Supporting information

Variations of the P2 Group in HIV-1 Protease Inhibitors Containing a Tertiary Alcohol in the Transition-State Mimicking Scaffold

Jenny K. Ekegren, ${ }^{a}$ Johan Gising, ${ }^{a}$ Hans Wallberg, ${ }^{b}$ Mats Larhed, ${ }^{a}$ Bertil Samuelsson ${ }^{b}$ and Anders Hallberg ${ }^{a^{*}}$

${ }^{a}$ Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden. ${ }^{b}$ Medivir AB, Lunastigen 7, SE-141 44, Huddinge, Sweden.

Chemistry

General information. Analytical LC-MS was performed on a Gilson HPLC system with a Finnigan AQA quadropole mass spectrometer using a Chromolith Performance RP-18e $4.6 \times$ 100 mm (Merck KGaA) column, with a gradient of $\mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous HCOOH as mobile phase at a flow rate of $4 \mathrm{~mL} / \mathrm{min}$. Preparative reverse-phase LC-MS was done under similar conditions but using a Zorbax SB-C8, $5 \mu \mathrm{~m} 21.2 \times 150 \mathrm{~mm}$ (Agilent technologies) column, at a flow rate of $15 \mathrm{~mL} / \mathrm{min}$. Flash chromatography was performed on Merck silica gel $60(40-63 \mu \mathrm{~m})$ or Merck silica gel 60 RP-18 $(40-63 \mu \mathrm{~m})$. Analytical thin layer chromatography was done using aluminum sheets precoated with silica gel $60 \mathrm{~F}_{254}$. UV light and an ethanolic solution of phosphomolybdic acid followed by heating visualized components. Optical rotations were obtained on a Perkin-Elmer 241 polarimeter. Specific rotations $\left([\alpha]_{\mathrm{D}}\right)$ are reported in deg $/ \mathrm{dm}$ and the concentration (c) is given as $\mathrm{g} / 100 \mathrm{~mL}$ in the specified solvent. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Mercury Plus instruments; ${ }^{1} \mathrm{H}$ at 300 MHz and ${ }^{13} \mathrm{C}$ at $75.45 \mathrm{MHz},{ }^{1} \mathrm{H}$ at 399.9 MHz and ${ }^{13} \mathrm{C}$ at 100.6 MHz or ${ }^{1} \mathrm{H}$ at 399.8 MHz and ${ }^{13} \mathrm{C}$ at 100.5 MHz . Analytische Laboratorien, Lindlar, Germany, performed elemental analyses. Exact molecular masses were determined on Micromass QTof2 mass spectrometer equipped with an electrospray ion source. Crystallization and collection of X-ray data for compound $\mathbf{1 8}$ were performed at the Latvian Institute of Organic Synthesis, Riga, Latvia.

2-Benzyl-acrylic acid [(S)-1-ethoxycarbonyl-ethyl] ester (3). 2-Benzyl acrylic acid ${ }^{1}$ (3.16 g , $19.5 \mathrm{mmol})$ was dissolved in $\mathrm{SOCl}_{2}(30 \mathrm{~mL})$. The reaction mixture was stirred at room temp for 3 h and then the SOCl_{2} was evaporated to give 2-benzyl-acryloyl chloride as a colourless oil ($3.37 \mathrm{~g}, 96 \%$) which was used in the following step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}) .2$-Benzyl-acryloyl chloride ($9.25 \mathrm{~g}, 51.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$. A solution of ethyl-(S)-lactate ($7.13 \mathrm{~mL}, 61.7 \mathrm{mmol}$) and DMAP $(8.01 \mathrm{~g}, 64.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added drop wise and then the mixture was stirred at room temp for 3 h . After filtration through a plug of silica the crude product was concentrated under reduced pressure and purified by flash chromatography (silica, EtOAc/pentane, 2.5:97.5-5:95) affording 3 (10.1 g, 75\%) as a colourless oil. $[\alpha]^{19}{ }_{\mathrm{D}}-16^{\circ}\left(c\right.$ 1.1, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.33(\mathrm{~m}$, $1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{q}, J=7.07 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.11 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.11 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~d}, J=7.07 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $170.9,166.3,139.6,138.7,129.2,128.5,127.4,126.5,69.2,61.4,38.0,17.0,14.2$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
(2S)-2-Benzyl-oxirane-2-carboxylic acid [(S)-1-ethoxycarbonyl-ethyl] ester ((S)-4) and (2R)-2-Benzyl-oxirane-2-carboxylic acid [(S)-1-ethoxycarbonyl-ethyl] ester $((\boldsymbol{R})$-4).
Compound $\mathbf{3}(10.1 \mathrm{~g}, 38.6 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and mCPBA $(77 \%, 17.3 \mathrm{~g}, 77.1$ mmol) was added. The reaction mixture was refluxed for 24 h and thereafter washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.), saturated NaHCO_{3} (aq.) and brine. The combined NaHCO_{3} and brine phases were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude product was purified by flash chromatography ($\mathrm{EtOAc} /$ isohexane, $10: 90-25: 75)$ two times, yielding pure (S) $\mathbf{- 4}$, mixed fractions and pure $(R)-4(3.27 \mathrm{~g}, 0.78 \mathrm{~g}$ and 4.19 g respectively) as colourless oils (total $8.24 \mathrm{~g}, 77 \%$). ($(S)-4: \mathrm{R}_{\mathrm{f}}=0.47$
(EtOAc/isohexane 20:80); $[\alpha]^{19}{ }_{\mathrm{D}}-48^{\circ}\left(c 1.2, \mathrm{CD}_{3} \mathrm{OD}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.31-7.19(\mathrm{~m}$, $5 \mathrm{H}), 5.00(\mathrm{q}, J=7.03 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, ~ J=7.10 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=7.03 \mathrm{~Hz}$, $3 \mathrm{H}), 1.21(\mathrm{t}, J=7.10 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.7,171.1,137.2,130.8,129.3$, 127.9, 71.2, 62.6, 58.2, 52.1, 37.8, 16.9, 14.3. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}\right) \mathrm{C}$, H. $(R)-4: \mathrm{R}_{\mathrm{f}}=0.58$ (EtOAc/isohexane 20:80); $[\alpha]^{19}{ }_{\mathrm{D}}-4.3^{\circ}\left(c 1.2, \mathrm{CD}_{3} \mathrm{OD}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.30-7.19(\mathrm{~m}$, $5 \mathrm{H}), 5.03(\mathrm{q}, J=7.03 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.07 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.07 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J$ $=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=5.85 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43(\mathrm{~d}, J=7.03 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.07 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.8,171.2$, 137.0, 130.9, 129.2, 127.9, 71.0, 62.6, 58.1, 52.1, 37.5, 16.9, 14.4. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}$.

