Supporting information

Variations of the P2 Group in HIV-1 Protease Inhibitors Containing a Tertiary Alcohol in the Transition-State Mimicking Scaffold

Jenny K. Ekegren,^{*a*} Johan Gising,^{*a*} Hans Wallberg,^{*b*} Mats Larhed,^{*a*} Bertil Samuelsson^{*b*} and Anders Hallberg^{*a**}

^{*a*}Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden. ^{*b*}Medivir AB, Lunastigen 7, SE-141 44, Huddinge, Sweden.

Chemistry

General information. Analytical LC-MS was performed on a Gilson HPLC system with a Finnigan AQA quadropole mass spectrometer using a Chromolith Performance RP-18e $4.6 \times$ 100 mm (Merck KGaA) column, with a gradient of CH₃CN in 0.05% aqueous HCOOH as mobile phase at a flow rate of 4 mL/min. Preparative reverse-phase LC-MS was done under similar conditions but using a Zorbax SB-C8, 5 μ m 21.2 \times 150 mm (Agilent technologies) column, at a flow rate of 15 mL/min. Flash chromatography was performed on Merck silica gel 60 (40-63 µm) or Merck silica gel 60 RP-18 (40-63 µm). Analytical thin layer chromatography was done using aluminum sheets precoated with silica gel 60 F₂₅₄. UV light and an ethanolic solution of phosphomolybdic acid followed by heating visualized components. Optical rotations were obtained on a Perkin-Elmer 241 polarimeter. Specific rotations ($[\alpha]_D$) are reported in deg/dm and the concentration (c) is given as g/100 mL in the specified solvent. ¹H and ¹³C NMR spectra were recorded on Varian Mercury Plus instruments; ¹H at 300 MHz and ¹³C at 75.45 MHz, ¹H at 399.9 MHz and ¹³Č at 100.6 MHz or ¹H at 399.8 MHz and ¹³C at 100.5 MHz. Analytische Laboratorien, Lindlar, Germany, performed elemental analyses. Exact molecular masses were determined on Micromass Q-Tof2 mass spectrometer equipped with an electrospray ion source. Crystallization and collection of X-ray data for compound 18 were performed at the Latvian Institute of Organic Synthesis, Riga, Latvia.

2-Benzyl-acrylic acid [(*S***)-1-ethoxycarbonyl-ethyl] ester (3)**. 2-Benzyl acrylic acid¹ (3.16 g, 19.5 mmol) was dissolved in SOCl₂ (30 mL). The reaction mixture was stirred at room temp for 3 h and then the SOCl₂ was evaporated to give 2-benzyl-acryloyl chloride as a colourless oil (3.37 g, 96%) which was used in the following step without further purification. ¹H NMR (CDCl₃) δ 7.39–7.18 (m, 5H), 6.66 (m, 1H), 5.94 (m, 1H), 3.70 (m, 2H). 2-Benzyl-acryloyl chloride (9.25 g, 51.1 mmol) was dissolved in CH₂Cl₂ and cooled to 0 °C. A solution of ethyl-(*S*)-lactate (7.13 mL, 61.7 mmol) and DMAP (8.01 g, 64.2 mmol) in CH₂Cl₂ was added drop wise and then the mixture was stirred at room temp for 3 h. After filtration through a plug of silica the crude product was concentrated under reduced pressure and purified by flash chromatography (silica, EtOAc/pentane, 2.5:97.5–5:95) affording **3** (10.1 g, 75%) as a colourless oil. [α]¹⁹_D -16 ° (*c* 1.1, CD₃OD); ¹H NMR (CDCl₃) δ 7.32–7.19 (m, 5H), 6.33 (m, 1H), 5.53 (m, 1H), 5.09 (q, *J* = 7.07 Hz, 1H), 4.19 (q, *J* = 7.11 Hz, 1H), 4.18 (q, *J* = 7.11 Hz, 1H), 3.66 (s, 2H), 1.50 (d, *J* = 7.07 Hz, 3H), 1.24 (t, *J* = 7.13 Hz, 3H); ¹³C NMR (CDCl₃) δ 170.9, 166.3, 139.6, 138.7, 129.2, 128.5, 127.4, 126.5, 69.2, 61.4, 38.0, 17.0, 14.2. Anal. (C₁₅H₁₈O₄) C, H.

(2S)-2-Benzyl-oxirane-2-carboxylic acid [(S)-1-ethoxycarbonyl-ethyl] ester ((S)-4) and (2R)-2-Benzyl-oxirane-2-carboxylic acid [(S)-1-ethoxycarbonyl-ethyl] ester ((R)-4). Compound **3** (10.1 g, 38.6 mmol) was dissolved in CH₂Cl₂ and mCPBA (77%, 17.3 g, 77.1 mmol) was added. The reaction mixture was refluxed for 24 h and thereafter washed with 10% Na₂S₂O₃ (aq.), saturated NaHCO₃ (aq.) and brine. The combined NaHCO₃ and brine phases were re-extracted with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and evaporated. The crude product was purified by flash chromatography (EtOAc/isohexane, 10:90-25:75) two times, yielding pure (S)-4, mixed fractions and pure (R)-4 (3.27 g, 0.78 g and 4.19 g respectively) as colourless oils (total 8.24 g, 77%). (S)-4: $R_f = 0.47$ (EtOAc/isohexane 20:80); $[\alpha]^{19}_{D}$ -48 ° (c 1.2, CD₃OD); ¹H NMR (CD₃OD) δ 7.31–7.19 (m, 5H), 5.00 (q, J = 7.03 Hz, 1H), 4.14 (q, J = 7.10 Hz, 2H), 3.46 (d, J = 15.3 Hz, 1H), 3.03 (d, J= 15.3 Hz, 1H), 3.01 (d, J = 5.86 Hz, 1H), 2.83 (d, J = 5.86 Hz, 1H), 1.43 (d, J = 7.03 Hz, 3H), 1.21 (t, J = 7.10 Hz, 3H); ¹³C NMR (CD₃OD) δ 171.7, 171.1, 137.2, 130.8, 129.3, 127.9, 71.2, 62.6, 58.2, 52.1, 37.8, 16.9, 14.3, Anal. $(C_{15}H_{18}O_5)$ C, H. (R)-4; R_f = 0.58 (EtOAc/isohexane 20:80); $[\alpha]^{19}_{D}$ -4.3 ° (*c* 1.2, CD₃OD); ¹H NMR (CD₃OD) δ 7.30–7.19 (m, 5H), 5.03 (q, J = 7.03 Hz, 1H), 4.15 (q, J = 7.07 Hz, 1H), 4.14 (q, J = 7.07 Hz, 1H), 3.42 (d, J = 14.8 Hz, 1H), 3.08 (d, J = 5.85 Hz, 1H), 3.05 (d, J = 14.8 Hz, 1H), 2.80 (d, J = 5.85 Hz, 1H), 1.43 (d, J = 7.03 Hz, 3H), 1.21 (t, J = 7.07 Hz, 3H); ¹³C NMR (CD₃OD) δ 171.8, 171.2, 137.0, 130.9, 129.2, 127.9, 71.0, 62.6, 58.1, 52.1, 37.5, 16.9, 14.4. Anal. (C₁₅H₁₈O₅) C, H.

