Supplementary Material

Asymmetric synthesis of cyclopropanes and dihydrofurans based on phosphine oxide chemistry

David J. Fox,* Sean Parris, Daniel Sejer Pedersen, Charles R. Tyzack and Stuart Warren University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.

EMAIL: djf34@cam.ac.uk

Experimental

For reactions conducted under anhydrous conditions glassware was dried overnight in an oven at $130{ }^{\circ} \mathrm{C}$ and was allowed to cool in a dessicator over anhydrous KOH. Anhydrous reactions were carried out under argon. Solvents were BOC standard reagent grade and distilled before use. Reagents/solvents for anhydrous reactions were dried as follows: THF was distilled from sodium wire with benzophenone as indicator. Dichloromethane, hexane, acetonitrile, toluene, pyridine, N, N-dimethylformamide, triethylamine, dimethylsulfoxide and diisopropylamine were dried and stored over $4 \AA$ molecular sieves. Methanol was dried and stored over $3 \AA$ molecular sieves. n Butyllithium was titrated against diphenylacetic acid before use. ${ }^{1}$ Sulfate buffer was prepared by dissolving 1.5 mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in $0.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ and adding water to give a final volume of 2000 cm^{3}. Thin layer chromatography (TLC) was carried out on commercially available pre-coated glass plates (Merck $60 \mathrm{~F}_{254}$). The quoted R_{f} values are rounded to the nearest 0.05 . Dry Column Vacuum Chromatography (DCVC) was performed according to the published procedure. ${ }^{2}$ A larger diameter column than that recommended was generally necessary with phosphine oxides due to their tendency to streak on the columns. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, APT, DEPT, HMQC and COSY NMR spectra were recorded on Bruker Avance 400 (5 mm QNP probe) and Bruker Avance $500\left(5 \mathrm{~mm}\right.$ dual ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ cryo probe) Fourier transform spectrometers using an internal deuterium lock. ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker Avance 400 (5 mm QNP probe) Fourier transform spectrometer using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. Solvents were used as internal standard when assigning NMR $\operatorname{spectra}\left(\delta_{H}: \mathrm{CDCl}_{3} 7.26 \mathrm{ppm}\right.$, DMSO- $d_{6} 2.50 ; \delta_{\mathrm{C}}: \mathrm{CDCl}_{3} 77.0 \mathrm{ppm}$, DMSO- $d_{6} 39.4 \mathrm{ppm}$). Mestre-C 4.5.6 software, ${ }^{3}$ was used for assigning spectra. J values are given in Hz and rounded to the nearest 0.5 Hz . LC-MS was run on a Waters Alliance LC/MS system consisting of a Waters 2795 Separations Module, a Waters 2996 Photodiode Array Detector and a Waters Micromass ZQ on a C18 analytical Reverse Phase Supercosil ${ }^{\mathrm{TM}}$ ABZ + PLUS column ($3.3 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 3 \mu \mathrm{~m}$) using the
following gradient: $0.00-0.70 \mathrm{~min} 100 \%$ solvent $\mathrm{A}, 0.70-4.20 \mathrm{~min} 100 \%$ solvent A to 100% solvent B, 4.20-7.70 min 100% solvent $B, 7.70-8.00 \mathrm{~min} 100 \%$ solvent B to 100% solvent A (solvent A: 10 mM ammonium acetate in water containing 0.1% formic acid; solvent B: 95% acetonitrile in water) with a flow rate of $1 \mathrm{~cm}^{3} / \mathrm{min}$. EI and LSIMS mass spectra were recorded on a Kratos concept 1 H double focusing magnetic sector instrument using a MACH 3 data system. +ESI mass spectra were recorded using a Bruker Bio-Apex II FT-ICR instrument or a Micromass Q-Tof 1 machine. Microanalyses were carried out on a CE440 Elemental Analyser from Exeter Analytical, INC. The calculated values were adjusted for residual solvents. Melting points were measured on a microscope hot stage melting point apparatus (C. Reichert Optische Werke AG) and are uncorrected. Infra-red spectra were recorded using a Perkin Elmer Spectrum One (FT-IR) spectrometer with a universal ATR sampling accessory. Optical rotations were recorded on a Perkin Elmer 241 polarimeter using to the sodium D line $(589 \mathrm{~nm})$ at $23{ }^{\circ} \mathrm{C}$ and are given in units of 10^{-1} deg $\mathrm{dm}^{2} \mathrm{~g}^{-1}$. X-ray Crystallographic Data was measured on a Nonius Kappa CCD diffractometer at 180(2) K. Analytical chiral HPLC was carried out on a Daicel Chiralpak AD column ($0.46 \mathrm{~cm} \times 25$ cm) and guard column with a Spectra-Physics SP8800 pump, a Spectra-Physics SP8450 UV detection system and a ChromJet single channel integrator with a flow rate of $1 \mathrm{~cm}^{3} / \mathrm{min}$.

Method 1: Asymmetric dihydroxylation (AD)
By a method analogous to that reported by Sharpless, ${ }^{4}$ the substrate (1 mmol) is heated (if necessary) in t - $\mathrm{BuOH}\left(10 \mathrm{~cm}^{3}\right)$ to give a clear solution (Not all substrates were completely soluble). Water $\left(10 \mathrm{~cm}^{3}\right)$ is added and the mixture cooled to $0{ }^{\circ} \mathrm{C}$ (Higher temperatures were employed in some cases to increase the solubility of the substrate). A mixture of $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($1 \mathrm{~mol} \%$), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 eq .), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq .), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 eq.) and (DHQD) ${ }_{2} \mathrm{PHAL}(2 \mathrm{~mol} \%$) is added to the cooled solution and it is stirred vigorously until completion of the reaction. Sodium sulfite (10 eq .) was added and the reaction allowed to warm to room temperature with vigorous stirring. The slurry is transferred to a separatory funnel with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $(3 \times 20$ cm^{3}) (Dichloromethane can be used for more polar compounds but tends to give emulsions with Method 1, unless large volumes of dichloromethane are used). The combined organic extracts are washed with aqueous sulfate buffer $\left(20 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure and the residue purified by column chromatography.

Method 2: Asymmetric dihydroxylation (AD)
As above with an alternative work-up procedure that avoids the formation of emulsions. Sodium sulfite (10 eq .) is added and the reaction allowed to warm to room temperature with vigorous stirring. The slurry is transferred to a separatory funnel and the phases are separated. The organic phase is concentrated in vacuo and the residue dissolved in dichloromethane ($20 \mathrm{~cm}^{3}$) and transferred to a separatory funnel with the aqueous phase and water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic extracts are washed with aqueous sulfate buffer $\left(20 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue is purified by column chromatography.

Method 3: Racemic dihydroxylation (RD)
According to the procedure by Warren ${ }^{5,6}$ racemic dihydroxylations were performed at room temperature and (DHQD) 2_{2} PHAL was replaced with quinuclidine ($5 \mathrm{~mol} \%$). Worked up was as described in general procedure 1 , unless otherwise stated.

Method 4: Synthesis of cyclic carbonates
1,1 '-Carbonyldiimidazole (1.5 eq .) is added to a stirred solution of the diol (1 mmol) in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ at room temperature under argon. The reaction mixture is stirred until completion. Water $\left(40 \mathrm{~cm}^{3}\right)$ is added and the mixture transferred to a separatory funnel with brine $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases are dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent removed in vacuo to give the crude product that is purified by column chromatography.

Method 5: Opening of cyclic carbonates with sodium azide
By the method of Sharpless ${ }^{7}$ the cyclic carbonate (1 mmol) is dissolved in anhydrous DMF (10 cm^{3}). NaN_{3} (1.1 eq.) and water (1 eq .) is added and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$ with stirring under argon for 48 hours. When the reaction mixture has cooled to room temperature it is transferred to a separatory funnel with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases are dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Residual DMF is removed on a high vacuum pump and the residue purified by column chromatography.

Method 6: Synthesis of cyclic sulfites
Thionyl chloride (1.5 eq .) is added to a stirred solution of the diol (1 mmol) and pyridine (4 eq .) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at room temperature under argon. When the reaction has gone to completion saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ is added and the mixture transferred to a separatory funnel with water $\left(5 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phases are washed with 3 M aqueous $\mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ [Aqueous sulfate buffer $\left(10 \mathrm{~cm}^{3}\right)$ was used for acid sensitive compounds], dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent removed in vacuo to give the crude product that is purified by column chromatography.

Method 7: Cyclopropanation

The substrate (1 mmol) is dissolved in anhydrous THF $\left(10 \mathrm{~cm}^{3}\right)$ and cooled to $-78{ }^{\circ} \mathrm{C}$ with stirring under argon. Freshly prepared LDA (1.05 eq.) cooled to $-78{ }^{\circ} \mathrm{C}$ is added by cannula. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1-2 hours the reaction mixture is allowed to slowly warm to room temperature overnight. The reaction is quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$, extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product, which is purified by column chromatography.

Method 8: Synthesis of Mosher's amides
Mosher's amide derivatives using racemic Mosher's acid (α-methoxy- α-trifluoromethylphenylacetic acid) and (R)-(+)-Mosher's acid were prepared and analysed using ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR. Moshers acid (2.14 mmol) is dissolved in anhydrous dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and cooled to $0{ }^{\circ} \mathrm{C}$. Oxalyl chloride (21.4 mmol) is added followed by 1 drop of DMF. After stirring for 1 hour the reaction mixture is concentrated in vacuo and the residue suspended in hexane ($2 \times 25 \mathrm{~cm}^{3}$) and concentrated in vacuo $\left[{ }^{19} \mathrm{~F}\right.$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta-70.2$]. The product was dissolved in anhydrous dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ to give a 0.21 M solution of Mosher's acid chloride.
The amine $(0.2 \mathrm{mmol})$ is dissolved in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and Mosher's acid chloride (0.3 $\mathrm{mmol}, 1.4 \mathrm{~cm}^{3}, 0.21 \mathrm{M}$ in dichloromethane) is added followed by saturated aqueous sodium carbonate $\left(5 \mathrm{~cm}^{3}\right)$. After stirring overnight the phases are separated and the organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give crude Mosher's amide that is analysed by NMR without further purification.