General procedure for preparation of ($2 R$ or $2 S$)-2-benzyl-oxirane-2-carboxylic acids (S)-5 and (R)-5. Compound $(S)-\mathbf{4}$ or $(R)-\mathbf{4}$ was dissolved in THF ($10 \mathrm{~mL} / \mathrm{g}$) and a solution of 1 M NaOH (2 equiv) in THF (twice the volume of the 1 M NaOH) was added. The solution was stirred at room temp for 1 h and then the solvent was evaporated. The reaction mixture was neutralized with 1 M HCl (2 equiv) and extracted with $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give the products as colourless oils in quantitative yield, which were used in the amide coupling reactions without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.42(\mathrm{~d}, J=14.95 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=14.95 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ $(\mathrm{d}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.5,137.4,130.7$, 129.2, 127.7, 78.5, 52.0, 37.7.

General procedures for amide coupling reactions.

Method A. Carboxylic acid, EDC, HOBT and NMM were stirred in EtOAc at room temp for 30 min . The amine was added and stirring continued overnight. The reaction mixture was washed with saturated NaHCO_{3} (aq.) and brine, the combined water phases were re-extracted with EtOAc. Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ of the combined organic phases followed by evaporation afforded the crude product, which was purified as described below.
Method B. Carboxylic acid, amine and PyBOP were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and thereafter diisopropylamine was added. The reaction mixture was stirred at room temp over night and thereafter washed with saturated NaHCO_{3} (aq.) and brine followed by drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ of the organic phase. Evaporation afforded the crude product, which was purified as described below.
Method C. Carboxylic acid, amine and HATU were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and thereafter DIEA was added. The reaction mixture was stirred at room temp for 3.5 h and then washed with $2 \times \mathrm{NaOAc}$ buffer (pH 4) , $\mathrm{NaHCO}_{3}\left(5 \%\right.$, aq.) and brine followed by drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ of the organic phase. Evaporation afforded the crude product, which was purified as described below.
(2S)-2-Benzyl-oxirane-2-carboxylic acid benzylamide (6a). Compound $\mathbf{6 a}$ was prepared according to Method A using (S)-5 ($0.201 \mathrm{~g}, 1.18 \mathrm{mmol})$, EDC ($0.249 \mathrm{~g}, 1.30 \mathrm{mmol}$), HOBT $(0.176 \mathrm{~g}, 1.30 \mathrm{mmol})$, NMM $(0.156 \mathrm{~mL}, 1.42 \mathrm{mmol})$ and benzylamine $(0.142 \mathrm{~mL}, 1.30$ mmol). Purification by reverse-phase LC-MS (35 min gradient of $20-70 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $\mathbf{6 a}(0.0504 \mathrm{~g}, 32 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}-45^{\circ}(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.32-7.13(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.14 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.1,139.6,137.4,130.8,129.4$, 129.3, 128.02, 127.95, 127.8, 60.7, 53.3, 43.3, 38.0. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \times \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-Benzyl-oxirane-2-carboxylic acid ((3R)-tetrahydro-furan-3-yl)-amide (6b). Compound 6b was prepared according to Method A using $(S)-5(0.156 \mathrm{~g}, 0.876 \mathrm{mmol})$, EDC $(0.185 \mathrm{~g}, 0.964 \mathrm{mmol})$, $\operatorname{HOBT}(0.130 \mathrm{~g}, 0.964 \mathrm{mmol})$, NMM $(0.128 \mathrm{~mL}, 1.16 \mathrm{mmol})$ and $R-$ $(+)$-3-aminotetrahydrofuran toluene-4-sulfonate $(0.250 \mathrm{~g}, 0.964 \mathrm{mmol}$, as a solution in EtOAc with $E t_{3} \mathrm{~N} 0.134 \mathrm{~mL}, 0.964 \mathrm{mmol}$). Purification by flash chromatography (silica, EtOAc/isohexane, $50: 50-80: 20)$ afforded $\mathbf{6 b}(0.0691 \mathrm{~g}, 32 \%)$ as a white solid. $[\alpha]^{19}{ }_{\mathrm{D}}-22^{\circ}(c 1.0$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.29-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~d}$, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=3.74,9.23 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=5.04 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=5.04$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.1$, 137.3, 130.8, 129.2, 127.8, 73.2, 67.9, 60.5, 53.1, 51.2, 37.8, 33.1. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}$, N .