General procedure for preparation of (2*R* or 2*S*)-2-benzyl-oxirane-2-carboxylic acids (*S*)-5 and (*R*)-5. Compound (*S*)-4 or (*R*)-4 was dissolved in THF (10 mL/g) and a solution of 1 M NaOH (2 equiv) in THF (twice the volume of the 1 M NaOH) was added. The solution was stirred at room temp for 1 h and then the solvent was evaporated. The reaction mixture was neutralized with 1 M HCl (2 equiv) and extracted with $2 \times CH_2Cl_2$. The organic phase was dried (Na₂SO₄) and evaporated to give the products as colourless oils in quantitative yield, which were used in the amide coupling reactions without further purification. ¹H NMR (CD₃OD) δ 7.30–7.18 (m, 5H), 3.42 (d, *J* = 14.95 Hz, 1H), 2.98 (d, *J* = 14.95 Hz, 1H), 2.96 (d, *J* = 5.86 Hz, 1H), 2.74 (d, *J* = 5.86 Hz, 1H); ¹³C NMR (CD₃OD) δ 173.5, 137.4, 130.7, 129.2, 127.7, 78.5, 52.0, 37.7.

General procedures for amide coupling reactions.

Method A. Carboxylic acid, EDC, HOBT and NMM were stirred in EtOAc at room temp for 30 min. The amine was added and stirring continued overnight. The reaction mixture was washed with saturated NaHCO₃ (aq.) and brine, the combined water phases were re-extracted with EtOAc. Drying (Na₂SO₄) of the combined organic phases followed by evaporation afforded the crude product, which was purified as described below.

Method B. Carboxylic acid, amine and PyBOP were dissolved in dry CH₂Cl₂ and thereafter disopropylamine was added. The reaction mixture was stirred at room temp over night and thereafter washed with saturated NaHCO₃ (aq.) and brine followed by drying (Na₂SO₄) of the organic phase. Evaporation afforded the crude product, which was purified as described below.

Method C. Carboxylic acid, amine and HATU were dissolved in dry CH_2Cl_2 and thereafter DIEA was added. The reaction mixture was stirred at room temp for 3.5 h and then washed with $2 \times NaOAc$ buffer (pH 4), NaHCO₃ (5%, aq.) and brine followed by drying (Na₂SO₄) of the organic phase. Evaporation afforded the crude product, which was purified as described below.

(2*S*)-2-Benzyl-oxirane-2-carboxylic acid benzylamide (6a). Compound 6a was prepared according to Method A using (*S*)-5 (0.201 g, 1.18 mmol), EDC (0.249 g, 1.30 mmol), HOBT (0.176 g, 1.30 mmol), NMM (0.156 mL, 1.42 mmol) and benzylamine (0.142 mL, 1.30 mmol). Purification by reverse-phase LC-MS (35 min gradient of 20–70% CH₃CN in 0.05% aqueous formic acid) afforded 6a (0.0504 g, 32%) as a white solid. $[\alpha]^{20}_{D}$ -45 ° (*c* 1.0, CHCl₃); ¹H NMR (CD₃OD) δ 7.32–7.13 (m, 8H), 6.97 (m, 2H), 4.36 (d, *J* = 15.0 Hz, 1H), 4.14 (d, *J* = 15.0 Hz, 1H), 3.64 (d, *J* = 14.7 Hz, 1H), 2.88 (d, *J* = 5.1 Hz, 1H), 2.83 (d, *J* = 5.1 Hz, 1H), 2.74 (d, *J* = 14.7 Hz, 1H); ¹³C NMR (CD₃OD) δ 172.1, 139.6, 137.4, 130.8, 129.4, 129.3, 128.02, 127.95, 127.8, 60.7, 53.3, 43.3, 38.0. Anal. (C₁₇H₁₇NO₂×H₂O) C, H, N.

(2*S*)-2-Benzyl-oxirane-2-carboxylic acid ((3*R*)-tetrahydro-furan-3-yl)-amide (6b). Compound 6b was prepared according to Method A using (*S*)-5 (0.156 g, 0.876 mmol), EDC (0.185 g, 0.964 mmol), HOBT (0.130 g, 0.964 mmol), NMM (0.128 mL, 1.16 mmol) and *R*-(+)-3-aminotetrahydrofuran toluene-4-sulfonate (0.250 g, 0.964 mmol, as a solution in EtOAc with Et₃N 0.134 mL, 0.964 mmol). Purification by flash chromatography (silica, EtOAc/iso-hexane, 50:50–80:20) afforded 6b (0.0691 g, 32%) as a white solid. $[\alpha]^{19}{}_{\rm D}$ -22 ° (*c* 1.0, CH₃OH); ¹H NMR (CD₃OD) δ 7.29–7.15 (m, 5H), 4.26 (m, 1H), 3.80–3.63 (m, 3H), 3.58 (d, *J* = 14.6 Hz, 1H), 3.49 (dd, *J* = 3.74, 9.23 Hz, 1H), 2.83 (d, *J* = 5.04 Hz, 1H), 2.81 (d, *J* = 5.04 Hz, 1H), 2.77 (d, *J* = 14.6 Hz, 1H), 2.06 (m, 1H), 1.62 (m, 1H); ¹³C NMR (CD₃OD) δ 172.1, 137.3, 130.8, 129.2, 127.8, 73.2, 67.9, 60.5, 53.1, 51.2, 37.8, 33.1. Anal. (C₁₄H₁₇NO₃) C, H, N.