(4R,5R)-4-[2'-(Diphenylphosphinoyl)-ethyl]-5-phenyl-[1,3]-dioxolane-2-one 14

By method 4 diol $^{8} 13(0.50 \mathrm{~g}, 1.4 \mathrm{mmol})$, after $21 / 2$ hours, gave a clear gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 70-100\% EtOAc in hexanes (v / v) -10% increments; 2.5-40\% MeOH in EtOAc (v/v) - 2.5\% increments] to give cyclic carbonate $14(0.48 \mathrm{~g}$, 87%) as a white amorphous solid. e.e. $>90 \%$ (determined by chiral HPLC); HPLC $\left[R_{\mathrm{T}}\right.$ (min), flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 15 \%$ EtOH in iso-hexane (v/v)]: 64.3; $[\alpha]_{D}^{23}+40\left(\mathrm{c} .1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.50(5 \% \mathrm{MeOH}$ in EtOAc, $\mathrm{v} / \mathrm{v})$; m / z (+EI) found: M^{+}, 392.1160. $\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}\right.$ requires M, 392.1177); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1800(\mathrm{C}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1182(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.78-$ 7.68 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.59-7.39 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.31-7.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.15 ($1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{CHPh}$), 4.54 (1 H , ddd, $J 9.0,7.5$ and $\left.3.0, \mathrm{CH}_{2} \mathrm{CH}\right), 2.62-2.52(1 \mathrm{H}, \mathrm{m}), 2.37-2.21(2 \mathrm{H}, \mathrm{m})$ and 2.08-1.96 $(1 \mathrm{H}, \mathrm{m})$ $\left(2 \times \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 31.7 ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 153.8(\mathrm{C} 2), 134.9$ (ipso-Ph), 132.4 (d, J 100.5, ipso-PhP), 132.2 (d, J3.0, para-PhP), 132.1 (d, J 3.0, para-PhP), 131.6 (d, J 100.0, ipso-PhP), 130.8 (d, J 9.5, ortho-PhP), 130.5 (d, J 9.5, ortho-PhP), 129.8, 129.2 (Ph), 128.9 (d, J 11.5, meta-PhP), 128.8 (d, J 11.5, meta-PhP), 126.0 (para-Ph), 84.0 (d, J 14.0, C4), 83.0 (C5), 25.7 (d, $J 16.0, \mathrm{C}^{\prime}$) and 25.3 (d, $J 53.0, \mathrm{C}^{\prime}$); (Found: C, 69.47; H, 5.55. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P} \cdot 0.25$ $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 69.60$; $\left.\mathrm{H}, 5.46 \%\right)$.

(4RS,5RS)-4-[(2'-Diphenylphosphinoyl)-ethyl]-5-phenyl-[1,3]-dioxolane-2-one (\pm)-14

By method $\mathbf{4}$ diol $(\pm) \mathbf{- 1 3}(39 \mathrm{mg}, 0.11 \mathrm{mmol})$, after $11 / 2$ hours, gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 70-100\% EtOAc in hexanes (v / v) -10% increments; $2.5-30 \% \mathrm{MeOH}$ in EtOAc (v / v) -2.5% increments] to give cyclic carbonate (\pm)-14 (41 $\mathrm{mg}, 95 \%$) as a white amorphous solid. HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 15 \% \mathrm{EtOH}$ in isohexane $(\mathrm{v} / \mathrm{v})$]: 62.6 and 70.3; All analytical data were identical with that for $(4 R, 5 R)$ - $\mathbf{1 4}$ reported above.

(1S,2R)-1-Azido-4-diphenylphosphinoyl-1-phenyl-butan-2-ol 15

By method 5 carbonate $14(0.20 \mathrm{~g}, 0.74 \mathrm{mmol})$ gave a clear gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50-100\% EtOAc in hexanes (v/v) -10% increments; 2.5-35\% MeOH in EtOAc (v/v) - 2.5\% increments] to give azide 15 ($0.18 \mathrm{~g}, 87 \%$) as white needles. $[\alpha]_{D}^{23}+66$ (c. $0.9, \mathrm{CHCl}_{3}$); mp 112-115 ${ }^{\circ} \mathrm{C}$ (from MeOH, EtOAc); $R_{\mathrm{f}} 0.30$ (EtOAc); $m / z(+E S I)$ found: MNa^{+}, 414.1342. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PNa}\right.$ requires $\left.M, 414.1347\right)$; IR $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$

3277 (br., O-H), $2096\left(\mathrm{~N}_{3}\right), 1438(\mathrm{P}-\mathrm{Ph})$ and $1173(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.74-7.67$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.53-7.43(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.36-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.53(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{PhCH}), 4.44(1 \mathrm{H}, \mathrm{d}, J$ $4.5, \mathrm{OH}), 3.94-3.90(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.44-2.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right), 1.96(1 \mathrm{H}, \operatorname{ddtd}, J 17.0,14.5,7.5$ and 3.0, $\mathrm{PCH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.78-1.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}$) ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 35.7 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 136.7$ (ipso-PhC), 132.2 (d, J 99.5, ipso-PhP), 132.0 (d, J 99.5, ipso-PhP), $131.9(\times 2)(\mathrm{Ph}), 130.9(\mathrm{~d}, J 9.5$, ortho-PhP), 130.7 (d, J9.5, ortho-PhP), 128.8 (d, J 2.0, para-PhP), $128.7(\times 2)(\mathrm{d}, J 11.5$, meta -PhP and d, $J 11.5$, meta -PhP), $128.7(\times 2)(\mathrm{d}, J 2.0$, para -PhP and Ph), 128.3, 127.6 (Ph), 74.3 (d, $J 7.5, \mathrm{C} 2$), $69.9(\mathrm{C} 1), 26.5$ (d, $J 71.0, \mathrm{C} 4$), 25.0 (d, $J 4.0, \mathrm{C} 3$); (Found: C, 67.42; $\mathrm{H}, 5.69 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires $\left.\mathrm{C}, 67.51 ; \mathrm{H}, 5.67 \%\right)$.

(1S,2R)-1-Azido-2-benzoyloxy-4-diphenylphosphinoyl-1-phenyl-butane 5

Phosphine oxide $15(0.47 \mathrm{~g}, 1.2 \mathrm{mmol})$ was dissolved in anhydrous dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ and triethylamine $\left(0.34 \mathrm{~cm}^{3}, 2.4 \mathrm{mmol}\right)$, DMAP ($73 \mathrm{mg}, 0.6 \mathrm{mmol}$) and benzoyl chloride $\left(0.28 \mathrm{~cm}^{3}, 2.4\right.$ mmol) were added. After 19 hours the reaction mixture was transferred to a separatory funnel with aqueous sulfate buffer $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 5-100\% EtOAc in hexanes (v/v) 5% increments; two fractions of each solvent mixture were collected] gave phosphine oxide 5 (0.44 $\mathrm{g}, 73 \%$) as white needles. $[\alpha]_{D}^{23}-2.9$ (c. $1.1, \mathrm{CHCl}_{3}$); mp $157-159{ }^{\circ} \mathrm{C}$ (from EtOAc, hexanes); R_{f} $0.40(80 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v})$; $m / z(+$ ESI $)$ found: MNa^{+}, 518.1632. $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PNa}\right.$ requires $M, 518.1610)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2104\left(\mathrm{~N}_{3}\right), 1719(\mathrm{C}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1184(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.96(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.0$, ortho- $\mathrm{PhC}=\mathrm{O})$, 7.67-7.60 ($4 \mathrm{H}, \mathrm{m}$), 7.55-7.35 ($9 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.31-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.38(1 \mathrm{H}, \mathrm{ddd}, J 8.5,4.5$ and $4.0, \mathrm{CHCHPh}), 4.86(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{C} H \mathrm{Ph})$ and 2.39-2.02 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 33.0 ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $\delta 165.6$ (C=O), 135.1 (ipso- PhCH), 133.3 (para- $\mathrm{PhC}=\mathrm{O}$), 132.2 (d, J 99.5, ipso-PhP), 132.1 (d, J 99.5, ipso-PhP), 131.7 (d, J 3.0, para-PhP), 131.6 (d, J 3.0, para-PhP), 130.6 (d, J 9.5, ortho- PhP), 130.5 (d, J 9.5, ortho-PhP), 129.6 (Ph), $129.2($ ipso $-\mathrm{PhC}=\mathrm{O}$), $128.6(\times 2), 128.5(\times 2), 128.4(\times 2)$ (Ph), 127.1 (para- PhCH), 76.5 (d, $J 15.0, \mathrm{C} 2$), $67.5(\mathrm{C} 1), 25.7(\mathrm{~d}, J 72.0, \mathrm{C} 4)$ and $21.8(\mathrm{~d}, J 2.5$, C3); (Found: C, 69.81; H, 5.28; N, 8.11. $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P} \cdot 0.30 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 69.54$; $\mathrm{H}, 5.35$; N, 8.39\%).
(2RS,4R,5R)-4,5-Dihydroxy-1,5-diphenyl-2-diphenylphosphinoyl-pentan-1-one (4R,5R)-17
By method 1 phosphine oxide ${ }^{8} 16(0.50 \mathrm{~g}, 1.15 \mathrm{mmol})$ after 10 days gave a pink residue that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; 50-100\% EtOAc in hexanes (v/v) - 5% increments; $1-20 \% \mathrm{MeOH}$ in EtOAc (v/v) - 1% increments] to give $(4 R, 5 R)-17(0.40 \mathrm{~g}, 74 \%)$ as a white amorphous solid. $R_{\mathrm{f}} 0.45$ (EtOAc); m / z (+ESI) found: MNa^{+}, 493.1560. $\left(\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{PNa}\right.$ requires M, 493.1545); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3334$ (br., O-H), 1674 ($\mathrm{C}=\mathrm{O}$), 1438 ($\mathrm{P}-\mathrm{Ph}$) and 1184 ($\mathrm{P}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) Complex; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 32.7,32.4,32.0,31.5 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) Complex. $\delta 198.2$ (d, J 2.0, C=O), 197.9 (d, J 2.5, C=O); (Found: C, $73.19 ; \mathrm{H}, 5.83 . \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P}_{1} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 73.33 ; \mathrm{H}, 5.84 \%\right)$. The data above is in agreement with that which has previously been reported for the diastereoisomers ($2 R S, 4 S, 5 S$)-17. ${ }^{9}$
(2RS,4R,5R)- and (2RS,4S,5S)-4,5-Dihydroxy-1,5-diphenyl-2-diphenylphosphinoyl-pentan-1one (\pm)-17
By method 3 phosphine oxide ${ }^{8} 16(0.18 \mathrm{~g}, 0.42 \mathrm{mmol})$ after 2 days gave a clear gum that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 2.5-50\% MeOH in EtOAc (v/v) - 2.5\% increments] to give diol $(\mathbf{~}) \mathbf{- 1 7}(0.16 \mathrm{~g}, 80 \%)$ as a white amorphous solid. All analytical data was identical with that for $(4 R, 5 R)-\mathbf{1 7}$ reported above.
(4R,5R,2'RS)-4-[(2'-Diphenylphosphinoyl-3'-oxo-3'-phenyl)-propyl]-5-phenyl-[1,3]-dioxolan-