(2S)-2-Benzyl-oxirane-2-carboxylic acid (3-hydroxy-2-methyl-phenyl)-amide (6c). Compound $\mathbf{6 c}$ was prepared according to Method B using (S)-5 ($0.358 \mathrm{~g}, 2.01 \mathrm{mmol}$), 3-amino-2-methylphenol ($0.297 \mathrm{~g}, 2.41 \mathrm{mmol}$), PyBOP ($1.05 \mathrm{~g}, 2.01 \mathrm{mmol}$) and ($i \mathrm{Pr})_{2} \mathrm{NH}$ ($0.560 \mathrm{~mL}, 4.02 \mathrm{mmol}+0.280 \mathrm{~mL}, 2.01 \mathrm{mmol}$, added after stirring for 5 h). Purification by flash chromatography (silica, EtOAc/iso-hexane, 20:80-50:50) afforded $\mathbf{6 c}(0.264 \mathrm{~g}, 46 \%)$ as a white solid. $[\alpha]^{19}{ }_{\mathrm{D}}-27^{\circ}\left(c 0.45, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~m}$, $1 \mathrm{H}), 6.60(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 170.3,150.8$, $148.5,137.4,130.8,129.4,128.0,127.6,115.9,114.2,111.7,58.6,52.3,38.2,9.9$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-Benzyl-oxirane- N-[quinoline-2-amine-1-yl]-2-carboxylic acid amide ($\mathbf{6 d}$). Compound 6d was prepared according to Method B using (S)-5 ($0.349 \mathrm{~g}, 1.96 \mathrm{mmol}$), quinoline-2-amine ($0.339 \mathrm{~g}, 2.35 \mathrm{mmol}$), $\operatorname{PyBOP}(1.02 \mathrm{~g}, 1.96 \mathrm{mmol})$ and $(i \operatorname{Pr})_{2} \mathrm{NH}(0.551$ $\mathrm{mL}, 3.92 \mathrm{mmol}+0.275 \mathrm{~mL}, 1.96 \mathrm{mmol}$, added after stirring for 8 h). Purification by flash chromatography (silica, EtOAc/iso-hexane/ $\mathrm{Et}_{3} \mathrm{~N}, 10: 88: 2-20: 78: 2$) afforded $\mathbf{6 d}(0.231 \mathrm{~g}$, $39 \%)$ as a white solid. $[\alpha]^{18}{ }_{\mathrm{D}}-9.3^{\circ}\left(c 0.27, \mathrm{CD}_{3} \mathrm{OD}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.30-8.19(\mathrm{~m}, 2 \mathrm{H})$ $7.81-7.42(\mathrm{~m}, 4 \mathrm{H}) 7.32-7.10(\mathrm{~m}, 5 \mathrm{H}), 3.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=4.77 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=4.77 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 170.0,150.6$, $146.8,139.8,135.9,131.0,130.4,129.0,128.3,127.6,127.2,126.3,114.6,60.3,53.0,36.5$ (2 aromatic carbon signals overlapping). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \times 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-Benzyl-oxirane-2-carboxylic acid ((1S)-2-methyl-1-methylcarbamoyl-propyl)amide ($\mathbf{6 e}$). Compound $\mathbf{6 e}$ was prepared according to Method C using (S) $\mathbf{- 5}(0.0880 \mathrm{~g}, 0.494$ mmol), HATU ($0.225 \mathrm{~g}, 0.593 \mathrm{mmol}$), DIEA ($0.344 \mathrm{~mL}, 1.98 \mathrm{mmol}$), and H-Val-NHMe ($0.0794 \mathrm{~g}, 0.544 \mathrm{mmol}$). Purification by reverse-phase LC-MS (35 min gradient of $10-65 \%$ $\mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $\mathbf{6 e}$ and the corresponding ($1 R$)-diastereomer
in a 7:1 mixture $(0.0854 \mathrm{~g}, 60 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}-28^{\circ}\left(c 0.93, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($6 \mathbf{e}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.30-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.04(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J$ $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=6.79 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J$ $=6.79 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (6e, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 173.5,171.9,137.1,130.8,129.3,127.9,60.5,59.5$, 53.3, 37.4, 32.2, 26.2, 19.6, 18.5. Anal. ($\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$) C, H, N.
(2S)-2-Benzyl-oxirane-2-carboxylic acid [(1S)-1-(2-methoxy-ethylcarbamoyl)-2-methyl-propyl]-amide ($\mathbf{6 f}$). Compound $\mathbf{6 f}$ was prepared according to Method A using (S) $\mathbf{- 5}(0.104 \mathrm{~g}$, $0.584 \mathrm{mmol})$, EDC ($0.123 \mathrm{~g}, 0.642 \mathrm{mmol}$), HOBT ($0.0867 \mathrm{~g}, 0.642 \mathrm{mmol}$), NMM (0.0770 $\mathrm{mL}, 0.701 \mathrm{mmol})$ and $\mathrm{H}-\mathrm{Val}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}(0.112 \mathrm{~g}, 0.642 \mathrm{mmol})$. Purification by flash chromatography (silica, EtOAc/pentane, 50:50-70:30) afforded $\mathbf{6 f}$ and the corresponding $(1 R)$-diastereomer in a $6: 1$ mixture $(0.0870 \mathrm{~g}, 45 \%)$ as a colorless semi-solid. $[\alpha]^{20}{ }_{\mathrm{D}}-26^{\circ}(c$ $\left.1.0, \mathrm{CH}_{3} \mathrm{OH}\right)$: ${ }^{1} \mathrm{H}$ NMR ($\left.6 f, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.20(\mathrm{~m}, 7 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.84 \mathrm{~Hz}, 3 \mathrm{H})$, $0.83(\mathrm{~d}, J=6.84 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{6 f}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.0,171.8,137.1,130.7,129.3,127.8$, $71.8,60.4,59.4,58.9,53.3,40.1,37.3,32.4,19.5$, 18.6. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \times 0.25 \mathrm{HCOOH}\right) \mathrm{C}$, H, N.
(2S)-2-Benzyl-oxirane-2-carboxylic acid ((1S)-3-methyl-1-methylcarbamoyl-butyl)amide ($\mathbf{6 g}$). Compound $\mathbf{6 g}$ was prepared according to Method A using (S)-5 ($0.210 \mathrm{~g}, 1.18$ $\mathrm{mmol})$, EDC ($0.249 \mathrm{~g}, 1.30 \mathrm{mmol}$), $\mathrm{HOBT}(0.176 \mathrm{~g}, 1.30 \mathrm{mmol})$, NMM ($0.156 \mathrm{~mL}, 1.42$ mmol) and H -Leu-NHMe ($0.204 \mathrm{~g}, 1.42 \mathrm{mmol}$). Purification by reverse-phase LC-MS (35 \min gradient of $10-65 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $\mathbf{6 g}$ and the corresponding $(1 R)$-diastereomer in a $5: 1$ mixture $(0.135 \mathrm{~g}, 38 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}-22^{\circ}$ (c 2.3, isopropanol); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathbf{6 g}, \mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}, 6: 1\right) \delta 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H})$, $3.55(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=5.00 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=$ $5.00 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.37(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.25 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.25 \mathrm{~Hz}$, $3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($6 \mathrm{~g}, \mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}, 6: 1$) $\delta 174.2,171.5,136.7,130.6,129.1,127.7,60.3$, 52.9, 52.3, 41.7, 37.3, 26.4, 25.7, 23.3, 21.9. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(1S)-2-Benzyl-oxirane-2-carboxylic acid ((1S)-1-methylcarbamoyl-2-phenyl-ethyl)-amide ($\mathbf{6 h}$). Compound $\mathbf{6 h}$ was prepared according to Method A using (S)-5 ($0.138 \mathrm{~g}, 0.775 \mathrm{mmol}$), EDC ($0.164 \mathrm{~g}, 0.853 \mathrm{mmol})$, HOBT ($0.115 \mathrm{~g}, 0.853 \mathrm{mmol}$), NMM ($0.102 \mathrm{~mL}, 0.930 \mathrm{mmol}$) and H-Phe-NHMe ($0.152 \mathrm{~g}, 0.853 \mathrm{mmol}$). Purification by reverse-phase LC-MS (35 min gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $\mathbf{6 h}$ and the corresponding ($1 R$)-diastereomer in a $3: 1$ mixture $(0.0455 \mathrm{~g}, 17 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}$ 3.6° (c 1.0, isopropanol); ${ }^{1} \mathrm{H}$ NMR ($\mathbf{6 h}, \mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}, 6: 1$) $\delta 7.28-7.07(\mathrm{~m}, 10 \mathrm{H}), 4.48(\mathrm{dd}$, $J=5.47,9.52 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=5.47,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}$, 2H), $2.62(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\mathbf{6 h}$, $\left.\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}, 6: 1\right) \delta 172.9,171.4,137.7,136.6,130.5,130.0,129.9,129.2,129.0,127.6$, 60.1, 54.7, 52.6, 38.5, 37.1, 26.4. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \times 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-(2-Benzyl-acryloylamino)-3,3,N-trimethyl-butyramide (7). Compound 7 was prepared according to Method A using 2-benzyl acrylic acid ${ }^{1}$ ($2.00 \mathrm{~g}, 12.3 \mathrm{mmol}$), EDC (2.60 $\mathrm{g}, 13.6 \mathrm{mmol}$), HOBT ($1.83 \mathrm{~g}, 13.6 \mathrm{mmol}$), NMM ($1.63 \mathrm{~mL}, 14.8 \mathrm{mmol}$) and L-tert-leucinemethylamide ($1.96 \mathrm{~g}, 13.6 \mathrm{mmol}$). Purification by flash chromatography (silica, EtOAc/pentane, $50: 50-70: 30)$ afforded $7(1.91 \mathrm{~g}, 54 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}-6.3^{\circ}(c 1.8$, EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.32-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H})$, $3.72(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.8,168.9$,
144.1, 138.4, 128.7, 128.5, 126.5, 120.2, 60.9, 38.5, 34.4, 25.8, 24.9. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}$, H, N.
(2R or S)-2-Benzyl-oxirane-2-carboxylic acid ((1S)-2,2-dimethyl-1-methylcarbamoyl-propyl)-amide ((S)-8 and $(R)-\mathbf{8})$. Compound $7(1.72 \mathrm{~g}, 5.98 \mathrm{mmol})$ was dissolved in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ and mCPBA $(77 \%, 3.35 \mathrm{~g}, 14.9 \mathrm{mmol})$ was added. The reaction mixture was heated to $45^{\circ} \mathrm{C}$ and then AIBN $(0.004 \mathrm{~g}, 0.0243 \mathrm{mmol})$ was added followed by reflux of the resulting solution over night. Washing of the mixture with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.), saturated NaHCO_{3} (aq.) and brine followed by drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporation afforded the crude product. Purification by flash chromatography (silica, EtOAc/pentane, 50:50-100:0) yielded the diastereomeric epoxides $(S)-\mathbf{8}(0.664 \mathrm{~g})$ and $(R)-\mathbf{8}(0.712 \mathrm{~g})$ as separate white solids in a total yield of 76%. (S)-8: $[\alpha]^{20}{ }_{\mathrm{D}}-5.3^{\circ}\left(c\right.$ 1.1, EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}+2\right.$ drops of $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta$ $7.28-7.14(\mathrm{~m}, 5 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s} .9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}+2\right.$ drops of $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 171.3,170.3,135.8$, 129.6, 128.2, 126.7, 60.1, 59.5, 52.3, 36.2, 34.6, 25.8, 25.0. Anal. ($\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$) C, H, N. (R)8: $[\alpha]^{20}{ }_{\mathrm{D}}+22^{\circ}\left(c 0.91\right.$, EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.33-7.14(\mathrm{~m}, 5 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.64$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=4.87 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=4.87 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (d, $J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.4,169.6,136.2,129.6,128.2$, 126.8, 60.0, 59.9, 52.3, 36.8, 34.3, 25.6, 24.9. Anal. ($\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$) C, H, N.