(2S)-2-Benzyl-oxirane-2-carboxylic acid (3-hydroxy-2-methyl-phenyl)-amide (6c).

Compound **6c** was prepared according to Method B using (*S*)-**5** (0.358 g, 2.01 mmol), 3amino-2-methylphenol (0.297 g, 2.41 mmol), PyBOP (1.05 g, 2.01 mmol) and (*i*Pr)₂NH (0.560 mL, 4.02 mmol + 0.280 mL, 2.01 mmol, added after stirring for 5 h). Purification by flash chromatography (silica, EtOAc/iso-hexane, 20:80–50:50) afforded **6c** (0.264 g, 46%) as a white solid. $[\alpha]^{19}_{\text{ D}}$ -27 ° (*c* 0.45, CH₃OH); ¹H NMR (CD₃OD) δ 7.40–7.22 (m, 5H), 6.86 (m, 1H), 6.60 (m, 1H), 6.16 (m, 1H), 3.56 (d, *J* = 15.2 Hz, 1H), 3.24 (d, *J* = 5.86 Hz, 1H), 3.11 (d, *J* = 15.2 Hz, 1H), 2.98 (d, *J* = 5.86 Hz, 1H), 1.65 (s, 3H); ¹³C NMR (CD₃OD) δ 170.3, 150.8, 148.5, 137.4, 130.8, 129.4, 128.0, 127.6, 115.9, 114.2, 111.7, 58.6, 52.3, 38.2, 9.9. Anal. (C₁₇H₁₇NO₃) C, H, N.

(2S)-2-Benzyl-oxirane-N-[quinoline-2-amine-1-yl]-2-carboxylic acid amide (6d).

Compound **6d** was prepared according to Method B using (*S*)-**5** (0.349 g, 1.96 mmol), quinoline-2-amine (0.339 g, 2.35 mmol), PyBOP (1.02 g, 1.96 mmol) and (*i*Pr)₂NH (0.551 mL, 3.92 mmol + 0.275 mL, 1.96 mmol, added after stirring for 8 h). Purification by flash chromatography (silica, EtOAc/iso-hexane/Et₃N, 10:88:2–20:78:2) afforded **6d** (0.231 g, 39%) as a white solid. $[\alpha]^{18}_{D}$ -9.3 ° (*c* 0.27, CD₃OD); ¹H NMR (CD₃OD) δ 8.30-8.19 (m, 2H) 7.81-7.42 (m, 4H) 7.32-7.10 (m, 5H), 3.70 (d, *J* = 14.8 Hz, 1H), 3.06 (d, *J* = 4.77 Hz, 1H), 2.99 (d, *J* = 14.8 Hz, 1H), 2.95 (d, *J* = 4.77 Hz, 1H); ¹³C NMR (CD₃OD) δ 170.0, 150.6, 146.8, 139.8, 135.9, 131.0, 130.4, 129.0, 128.3, 127.6, 127.2, 126.3, 114.6, 60.3, 53.0, 36.5 (2 aromatic carbon signals overlapping). Anal. (C₁₉H₁₆N₂O₂×0.25 H₂O) C, H, N.

(2*S*)-2-Benzyl-oxirane-2-carboxylic acid ((1*S*)-2-methyl-1-methylcarbamoyl-propyl)amide (6e). Compound 6e was prepared according to Method C using (*S*)-5 (0.0880 g, 0.494 mmol), HATU (0.225 g, 0.593 mmol), DIEA (0.344 mL, 1.98 mmol), and H-Val-NHMe (0.0794 g, 0.544 mmol). Purification by reverse-phase LC-MS (35 min gradient of 10–65% CH₃CN in 0.05% aqueous formic acid) afforded 6e and the corresponding (1*R*)-diastereomer in a 7:1 mixture (0.0854 g, 60%) as a white solid. $[\alpha]^{20}_{D}$ -28 ° (*c* 0.93, CH₃OH); ¹H NMR (**6e**, CD₃OD) δ 7.30–7.16 (m, 5H), 4.04 (d, *J* = 7.48 Hz, 1H), 3.56 (d, *J* = 14.9 Hz, 1H), 2.85 (d, *J* = 14.9 Hz, 1H), 2.86 (s, 2H), 2.65 (s, 3H), 1.95 (m, 1H), 0.85 (d, *J* = 6.79 Hz, 3H), 0.82 (d, *J* = 6.79 Hz, 3H); ¹³C NMR (**6e**, CD₃OD) δ 173.5, 171.9, 137.1, 130.8, 129.3, 127.9, 60.5, 59.5, 53.3, 37.4, 32.2, 26.2, 19.6, 18.5. Anal. (C₁₆H₂₂N₂O₃) C, H, N.

(2*S*)-2-Benzyl-oxirane-2-carboxylic acid [(1*S*)-1-(2-methoxy-ethylcarbamoyl)-2-methylpropyl]-amide (6f). Compound 6f was prepared according to Method A using (*S*)-5 (0.104 g, 0.584 mmol), EDC (0.123 g, 0.642 mmol), HOBT (0.0867 g, 0.642 mmol), NMM (0.0770 mL, 0.701 mmol) and H-Val-NH(CH₂)₂OMe (0.112 g, 0.642 mmol). Purification by flash chromatography (silica, EtOAc/pentane, 50:50–70:30) afforded 6f and the corresponding (1*R*)-diastereomer in a 6:1 mixture (0.0870 g, 45%) as a colorless semi-solid. $[\alpha]^{20}_{D}$ -26 ° (*c* 1.0, CH₃OH): ¹H NMR (6f, CD₃OD) δ 7.28–7.15 (m, 5H), 4.08 (d, *J* = 7.36 Hz, 1H), 3.56 (d, *J* = 14.8 Hz, 1H), 3.41–3.20 (m, 7H), 2.85 (s, 3H), 1.95 (m, 1H), 0.87 (d, *J* = 6.84 Hz, 3H), 0.83 (d, *J* = 6.84 Hz, 3H); ¹³C NMR (6f, CD₃OD) δ 173.0, 171.8, 137.1, 130.7, 129.3, 127.8, 71.8, 60.4, 59.4, 58.9, 53.3, 40.1, 37.3, 32.4, 19.5, 18.6. Anal. (C₁₈H₂₆N₂O₄×0.25 HCOOH) C, H, N.