2-one 19

By method 4 phosphine oxide $(4 R, 5 R)-17(1.11 \mathrm{~g}, 2.36 \mathrm{mmol})$ after 2 hours gave a brown amorphous solid. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50$100 \%$ EtOAc in hexanes (v/v) - 10\% increments; 1-22\% MeOH in EtOAc (v/v) - 1\% increments] to give cyclic carbonate $19(1.15 \mathrm{~g}, 98 \%)$ as an off-white amorphous powder. d.r. 69:31 (${ }^{1} \mathrm{H}$ NMR, epimers at C2'); e.e. $>95 \%$ (determined by chiral HPLC); $\operatorname{HPLC}\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 0-$ $30 \mathrm{~min} / 0-100 \%$ iso-propanol in n-hexane (v/v)] ($4 R, 5 R, 2^{\prime} R$)-19 and ($4 R, 5 R, 2^{\prime} S$)-19: 22.3 (major) and 26.9 (minor); $R_{\mathrm{f}} 0.55$ (EtOAc); m / z (+ESI) found: MH^{+}, 497.1497. $\left(\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{P}\right.$ requires M, 497.1518); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1795(\mathrm{OC}=\mathrm{O}), 1672(\mathrm{C}=\mathrm{O}), 1438(\mathrm{PPh})$ and $1191(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) Two diastereoisomers $\left(4 R, 5 R, 2^{\prime} R\right)-19$ and ($4 R, 5 R, 2^{\prime} S$)-19 A: major, B: minor. δ 7.88-7.82 (m, Ph A,B), 7.68-7.47 (m, Ph A,B), 7.43-7.21 (m, Ph A,B), 5.15 (1H, d, J7.0, CHPh A), $5.09(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{C} H \mathrm{Ph}$ B), $4.98(1 \mathrm{H}, \mathrm{td}, J 11.5$ and $2.0, \mathrm{PCH} \mathrm{A}), 4.70(1 \mathrm{H}$, ddd, $J 17.0,8.0$ and $4.5, \mathrm{PCHB}), 4.62\left(1 \mathrm{H}, \mathrm{td}, J 8.0\right.$ and $\left.4.5, \mathrm{PCHCH}_{2} \mathrm{CH} \mathrm{B}\right), 4.38(1 \mathrm{H}, \mathrm{ddd}, J 13.0,7.0$ and 2.0 ,
$\mathrm{PCHCH}_{2} \mathrm{CH}$ A), 3.04-2.98 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}\right), 2.83-2.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{B}\right), 2.63-2.54$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{B}\right), 2.30-2.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{A}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 29.3$ and $28.9 ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Two diastereoisomers ($4 R, 5 R, 2^{\prime} R$)-19 and ($4 R, 5 R, 2^{\prime} S$)-19. A: major, B: minor. $\delta 196.5$ (d, J 2.5, C3’ B), 196.0 (d, J 3.5, C3’ A), 153.6 (C2 A), 153.4 (C2 B), 137.9-125.7 (m, Ph A,B), 83.2 (C5 A), 83.0 (C5 B), 82.7 (d, $J 9.5, \mathrm{C} 4$ B), 81.8 (d, J 12.5, C4 A),
 (Found: C, $71.94 ; \mathrm{H}, 5.15 . \mathrm{C}_{30} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.92 ; \mathrm{H}, 5.13 \%$).
$\left(4 R, 5 R, 2^{\prime} R S\right)$ - and ($\left.4 S, 5 S, 2^{\prime} R S\right)-5-\left[\left(2^{\prime}-D i p h e n y l p h o s p h i n o y l-3^{\prime}-o x 0-3 '-p h e n y l\right)-p r o p y l\right]-4-$ phenyl-[1,3]-dioxolan-2-one (\pm)-19

By method $\mathbf{4}$ diol (\pm)-17 ($0.12 \mathrm{~g}, 0.25 \mathrm{mmol}$), after $2 \frac{1}{2}$ hours, gave a white solid. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50-100\% EtOAc in hexanes (v/v) -10% increments; $2.5-25 \% \mathrm{MeOH}$ in EtOAc (v/v) - 2.5% increments] to give cyclic carbonate ($\mathbf{~}$)-19 $(0.10 \mathrm{~g}, 80 \%)$ as a white amorphous powder. HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 0-30 \mathrm{~min} / 0-$ 100% iso-propanol in n-hexane (v / v)]: $\left(4 S, 5 S, 2^{\prime} R\right)-\mathbf{1 9}$ and ($4 S, 5 S, 2^{\prime} S$)-19: 19.8 and 29.9 (64:36 ratio), $\left(4 R, 5 R, 2^{\prime} R\right)-\mathbf{1 9}$ and $\left(4 R, 5 R, 2^{\prime} S\right) \mathbf{- 1 9}: 22.3$ and 26.7 ($68: 32$ ratio). All analytical data was identical with that for $\left(4 R, 5 R, 2^{\prime} R S\right)-19$ reported above.

(2S,1'R)-2-[(1'-Hydroxy-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-

dihydrofuran 20

By method 5 cyclic carbonate $19(0.20 \mathrm{~g}, 0.74 \mathrm{mmol})$ gave dihydrofuran $\mathbf{2 0}$ as a brown gum. The product was purified by DCVC (id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; $50-100 \%$ EtOAc in hexanes (v / v) -5% increments; 2.5-25\% MeOH in EtOAc (v/v) -2.5% increments) to give the dihydrofuran $20(0.18 \mathrm{~g}, 89 \%)$ as a white amorphous solid. $[\alpha]_{D}^{23}-6.9$ (c. 1, CHCl_{3}); mp 212-215 ${ }^{\circ} \mathrm{C}$ (white needles from EtOAc, MeOH , hexanes); $R_{\mathrm{f}} 0.55$ (EtOAc); m / z (+ESI) found: MH^{+}, 453.1619. $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}\right.$ requires M, 453.1620); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3250$ (br., $\left.\mathrm{O}-\mathrm{H}\right), 1595$ and 1492 $(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1170(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}$) $\delta 7.67-7.65(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.58-7.28 (15H, m, Ph), 7.24-7.20 (1H, m, Ph), 7.16-7.13 (2H, m, Ph), 5.83 ($1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{OH}$), 4.95 $\left(1 \mathrm{H}, \mathrm{td}, J 9.0\right.$ and $\left.4.5, \mathrm{CHCH}_{2}\right), 4.79(1 \mathrm{H}, \mathrm{t}, J 4.5, \mathrm{CHOH})$ and $2.65\left(2 \mathrm{H}, \mathrm{dd}, J 9.0\right.$ and $\left.2.5, \mathrm{CH}_{2}\right)$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 22.3 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 166.3$ (d, $J 18.0, \mathrm{C} 5$), 139.3 (ipso-PhCH), 133.0 (d, J 108.5. ipso-PhP), 132.8 (d, J 109.0, ipso-PhP), 131.4 (×2) (d, J 10.0,
ortho-PhP and d, J 10.0, ortho-PhP), $131.3(\times 2)(\mathrm{d}, J 2.5$, para-PhP and d, $J 2.5$, para-PhP), 129.9 (Ph), 129.4 (ipso- $\mathrm{PhC}=\mathrm{C}$), 128.9, $128.4(\mathrm{Ph}), 128.2(\times 2)(\mathrm{d}, J 12.0$, meta -PhP and d, $J 12.0$, metaPhP), 128.0, 127.6, 126.8 (Ph), 98.7 (d, $J 119.5, \mathrm{C} 4$), 84.6 (d, $J 10.0, \mathrm{C} 2$), 74.7 (C 1 ') and 35.3 (d, J 10.0, C3); (Found: C, 76.04; H, 5.73. $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{P} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires C, 76.22 ; H, 5.62%).
(2S,1'R)-2-[(1'-Benzoyloxy-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-dihydro furan 21
Dihydrofuran 20 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in anhydrous pyridine $\left(2 \mathrm{~cm}^{3}\right)$ and benzoyl chloride ($20 \mu \mathrm{l}, 0.17 \mathrm{mmol}$) was added. The reaction mixture was stirred at ambient temperature for $2^{11 / 2}$ hours, quenched with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with 2 M aqueous $\mathrm{HCl}\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and brine $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow solid. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 70-100\% EtOAc in hexanes (v/v) -10% increments; $2-32 \% \mathrm{MeOH}$ in $\mathrm{EtOAc}(\mathrm{v} / \mathrm{v})-2 \%$ increments] to give a clear gum that was recrystallised to give the dihydrofuran $21(58 \mathrm{mg}, 95 \%)$ as colourless needles. $[\alpha]_{D}^{23}+60$ (c. 1.5, CHCl_{3}); mp 221-223 ${ }^{\circ} \mathrm{C}$ (from EtOAc, pentane); $R_{\mathrm{f}} 0.50$ (EtOAc); m / z (+EI) found: MH^{+}, 557.1889. $\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{P}\right.$ requires $\left.M, 557.1882\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1722(\mathrm{C}=\mathrm{O}), 1597$ and 1493 $(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.15-8.11(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.617.10 ($19 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.06-7.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $6.20(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{C} H \mathrm{Ph}), 5.29-5.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.12\left(1 \mathrm{H}\right.$, ddd, $J 15.0,11.5$ and $\left.2.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $2.83\left(1 \mathrm{H}\right.$, ddd, $J 15.5,7.0$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 22.9 ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 166.7$ (d, J 18.5, C5), 165.5 (C=O), 135.3 (ipso-PhCH), 133.4-127.6 (m, Ph), 97.8 (d, J 121.0, C4), 82.3 (d, J 10.0, C2), 76.6 $\left(\mathrm{C} 1\right.$ ') and 35.8 (d, $J 10.0$, C3); (Found: C, $76.60 ; \mathrm{H}, 5.57 . \mathrm{C}_{36} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P} \cdot 0.50 \mathrm{H}_{2} \mathrm{O}$ requires C, 76.45; H, 5.35\%).
(2S,1'S)-2-[(1'-Benzoyloxy-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-dihydro furan 23