General procedure for the epoxide ring opening reactions. Epoxide and hydrazide $\mathbf{9}^{2}$ were stirred in $i-\mathrm{PrOH}$ at $80^{\circ} \mathrm{C}$ (time as stated below). Evaporation of the solvent and then purification by reverse-phase LC-MS gave the pure products.
$\left\{(1 S)-1-\left[N^{\prime}-((2 S)-2-B e n z y l c a r b a m o y l-2-h y d r o x y-3-p h e n y l-p r o p y l)-N^{\prime}\right.\right.$-(4-bromo-benzyl)-hydrazinocarbonyl]-2,2-dimethyl-propyl\}-carbamic acid methyl ester (10). Compound 10 was prepared according to the general procedure using $9(0.0834 \mathrm{~g}, 0.224 \mathrm{mmol})$ and $\mathbf{6 a}$ $(0.0499 \mathrm{~g}, 0.187 \mathrm{mmol})$ by heating for 7 days. Reverse-phase LC-MS (35 min gradient of $15-$ $100 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $10(0.0648 \mathrm{~g}, 54 \%)$ as a white solid. $[\alpha]^{19}{ }_{\mathrm{D}}-64^{\circ}\left(c \mathrm{c} 0.79, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3} 1: 1\right) \delta 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.04(\mathrm{~m}, 10 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H})$, $2.95(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.57(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3} 1: 1\right) \delta 175.8,171.6,158.1,138.0,137.2,136.5,131.8,131.1$, 130.7, 128.9, 128.4, 128.0, 127.7, 127.1, 121.7, 78.5, 68.0, 61.9, 61.6, 52.7, 43.54, 43.46, 34.6, 26.3. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
((1S)-1-\{ $N^{\prime}-\left(4-\right.$ Bromo-benzyl)- N^{\prime}-[(2S)-2-hydroxy-3-phenyl-2-((3R)-tetrahydro-furan-3-ylcarbamoyl)-propyl]-hydrazinocarbonyl\}-2,2-dimethyl-propyl)-carbamic acid methyl ester (11). Compound 11 was prepared according to the general procedure using $9(0.0681 \mathrm{~g}$, $0.183 \mathrm{mmol})$ and $\mathbf{6 b}(0.0377 \mathrm{~g}, 0.153 \mathrm{mmol})$ by heating for 7 days. Reverse-phase LC-MS (40 min gradient of $10-90 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $11(0.0494 \mathrm{~g}$, $52 \%)$ as a white solid. $[\alpha]^{19}{ }_{\mathrm{D}}-72^{\circ}\left(c 0.98, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.14(\mathrm{~m}, 7 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.42(\mathrm{~m}, 8 \mathrm{H}), 2.90(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}), 0.61(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.6,172.4$, 159.0, 138.4, 137.4, 132.4, 131.6, 131.4, 128.8, 127.6, 122.1, 79.0, 72.9, 68.5, 67.7, 62.9, 62.0, 52.7, 51.2, 44.0, 34.9, 33.4, 26.6. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
((1S)-1-\{ N^{\prime}-(4-Bromo-benzyl)- N^{\prime}-[(2S)-2-hydroxy-2-(3-hydroxy-2-methyl-phenylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl\}-2,2-dimethyl-propyl)-carbamic acid methyl ester (12). Compound 12 was prepared according to the general procedure using $9(0.162 \mathrm{~g}, 0.437 \mathrm{mmol})$ and $\mathbf{6 c}(0.103 \mathrm{~g}, 0.364 \mathrm{mmol})$ by heating for 7 days. Reverse-phase LC-MS (35 min gradient of $30-100 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $\mathbf{1 2}$ $(0.0168 \mathrm{~g}, 7 \%)$ as a white solid. $[\alpha]^{19} \mathrm{D}-42^{\circ}\left(c 0.90, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.51-$ $7.18(\mathrm{~m}, 9 \mathrm{H}), 6.82(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J$ $=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 0.68(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.7,172.3,159.0,151.1,148.4,138.0,137.1$, $132.3,131.9,131.8,129.1,127.9,127.3,122.2,116.0,113.9,112.2,79.9,68.2,62.9,62.7$, 52.7, 44.0, 35.0, 26.7, 10.4. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
((1S)-1-\{ $N^{\prime}-\left(4-\right.$ Bromo-benzyl)- N^{\prime}-[(2S)-2-hydroxy-3-phenyl-2-(quinolin-2-ylcarbamoyl)-propyl]-hydrazinocarbonyl\}-2,2-dimethyl-propyl)-carbamic acid methyl ester (13).
Compound $\mathbf{1 3}$ was prepared according to the general procedure using $9(0.142 \mathrm{~g}, 0.383 \mathrm{mmol})$ and $\mathbf{6 d}(0.0970 \mathrm{~g}, 0.319 \mathrm{mmol})$ by heating for 7 days. Reverse-phase LC-MS (35 min gradient of $30-100 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $\mathbf{1 3}(0.0229 \mathrm{~g}, 11 \%)$ as a white solid. $[\alpha]^{19}{ }_{\mathrm{D}}-6.5^{\circ}\left(c 0.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}, 1: 1\right) \delta 8.18(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~m}$, $2 \mathrm{H}), 7.65(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.03(\mathrm{~m}, 9 \mathrm{H}), 4.02(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.57(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}\right.$, 1:1) $\delta 175.7,171.6,158.1,150.4,146.9,139.5,136.8,136.0,131.8,130.9,130.8,128.4$, $128.2,127.5,127.2,127.0,126.1,121.7,114.2,78.9,67.3,62.0,61.9,52.7,43.7,34.6,26.3$ (2 aromatic carbon signals overlapping). HRMS $\left(M+H^{+}\right): 676.2135, \mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Br}$ requires 676.2154 .
\{(1S)-1-\{ N^{\prime}-(4-Bromo-benzyl)- N^{\prime}-[(2S)-2-hydroxy-2-((1S)-2-methyl-1-methylcarbamoyl-propylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl\}-2,2-dimethyl-propyl\}-carbamic acid methyl ester (14). Compound 14 was prepared according to the general procedure using $9(0.0916 \mathrm{~g}, 0.246 \mathrm{mmol})$ and $\mathbf{6 e}(0.0595 \mathrm{~g}, 0.205 \mathrm{mmol})$ by heating for 7 days. Reversephase LC-MS (35 min gradient of $10-80 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $14(0.0565 \mathrm{~g}, 46 \%)$ as a white solid and 0.0056 g recovered epoxide. $[\alpha]^{20}{ }_{\mathrm{D}}-69^{\circ}(c 1.0$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 5 \mathrm{H}), 4.04(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ $(\mathrm{s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 0.77$ $(\mathrm{d}, J=5.11 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=5.11 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{~s}, 9 \mathrm{H}){ }^{13}{ }^{13} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.7$, $173.0,172.4,159.0,138.1,137.2,132.3,131.5,131.4,128.9,127.5,122.1,79.0,68.1,62.9$, 62.2, 59.9, 52.7, 44.4, 34.9, 32.6, 26.7, 26.2, 19.4, 18.9. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{BrN}_{5} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\{(1S)-1-($N^{\prime}-\left(4-\right.$ Bromo-benzyl)- N^{\prime}-\{(2S)-2-hydroxy-2-[(1S)-1-(2-methoxy-ethylcarbamoyl)-2-methyl-propylcarbamoyl]-3-phenyl-propyl\}-hydrazinocarbonyl)-2,2-dimethyl-propyl\}-carbamic acid methyl ester (15). Compound $\mathbf{1 5}$ was prepared according to the general procedure using $9(0.0522 \mathrm{~g}, 0.140 \mathrm{mmol})$ and $\mathbf{6 f}(0.0391 \mathrm{~g}, 0.117 \mathrm{mmol})$ by heating for 7 days. Reverse-phase LC-MS (35 min gradient of $10-75 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $\mathbf{1 5}(0.0389 \mathrm{~g}, 73 \%)$ as a white solid and 0.0137 g recovered epoxide. $[\alpha]^{20}{ }_{\mathrm{D}}-66^{\circ}\left(c 1.0, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17$ $(\mathrm{m}, 5 \mathrm{H}), 4.04(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=6.74 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~m}, 2 \mathrm{H}), 2.90$ (m, 2H), $2.77(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~d}, J=4.70 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=4.70$
$\mathrm{Hz}, 3 \mathrm{H}), 0.64(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.8,172.5,172.4,159.0,138.1,137.2,132.3$, $131.5,131.4,128.9,127.5,122.1,79.0,71.8,68.0,62.9,62.2,59.8,58.9,52.7,44.3,40.1$, 34.9, 32.8, 26.6, 19.4, 18.9. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{BrN}_{5} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\{(1S)-1-\{ N^{\prime}-(4-Bromo-benzyl)- N^{\prime}-\{(2S)-2-hydroxy-2-[(1S)-3-methyl-1-methylcarbamoyl-butylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl\}-2,2-dimethyl-propyl)-carbamic acid methyl ester (16). Compound 16 was prepared according to the general procedure using $9(0.125 \mathrm{~g}, 0.335 \mathrm{mmol})$ and $\mathbf{6 g}(0.0850 \mathrm{~g}, 0.279 \mathrm{mmol})$ by heating for 7 days. Reverse-phase LC-MS (35 min gradient of $10-80 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded 16 $(0.0664 \mathrm{~g}, 35 \%)$ as a white solid. $[\alpha]^{19}{ }_{\mathrm{D}}-87^{\circ}\left(c 0.87, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.38(\mathrm{~m}$, 2H), 7.29-7.14 (m, 7H), $4.20(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}), 0.65(\mathrm{~s}, 3 \mathrm{H})$, $0.64(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.6,174.3,172.4,159.0,138.2,137.3,132.4,131.6$, 131.2, 128.9, 127.6, 122.0, 78.8, 68.4, 63.0, 61.8, 52.9, 52.7, 44.3, 42.9, 34.9, 26.7, 26.5, 25.7, 23.0, 22.1. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{BrN}_{5} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\left\{(1 S)-1-\left\{N^{\prime}\right.\right.$-(4-Bromo-benzyl)- $N^{\prime}-\{(2 S)$-2-hydroxy-2-[(1S)-1-methylcarbamoyl-2-phenyl-ethylcarbamoyl)-3-phenyl-propyl]-hydrazinocarbonyl\}-2,2-dimethyl-propyl)-carbamic acid methyl ester (17). Compound 17 was prepared according to the general procedure using $9(0.0345 \mathrm{~g}, 0.0928 \mathrm{mmol})$ and $\mathbf{6 h}(0.262 \mathrm{~g}, 0.0774 \mathrm{mmol})$ by heating for 8 days. Reversephase LC-MS (35 min gradient of $20-80 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $17(0.0214 \mathrm{~g}, 39 \%)$ as a white solid. $[\alpha]^{19} \mathrm{D}-53^{\circ}\left(c 1.0, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.38$ (m, 2H), 7.29-7.05 (m, 12H), $4.34(\mathrm{t}, J=7.14 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.71(\mathrm{~m}, 5 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}), 0.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.4,173.0,172.5,159.0,138.1,137.9,137.4$, $132.4,131.6,131.5,130.3,129.5,128.9,127.8,127.5,122.2,79.0,67.9,62.9,62.2,55.8$, 52.7, 44.1, 39.6, 34.9, 26.7, 26.3. Anal. ($\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{BrN}_{5} \mathrm{O}_{6}$) C, H, N.
\{(1S)-1-[N^{\prime}-(4-Bromo-benzyl)- N^{\prime}-((2S)-2-((1S)-2,2-dimethyl-1-methylcarbamoyl-propylcarbamoyl)-2-hydroxy-3-phenyl-propyl)-hydrazinocarbonyl]-2,2-dimethyl-propyl\}-carbamic acid methyl ester (18). Compound 18 was prepared according to the general procedure using $9(0.184 \mathrm{~g}, 0.493 \mathrm{mmol})$ and $(S)-\mathbf{8}(0.125 \mathrm{~g}, 0.411 \mathrm{mmol})$ by heating for 4 days. Reverse-phase LC-MS (35 min gradient of $35-80 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $18(0.136 \mathrm{~g}, 49 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}-63^{\circ}\left(c 0.82, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.94$ (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 0.77$ ($\mathrm{s}, 9 \mathrm{H}$), $0.65(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.4,172.4,172.0,159.0,138.0,137.1,132.3$, 131.4, 131.3, 128.8, 127.4, 122.1, 79.0, 68.2, 62.9, 62.1, 62.0, 61.9, 52.7, 44.6, 35.8, 34.9, 27.0, 26.6. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{BrN}_{5} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\left\{(1 S)-1-\left[N^{\prime}-\left(4-\right.\right.\right.$ Bromo-benzyl)- $N^{\prime}-((2 R)$-2-((1S)-2,2-dimethyl-1-methylcarbamoyl-propylcarbamoyl)-2-hydroxy-3-phenyl-propyl)-hydrazinocarbonyl]-2,2-dimethyl-propyl\}-carbamic acid methyl ester (19). Compound 19 was prepared according to the general procedure using $9(0.203 \mathrm{~g}, 0.544 \mathrm{mmol})$ and $(R)-\mathbf{8}(0.138 \mathrm{~g}, 0.454 \mathrm{mmol})$ by heating for 4 days. Reverse-phase LC-MS (35 min gradient of $35-80 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.05% aqueous formic acid) afforded $19(0.212 \mathrm{~g}, 69 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}+35^{\circ}\left(c 0.86, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.39-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 5 \mathrm{H}), 4.03-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=14.0$