(2*S*)-2-Benzyl-oxirane-2-carboxylic acid ((1*S*)-3-methyl-1-methylcarbamoyl-butyl)amide (6g). Compound 6g was prepared according to Method A using (*S*)-5 (0.210 g, 1.18 mmol), EDC (0.249 g, 1.30 mmol), HOBT (0.176 g, 1.30 mmol), NMM (0.156 mL, 1.42 mmol) and H-Leu-NHMe (0.204 g, 1.42 mmol). Purification by reverse-phase LC-MS (35 min gradient of 10–65% CH₃CN in 0.05% aqueous formic acid) afforded 6g and the corresponding (1*R*)-diastereomer in a 5:1 mixture (0.135 g, 38%) as a white solid. $[\alpha]^{20}_{D}$ -22 ° (*c* 2.3, isopropanol); ¹H NMR (6g, CD₃OD/CDCl₃, 6:1) δ 7.28–7.15 (m, 5H), 4.29 (m, 1H), 3.55 (d, *J* = 14.8 Hz, 1H), 2.84 (d, *J* = 14.8 Hz, 1H), 2.82 (d, *J* = 5.00 Hz, 1H), 2.78 (d, *J* = 5.00 Hz, 1H), 2.60 (s, 3H), 1.56-1.37 (m, 3H), 0.87 (d, *J* = 6.25 Hz, 3H), 0.84 (d, *J* = 6.25 Hz, 3H); ¹³C NMR (6g, CD₃OD/CDCl₃, 6:1) δ 174.2, 171.5, 136.7, 130.6, 129.1, 127.7, 60.3, 52.9, 52.3, 41.7, 37.3, 26.4, 25.7, 23.3, 21.9. Anal. (C₁₇H₂₄N₂O₃) C, H, N.

(1*S*)-2-Benzyl-oxirane-2-carboxylic acid ((1*S*)-1-methylcarbamoyl-2-phenyl-ethyl)-amide (6h). Compound 6h was prepared according to Method A using (*S*)-5 (0.138 g, 0.775 mmol), EDC (0.164 g, 0.853 mmol), HOBT (0.115 g, 0.853 mmol), NMM (0.102 mL, 0.930 mmol) and H-Phe-NHMe (0.152 g, 0.853 mmol). Purification by reverse-phase LC-MS (35 min gradient of 10–60% CH₃CN in 0.05% aqueous formic acid) afforded 6h and the corresponding (1*R*)-diastereomer in a 3:1 mixture (0.0455 g, 17%) as a white solid. $[\alpha]^{20}_{D}$ -3.6 ° (*c* 1.0, isopropanol); ¹H NMR (6h, CD₃OD/CDCl₃, 6:1) δ 7.28–7.07 (m, 10H), 4.48 (dd, J = 5.47, 9.52 Hz, 1H), 3.47 (d, J = 14.8 Hz, 1H), 3.10 (dd, J = 5.47, 13.9 Hz, 1H), 2.77 (m, 2H), 2.62 (d, J = 5.13 Hz, 1H), 2.60 (s, 3H), 2.26 (d, J = 5.13 Hz, 1H); ¹³C NMR (6h, CD₃OD/CDCl₃, 6:1) δ 172.9, 171.4, 137.7, 136.6, 130.5, 130.0, 129.9, 129.2, 129.0, 127.6, 60.1, 54.7, 52.6, 38.5, 37.1, 26.4. Anal. (C₂₀H₂₂N₂O₃×0.25 H₂O) C, H, N.

(2*S*)-2-(2-Benzyl-acryloylamino)-3,3,*N*-trimethyl-butyramide (7). Compound 7 was prepared according to Method A using 2-benzyl acrylic acid¹ (2.00 g, 12.3 mmol), EDC (2.60 g, 13.6 mmol), HOBT (1.83 g, 13.6 mmol), NMM (1.63 mL, 14.8 mmol) and L-*tert*-leucine-methylamide (1.96 g, 13.6 mmol). Purification by flash chromatography (silica, EtOAc/pentane, 50:50–70:30) afforded 7 (1.91 g, 54%) as a white solid. $[\alpha]^{20}_{D}$ -6.3 ° (*c* 1.8, EtOAc); ¹H NMR (CD₃OD) δ 7.32–7.14 (m, 5H), 5.81 (m, 1H), 5.40 (m, 1H), 4.23 (s, 1H), 3.72 (m, 1H), 3.64 (m, 1H), 2.69 (s, 3H), 0.81 (s, 9H); ¹³C NMR (CD₃OD) δ 171.8, 168.9,

144.1, 138.4, 128.7, 128.5, 126.5, 120.2, 60.9, 38.5, 34.4, 25.8, 24.9. Anal. $(C_{17}H_{24}N_2O_2)$ C, H, N.

(2R or S)-2-Benzyl-oxirane-2-carboxylic acid ((1S)-2,2-dimethyl-1-methylcarbamoyl**propyl)-amide** ((S)-8 and (R)-8). Compound 7 (1.72 g, 5.98 mmol) was dissolved in ClCH₂CH₂Cl and mCPBA (77%, 3.35 g, 14.9 mmol) was added. The reaction mixture was heated to 45 °C and then AIBN (0.004 g, 0.0243 mmol) was added followed by reflux of the resulting solution over night. Washing of the mixture with 10% Na₂S₂O₃ (aq.), saturated $NaHCO_3$ (aq.) and brine followed by drying (Na_2SO_4) and evaporation afforded the crude product. Purification by flash chromatography (silica, EtOAc/pentane, 50:50-100:0) yielded the diastereometric epoxides (S)-8 (0.664 g) and (R)-8 (0.712 g) as separate white solids in a total yield of 76%. (S)-8: $[\alpha]^{20}_{D}$ -5.3 ° (c 1.1, EtOAc); ¹H NMR (CD₃OD + 2 drops of D₂O) δ 7.28-7.14 (m, 5H), 4.12 (s, 1H), 3.55 (d, J = 15.0 Hz, 1H), 2.86 (s, 2H), 2.84 (d, J = 15.0 Hz, 1H)1H), 2.65 (s, 3H), 0.89 (s. 9H); 13 C NMR (CD₃OD + 2 drops of D₂O) δ 171.3, 170.3, 135.8, 129.6, 128.2, 126.7, 60.1, 59.5, 52.3, 36.2, 34.6, 25.8, 25.0. Anal. (C₁₇H₂₄N₂O₃) C, H, N. (R)-8: $[\alpha]_{D}^{20}$ +22 ° (c 0.91, EtOAc); ¹H NMR (CD₃OD) δ 7.33–7.14 (m, 5H), 4.05 (s, 1H), 3.64 (d, J = 14.7 Hz, 1H), 2.96 (d, J = 4.87 Hz, 1H), 2.86 (d, J = 4.87 Hz, 1H), 2.69 (d, J = 14.7 Hz, 1H), 2.67 (s, 3H), 0.71 (s, 9H); ¹³C NMR (CD₃OD) δ 171.4, 169.6, 136.2, 129.6, 128.2, 126.8, 60.0, 59.9, 52.3, 36.8, 34.3, 25.6, 24.9. Anal. (C₁₇H₂₄N₂O₃) C, H, N.

