Supplementary Material

Asymmetric synthesis of orthogonally protected trans-cyclopropane γ-amino acids via intramolecular ring closure

David J. Fox,* Daniel Sejer Pedersen and Stuart Warren

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.
EMAIL: djf34@cam.ac.uk

Experimental

For reactions conducted under anhydrous conditions glassware was dried overnight in an oven at $130{ }^{\circ} \mathrm{C}$ and was allowed to cool in a dessicator over anhydrous KOH. Anhydrous reactions were carried out under argon. Solvents were BOC standard reagent grade and distilled before use. Reagents/solvents for anhydrous reactions were dried as follows: THF was distilled from sodium wire with benzophenone as indicator. Ether was distilled from a mixture of CaH_{2} and LiAlH_{4}. Dichloromethane, hexane, acetonitrile, toluene, pyridine, N, N-dimethylformamide, triethylamine, dimethylsulfoxide and diisopropylamine were dried and stored over $4 \AA$ molecular sieves. Methanol was dried and stored over $3 \AA$ molecular sieves. n-Butyllithium was titrated against diphenylacetic acid before use. ${ }^{1}$ Sulfate buffer was prepared by dissolving 1.5 mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in $0.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ and adding water to give a total volume of $2000 \mathrm{~cm}^{3}$. Thin layer chromatography (TLC) was carried out on commercially available pre-coated glass plates (Merck $60 \mathrm{~F}_{254}$). The quoted R_{f} values are rounded to the nearest 0.05 . Dry Column Vacuum Chromatography (DCVC) was performed according to the published procedure. ${ }^{2}$ A larger diameter column than that recommended was generally necessary with phosphine oxides due to their tendency to streak on the columns. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, APT, DEPT, HMQC, COSY, and NOE NMR spectra were recorded on Bruker Avance 400 (5 mm QNP probe), Bruker Avance 500 (5 mm dual ${ }^{13} \mathrm{C}^{1} \mathrm{H}$ cryo probe) and Bruker Avance $700(5 \mathrm{~mm}$ conventional geometry dual ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ probe) Fourier transform spectrometers using an internal deuterium lock. ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker Avance 400 (5 mm QNP probe) Fourier transform spectrometer using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. Solvents were used as internal standard when assigning NMR spectra ($\delta_{\mathrm{H}}: \mathrm{CDCl}_{3} 7.26 \mathrm{ppm}$, DMSO- $d_{6} 2.50 ; \delta_{\mathrm{C}}: \mathrm{CDCl}_{3}$ 77.0 ppm , DMSO- $d_{6} 39.4 \mathrm{ppm}$). Mestre-C 4.5 .6 software, ${ }^{3}$ was used for assigning spectra. J values are given in Hz and rounded to the nearest 0.5 Hz . LC-MS was run on a Waters Alliance LC/MS system consisting of a Waters 2795 Separations Module, a Waters 2996 Photodiode Array Detector
and a Waters Micromass ZQ on a C18 analytical Reverse Phase Supercosil ${ }^{\text {TM }}$ ABZ+PLUS column $(3.3 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 3 \mu \mathrm{~m})$ using the following gradient: $0.00-0.70 \mathrm{~min} 100 \%$ solvent $\mathrm{A}, 0.70-4.20 \mathrm{~min}$ 100% solvent A to 100% solvent B, 4.20-7.70 min 100% solvent $\mathrm{B}, 7.70-8.00 \mathrm{~min} 100 \%$ solvent B to 100% solvent A (solvent A: 10 mM ammonium acetate in water containing 0.1% formic acid; solvent B: 95% acetonitrile in water) with a flow rate of $1 \mathrm{~cm}^{3} / \mathrm{min}$. EI and LSIMS mass spectra were recorded on a Kratos concept 1 H double focusing magnetic sector instrument using a MACH 3 data system. +ESI mass spectra were recorded using a Bruker Bio-Apex II FT-ICR instrument or a Micromass Q-Tof 1 machine. Microanalyses were carried out on a CE440 Elemental Analyser from Exeter Analytical, INC. The calculated values were adjusted for residual solvents. Melting points were measured on a microscope hot stage melting point apparatus (C. Reichert Optische Werke AG) and are uncorrected. Infra-red spectra were recorded using a Perkin Elmer Spectrum One (FT-IR) spectrometer with a universal ATR sampling accessory. Optical rotations were recorded on a Perkin Elmer 241 polarimeter using to the sodium D line (589 nm) at $23{ }^{\circ} \mathrm{C}$ and are given in units of $10^{-1} \mathrm{deg} \mathrm{dm}{ }^{2} \mathrm{~g}^{-1}$. X-ray Crystallographic Data was measured on a Nonius Kappa CCD diffractometer at 180(2) K. Analytical chiral HPLC was carried out on a Daicel Chiralpak AD column ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) and guard column with a Spectra-Physics SP8800 pump, a SpectraPhysics SP8450 UV detection system and a ChromJet single channel integrator with a flow rate of 1 $\mathrm{cm}^{3} / \mathrm{min}$.