Hz, 1H), 3.59 (s, 3H), 3.57 (s, 1H), 2.97-2.78 (m, 3H), 2.49 (s, 3H), 0.77 (s, 9H), 0.69 (s, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.1,172.5,172.0,158.8,137.7,137.2,132.1,131.8,131.7$, $129.0,127.7,121.8,79.3,67.7,62.8,61.84,61.75,61.5,52.8,43.9,35.4,34.9,26.9,26.8$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{BrN}_{5} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Table 1. Elemental Analysis Data

Cmpdno	Formula	Theoretical			Analyzed		
		C	H	N	C	H	N
3	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$	68.68	6.92		68.51	7.91	
(S)-4	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$	64.74	6.52		64.88	6.28	
(R)-4	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$	64.74	6.52		64.60	6.44	
6 a	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \times \mathrm{H}_{2} \mathrm{O}$	71.56	6.71	4.91	71.53	6.58	4.78
6b	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$	68.00	6.93	5.66	67.84	6.82	5.57
6 c	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$	72.07	6.05	4.94	71.84	6.20	5.09
6d	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \times 0.25 \mathrm{H}_{2} \mathrm{O}$	73.89	5.38	9.07	73.84	5.19	8.68
6	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$	66.18	7.64	9.65	65.93	7.68	9.62
6	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \times 0.25 \mathrm{HCOOH}$	63.37	7.72	8.10	63.58	7.35	8.36
6 g	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$	67.09	7.95	9.20	66.85	7.91	9.17
6 h	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \times 0.25 \mathrm{H}_{2} \mathrm{O}$	70.05	6.61	8.17	69.80	6.73	8.52
7	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$	70.80	8.39	9.71	70.60	8.48	9.66
(S)-8	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$	67.08	7.95	9.20	66.82	7.96	9.11
(R)-8	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$	67.08	7.95	9.20	66.88	7.87	9.12
10	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{5}$	60.09	6.15	8.76	60.08	6.32	8.65
11	$\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{6}$	56.22	6.34	9.04	56.11	6.51	8.86
12	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{6}$	58.63	6.00	8.55	58.36	6.14	8.38
14	$\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{BrN}_{5} \mathrm{O}_{6}$	56.19	6.69	10.57	56.08	6.65	10.41
15	$\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{BrN}_{5} \mathrm{O}_{7}$	56.09	6.85	9.91	56.31	6.96	9.82
16	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{BrN}_{5} \mathrm{O}_{6}$	56.80	6.85	10.35	56.44	6.73	10.18
17	$\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{BrN}_{5} \mathrm{O}_{6}$	59.15	6.24	9.85	58.88	6.08	9.71
18	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{BrN}_{5} \mathrm{O}_{6}$	56.80	6.85	10.35	56.59	6.88	10.24
19	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{BrN}_{5} \mathrm{O}_{6}$	56.80	6.85	10.35	56.52	6.92	10.20