General procedure for the epoxide ring opening reactions. Epoxide and hydrazide 9^2 were stirred in *i*-PrOH at 80 °C (time as stated below). Evaporation of the solvent and then purification by reverse-phase LC-MS gave the pure products.

{(1*S***)-1-[***N***'-((2***S***)-2-Benzylcarbamoyl-2-hydroxy-3-phenyl-propyl)-***N***'-(4-bromo-benzyl)hydrazinocarbonyl]-2,2-dimethyl-propyl}-carbamic acid methyl ester (10). Compound 10 was prepared according to the general procedure using 9 (0.0834 g, 0.224 mmol) and 6a (0.0499 g, 0.187 mmol) by heating for 7 days. Reverse-phase LC-MS (35 min gradient of 15– 100% CH₃CN in 0.05% aqueous formic acid) afforded 10 (0.0648 g, 54%) as a white solid. [\alpha]¹⁹_D -64 ° (***c* **0.79, CH₃OH/CHCl₃ 1:1); ¹H NMR (CD₃OD/CDCl₃ 1:1) δ 7.28 (m, 2H), 7.24– 7.04 (m, 10H), 6.83 (m, 2H), 4.20 (d,** *J* **= 14.9 Hz, 1H), 4.06 (d,** *J* **= 14.9 Hz, 1H), 3.96 (d,** *J* **= 14.3 Hz, 1H), 3.87 (d,** *J* **= 14.3 Hz, 1H), 3.76 (d,** *J* **= 13.9 Hz, 1H), 3.60 (s, 3H), 3.56 (s, 1H), 2.95 (d,** *J* **= 13.3 Hz, 1H), 2.81 (d,** *J* **= 13.9 Hz, 1H), 2.74 (d,** *J* **= 13.3 Hz, 1H), 0.57 (s, 9H); ¹³C NMR (CD₃OD/CDCl₃ 1:1) δ 175.8, 171.6, 158.1, 138.0, 137.2, 136.5, 131.8, 131.1, 130.7, 128.9, 128.4, 128.0, 127.7, 127.1, 121.7, 78.5, 68.0, 61.9, 61.6, 52.7, 43.54, 43.46, 34.6, 26.3. Anal. (C₃₂H₃₉BrN₄O₅) C, H, N.**

((1*S*)-1-{*N*'-(4-Bromo-benzyl)-*N*'-[(2*S*)-2-hydroxy-3-phenyl-2-((3*R*)-tetrahydro-furan-3ylcarbamoyl)-propyl]-hydrazinocarbonyl}-2,2-dimethyl-propyl)-carbamic acid methyl ester (11). Compound 11 was prepared according to the general procedure using 9 (0.0681 g, 0.183 mmol) and **6b** (0.0377 g, 0.153 mmol) by heating for 7 days. Reverse-phase LC-MS (40 min gradient of 10–90% CH₃CN in 0.05% aqueous formic acid) afforded 11 (0.0494 g, 52%) as a white solid. $[\alpha]^{19}_{D}$ -72 ° (*c* 0.98, CH₃OH); ¹H NMR (CD₃OD) δ 7.37 (m, 2H), 7.28–7.14 (m, 7H), 4.12 (m, 1H), 4.00 (d, *J* = 14.4 Hz, 1H), 3.95 (d, *J* = 14.4 Hz, 1H), 3.77 (d, *J* = 13.7 Hz, 1H), 3.64–3.42 (m, 8H), 2.90 (d, *J* = 13.3 Hz, 1H), 2.86 (m, 1H), 2.73 (d, *J* = 13.3 Hz, 1H), 1.88 (m, 1H), 1.27 (m, 1H), 0.61 (s, 9H); ¹³C NMR (CD₃OD) δ 176.6, 172.4, 159.0, 138.4, 137.4, 132.4, 131.6, 131.4, 128.8, 127.6, 122.1, 79.0, 72.9, 68.5, 67.7, 62.9, 62.0, 52.7, 51.2, 44.0, 34.9, 33.4, 26.6. Anal. (C₂₉H₃₉BrN₄O₆) C, H, N.

((1*S*)-1-{*N*'-(4-Bromo-benzyl)-*N*'-[(2*S*)-2-hydroxy-2-(3-hydroxy-2-methylphenylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl}-2,2-dimethyl-propyl)-carbamic acid methyl ester (12). Compound 12 was prepared according to the general procedure using 9 (0.162 g, 0.437 mmol) and 6c (0.103 g, 0.364 mmol) by heating for 7 days. Reverse-phase LC-MS (35 min gradient of 30–100% CH₃CN in 0.05% aqueous formic acid) afforded 12 (0.0168 g, 7%) as a white solid. $[\alpha]^{19}_{D}$ -42 ° (*c* 0.90, CH₃OH); ¹H NMR (CD₃OD) δ 7.51– 7.18 (m, 9H), 6.82 (m, 1H), 6.57 (m, 1H), 6.12 (m, 1H), 4.12 (d, *J* = 13.7 Hz, 1H), 4.07 (d, *J* = 13.7 Hz, 1H), 3.71 (d, *J* = 14.2 Hz, 1H), 3.65 (s, 1H), 3.60 (s, 3H), 3.14 (m, 3H), 1.75 (s, 3H), 0.68 (s, 9H); ¹³C NMR (CD₃OD) δ 174.7, 172.3, 159.0, 151.1, 148.4, 138.0, 137.1, 132.3, 131.9, 131.8, 129.1, 127.9, 127.3, 122.2, 116.0, 113.9, 112.2, 79.9, 68.2, 62.9, 62.7, 52.7, 44.0, 35.0, 26.7, 10.4. Anal. (C₃₂H₃₉BrN₄O₆) C, H, N.

