+}\right)$, $481.2\left(2 \mathrm{MNa}^{+}\right)$.

N-oxazolidinone 5-phenyl-4,5-epoxy-pent-2-enamide 22

Obtained in 35% yield following recrystallisation from ethyl acetate; $\mathrm{mp}=139-141$ ${ }^{\circ} \mathrm{C} ; \nu_{\max } 1773,1683,1635,1362 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}): 7.53(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, 2-\mathrm{H})$, 7.35-7.10 (5 H, m, Ar-H), $6.84(1 \mathrm{H}, \mathrm{dd}, J=7.5,15.5,3-H), 4.36(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}\right), 4.00\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, 4-$ $H) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}): 164.1$ (OCON), 153.3 (C-1), 145.6 (2-C), 135.9, 128.7, 128.6, 125.5, 122.8 (C-3), $62.1(\mathrm{C}-5), 61.0(\mathrm{C}-4), 60.9\left(\mathrm{OCH}_{2}\right), 42.6\left(\mathrm{NCH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}): 259$ ($0.4 \%, \mathrm{M}^{+}$), 172 (16), 153 (100), 77 (44).

N-(5-Phenyl-4,5-epoxypent-2-enoyl)-3'-phenyloxazolidinone 23 (mixture of 2 diastereoisomers)

Mp 60.5-62.8 ${ }^{\circ} \mathrm{C}$. Found: C, 71.19%; $\mathrm{H}, 5.13 \%$; $\mathrm{N}, 4.03 \%$; calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 71.63\%; H, 5.11\%; N, 4.18\%; $v_{\max } 3055,2985,1781,1689,1637,1385,1355,1330$, $1273,1201 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.56(1 \mathrm{H}, \mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}), 3.84(0.5 \mathrm{H}$, d, $J=1.8 \mathrm{~Hz}$), $3.86(0.5 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=4.0,8.8 \mathrm{~Hz}), 4.72(0.5 \mathrm{H}$, $\mathrm{t}, J=8.8 \mathrm{~Hz}), 4.73(0.5 \mathrm{H}$, apparent $\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{dd}, J=4.0,8.8 \mathrm{~Hz})$, 6.86 ($0.5 \mathrm{H}, \mathrm{dd}, J=7.8,15.4 \mathrm{~Hz}$), $6.87(0.5 \mathrm{H}, \mathrm{dd}, J=7.8,15.4 \mathrm{~Hz}$), $7.22-7.50(10 \mathrm{H}$,
$\mathrm{m}, \mathrm{Ph}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.4 \mathrm{~Hz}) . \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 57.67,60.86,60.96,69.99$, 122.83, 122.94, 125.45, 125.89, 125.93, 128.56, 128.72, 129.14, 135.85, 135.90, 138.65, 145.74, 145.92, 153.47, 163.40, 163.44; m/z (CI, NH ${ }_{3}$): $353\left(\mathrm{MNH}_{4}{ }^{+}\right), 336$ $(M)^{+} ;$HRMS (EI) found $\mathrm{MH}^{+}, 336.1236 ; \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires $\mathrm{M}, 336.1236$.

4,5-Epoxy-5-phenylpent-2-enoyl-2',5'-trans-diphenylpyrrolidinyl amide 24

Obtained as a light brown solid (55%). Found C, 81.92; H, 6.23; N, 3.62\%; calc. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 82.00; H, 6.37; N, 3.54\%; $v_{\max }$ (ATR) 3063, 3029, 1661, 1617, 1399 cm^{-1}; $\delta_{\mathrm{H}}(300 \mathrm{MHz}): 7.5-7.0(15 \mathrm{H}, \mathrm{m}$, Ar-H$), 6.81-6.64(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.38-6.21$ (1 H, m, 2-H), 5.69-5.43 ($2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\prime} 5^{\prime}-H$), 3.75 ($1 \mathrm{H}, \mathrm{s}, 5-H$), 3.33 ($1 \mathrm{H}, \mathrm{d}, 4-H$), 2.80-2.17 (2 H, m), 1.94-1.67 (2 H, m); $\delta_{c}(75 \mathrm{MHz}): 164(C-1), 143,142,141,136$, 129, 128, 127, 126, 125, 124, 62, 61 (C-4, C-5), 61 (C-2', C-5'), 33; m/z (CI, NH ${ }_{3}$): $395\left(100 \%, M^{+}\right), 318,241,222,173,145,119,77$.