Triethylamine ($28 \mathrm{mg}, 0.27 \mathrm{mmol}$) and benzoyl chloride ($34 \mathrm{mg}, 0.25 \mathrm{mmol}$) were added dropwise to a stirred solution of diol $^{8}(4 S, 5 S)-17(25 \mathrm{mg}, 53 \mu \mathrm{~mol})$ and DMAP ($11 \mathrm{mg}, 90 \mu \mathrm{~mol}$) in dry dichloromethane $\left(4.5 \mathrm{~cm}^{3}\right)$ at room temperature. The reaction mixture was stirred for 18 hours, quenched with water $\left(4.5 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The combined
organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated in vacuo. The residue was purified by column chromatography (SiO_{2}, EtOAc-hexane, 2:1, v/v) to give the dihydrofuran $23(24 \mathrm{mg}, 67 \%)$ as a colourless oil; $[\alpha]_{D}^{23}+7.7\left(\right.$ c. $\left.0.9, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.10(66 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) 0.12 ; \mathrm{m} / \mathrm{z}(+\mathrm{EI})$ found: M^{+}, 556.1824. $\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{P}\right.$ requires M, 556.1803); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1723(\mathrm{C}=\mathrm{O}), 1620$ $(\mathrm{PhC}=\mathrm{C}), 1596(\mathrm{C}=\mathrm{C}), 1575(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ 8.06 ($2 \mathrm{H}, \mathrm{d}, J 7.0$, ortho-PhCO), 7.60-7.19 ($23 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCO), 6.18 ($1 \mathrm{H}, \mathrm{d}, J 6.0$, $\mathrm{PhCH}), 5.14\left(1 \mathrm{H}, \mathrm{dt}, J 10.5\right.$ and $\left.6.0, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.98\left(1 \mathrm{H}, \mathrm{ddd}, J 15.5,11.0\right.$ and $\left.2.5, \mathrm{CH}_{A} \mathrm{H}_{\mathrm{B}}\right)$ and $2.61\left(1 \mathrm{H}\right.$, ddd, $J 15.5,6.5$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 166.2$ (d, $J 18.0, \mathrm{C} 5$), $165.5(\mathrm{C}=\mathrm{O})$, 136-127 (m, $\mathrm{Ph}_{2} \mathrm{PO}, \mathrm{Ph}$ and PhCO), 98.3 (d, $J 120.0, \mathrm{C} 4$), 81.9 (d, J 10.0, C2), 60.4 (C1') and 36.6 (d, J 10.0, C3).
(2RS, $2^{\prime} R S, 4^{\prime} R, 5^{\prime} R$)-2-Diphenylphosphinoyl-3-(2'-oxo-5'-phenyl-[1', $\left.3^{\prime}, 2^{\prime}\right]$ dioxathiolan-4'-yl)-1-phenyl-propan-1-one 24
By method $\mathbf{6}$ phosphine oxide $(4 R, 5 R)-\mathbf{1 7}(1.0 \mathrm{~g}, 2.1 \mathrm{mmol})$ after 2 hours gave a yellow foam. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $4 \times$ hexanes; $10-100 \%$ EtOAc in hexanes (v/v) -10% increments; $4 \times$ EtOAc; $5-50 \% \mathrm{MeOH}$ in EtOAc (v/v) -5% increments) to give cyclic sulfites 24 ($0.52 \mathrm{~g}, 47 \%$) as a yellow gum. $R_{\mathrm{f}} 0.70$ (EtOAc); m / z (+ESI) found: MH^{+}, 517.1239. $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{PS}\right.$ requires M, 517.1245); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1675(\mathrm{C}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1200(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) Four diastereoisomers A, B, C and D: $\delta 7.83-7.20(\mathrm{~m}, \mathrm{Ph}$ A,B,C,D), $5.54(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{C} H \mathrm{Ph}$ A), $5.28(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C} H \mathrm{Ph}$ B), $5.09(1 \mathrm{H}, \mathrm{ddd}, J 13.5,11.5$ and $2.5, \mathrm{PCH} \mathrm{A}), 4.99-4.89(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{PCH} \mathrm{B}, \mathrm{C}), 4.98(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHPh} \mathrm{C}), 4.90(1 \mathrm{H}, \mathrm{d}, J 9.5$, $\mathrm{PhCH} \mathrm{D}), 4.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{D}\right), 4.68-4.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH} \mathrm{D}\right.$ and $\left.\mathrm{CHCH}_{2} \mathrm{C}\right), 4.49(1 \mathrm{H}, \mathrm{dt}, J 9.5$ and 5.0, $\left.\mathrm{CHCH}_{2} \mathrm{~B}\right), ~ 4.34-4.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{~A}\right), 3.05-2.80(\mathrm{~m}), ~ 2.58-2.36(\mathrm{~m})$ and 2.29-2.22 (m) $\left(4 \times \mathrm{PCHCH}_{2} \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 30.7,29.8,29.7$ and 29.3; ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) Four diastereoisomers A, B, C and D: $\delta 196.8$ (d, $J 2.5$), 196.7 (d, $J 2.5$), 196.2 (d, J 3.5), 196.1 (d $J 3.0$) ($4 \times \mathrm{C} 1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}), 137.9(\times 2), 137.4,137.3(4 \times$ ipso-C=O A,B,C,D), 133.4-
 85.4 (C5’ A), 83.6 (d, $J 11.5, C^{\prime}$ D), 83.2 (C5’ B), 82.6 (d, $\left.J 12.5, \mathrm{C} 4{ }^{\prime} \mathrm{C}\right), 48.3$ (d, $\left.J 54.5, \mathrm{C} 2 \mathrm{D}\right)$, $47.6(\mathrm{~d}, J 55.5, \mathrm{C} 2 \mathrm{~B}), 47.0(\mathrm{~d}, J 55.5,2 \times \mathrm{C} 2 \mathrm{~A}, \mathrm{C}), 30.9,30.8,28.6$ and $28.2(4 \times \mathrm{C} 3 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$; (Found: $\mathrm{C}, 67.25 ; \mathrm{H}, 4.92 . \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{PS} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.43 ; \mathrm{H}, 4.88 \%$).
(4R,5S)-5-Azido-1,5-diphenyl-4-diphenylphosphinoyloxy-pentan-1-one 7, (2R,1'S)-2-[(1'-azido-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-dihydrofuran 25 and ($2 S, 1^{\prime} R$)-2-[(1'-hydroxy-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-dihydrofuran 20
By method 5 phosphine oxide $24(0.41 \mathrm{~g}, 0.79 \mathrm{mmol})$ gave a yellow gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 0-100\% EtOAc in hexanes (v/v) -10% increments; $2-8 \%$ MeOH in EtOAc (v/v) - 2% increments; two fractions of each solvent mixture were collected] gave ketone 7 ($145 \mathrm{mg}, 37 \%$) as a clear gum, starting material 24 ($53 \mathrm{mg}, 13 \%$) as a white solid, azide $\mathbf{2 5}$ ($68 \mathrm{mg}, 18 \%$) as a clear gum and the dihydrofuran $\mathbf{2 0}$ ($21 \mathrm{mg}, 6 \%$) as a clear gum. Analytical data for azide 25: mp $176-177^{\circ} \mathrm{C}$ (from EtOAc, hexanes, MeOH); $R_{\mathrm{f}} 0.20(80 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v})$; $[\alpha]_{D}^{23}+30.2$ (c. 1.3, CHCl_{3}); $m / z(+\mathrm{EI})$ found: M^{+}, 477.1611. $\left(\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}\right.$ requires $\left.M, 477.1606\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2100\left(\mathrm{~N}_{3}\right), 1438(\mathrm{P}-\mathrm{Ph})$ and $1181(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.77-$ 7.08 (20H, m, Ph), 5.02 (1H, ddd, J 11.0, 7.5 and 4.0, PhCHCH), 4.86 (1H, d, J 4.0, PhCH), 2.88 (1 H , ddd, J 15.0, 11.0, 2.5, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$) and $2.76\left(1 \mathrm{H}\right.$, ddd, $J 15.5,7.5$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 22.2 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 166.0$ (d, J 18.0, C5), 134.7 (ipso- PhCH), 133.0 (d, J 109.0. ipso-PhP), 132.4 (d, J 109.0, ipso-PhP), 131.4 (d, $J 3.0$, para-PhP), 131.3 (d, J 10.0, ortho-PhP), 131.3 (d, J 3.0, para-PhP), 131.2 (d, J 10.0, ortho-PhP), 130.1 (Ph), 129.1 (ipso$P h \mathrm{C}=\mathrm{C}$), $128.8(\times 2), 128.6(\mathrm{Ph}), 128.3(\mathrm{~d}, J 12.0$, meta -PhP), 128.1 (d, $J 12.5$, meta-PhP), 127.6, 127.5, (Ph), 98.6 (d, $J 119.5, \mathrm{C} 4), 82.9(\mathrm{~d}, J 10.0, \mathrm{C} 2), 67.7(\mathrm{C} 1$ ') and 36.1 (d, $J 10.0, \mathrm{C} 3)$; (Found: $\mathrm{C}, 73.26 ; \mathrm{H}, 5.13 ; \mathrm{N}, 8.81 . \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.95 ; \mathrm{H}, 5.07 ; \mathrm{N}, 8.80 \%$). All analytical data for ketone $\mathbf{7}$ and dihydrofuran $\mathbf{2 0}$ were identical to that reported elsewhere in the experimental section.

(4R,5R)-1,5-Diphenyl-4,5-dihydroxypentan-1-one 27

By method 1 ketone ${ }^{10} 26(0.25 \mathrm{~g}, 1.06 \mathrm{mmol})$ after 2 days at $5{ }^{\circ} \mathrm{C}$ gave a pink residue that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $3 \times$ hexanes; 10-100\% EtOAc in hexanes (v / v) -10% increments] to give diol 27 ($0.27 \mathrm{~g}, 94 \%$) as white needles. e.e. $>95 \%$ (determined by chiral HPLC); HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 15 \% \mathrm{EtOH}$ in iso-hexane ($\left.\left.\mathrm{v} / \mathrm{v}\right)\right]: 46.3 ;[\alpha]_{D}^{23}-13.6$ (c. 1.1, $\mathrm{MeOH}) ; \mathrm{mp} 95-98{ }^{\circ} \mathrm{C}$ (from EtOAc, hexanes); $R_{\mathrm{f}} 0.25$ (50\% EtOAc in hexanes, v/v); m / z (+ESI) found: MNa^{+}, 293.1154. $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\right.$ requires M, 293.1154); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410$ (br., $\left.\mathrm{O}-\mathrm{H}\right)$ and $1681(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.95-7.92(2 \mathrm{H}, \mathrm{m}, \mathrm{PhC}=\mathrm{O}), 7.58-7.53(1 \mathrm{H}, \mathrm{m}$, $\mathrm{PhC}=\mathrm{O}), 7.47-7.42(2 \mathrm{H}, \mathrm{m}, \mathrm{PhC}=\mathrm{O}), 7.39-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}), 4.50(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and 3.5 ,
$\mathrm{PhCHOH}), 3.77\left(1 \mathrm{H}, \mathrm{ddt}, J 9.0,7.0\right.$ and $\left.4.0, \mathrm{CH}_{2} \mathrm{CHOH}\right), 3.17\left(1 \mathrm{H}, \mathrm{dt}, J 18.0\right.$ and $\left.7.0, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right)$, $3.09\left(1 \mathrm{H}, \mathrm{dt}, J 18.0\right.$ and $\left.7.0, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{C}=\mathrm{O}\right), 2.98\left(1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{CH}_{2} \mathrm{CHOH}\right), 2.79(1 \mathrm{H}, \mathrm{d}, J 3.5$, $\mathrm{PhCHOH})$ and 1.91-1.76 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{CHOH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 200.8(\mathrm{C} 1), 140.8$ (ipso- PhCH), 136.7 (ipso- $\mathrm{PhC}=\mathrm{O}$), 133.2 (para- $\mathrm{PhC}=\mathrm{O}$), 128.6 ($\times 2$), 128.2, 128.1, 126.9 (Ph), 78.1 (C5), 75.5 (C4), $35.0(\mathrm{C} 2)$ and $26.9(\mathrm{C} 3)$; (Found: C, 75.05 ; $\mathrm{H}, 6.72 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, 75.53; H , 6.71%).

(4RS,5RS)-1,5-Diphenyl-4,5-dihydroxypentan-1-one (\pm)-27

By method 3 ketone ${ }^{10} 26(0.10 \mathrm{~g}, 0.42 \mathrm{mmol})$ after 2 days gave a clear gum that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $5 \times$ hexanes; 10-90\% EtOAc in hexanes (v/v) -10% increments; $3 \times$ EtOAc $]$ to give diol $(\pm) \mathbf{- 2 7}(104 \mathrm{mg}, 90 \%)$ as a white amorphous solid. HPLC [$R_{\mathrm{T}}(\mathrm{min})$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 15 \% \mathrm{EtOH}$ in iso-hexane (v / v)]: 29.6 and 45.1. All analytical data was identical with that for $(4 R, 5 R)$-27 reported above.