((1*S*)-1-{*N*'-(4-Bromo-benzyl)-*N*'-[(2*S*)-2-hydroxy-3-phenyl-2-(quinolin-2-ylcarbamoyl)propyl]-hydrazinocarbonyl}-2,2-dimethyl-propyl)-carbamic acid methyl ester (13). Compound 13 was prepared according to the general procedure using 9 (0.142 g, 0.383 mmol) and 6d (0.0970 g, 0.319 mmol) by heating for 7 days. Reverse-phase LC-MS (35 min gradient of 30–100% CH₃CN in 0.05% aqueous formic acid) afforded 13 (0.0229 g, 11%) as a white solid. $[\alpha]^{19}_{D}$ -6.5 ° (*c* 0.54, CHCl₃); ¹H NMR (CD₃OD/CDCl₃, 1:1) δ 8.18 (m, 2H), 7.77 (m, 2H), 7.65 (m, 1H), 7.44 (m, 1H), 7.28–7.03 (m, 9H), 4.02 (d, *J* = 14.2 Hz, 1H), 3.93 (d, *J* = 14.2 Hz, 1H), 3.85 (d, *J* = 14.0 Hz, 1H), 3.62 (s, 3H), 3.56 (s, 1H), 3.08 (d, *J* = 13.4 Hz, 1H), 2.93 (d, *J* = 14.0 Hz, 1H), 2.86 (d, *J* = 13.4 Hz, 1H), 0.57 (s, 9H); ¹³C NMR (CD₃OD/CDCl₃, 1:1) δ 175.7, 171.6, 158.1, 150.4, 146.9, 139.5, 136.8, 136.0, 131.8, 130.9, 130.8, 128.4, 128.2, 127.5, 127.2, 127.0, 126.1, 121.7, 114.2, 78.9, 67.3, 62.0, 61.9, 52.7, 43.7, 34.6, 26.3 (2 aromatic carbon signals overlapping). HRMS (M+H⁺): 676.2135, C₃₄H₃₉N₅O₅Br requires 676.2154.

{(1*S*)-1-{*N*'-(4-Bromo-benzyl)-*N*'-[(2*S*)-2-hydroxy-2-((1*S*)-2-methyl-1-methylcarbamoylpropylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl}-2,2-dimethyl-propyl}-carbamic acid methyl ester (14). Compound 14 was prepared according to the general procedure using 9 (0.0916 g, 0.246 mmol) and 6e (0.0595 g, 0.205 mmol) by heating for 7 days. Reversephase LC-MS (35 min gradient of 10–80% CH₃CN in 0.05% aqueous formic acid) afforded 14 (0.0565 g, 46%) as a white solid and 0.0056 g recovered epoxide. $[\alpha]^{20}_{D}$ -69 ° (*c* 1.0, CH₃OH); ¹H NMR (CD₃OD) δ 7.37 (m, 2H), 7.26 (m, 2H), 7.18 (m, 5H), 4.04 (d, *J* = 14.3 Hz, 1H), 3.98 (d, *J* = 14.3 Hz, 1H), 3.89 (d, *J* = 6.75 Hz, 1H), 3.68 (d, *J* = 14.1 Hz, 1H), 3.63 (s, 1H), 3.59 (s, 3H), 2.91 (m, 2H), 2.78 (d, *J* = 13.5 Hz, 1H), 2.59 (s, 3H), 1.84 (m, 1H), 0.77 (d, *J* = 5.11 Hz, 3H), 0.76 (d, *J* = 5.11 Hz, 3H), 0.65 (s, 9H); ¹³C NMR (CD₃OD) δ 176.7, 173.0, 172.4, 159.0, 138.1, 137.2, 132.3, 131.5, 131.4, 128.9, 127.5, 122.1, 79.0, 68.1, 62.9, 62.2, 59.9, 52.7, 44.4, 34.9, 32.6, 26.7, 26.2, 19.4, 18.9. Anal. (C₃₁H₄₄BrN₅O₆) C, H, N.

{(1*S*)-1-(*N*'-(4-Bromo-benzyl)-*N*'-{(2*S*)-2-hydroxy-2-[(1*S*)-1-(2-methoxyethylcarbamoyl)-2-methyl-propylcarbamoyl]-3-phenyl-propyl}-hydrazinocarbonyl)-2,2dimethyl-propyl}-carbamic acid methyl ester (15). Compound 15 was prepared according to the general procedure using 9 (0.0522 g, 0.140 mmol) and 6f (0.0391 g, 0.117 mmol) by heating for 7 days. Reverse-phase LC-MS (35 min gradient of 10–75% CH₃CN in 0.05% aqueous formic acid) afforded 15 (0.0389 g, 73%) as a white solid and 0.0137 g recovered epoxide. $[\alpha]^{20}_{D}$ -66 ° (*c* 1.0, CH₃OH); ¹H NMR (CD₃OD) δ 7.37 (m, 2H), 7.26 (m, 2H), 7.17 (m, 5H), 4.04 (d, *J* = 14.5 Hz, 1H), 3.98 (d, *J* = 14.5 Hz, 1H), 3.94 (d, *J* = 6.74 Hz, 1H), 3.68 (d, *J* = 14.3 Hz, 1H), 3.62 (s, 1H), 3.59 (s, 3H), 3.38 (m, 2H), 3.32 (s, 3H), 3.17 (m, 2H), 2.90 (m, 2H), 2.77 (d, *J* = 13.4 Hz, 1H), 1.84 (m, 1H), 0.80 (d, *J* = 4.70 Hz, 3H), 0.78 (d, *J* = 4.70 Hz, 3H), 0.64 (s, 9H); 13 C NMR (CD₃OD) δ 176.8, 172.5, 172.4, 159.0, 138.1, 137.2, 132.3, 131.5, 131.4, 128.9, 127.5, 122.1, 79.0, 71.8, 68.0, 62.9, 62.2, 59.8, 58.9, 52.7, 44.3, 40.1, 34.9, 32.8, 26.6, 19.4, 18.9. Anal. (C₃₃H₄₈BrN₅O₇) C, H, N.