Method 1: Asymmetric dihydroxylation (AD)
By a method analogous to that reported by Sharpless, ${ }^{4}$ the substrate $(1 \mathrm{mmol})$ is dissolved in t $\mathrm{BuOH}\left(10 \mathrm{~cm}^{3}\right)$. Water $\left(10 \mathrm{~cm}^{3}\right)$ is added and the mixture cooled to $0{ }^{\circ} \mathrm{C}$. A mixture of $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2$ $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(3 \mathrm{eq}),. \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}),. \mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1 eq .) and (DHQD) ${ }_{2} \mathrm{PHAL}$ (2 $\mathrm{mol} \%$) is added to the cooled solution and it is stirred vigorously until completion. Sodium sulfite (~ 10 eq.) is added and the reaction allowed to warm to room temperature with vigorous stirring. The slurry is transferred to a separatory funnel and the phases are separated. The organic phase is concentrated in vacuo and the residue dissolved in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ and transferred to a separatory funnel with the aqueous phase and water $\left(10 \mathrm{~cm}^{3}\right)$. Extracted with dichloromethane ($2 \times$ $20 \mathrm{~cm}^{3}$). The combined organic extracts are washed with aqueous sulfate buffer $\left(20 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue is purified by column chromatography.

Method 2: Racemic dihydroxylation
According to the procedure by Warren ${ }^{5,6}$ racemic dihydroxylations were performed at room temperature and $(\mathrm{DHQD})_{2} \mathrm{PHAL}$ was replaced with quinuclidine ($5 \mathrm{~mol} \%$). Sodium sulfite (~ 10 eq.) is added and the reaction allowed to warm to room temperature with vigorous stirring. The slurry is transferred to a separatory funnel with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate ($3 \times$ $20 \mathrm{~cm}^{3}$). The combined organic extracts are washed with aqueous sulfate buffer $\left(20 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure and the residue purified by column chromatography.

Method 3: Diphenylphosphinoylation of alcohols
To a stirred solution of the alcohol $(1 \mathrm{mmol})$ in anhydrous dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ under argon is added $\mathrm{Et}_{3} \mathrm{~N}$ (2 eq .), DMAP (0.2 eq.) and diphenylphosphinoyl chloride (1.1 eq.). When the reaction has gone to completion water $\left(10 \mathrm{~cm}^{3}\right)$ is added and the mixture transferred to a separatory funnel and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases are washed with saturated aqueous sulfate buffer $\left(25 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}\left(25 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent removed in vacuo to give the crude product that is purified by column chromatography.

Method 4: Synthesis of cyclic sulfites

Thionyl chloride (1.5 eq .) is added to a stirred solution of the diol (1 mmol) and pyridine (4 eq .) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at room temperature under argon. When the reaction has gone to completion saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ is added and the mixture transferred to a separatory funnel with water $\left(5 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phases are washed with aqueous sulfate buffer $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent removed in vacuo to give the crude product that is purified by column chromatography.