2'-Hydroxyethyl 2,3-dihydro-2-phenylfuran-3-carboxylate 27

Following general procedure D ($500{ }^{\circ} \mathrm{C}$ and 0.04 mbar) 2-hydroxyethyl vinyl epoxide ester 19 was rearranged to afford a crude mixture of dihydrofurans 27 (cis : trans 8.8 : 1). Filtration on silica afforded the cis-dihydrofuran 27c (60\%). $\delta_{H}(300 \mathrm{MHz}): 7.37-$ 7.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $6.72(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 5-H), 5.77(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, 2-H)$, $5.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 4-H), 4.13(1 \mathrm{H}, \mathrm{dt}, J=2.1,11.1 \mathrm{~Hz}, 3-H), 3.75-3.71(2 \mathrm{H}$, m), 3.37-3.17 ($2 \mathrm{H}, \mathrm{m}$).

N- ${ }^{n}$ Butylamino 2,3-dihydro-2-phenylfuran-3-carboxamide 28

Following general procedure $\mathrm{C}\left(500^{\circ} \mathrm{C}\right.$ and 0.04 mbar) n-butyl amide $20(550 \mathrm{mg})$ was converted to the title dihydrofurans ($60 \% 8: 1$ cis : trans). Flash chromatography (ether : petrol 3 : 7) afforded the cis-dihydrofuran 28c (45\%). $v_{\max } 3301,3075,2984$, $1652 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}): 7.32-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 5-\mathrm{H})$, $5.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.1 \mathrm{~Hz}, 2-H), 5.50(1 \mathrm{H}$, broad s, NH), $5.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 4-\mathrm{H})$, 3.96 ($1 \mathrm{H}, \mathrm{dt}, J=2.1,11.1 \mathrm{~Hz}, 3-H$), 2.85-2.75 (2 H, m, 1'-H2), 1.20-1.00 (4 H, m, 2'$\left.H_{2}, 3^{\prime}-H_{2}\right), 0.79\left(3 \mathrm{H}, \mathrm{t}, 6.7 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{3}\right)$.

N-Prop-2-enyl 2,3-dihydro-2-phenylfuran-3-carboxamide 29

Following general procedure $\mathrm{C}\left(500^{\circ} \mathrm{C}\right.$ and 0.05 mbar) n-allyl amide 21 was converted to the title dihydrofurans ($9: 1$ cis : trans). Flash chromatography (ether : petrol $3: 7$) afforded unreacted starting vinyl epoxide ($\sim 20 \%$) and cis- N -allyl
dihydrofuryl amide 29c (48\%). $\mathrm{Mp}=78-81^{\circ} \mathrm{C}$; $v_{\max } 3303,2927,1643 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}): 7.28-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H), 6.75(1 \mathrm{H}, \mathrm{dd}, J=1.8,2.7 \mathrm{~Hz}, 5-H), 5.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.1 \mathrm{~Hz}, 2-H), 5.55(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 5.35-5.22\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-H\right), 5.02(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}$, $4-H), 4.92-4.81(2 \mathrm{H}, \mathrm{m}, 3 \prime-H), 3.93(1 \mathrm{H}, \mathrm{dt}, J=1.8,11.1 \mathrm{~Hz}, 3-H), 3.44(2 \mathrm{H}, \mathrm{t}, J=$ $\left.5.7 \mathrm{~Hz}, 1^{\prime}-H\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}): 169.5(\mathrm{CO}), 149.9(C-5), 136.6,133.7(C-2 '), 128.0$, 127.9, 126.0, 116.4 (C-3'), 100.1 (C-4), 85.2 (C-2), $55.0(C-3), 41.8\left(C-1^{\prime}\right) ; m / z\left(E S^{+}\right):$ $252.0\left(\mathrm{MNa}^{+}\right), 481.1\left(2 \mathrm{MNa}^{+}\right)$; HRMS (ES) found MNa^{+}, 252.0997; $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{2}$ requires $M, 252.1000$.