{(1*S*)-1-{*N*'-(4-Bromo-benzyl)-*N*'-{(2*S*)-2-hydroxy-2-[(1*S*)-3-methyl-1-methylcarbamoylbutylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl}-2,2-dimethyl-propyl)-carbamic acid methyl ester (16). Compound 16 was prepared according to the general procedure using 9 (0.125 g, 0.335 mmol) and 6g (0.0850 g, 0.279 mmol) by heating for 7 days. Reverse-phase LC-MS (35 min gradient of 10–80% CH₃CN in 0.05% aqueous formic acid) afforded 16 (0.0664 g, 35%) as a white solid. $[\alpha]^{19}_{D}$ -87 ° (*c* 0.87, CH₃OH); ¹H NMR (CD₃OD) δ 7.38 (m, 2H), 7.29–7.14 (m, 7H), 4.20 (m, 1H), 4.00 (d, *J* = 14.7 Hz, 1H), 3.96 (d, *J* = 14.7 Hz, 1H), 3.70 (d, *J* = 14.0 Hz, 1H), 3.63 (s, 1H), 3.59 (s, 3H), 2.91 (d, *J* = 13.3 Hz, 1H), 2.89 (d, *J* = 14.0 Hz, 1H), 2.76 (d, *J* = 13.3 Hz, 1H), 2.54 (s, 3H), 1.36 (m, 3H), 0.67 (s, 3H), 0.65 (s, 3H), 0.64 (s, 9H); ¹³C NMR (CD₃OD) δ 176.6, 174.3, 172.4, 159.0, 138.2, 137.3, 132.4, 131.6, 131.2, 128.9, 127.6, 122.0, 78.8, 68.4, 63.0, 61.8, 52.9, 52.7, 44.3, 42.9, 34.9, 26.7, 26.5, 25.7, 23.0, 22.1. Anal. (C₃₂H₄₆BrN₅O₆) C, H, N.

{(1*S*)-1-{*N*'-(4-Bromo-benzyl)-*N*'-{(2*S*)-2-hydroxy-2-[(1*S*)-1-methylcarbamoyl-2-phenylethylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl}-2,2-dimethyl-propyl)-carbamic acid methyl ester (17). Compound 17 was prepared according to the general procedure using 9 (0.0345 g, 0.0928 mmol) and 6h (0.262 g, 0.0774 mmol) by heating for 8 days. Reversephase LC-MS (35 min gradient of 20–80% CH₃CN in 0.05% aqueous formic acid) afforded 17 (0.0214 g, 39%) as a white solid. $[\alpha]^{19}_{D}$ -53 ° (*c* 1.0, CH₃OH); ¹H NMR (CD₃OD) δ 7.38 (m, 2H), 7.29–7.05 (m, 12H), 4.34 (t, *J* = 7.14 Hz, 1H), 3.95 (d, *J* = 13.9 Hz, 1H), 3.91 (d, *J* = 13.9 Hz, 1H), 3.64 (s, 1H), 3.58 (s, 3H), 3.49 (d, *J* = 14.2 Hz, 1H), 2.96-2.71 (m, 5H), 2.47 (s, 3H), 0.67 (s, 9H); ¹³C NMR (CD₃OD) δ 176.4, 173.0, 172.5, 159.0, 138.1, 137.9, 137.4, 132.4, 131.6, 131.5, 130.3, 129.5, 128.9, 127.8, 127.5, 122.2, 79.0, 67.9, 62.9, 62.2, 55.8, 52.7, 44.1, 39.6, 34.9, 26.7, 26.3. Anal. (C₃₅H₄₄BrN₅O₆) C, H, N.

{(1*S*)-1-[*N*'-(4-Bromo-benzyl)-*N*'-((2*S*)-2-((1*S*)-2,2-dimethyl-1-methylcarbamoylpropylcarbamoyl)-2-hydroxy-3-phenyl-propyl)-hydrazinocarbonyl]-2,2-dimethylpropyl}-carbamic acid methyl ester (18). Compound 18 was prepared according to the general procedure using 9 (0.184 g, 0.493 mmol) and (*S*)-8 (0.125 g, 0.411 mmol) by heating for 4 days. Reverse-phase LC-MS (35 min gradient of 35–80% CH₃CN in 0.05% aqueous formic acid) afforded 18 (0.136 g, 49%) as a white solid. $[\alpha]^{20}_{\text{D}}$ -63 ° (*c* 0.82, CH₃OH); ¹H NMR (CD₃OD) δ 7.36 (m, 2H), 7.27 (m, 2H), 7.15 (m, 5H), 4.02 (d, *J* = 14.6 Hz, 1H), 3.99 (d, *J* = 14.6 Hz, 1H), 3.87 (s, 1H), 3.72 (d, *J* = 14.1 Hz, 1H), 3.64 (s, 1H), 3.59 (s, 3H), 2.94 (d, *J* = 14.1 Hz, 1H), 2.87 (d, *J* = 13.3 Hz, 1H), 2.74 (d, *J* = 13.3 Hz, 1H), 2.56 (s, 3H), 0.77 (s, 9H), 0.65 (s, 9H); ¹³C NMR (CD₃OD) δ 176.4, 172.4, 172.0, 159.0, 138.0, 137.1, 132.3, 131.4, 131.3, 128.8, 127.4, 122.1, 79.0, 68.2, 62.9, 62.1, 62.0, 61.9, 52.7, 44.6, 35.8, 34.9, 27.0, 26.6. Anal. (C₃₂H₄₆BrN₅O₆) C, H, N.

{(1*S*)-1-[*N*'-(4-Bromo-benzyl)-*N*'-((2*R*)-2-((1*S*)-2,2-dimethyl-1-methylcarbamoylpropylcarbamoyl)-2-hydroxy-3-phenyl-propyl)-hydrazinocarbonyl]-2,2-dimethylpropyl}-carbamic acid methyl ester (19). Compound 19 was prepared according to the general procedure using 9 (0.203 g, 0.544 mmol) and (*R*)-8 (0.138 g, 0.454 mmol) by heating for 4 days. Reverse-phase LC-MS (35 min gradient of 35–80% CH₃CN in 0.05% aqueous formic acid) afforded 19 (0.212 g, 69%) as a white solid. $[\alpha]^{20}_{D}$ +35 ° (*c* 0.86, CH₃OH); ¹H NMR (CD₃OD) δ 7.39–7.26 (m, 4H), 7.24-7.08 (m, 5H), 4.03-3.80 (m, 3H), 3.64 (d, *J* = 14.0

Hz, 1H), 3.59 (s, 3H), 3.57 (s, 1H), 2.97–2.78 (m, 3H), 2.49 (s, 3H), 0.77 (s, 9H), 0.69 (s, 9H); 13 C NMR (CD₃OD) δ 176.1, 172.5, 172.0, 158.8, 137.7, 137.2, 132.1, 131.8, 131.7, 129.0, 127.7, 121.8, 79.3, 67.7, 62.8, 61.84, 61.75, 61.5, 52.8, 43.9, 35.4, 34.9, 26.9, 26.8. Anal. (C₃₂H₄₆BrN₅O₆) C, H, N.