(4R,5R)-4-[(3'-Oxo-3'-phenyl)-propyl]-5-phenyl-[1,3]-dioxolane-2-one 28

By method 4 diol $27(0.20 \mathrm{~g}, 0.74 \mathrm{mmol})$, after 40 minutes, gave a yellow amorphous solid. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $3 \times$ hexanes; 10-100\% EtOAc in hexanes (v/v) - 10% increments; $1-5 \% \mathrm{MeOH}$ in EtOAc (v/v) - 1% increments] to give cyclic carbonate $28(0.20 \mathrm{~g}, 92 \%)$ as white needles. $[\alpha]_{D}^{23}+38.3$ (c. $1.2, \mathrm{CHCl}_{3}$); $\mathrm{mp} 89-90{ }^{\circ} \mathrm{C}$ (from EtOAc, hexanes, MeOH); $R_{\mathrm{f}} 0.75$ (50% EtOAc in hexanes, v / v); m / z (+ESI) found: MNa^{+}, 319.0934. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\right.$ requires $\left.M, 319.0946\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1803(\mathrm{OC}=\mathrm{O})$ and 1685 $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.96-7.93(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.59(1 \mathrm{H}, \mathrm{tt}, J 7.5$ and $1.5, \mathrm{Ph}), 7.50-$ 7.38 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.27 ($1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{CHPh}$), 4.66 (1 H , ddd, $J 9.5,7.5$ and $3.5, \mathrm{CH}_{2} \mathrm{CH}$), $3.29(1 \mathrm{H}$, ddd, J 18.5, 8.0 and 5.5, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 3.18\left(1 \mathrm{H}, \mathrm{dt}, J 18.5\right.$ and $\left.7.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.44-2.36(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}$) and 2.26-2.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 198.0(\mathrm{C} 3$ '), 154.1 (C2), 136.3, 135.2 (ipso- PhCH and ipso- $\mathrm{PhC}=\mathrm{O}$), 133.5, 129.8, 129.2, 128.7, 128.0, 126.0 (Ph), 83.5, 83.4 (C4 and C5), $33.6\left(\mathrm{C} 2\right.$ ') and 27.5 (C 1 '); (Found: C, 72.64; H, 5.43. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 72.96; H, 5.44\%).

(4R,5S)-5-Azido-4-hydroxy-1,5-diphenyl-pentan-1-one 29

By method 5 cyclic carbonate $28(0.20 \mathrm{~g}, 0.74 \mathrm{mmol})$ after 48 hours gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $4 \times$ hexanes; 5-50\% EtOAc in hexanes $(\mathrm{v} / \mathrm{v})-5 \%$ increments] to give azide 29 ($92 \mathrm{mg}, 92 \%$) as yellow needles. $[\alpha]_{D}^{23}+4.3$ (c. 1.1, CHCl_{3}); mp 102-104 ${ }^{\circ} \mathrm{C}$ (from EtOAc); $R_{\mathrm{f}} 0.70$ (50\% EtOAc in hexanes, v / v); m / z (+ESI) found: MNa^{+}, 318.1219. $\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\right.$ requires $\left.M, 318.1218\right)$; IR $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3448$ (br., $\left.\mathrm{O}-\mathrm{H}\right), 2096\left(\mathrm{~N}_{3}\right)$, $1679(\mathrm{C}=\mathrm{O})$ and $1250(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.96-7.94(2 \mathrm{H}, \mathrm{m}$, ortho- $\mathrm{PhC}=\mathrm{O}), 7.56$ $(1 \mathrm{H}, \mathrm{tt}, J 7.5$ and 1.5, para-PhC=O), 7.47-7.34 (7H, m, Ph), $4.57(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{PhCH}), 3.89(1 \mathrm{H}$, ddd, $J 9.5,5.5$ and $2.5, \mathrm{CHOH}), 3.19-3.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.10-2.04(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}\right)$ and $1.79\left(1 \mathrm{H}\right.$, ddt, J 14.5, 10.0 and $\left.6.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 200.5$ (C1), 136.7, 136.1 (ipso- PhCH and ipso- $\mathrm{PhC}=\mathrm{O}$), 133.2 (para- $\mathrm{PhC}=\mathrm{O}$), 128.8, $128.5(\times 2)$, 128.0, 127.9 (Ph), 73.8 (C4), 70.6 (C5), 34.9 (C2) and 26.6 (C3).

(4R,5S)-5-Azido-1,5-diphenyl-4-diphenylphosphinoyloxy-pentan-1-one 7

Azide $29(0.25 \mathrm{~g}, 0.85 \mathrm{mmol})$ was dried by evaporation from anhydrous pyridine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and dissolved in anhydrous pyridine $\left(10 \mathrm{~cm}^{3}\right)$. To the stirred solution, at room temperature, diphenylphosphinoyl chloride $\left(0.5 \mathrm{~cm}^{3}, 2.62 \mathrm{mmol}\right)$ was added dropwise. After 8 hours the reaction was quenched with water $\left(25 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with 3 M aqueous $\mathrm{HCl}\left(2 \times 50 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}(50$ cm^{3}), brine $\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure to give a brown gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; $0-100 \%$ EtOAc in hexanes (v / v) -5% increments; $2.5-10 \% \mathrm{MeOH}$ in EtOAc (v / v) -2.5% increments] to give phosphinate $7(0.35 \mathrm{~g}, 83 \%)$ as white needles. $[\alpha]_{D}^{23}-1.1$ (c. $0.4, \mathrm{CHCl}_{3}$); mp 103-104 ${ }^{\circ} \mathrm{C}$ (from EtOAc); $R_{\mathrm{f}} 0.35$ ($40 \% \mathrm{EtOAc}$ in hexanes, v / v); m / z (+ESI) found: MNa^{+}, 518.1613. $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PNa}\right.$ requires $\left.M, 518.1610\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2103\left(\mathrm{~N}_{3}\right), 1685(\mathrm{C}=\mathrm{O}) 1439(\mathrm{P}-\mathrm{Ph})$ and $1226(\mathrm{P}=\mathrm{O}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 32.8 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.86-7.74$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.57-7.23(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.93(1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{PhCH}), 4.77(1 \mathrm{H}, \mathrm{tdd}, J 9.5,4.0$ and 3.0 , CHOP), $3.06\left(1 \mathrm{H}\right.$, ddd, $J 18.0,9.5$ and $\left.5.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.91(1 \mathrm{H}$, ddd, $J 18.0,9.5$ and 6.0 , $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.20-2.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and 2.02-1.94 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 198.9(\mathrm{C1}), 136.6,135.6(2 \times$ ipso- PhC), 132.9 (para- PhC), 132.4-130.7 (m, Ph), 128.7 (PhC), 128.7-128.5 (m, PhP), 128.4 ($\times 2$), 127.9, 127.2 (PhC), 78.7 (d, J 6.0, C4),
69.1 (d, J 3.5, C5), 34.5 (C2), 23.7 (d, $J 3.5, \mathrm{C} 3$); (Found: C, 69.95; H, 5.29; N, 8.19. $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires C, 70.29; H, 5.29; N, 8.48\%).

According to method 7 phosphine oxide $5(0.36 \mathrm{~g}, 0.73 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 0-100\% EtOAc in hexanes -10% increments; $2.5-40 \% \mathrm{MeOH}$ in EtOAc in hexanes (v/v) - 2.5% increments] to give the cyclopropane 8 ($0.13 \mathrm{~g}, 65 \%$) as white needles. e.e. $>92 \%$ (determined by NMR, Mosher's amide derivative); ${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): Derivative made from R-(+)-Mosher's acid chloride δ -68.97. Derivative made from racemic Mosher's acid chloride $\delta-68.87$ and -68.97 ; $[\alpha]_{D}^{23}+5.6$ (c. 1.1, CHCl_{3}); mp $89-90^{\circ} \mathrm{C}$ (from EtOAc); $R_{\mathrm{f}} 0.45(10 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 300.1105. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\right.$ requires M, 300.1113); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2081\left(\mathrm{~N}_{3}\right)$ and 1659 $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.06-8.04(2 \mathrm{H}, \mathrm{m}$, ortho- $\mathrm{PhC}=\mathrm{O}), 7.60(1 \mathrm{H}, \mathrm{tt}, J 7.5$ and 1.5 , para- $\mathrm{PhC}=\mathrm{O}$), 7.52-7.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.42-7.34 (5H, m, Ph), $4.25(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{PhCH}), 2.89(1 \mathrm{H}$, ddd, $J 8.5,4.5$ and $4.0, \mathrm{C} H \mathrm{C}=\mathrm{O}), 2.13\left(1 \mathrm{H}\right.$, dddd, $J 9.0,8.0,6.5$ and $\left.4.0, \mathrm{CHCHN}_{3}\right), 1.53(1 \mathrm{H}$, ddd, $J 9.0,5.0$ and $4.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $1.15\left(1 \mathrm{H}\right.$, ddd, $J 8.5,6.5$ and $\left.4.0, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $\delta 198.5(\mathrm{C} 1), 138.4,137.5(2 \times$ ipso-Ph), 133.0, 128.9, $128.6(\times 2), 128.1,126.9(6 \times \mathrm{Ph}), 67.8$ (C 1 ''), 29.7 (C2'), 23.5 (C^{\prime} '), 15.4 (C3'); (Found: C, 72.30 ; H, 5.70; N 14.09. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \cdot 1 / 6 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.49 ; \mathrm{H}, 5.67$; $\mathrm{N}, 14.25 \%)$.

According to method 7 ketone $7(0.35 \mathrm{~g}, 0.71 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $4 \times$ hexanes; $5-50 \%$ EtOAc in hexanes -5% increments; $60-$ 100% EtOAc in hexanes (v / v) - 10% increments] to give the cyclopropane $\mathbf{8}(0.19 \mathrm{~g}, 95 \%)$ as white needles. e.e. $>92 \%$ (determined by NMR, Mosher's amide derivative). All analytical data was in agreement with that reported above.
(4R,5R)-1-Furan-2-yl-4,5-dihydroxy-5-phenyl-pentan-1-one 31
By method 2 olefin $\mathbf{3 0}{ }^{11}$ ($46 \mathrm{mg}, 0.20 \mathrm{mmol}$) after 4 days at $3{ }^{\circ} \mathrm{C}$ gave a clear gum that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50-100\% EtOAc in hexanes (v/v) -10% increments; $5 \times$ EtOAc] to give diol 31 ($34 \mathrm{mg}, 65 \%$) as a clear film. e.e. $>93 \%$ (determined by
chiral HPLC); HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 10 \% \mathrm{EtOH}$ in iso-hexane (v/v)]: 76.6; $[\alpha]_{D}^{23}$ -24.6 (c. 3.1, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.25$ (80% EtOAc in hexanes, v / v); $m / z(+\mathrm{ESI})$ found: $\mathrm{MNa}^{+}, 283.0938$. $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\right.$ requires $M, 283.0946$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3415$ (br., O-H), 1663 ($\mathrm{C}=\mathrm{O}$), 1467 (furan C-O) and $1023(\mathrm{C}-\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.55(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $0.5, \mathrm{C} 5$), 7.34-7.27 (5H, m, Ph), $7.16(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $0.5, \mathrm{C} 3 '), 6.50(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $1.5, \mathrm{C} 4$ '), 4.45 $(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{PhCHOH}), 3.72\left(1 \mathrm{H}, \mathrm{ddd}, J 9.0,7.0\right.$ and $\left.3.5, \mathrm{CH}_{2} \mathrm{CHOH}\right), 3.03-2.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right.$ and $2 \times \mathrm{OH}$) and 1.82-1.70 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOH}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 189.7(\mathrm{C} 1), 152.4$ (C2'), 146.5 (C5'), 140.8 (ipso- Ph), 128.5 (Ph), 128.1 (para- Ph), 126.9 (Ph), 117.4 (C 3 '), 112.2 (C4'), 77.9 (C5), 75.3 (C4), 34.7 (C2) and 26.8 (C3); (Found: C, 67.53; H, 6.06. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \cdot 0.35$ EtOAc requires C, 67.58; H, 6.31\%).