Biological Evaluations

HIV-1 Protease Inhibition. The HIV-1 protease was cloned and heterologously expressed in Escherichia coli and purified as described elsewhere. ${ }^{3}$ The K_{i}-values were determined by a fluorometric assay. ${ }^{4}$

Cell Based Anti-HIV Activity. The in vitro anti-HIV activity was assayed in MT4 cells according to a previously published procedure ${ }^{4}$ using the colorimetric XTT assay to monitor the cytopathogenic effects.

Stability in Liver Microsomes. A final concentration of $2 \mu \mathrm{M}$ test compound (dissolved in 0.1% DMSO) was incubated with rat or human liver microsomes at $37^{\circ} \mathrm{C}$ for 10,20 and 30 \min (triplicate incubations). The samples contained $0.5 \mathrm{mg} / \mathrm{mL}$ of microsomal protein in 100 mM potassium phosphate buffer pH 7.4 . The reaction was initiated by the addition of NADPH (1 mM) and terminated by the addition of acetonitrile. Control incubation was
performed as described above except that NADPH was omitted. Calculation of the in vitro clearance: The \ln (residual concentration) versus time was plotted. The slope of the line will give the elimination rate constant (k) from which the elimination half-life (t^{1}) can be calculated in accordance with a one-compartment pharmacokinetic model. $\mathrm{k}=0.693 / \mathrm{t}_{1 / 2}$ and an equation expressing $\mathrm{Cl}_{\text {int }}$ in terms of $\mathrm{t}_{1 / 2}$ can be derived
$C l=\frac{\text { Volume } \times 0.693}{t_{1 / 2}}$

References

(1) Liu, X.; Hu, E.; Tian, X.; Mazur, A.; Ebetino, F. H. Enantioselective synthesis of phosphinyl peptidomimetics via an asymmetric Michael reaction of phosphinic acids with acrylate derivatives. J. Organomet. Chem. 2002, 646, 212-222.
(2) Ekegren, J. K.; Unge, T.; Safa, M. Z.; Wallberg, H.; Samuelsson, B.; Hallberg, A. A new class of HIV-1 protease inhibitors containing a tertiary alcohol in the transitionstate mimicking scaffold. J. Med. Chem. 2005, 48, 8098-9102.
(3) Danielson, U. H.; Lindgren, M. T.; Markgren, P.-O.; Nillroth, U. Investigation of an allosteric site of HIV-1 proteinase involved in inhibition by Cu^{2+}. Adv. Exp. Med. Biol. 1998, 436, 99-103.
(4) Nillroth, U.; Vrang, L.; Markgren, P.-O.; Hulten, J.; Hallberg, A.; Danielson, U. H. Human immunodeficiency virus type 1 proteinase resistance to symmetric cyclic urea inhibitor analogs. Antimicrob. Agents Chemother. 1997, 41, 2383-2388.