Table 1. Elemental Analysis Data

Cmpd	Formula	Theoretical			Analyzed		
no		С	Н	Ν	С	Н	Ν
3	C ₁₅ H ₁₈ O ₄	68.68	6.92		68.51	7.91	
(<i>S</i>)-4	$C_{15}H_{18}O_5$	64.74	6.52		64.88	6.28	
(<i>R</i>)-4	$C_{15}H_{18}O_5$	64.74	6.52		64.60	6.44	
6a	$C_{17}H_{17}NO_2 \times H_2O$	71.56	6.71	4.91	71.53	6.58	4.78
6b	$C_{14}H_{17}NO_3$	68.00	6.93	5.66	67.84	6.82	5.57
6c	$C_{17}H_{17}NO_3$	72.07	6.05	4.94	71.84	6.20	5.09
6d	$C_{19}H_{16}N_2O_2 \times 0.25 H_2O$	73.89	5.38	9.07	73.84	5.19	8.68
6e	$C_{16}H_{22}N_2O_3$	66.18	7.64	9.65	65.93	7.68	9.62
6f	C ₁₈ H ₂₆ N ₂ O ₄ ×0.25 HCOOH	63.37	7.72	8.10	63.58	7.35	8.36
6g	$C_{17}H_{24}N_2O_3$	67.09	7.95	9.20	66.85	7.91	9.17
6h	$C_{20}H_{22}N_2O_3 \times 0.25 H_2O$	70.05	6.61	8.17	69.80	6.73	8.52
7	$C_{17}H_{24}N_2O_2$	70.80	8.39	9.71	70.60	8.48	9.66
(S) -8	$C_{17}H_{24}N_2O_3$	67.08	7.95	9.20	66.82	7.96	9.11
(<i>R</i>)-8	$C_{17}H_{24}N_2O_3$	67.08	7.95	9.20	66.88	7.87	9.12
10	$C_{32}H_{39}BrN_4O_5$	60.09	6.15	8.76	60.08	6.32	8.65
11	$C_{29}H_{39}BrN_4O_6$	56.22	6.34	9.04	56.11	6.51	8.86
12	$C_{32}H_{39}BrN_4O_6$	58.63	6.00	8.55	58.36	6.14	8.38
14	$C_{31}H_{44}BrN_5O_6$	56.19	6.69	10.57	56.08	6.65	10.41
15	C ₃₃ H ₄₈ BrN ₅ O ₇	56.09	6.85	9.91	56.31	6.96	9.82
16	$C_{32}H_{46}BrN_5O_6$	56.80	6.85	10.35	56.44	6.73	10.18
17	$C_{35}H_{44}BrN_5O_6$	59.15	6.24	9.85	58.88	6.08	9.71
18	$\overline{C_{32}H_{46}BrN_5O_6}$	56.80	6.85	10.35	56.59	6.88	10.24
19	$C_{32}H_{46}BrN_5O_6$	56.80	6.85	10.35	56.52	6.92	10.20

Biological Evaluations

HIV-1 Protease Inhibition. The HIV-1 protease was cloned and heterologously expressed in *Escherichia coli* and purified as described elsewhere.³ The K_i -values were determined by a fluorometric assay.⁴

Cell Based Anti-HIV Activity. The in vitro anti-HIV activity was assayed in MT4 cells according to a previously published procedure⁴ using the colorimetric XTT assay to monitor the cytopathogenic effects.

Stability in Liver Microsomes. A final concentration of 2 μ M test compound (dissolved in 0.1% DMSO) was incubated with rat or human liver microsomes at 37 °C for 10, 20 and 30 min (triplicate incubations). The samples contained 0.5 mg/mL of microsomal protein in 100 mM potassium phosphate buffer pH 7.4. The reaction was initiated by the addition of NADPH (1 mM) and terminated by the addition of acetonitrile. Control incubation was

performed as described above except that NADPH was omitted. Calculation of the in vitro clearance: The ln (residual concentration) versus time was plotted. The slope of the line will give the elimination rate constant (k) from which the elimination half-life (t¹/₂) can be calculated in accordance with a one-compartment pharmacokinetic model. $k = 0.693/t_{1/2}$ and an equation expressing Cl_{int} in terms of t_{1/2} can be derived

$$Cl = \frac{Volume \times 0.693}{t_{1/2}}$$

References

- (1) Liu, X.; Hu, E.; Tian, X.; Mazur, A.; Ebetino, F. H. Enantioselective synthesis of phosphinyl peptidomimetics via an asymmetric Michael reaction of phosphinic acids with acrylate derivatives. *J. Organomet. Chem.* **2002**, *646*, 212-222.
- (2) Ekegren, J. K.; Unge, T.; Safa, M. Z.; Wallberg, H.; Samuelsson, B.; Hallberg, A. A new class of HIV-1 protease inhibitors containing a tertiary alcohol in the transition-state mimicking scaffold. *J. Med. Chem.* **2005**, *48*, 8098-9102.
- (3) Danielson, U. H.; Lindgren, M. T.; Markgren, P.-O.; Nillroth, U. Investigation of an allosteric site of HIV-1 proteinase involved in inhibition by Cu²⁺. Adv. Exp. Med. Biol. 1998, 436, 99-103.
- (4) Nillroth, U.; Vrang, L.; Markgren, P.-O.; Hulten, J.; Hallberg, A.; Danielson, U. H. Human immunodeficiency virus type 1 proteinase resistance to symmetric cyclic urea inhibitor analogs. *Antimicrob. Agents Chemother.* **1997**, *41*, 2383-2388.