(4RS,5RS)-1-Furan-2-yl-4,5-dihydroxy-5-phenyl-pentan-1-one (\pm)-31

By method $\mathbf{3}$ ketone $\mathbf{3 0}^{11}(0.20 \mathrm{mg}, 0.88 \mathrm{mmol})$ after 4 days gave a yellow residue that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $3 \times$ hexanes; 50-100\% EtOAc in hexanes (v/v) -10% increments; $5 \times$ EtOAc $]$ to give $\operatorname{diol}(\pm) \mathbf{3 1}(0.11 \mathrm{~g}, 47 \%)$ as a yellow gum. HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 10 \% \mathrm{EtOH}$ in iso-hexane (v / v)]: 61.4 and 76.3; All analytical data were identical with that for $(4 R, 5 R)$ - 31 reported above.
($2^{\prime} R S, 4^{\prime} R, 5^{\prime} R$)-1-Furan-2''-yl-3-(2'-oxo-5'-phenyl-[1', $\left.3^{\prime}, 2^{\prime}\right]$ dioxathiolan-4'-yl)-propan-1-one 32

By method $\mathbf{6}$ diol $31(0.18 \mathrm{~g}, 0.69 \mathrm{mmol})$ after 2 hours gave a black gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 25 \mathrm{~cm}^{3}$ fractions; 0-90\% EtOAc in hexanes (v/v) - 10% increments; two fractions of each solvent mixture were collected] to give cyclic sulfite $32(0.20 \mathrm{~g}, 95 \%)$ as a yellow gum. d.r. 2:3 (${ }^{1} \mathrm{H}$ NMR, epimers at S$) ; R_{\mathrm{f}} 0.30(30 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 329.0464. $\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SNa}\right.$ requires $\left.M, 329.0460\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1676(\mathrm{C}=\mathrm{O}), 1469$ (furan C-O) and $1206(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) Two diastereoisomers A (major) and B (minor): $\delta 7.58$ ($1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $0.5, \mathrm{C} 5{ }^{\prime}$ - -CH B), $7.57\left(1 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and $0.5, \mathrm{C} 5$ ' ${ }^{\prime}-\mathrm{CH}$ A), $7.51-$ 7.48 (m, Ph A,B), 7.45-7.40 (m, Ph A,B), 7.20 (1 H , dd, $J 3.5$ and $0.5, \mathrm{C} 3{ }^{\prime}$ - -CH B), 7.18 ($1 \mathrm{H}, \mathrm{dd}, J$ 3.5 and $0.5, \mathrm{C} 3$ '' $-\mathrm{CH} \mathrm{A}), 6.53(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{C} 4$ '' -CH A or B), $6.52(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{C} 4$ '' -CH A or B), $5.55(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C} H \mathrm{Ph}$ B), $5.00(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C} H \mathrm{Ph} \mathrm{A}), 7.18$ ($1 \mathrm{H}, \mathrm{td}, J 9.5$ and $3.0, \mathrm{C} H \mathrm{CHPh}$ A), $4.47\left(1 \mathrm{H}, \mathrm{td}, J 9.0\right.$ and $3.5, \mathrm{C} H \mathrm{CHPh}$ B), $3.18\left(1 \mathrm{H}\right.$, ddd, $J 18.0,8.0$ and $5.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}$ B), 3.14
(1 H , ddd, $J 17.5,9.5$ and $5.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}$ A), $3.04\left(1 \mathrm{H}, \mathrm{ddd}, J 17.5,8.0\right.$ and $7.0, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}$ B), $2.95\left(1 \mathrm{H}\right.$, ddd, $J 17.5,9.0$ and $\left.6.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O} \mathrm{A}\right), 2.33(1 \mathrm{H}$, dddd, $J 14.0,13,0,6.5$ and 3.5, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{OB}$), 2.29-2.22 (2H, m, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O} \mathrm{A}$ and $\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ B) and $2.14(1 \mathrm{H}$, dtd, J 14.5, 9.0 and $5.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O} \mathrm{A}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) Two diastereoisomers A (major) and B (minor): $\delta 187.5$ (C1 B), 187.2 (C1 A), $152.2(\times 2)(2 \times \mathrm{C} 2 "$ A,B), 146.6, 146.5 ($2 \times$ C5" A,B), 133.7 (ipso-Ph B), 133.0 (ipso-Ph A), 129.8, 129.5, 129.1 ($\times 2$), 127.7, 127.2 (ortho-, meta- and para-Ph A,B), 117.4 (C3'" B), 117.3 (C3'" A), 112.3 ($\times 2$) (C4'" A,B), 89.8 (C5' A), 88.3 (C4́ B), 84.4 (C5’ B), 84.0 (C4́A), 34.4 (C2 A), 34.0 (C2 B), 25.9 (C3 B) and 23.8 (C3 A); (Found: C, 58.49; H, 4.85. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 58.81$; $\mathrm{H}, 4.61 \%$).

(4R,5S)-1-(Furan-2-yl)-5-azido-4-hydroxy-5-phenyl-pentan-1-one 33

By method 5 cyclic sulfite $32(0.27 \mathrm{~g}, 0.88 \mathrm{mmol})$ after 46 hours gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v/v) 10% increments; $5 \times$ EtOAc] to give azide $33(0.21 \mathrm{~g}, 84 \%)$ as clear yellow gum. $[\alpha]_{D}^{23}+111$ (c. 1 , $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.55\left(50 \% \mathrm{EtOAc}\right.$ in hexanes, v/v); $m / z(+\mathrm{ESI})$ found: MNa^{+}, 308.0997. $\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}\right.$ requires $M, 308.1011$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3456($ br., $\mathrm{O}-\mathrm{H}), 2102\left(\mathrm{~N}_{3}\right), 1668(\mathrm{C}=\mathrm{O})$ and 1468 (furan C-O); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.57\left(1 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and $\left.0.5, \mathrm{C} 5{ }^{\prime}-\mathrm{H}\right), 7.42-7.34(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.19(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $0.5, \mathrm{C} 3 '-\mathrm{H}), 6.52(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $1.5, \mathrm{C} 4 '-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 6.0$, $\mathrm{PhCH}), 3.88-3.84(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.06-2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.41$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.5, \mathrm{OH}$), 2.02 $\left(1 \mathrm{H}, \mathrm{dtd}, J 14.5,7.0\right.$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.76(1 \mathrm{H}, \mathrm{ddt}, J 14.5,10.0$ and 6.5 , $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 189.5$ (C1), 152.5 (C2'), 146.5 (C5'), 136.1 (ipsoPh), 128.8 (ortho- or meta- Ph), 128.6 (para- Ph), 127.9 (ortho- or meta- Ph), 117.3 (C3'), 112.3 (C4'), 73.8 (C4), 70.5 (C5), 34.7 (C2) and 26.4 (C3); (Found: C, 62.99; H, 5.70. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 63.15; H, 5.30\%).

(4R,5S)-1-(Furan-2'-yl)-5-azido-4-diphenylphosphinoyloxy-5-phenyl-pentan-1-one 34

Alcohol 33 ($0.15 \mathrm{~g}, 0.54 \mathrm{mmol}$) was dissolved in anhydrous dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and triethylamine ($0.11 \mathrm{~g}, 1,07 \mathrm{mmol}$), DMAP ($13 \mathrm{mg}, 0.11 \mathrm{mmol}$) and diphenylphosphinoyl chloride $(0.13 \mathrm{~g}, 0.56 \mathrm{mmol})$ were added. After 23 hours the reaction mixture was transferred to a separatory funnel with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with aqueous sulfate buffer $\left(25 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}\left(25 \mathrm{~cm}^{3}\right)$,
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v/v) -10% increments; $5 \times$ EtOAc] to give phosphinate $34(0.23 \mathrm{~g}, 88 \%)$ as a clear gum. $[\alpha]_{D}^{23}-4.5$ (c. 1 , $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.45(50 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 508.1402. $\left(\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PNa}\right.$ requires M, 508.1394); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2105\left(\mathrm{~N}_{3}\right), 1676(\mathrm{C}=\mathrm{O}), 1469$ (furan $\mathrm{C}-\mathrm{O}), 1439(\mathrm{P}-\mathrm{Ph})$ and $1226(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.84-7.75(4 \mathrm{H}, \mathrm{m}$, ortho -Ph$)$, 7.57-7.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.49(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 1.0, C5'-H), 7.48-7.41 (4H, m, Ph), 7.34-7.27 (3H, $\mathrm{m}, \mathrm{Ph}), 7.23-7.21(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.03\left(1 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $\left.0.5, \mathrm{C} 3^{\prime}-\mathrm{H}\right), 6.45\left(1 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $1.5, \mathrm{C} 4{ }^{\prime}-$ H), $4.91(1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{PhCH}), 4.72(1 \mathrm{H}, \mathrm{tdd}, J 9.0,4.0$ and $3.0, \mathrm{PhCHCH}), 2.91(1 \mathrm{H}, \mathrm{ddd}, J 17.5$, 9.5 and 5.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.78\left(1 \mathrm{H}\right.$, ddd, $J 17.5,9.0$ and $\left.6.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.16(1 \mathrm{H}, \mathrm{dtd}, J 14.5,9.0$ and 5.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and 1.97-1.90 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $32.7 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 188.1$ (C1), 152.3 (C2'), 146.1 (C^{\prime}), 135.6 (ipso- PhC), 132.4 (d, J 3.0, para-PhP), 132.3 (d, J 2.5, para-PhP), 131.7 (d, J 10.5, ortho-PhP), 131.6 (d, J 10.5, ortho-PhP), $131.3(\times 2)(\mathrm{d}, J 136.5$, ipso-PhP and d, $J 136.5$, ipso-PhP), 128.7 (ortho-PhC), 128.6 $(\times 2)(\mathrm{d}, J$ 13.5, meta-PhP and d, J 13.5, meta -PhP), 128.4 (para-PhC), 127.2 (meta-PhC), 117.1 (C3'), 112.0 (C 4 '), 78.5 (d, $J 6.5, \mathrm{C} 4$), 69.0 (d, $J 3.0, \mathrm{C} 5$), 34.1 (C 2) and 23.5 (C3); (Found: C, 64.90; H, 5.07. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P} \cdot 0.05$ EtOAc requires $\mathrm{C}, 65.22 ; \mathrm{H}, 4.90 \%$).
$\left(1^{\prime} R, 2^{\prime} R, 1^{\prime}{ }^{\prime} R\right)-\left\{2^{\prime}-\left[\left(1^{\prime} ’\right.\right.\right.$-Azido-1' ${ }^{\prime}$-phenyl)-methyl]-cyclopropyl\}-1-(furan-2'ツ-yl)-methanone 35