N-(2,3-Dihydro-2-phenylfuran-3-carboxy)oxazolidin-2'-one 30

Following general procedure $\mathrm{D},\left(500^{\circ} \mathrm{C}\right.$ and 0.05 mbar$)$ oxazolidinone vinyl epoxide 22 was rearranged to afford a crude mixture of dihydrofurans (cis: trans $11: 1$). Filtration on silica afforded the cis-dihydrofuran 30c (70\%). $\delta_{\mathrm{H}}(300 \mathrm{MHz}): 7.32-7.22$ (5 H, m, Ar-H), $6.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 5-H), 5.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.7 \mathrm{~Hz}, 2-H), 5.28(1$ $\mathrm{H}, \mathrm{dt}, J=2.4,11.7 \mathrm{~Hz}, 3-H), 5.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 4-H), 4.14-4.02(1 \mathrm{H}, \mathrm{m}), 3.63-$ 3.57 (2 H, m), 3.05-2.95 (1 H, m); m/z (El): 259.1 (8\%, M ${ }^{+}$), 172 (100), 144 (31), 115 (94).

(2R,3S,4'S)-3'-(2,3-dihydro-2-phenylfuran-3-oyl)-4'-phenyloxazolidin-2'-one 31

Following general procedure $\mathrm{D}\left(500^{\circ} \mathrm{C}, 0.04\right.$ mbar) the vinyl epoxide 23 was rearranged to afford a crude mixture of dihydrofurans (conversion 67\%). The ratio of the individual diastereoisomers was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be 50 : 36 : 8 : 6. Data for the major isomer ($2 R, 3 S, 4$ 'S)-3'-(2,3-dihydro-2-phenylfuran-3-oyl)-4'phenyloxazolidin-2'-one; Mp 142-143.5 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{21}=+87\left(c=2.9, \mathrm{CHCl}_{3}\right) ; v_{\max } 3054$, $2918,1777,1703,1631,1494,1456,1381,1347,1239,1195,1045,701 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}$ (400 MHz, CDCl_{3}): 7.46-7.22 (8 H, m, Ar-H), 7.18-7.10 (2 H, m, Ar-H), 6.68 (1 H, t, J $=2.5 \mathrm{~Hz}, 5-H), 5.85(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, 2-H), 5.34(1 \mathrm{H}, \mathrm{dt}, J=11.6,2.2 \mathrm{~Hz}, 3-H)$, $4.97(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}, 4-H), 4.47\left(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 4^{\prime}-H\right), 3.98(1 \mathrm{H}, \mathrm{dd}, J=$ 8.6, $2.5 \mathrm{~Hz}, 5^{\prime}-H_{b}$), $3.71\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 170.84 , 153.35, 148.49, 138.77, 137.51, 129.01, 128.64, 128.61, 128.14, 127.22, 125.85, 98.32, 84.14, 69.89, 57.59, 52.87; $\mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{NH}_{3}\right): 353\left(\mathrm{MNH}_{4}{ }^{+}\right), 336\left(\mathrm{MH}^{+}\right)$; HRMS (EI) found MH^{+}, 336.1236. $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires M , 336.1236.

Following general procedure $\mathrm{C}\left(500{ }^{\circ} \mathrm{C}, 0.04\right.$ mbar) the vinyl epoxide $24(35 \mathrm{mg})$ was rearranged to afford a crude mixture of dihydrofurans 32 (43\%). The ratio of individual diastereoisomers (54:34) : (7:5) (cis) : (trans) was determined by HPLC. No attempt was made to separate the individual isomers.

1 M. T. Bogert and G. Powell, J. Am. Chem. Soc., 1931, 53, 1605.
2 I. A. Pearl and D. L. Beyer, J. Org. Chem., 1951, 16, 216.
3 G. B. Payne, J. Org. Chem., 1960, 25, 275.