By method 7 ketone $34(0.20 \mathrm{~g}, 0.41 \mathrm{mmol})$ after 21 hours gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 25 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-70\% EtOAc in hexanes -10% increments; two fractions of each solvent mixture] to give the cyclopropane 35 ($33 \mathrm{mg}, 30 \%$) as white needles. e.e. $>96 \%$ (determined by NMR, Mosher's amide derivative); ${ }^{19}$ F NMR (400 MHz ; CDCl_{3}): Derivative made from R-(+)-Mosher's acid chloride $\delta-68.97$. Derivative made from racemic Mosher's acid chloride $\delta-69.08$ and $-68.97 ;[\alpha]_{D}^{23}+108\left(c .0 .4, \mathrm{CHCl}_{3}\right.$); mp $72-74{ }^{\circ} \mathrm{C}$ (from EtOAc, hexanes); $R_{\mathrm{f}} 0.45$ (10\% EtOAc in hexanes, v / v); m / z (+ESI) found: MNa^{+}, 290.0916. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$ requires $\left.M, 290.0905\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2086\left(\mathrm{~N}_{3}\right), 1652(\mathrm{C}=\mathrm{O})$ and 1468 (furan C-O); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.64\left(1 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and $\left.0.5, \mathrm{C} 5{ }^{\prime}{ }^{\prime}-\mathrm{H}\right), 7.41-7.33(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 7.28\left(1 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $\left.0.5, \mathrm{C} 3{ }^{\prime \prime}{ }^{\prime}-\mathrm{H}\right), 6.58\left(1 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $\left.1.5, \mathrm{C} 4{ }^{\prime}{ }^{\prime}-\mathrm{H}\right), 4.22(1 \mathrm{H}, \mathrm{d}, J$ 7.5, PhCH$), 2.83(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 8.5$ and $4.5, \mathrm{CHC}=\mathrm{O}), 2.10(1 \mathrm{H}, \mathrm{dddd}, J 9.0,7.5,6.5$ and 4.0 ,
$\left.\mathrm{CHCHN}_{3}\right), 1.50\left(1 \mathrm{H}\right.$, ddd, $J 9.0,5.0$ and $\left.4.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.12\left(1 \mathrm{H}, \operatorname{ddd}, J 8.5,6.5\right.$ and $\left.4.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$
 Ph), 128.6 (para-Ph), 126.9 (meta-Ph), 117.1 (C3'’'), 112.4 (C4'’'), 67.4 (C1'’), 29.3 (C2'), 23.4 (C1') and 14.8 (C3'); (Found: C, 67.42; H, 5.12. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 67.40$; H, 4.90\%).

(2S,1'R)-2-[(1'-Hydroxy-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-

dihydrofuran 20

To a solution of cyclic carbonate $19(0.88 \mathrm{~g}, 1.77 \mathrm{mmol})$ in anhydrous dichloromethane was added DBU ($0.32 \mathrm{~g}, 2.12 \mathrm{mmol}, 0.32 \mathrm{~cm}^{3}$). The reaction mixture was stirred under argon at room temperature overnight, transferred to a separatory funnel with 3 M aqueous $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum. The product was purified by DCVC [id 4 $\mathrm{cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50-90\% EtOAc in hexanes (v/v) -10% increments; $4 \times \mathrm{EtOAc}$; $2-12 \% \mathrm{MeOH}$ in EtOAc (v/v) - 2% increments - two fractions of each solvent mixture were collected] to give the dihydrofuran $20(0.53 \mathrm{~g}, 66 \%)$ as white needles. All analytical data were identical with that reported above.

(2S,1'R)-2-[(1'-Hydroxy-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-

dihydrofuran 20

According to method $\mathbf{4}$ diol $(4 R, 5 R)-17(0.30 \mathrm{~g}, 0.64 \mathrm{mmol})$ after 2 hours gave cyclic carbonate 19 according to TLC. DBU ($0.22 \mathrm{~g}, 1.4 \mathrm{mmol}, 0.22 \mathrm{~cm} 3$) was added and the reaction mixture stirred overnight (19 hours). The reaction mixture was transferred to a separatory funnel with 3 M aqueous $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phase were washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; $50-90 \%$ EtOAc in hexanes (v / v) -10% increments; $5 \times$ EtOAc; 2-10\% MeOH in EtOAc (v/v) - 2% increments - two fractions of each solvent mixture were collected) to give the dihydrofuran $\mathbf{2 0}(0.18 \mathrm{~g}, 63 \%)$ as white needles. All analytical data were identical with that reported above.
(2R,1'R)-2-[(1'-Hydroxy-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3dihydrofuran 36
To a solution of diol $(4 R, 5 R)-17(0.20 \mathrm{~g}, 0.43 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ a drop of thionyl chloride was added. After stirring for 3 hours at room temperature the reaction mixture was transferred to a separatory funnel with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, brine $\left(20 \mathrm{~cm}^{3}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50-90\% EtOAc in hexanes (v / v) -10% increments; $5 \times$ EtOAc; 2-12\% MeOH in EtOAc (v/v) - 2\% increments - two fractions of each solvent mixture were collected] to give the dihydrofuran $36(0.12 \mathrm{~g}, 63 \%)$ as a white amorphous solid. $[\alpha]_{D}^{23}-16$ (c. 1.1, CHCl_{3}); mp $82-84{ }^{\circ} \mathrm{C}$ (from EtOAc, MeOH , hexanes); $R_{\mathrm{f}} 0.25$ (EtOAc); m / z (+ESI) found: MNa^{+}, 475.1456. $\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{PNa}\right.$ requires M, 475.1439); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3280$ (br., O-H), 1595 and $1493(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1173(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.59-7.54(3 \mathrm{H}, \mathrm{m}$, Ph), 7.47-7.43 (2H, m, Ph), 7.39-7.28 (9H, m, Ph), 7.25-7.22 (3H, m, Ph), 7.16 ($1 \mathrm{H}, \mathrm{tt}, J 7.5$ and $1.5, \mathrm{Ph}), 7.09-7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.95\left(1 \mathrm{H}, \mathrm{dt}, J 10.5\right.$ and $\left.7.0, \mathrm{CHCH}_{2}\right), 4.84(1 \mathrm{H}, \mathrm{d}, J 6.5$, $\mathrm{CHOH}), 2.74\left(1 \mathrm{H}\right.$, ddd, $J 15.5,10.5$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $2.62(1 \mathrm{H}$, ddd, $J 15.5,7.0$ and 2.5 , $\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}$); ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 21.9 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 165.8$ (d, $J 18.5, \mathrm{C} 5$), 139.0 (ipso-PhCH), 132.8 (d, J 109.0, ipso-PhP), 132.7 (d, J 109.0, ipso-PhP), 131.4-131.3 (m, Ph), 130.0 (Ph), 129.4 (ipso-PhC=C), 128.9, 128.5 (Ph), 128.3 (d, J 12.0, meta-PhP), 128.2 (d, J 12.0, meta-PhP), 127.6, 127.3 (Ph), 98.9 (d, J 119.5, C4), 84.5 (d, $J 10.0, \mathrm{C} 2$), 75.5 (C1’) and 36.2 (d, J 10.0, C3); (Found: C, 69.88; H, 5.45. $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{P} \cdot 0.2$ EtOAc requires C, 69.66 ; H, 5.17\%).

($2 R, 1$ ' S)-2-[(1'-Phenyl-1'-phenylsulfanyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-

 dihydrofuran 37Dihydrofuran $36(0.20 \mathrm{~g}, 0.44 \mathrm{mmol})$ was dissolved in anhydrous dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and triethylamine $\left(0.12 \mathrm{~cm}^{3}, 0.88 \mathrm{mmol}\right)$ and methanesulfonyl chloride $(0.10 \mathrm{~g}, 0.88 \mathrm{mmol})$ was added. After stirring overnight (24 hours) the reaction mixture was transferred to a separatory funnel with 3 M aqueous $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum that was dried by evaporation from anhydrous toluene. To a solution of benzenethiol ($53 \mathrm{mg}, 0.48 \mathrm{mmol}$) in anhydrous THF ($5 \mathrm{~cm}^{3}$) was added NaH (20 $\mathrm{mg}, 0.48 \mathrm{mmol}, 60 \%$ in mineral oil) followed by the crude mesylate product dissolved in anhydrous

THF ($5 \mathrm{~cm}^{3}$). The reaction mixture was stirred overnight (22 hours) and transferred to a separatory funnel with half saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate ($2 \times 25 \mathrm{~cm}^{3}$). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow solid that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50-90\% EtOAc in hexanes (v / v) -10% increments; $2-8 \% \mathrm{MeOH}$ in EtOAc (v / v) - 2% increments - two fractions of each solvent mixture were collected] to give the dihydrofuran $\mathbf{3 7}$ ($110 \mathrm{mg}, 45 \%, 2$ steps) as white needles. $[\alpha]_{D}^{23}+57$ (c. $0.6, \mathrm{CHCl}_{3}$); mp $184-185{ }^{\circ} \mathrm{C}$ (from EtOAc, MeOH, hexanes); $R_{\mathrm{f}} 0.50$ (EtOAc); m/z (+ESI) found: MNa^{+}, 567.1526. $\left(\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{PSNa}\right.$ requires M, 567.1524); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1596$ and 1493 (furan $\mathrm{C}=\mathrm{C}$), 1438 ($\mathrm{P}-\mathrm{Ph}$) and $1182(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 7.57-7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.50-7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.48-7.26(13 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.21-7.13$ ($6 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.08-7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.18\left(1 \mathrm{H}\right.$, ddd, $J 11.0,7.0$ and $\left.5.0, \mathrm{CHCH}_{2}\right), 4.28(1 \mathrm{H}, \mathrm{d}, J 5.0$, $\mathrm{C} H \mathrm{SPh}), 3.04\left(1 \mathrm{H}\right.$, ddd, $J 15.0,11.0$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $2.66(1 \mathrm{H}$, ddd, $J 15.5,7.0$ and 2.5 , $\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}$); ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 21.7 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 166.2$ (d, J 18.0, C5), 137.5, 133.9 ($2 \times$ ipso-Ph), 133.1 (d, J 109.0. ipso-PhP), 132.5 (d, J 109.0, ipso-PhP), 132.5 (Ph), 131.3 (d, $J 10.0$, ortho-PhP), 131.2 (d, $J 2.5$, para-PhP), $131.1(\times 2)(\mathrm{d}, J 9.5$, ortho- PhP and d, J 2.5, para-PhP), 129.9, $129.3(\mathrm{Ph}), 129.2$ (ipso- Ph), 128.9, 128.7, 128.4 ($3 \times \mathrm{Ph}$), 128.2 (d, J 12.0, meta-PhP), 127.9 (d, J 12.5, meta-PhP), 127.8, $127.5(\times 2)(3 \times \mathrm{Ph}), 98.0(\mathrm{~d}, J 119.5, \mathrm{C} 4), 82.3$ (d, J $10.0, \mathrm{C} 2$), $58.0\left(\mathrm{C} 1\right.$ ') and 38.6 (d, $J 10.0, \mathrm{C} 3$); (Found: C, 76.27 ; H, 5.37. $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{PS} \cdot 0.35 \mathrm{EtOAc}$ requires C, 76.30; H, 5.43\%).

(2S,1'S)-2-[(1'-Phenyl-1'-phenylsulfanyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-

 dihydrofuran 38Dihydrofuran $20(0.20 \mathrm{~g}, 0.44 \mathrm{mmol})$ was dissolved in anhydrous dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and triethylamine $\left(0.12 \mathrm{~cm}^{3}, 0.88 \mathrm{mmol}\right)$ and methanesulfonyl chloride $(0.10 \mathrm{~g}, 0.88 \mathrm{mmol})$ was added. After stirring overnight (24 hours) the reaction mixture was transferred to a separatory funnel with 3 M aqueous $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum that was dried by evaporation from anhydrous toluene. To a solution of benzenethiol ($53 \mathrm{mg}, 0.48 \mathrm{mmol}$) in anhydrous THF ($5 \mathrm{~cm}^{3}$) was added $\mathrm{NaH}(20$ $\mathrm{mg}, 0.48 \mathrm{mmol}, 60 \%$ in mineral oil) followed by the crude mesylate product dissolved in anhydrous THF ($5 \mathrm{~cm}^{3}$). The reaction mixture was stirred overnight (19 hours) and transferred to a separatory
funnel with half saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 50-90\% EtOAc in hexanes (v / v) - 10\% increments; 2-8\% MeOH in EtOAc (v/v) - 2\% increments - two fractions of each solvent mixture were collected] to give the dihydrofuran $\mathbf{3 8}$ ($95 \mathrm{mg}, 40 \%, 2$ steps) as yellow needles. $[\alpha]_{D}^{23}+93.2$ (c. $0.6, \mathrm{CHCl}_{3}$); mp $162-163{ }^{\circ} \mathrm{C}$ (from EtOAc, MeOH, hexanes); $R_{\mathrm{f}} 0.45$ (EtOAc); $m / z(+E S I)$ found: MNa^{+}, 567.1524. $\left(\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{PSNa}\right.$ requires $\left.M, 567.1524\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1596$ and $1492(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1186(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.63-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.55-7.53(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.47-7.43(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.40-7.25(12 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.23-7.20 (3H, m, Ph), 7.18-7.12 (3H, m, Ph), 7.08-7.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.15(1 \mathrm{H}$, ddd, $J 11.0,7.0$ and $\left.5.0, \mathrm{CHCH}_{2}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{C} H \mathrm{SPh}), 3.05\left(1 \mathrm{H}, \mathrm{ddd}, J 15.5,11.0\right.$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and 2.76 (1 H , ddd, J 15.5, 7.0 and $2.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9 ;{ }^{13} \mathrm{C}$ NMR (126 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 166.2(\mathrm{~d}, J 18.5, \mathrm{C} 5), 137.9,134.0(2 \times$ ipso-Ph), 133.2 (d, J 109.0. ipso-PhP), 132.2 (d, J 109.0, ipso-PhP), 132.4 (Ph), 131.5 (d, J 10.0, ortho-PhP), 131.4 (d, $J 2.5$, para-PhP), 131.3 (d, J 10.0, ortho-PhP), 131.2 (d, J 2.5, para-PhP), 129.9 (Ph), 129.4 (ipso-Ph), 129.0, 128.9, 128.8, 128.5 (Ph), 128.3 (d, $J 12.0$, meta- PhP), 128.0 (d, $J 12.5$, meta- PhP), 127.8, 127.5 ($\times 2$) (Ph), 98.3 (d, J 120.0, C4), 83.0 (d, $J 10.5, \mathrm{C} 2$), 57.7 (C1’) and 37.9 (d, J 10.0, C3); (Found: C, 74.64; H, 5.50. $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{PS} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 74.71$; $\mathrm{H}, 5.55 \%$).

(2R,1'S)-2-[(1'-Azido-1'-phenyl)-methyl]-4-diphenylphosphinoyl-5-phenyl-2,3-dihydrofuran 25

Dihydrofuran 36 ($0.20 \mathrm{~g}, 0.44 \mathrm{mmol}$) was dissolved in anhydrous dichloromethane ($5 \mathrm{~cm}^{3}$) and triethylamine $\left(0.12 \mathrm{~cm}^{3}, 0.88 \mathrm{mmol}\right)$ and methanesulfonyl chloride $(0.10 \mathrm{~g}, 0.88 \mathrm{mmol})$ was added. After stirring overnight (23 hours) the reaction mixture was transferred to a separatory funnel with 3 M aqueous $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow gum that was dried by evaporation from anhydrous toluene. The crude product was dissolved in anhydrous DMF $\left(5 \mathrm{~cm}^{3}\right)$ and sodium azide ($43 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added. The reaction mixture was stirred overnight (22 hours) at $60{ }^{\circ} \mathrm{C}$ under argon and transferred to a separatory funnel with half saturated aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and
concentrated in vacuo to give a brown gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; $50-90 \%$ EtOAc in hexanes (v/v) - 10\% increments; 2-8\% MeOH in EtOAc (v/v) - 2\% increments - two fractions of each solvent mixture were collected] gave the dihydrofuran $\mathbf{2 5}$ (0.13 $\mathrm{g}, 62 \%, 2$ steps) as white needles. All analytical data was identical to that reported above.

(2S,4S,5S,1'R)-4-Diphenylphosphinoyl-2-[(1'-hydroxy-1'-phenyl)-methyl]-5-phenyl-

 tetrahydrofuran 39Dihydrofuran 20 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in methanol $\left(5 \mathrm{~cm}^{3}\right)$ and glacial acetic acid $\left(1.5 \mathrm{~cm}^{3}\right)$ was added. The reaction flask was flushed with argon and $\mathrm{Pd}(\mathrm{OH})_{2}$ on charcoal ($20 \mathrm{wt} \%$, 10 mg) was added. The reaction flask was flushed with hydrogen, fitted with a hydrogen balloon and stirred vigorously for 12 hours, Celite was added to the reaction mixture and stirring was continued for 15 minutes. The slurry was filtered through a plug of celite and the catalyst washed with boiling methanol $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were concentrated in vacuo to give a white gum that was re-evaporated from toluene $\left(50 \mathrm{~cm}^{3}\right)$ to give a white powder. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $3 \times$ hexanes; 10-100\% EtOAc in hexanes (v / v) 10\% increments; 2.5-20\% MeOH in EtOAc (v/v) - 2.5\% increments] to give the tetrahydrofuran 39 $(58 \mathrm{mg}, 58 \%)$ as white needles. $[\alpha]_{D}^{23}-50\left(c .0 .1, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}>230{ }^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}} 0.65$ (EtOAc); $m / z(+E S I)$ found: MNa^{+}, 477.1605. $\left(\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{PNa}\right.$ requires $\left.M, 477.1596\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3339$ (br., O-H) and 1439 (P-Ph); ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO- d_{6}) δ 7.79-7.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.48-7.18 (13H, m, Ph), 7.00-6.87 (5H, m, Ph), 5.69 ($1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{OH}$), $5.10(1 \mathrm{H}, \mathrm{dd}, J$ 14.5 and 8.0, PCHCHPh), 4.85-4.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), 4.07 ($1 \mathrm{H}, \mathrm{dt}, J 8.5$ and $6.0, \mathrm{CHCHOH}$), 4.02$3.96(1 \mathrm{H}, \mathrm{m}, \mathrm{PC} H), 2.40-2.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $1.99-1.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz ; CDCl_{3}) $\delta 27.9 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}$) 143.3 (ipso-PhCHOH), 138.2 (d, J 5.5, ipsoPhCHCHP), 135.3 (d, J 97.0, ipso-PhP), 133.4 (d, J 101.0, ipso-PhP), 131.2, 130.7 ($2 \times \mathrm{Ph}$), 130.2 (d, J 8.5, ortho-PhP), 130.1 (d, J 9.0, ortho-PhP), 129.2-126.5 (m, Ph), 82.8 (d, J 8.0, C5), 81.4 (C2), 73.8 (C 1 '), 41.6 (d, J 75.0, C3) and 28.6 (C4); (Found: C, 76.16; H, 6.01. $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P} \cdot 0.25$ $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 75.89$; $\mathrm{H}, 6.04 \%$).

Crystal data for 20: $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{P}, M=452.46$, Hexagonal, $P 6_{1}, a=11.1634(1), b=11.1634(1), c=$ $33.8352(5) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=120^{\circ}, U=3651.68(7) \AA^{3}, Z=6, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.141 \mathrm{~mm}^{-1}$, 16946 reflections collected at 200(2) K using an Oxford Cryosystems Cryostream cooling
apparatus, 3114 unique ($R_{\text {int }}=0.046$); $R 1=0.058, w R 2=0.142[I>2 \sigma(I)]$, Absolute structure parameter -0.02(17).
Crystal data for 25: $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}, M=477.48$, Triclinic, $P 1, a=8.4713(3), b=8.5479(3), c=$ 17.4621(6) $\AA, \alpha=83.267(2)^{\circ}, \beta=83.693(2)^{\circ}, \gamma=74.518(2)^{\circ}, U=1206.09(7) \AA^{3}, Z=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)$ $=0.146 \mathrm{~mm}^{-1}, 12870$ reflections collected at $180(2) \mathrm{K}$ using an Oxford Cryosystems Cryostream cooling apparatus, 8246 unique $\left(R_{\text {int }}=0.068\right) ; R 1=0.070$, wR2 $=0.165[I>2 \sigma(I)]$, Absolute structure parameter 0.01(13).
Crystal data for 39: $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}, M=454.48$, Orthorhombic, $P 2_{1} 2_{2} 2_{1}, a=5.9419(1), b=14.3610(3)$, $c=26.6529(7) \AA, U=2274.34(9) \AA^{3}, Z=4, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.151 \mathrm{~mm}^{-1}, 14297$ reflections collected at 180(2) K using an Oxford Cryosystems Cryostream cooling apparatus, 2966 unique ($R_{\text {int }}=$ $0.095) ; R 1=0.046, w R 2=0.103[I>2 \sigma(I)]$, Absolute structure parameter -0.02(13).
The structures were solved with SHELXS-97, ${ }^{12}$ and refined with SHELXL-97. ${ }^{12}$
CCDC reference numbers 297304, 297305 and 297306. See http://www.rsc.org/suppdata/ for crystallographic data in .cif or other electronic format.

References

1. W. G. Kofron and L. M. Baclawski, J.Org.Chem., 1976, 41, 1879.
2. D. Sejer Pedersen and C. Rosenbohm, Synthesis, 2001, 2431.
3. Mestre-C software, ver. 4.5.6, www.mestrec.com.
4. H. Kolb, M. S. VanNiewenhze, and K. B. Sharpless, Chem.Rev., 1994, 94, 2483.
5. J. Eames, H. J. Mitchell, A. Nelson, P. O'Brien, S. Warren, and P. Wyatt, Tetrahedron Lett., 1995, 36, 1719.
6. J. Eames, H. J. Mitchell, A. Nelson, P. O'Brien, S. Warren, and P. Wyatt, J.Chem.Soc., Perkin Trans. 1, 1999, 1095.
7. H.-T. Chang and K. B. Sharpless, Tetrahedron Lett., 1996, 37, 3219.
8. T. Boesen, D. J. Fox, W. Galloway, D. S. Pedersen, C. R. Tyzack, and S. Warren, Org.Biomol.Chem., 2005, 3, 630.
9. C. R. Tyzack, PhD dissertation: Stereocontrolled Synthesis Using Phosphine Oxides, Cambridge University, University Chemical Laboratory, 2001.
10. D. J. Fox, D. S. Pedersen, and S. Warren, Chem.Commun., 2004, 2598.
11. D. J. Fox, D. S. Pedersen, and S. Warren, Accepted for publication in Org.Biomol.Chem., 2006.
12. Sheldrick, G. M., University of Göttingen, Germany, 1997, ver. SHELXS-97/SHELXL-97.