Method 5: Mesylation of alcohols

To a stirred solution of the alcohol (1 mmol) in anhydrous dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ under argon is added anhydrous pyridine (10 eq .) and methanesulfonyl chloride (1.1 eq .). When the reaction has gone to completion sulfate buffer ($20 \mathrm{~cm}^{3}$) is added and the mixture transferred to a separatory funnel with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases are washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the
solvent removed in vacuo to give the crude product that is re-dissolved in toluene and concentrated in vacuo to remove pyridine traces. The product is purified by column chromatography.

Method 6: Tosylation of alcohols

To a stirred solution of the alcohol (1 mmol) in anhydrous dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ under argon is added triethylamine (2 eq.), DMAP (0.2 eq.) and 4-methylphenylsulfonyl chloride (1.1 eq.). When the reaction has gone to completion sulfate buffer $\left(20 \mathrm{~cm}^{3}\right)$ is added and the mixture transferred to a separatory funnel with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases are washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent removed in vacuo to give the crude product that is purified by column chromatography.

Method 7 a-c: Cyclopropanation by intramolecular ring closure
7a (LDA): The substrate (1 mmol) is dissolved in anhydrous THF $\left(10 \mathrm{~cm}^{3}\right)$ and cooled to $-78{ }^{\circ} \mathrm{C}$ with stirring under argon. Freshly prepared LDA cooled to $-78{ }^{\circ} \mathrm{C}$ is added by cannula. After stirring at $-78^{\circ} \mathrm{C}$ for 1-2 hours the reaction mixture is allowed to slowly warm to room temperature overnight. The reaction is quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$, extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product, which is purified by column chromatography.

7b (NaHMDS): Same procedure as method 7a except that sodium hexamethyldisilazide (2.0 M in THF, 1.05 eq.) is employed instead of LDA, and the temperature is maintained at $-78{ }^{\circ} \mathrm{C}$ for 3-4 hours after the addition of base.

7c (KHMDS): Same procedure as method 7a except that potassium hexamethyldisilazide (0.5 M in toluene, 1.05 eq.) is employed instead of LDA, and the temperature is maintained at $-78{ }^{\circ} \mathrm{C}$ for $3-4$ hours after the addition of base.

Method 8: Opening of cyclic sulfites with sodium azide
The cyclic sulfite (1 mmol) is dissolved in anhydrous DMF $\left(5 \mathrm{~cm}^{3}\right) . \mathrm{NaN}_{3}$ (2 eq.) is added and the reaction mixture heated to $60^{\circ} \mathrm{C}$ with stirring under argon for 48 hours. When the reaction mixture has cooled to room temperature it is transferred to a separatory funnel with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases are washed with aqueous
sulfate buffer $\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Residual DMF is removed on a high vacuum pump and the residue purified by column chromatography.

Method 9: Synthesis of Mosher's amides
Mosher's amide derivatives using racemic Mosher's acid (α-methoxy- α-trifluoromethylphenylacetic acid) and (R)-(+)-Mosher's acid were prepared and analysed using ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR. Moshers acid (2.14 mmol) is dissolved in anhydrous dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and cooled to $0{ }^{\circ} \mathrm{C}$. Oxalyl chloride (21.4 mmol) is added followed by 1 drop of DMF. After stirring for 1 hour the reaction mixture is concentrated in vacuo and the residue suspended in hexane ($2 \times 25 \mathrm{~cm}^{3}$) and concentrated in vacuo [${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta-70.2$]. The product was dissolved in anhydrous dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ to give a 0.21 M solution of Mosher's acid chloride.
The amine $(0.2 \mathrm{mmol})$ is dissolved in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and Mosher's acid chloride (0.3 $\mathrm{mmol}, 1.4 \mathrm{~cm}^{3}, 0.21 \mathrm{M}$ in dichloromethane) is added followed by saturated aqueous sodium carbonate $\left(5 \mathrm{~cm}^{3}\right)$. After stirring overnight the phases are separated and the organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give crude Mosher's amide that is analysed by NMR without further purification.

(E)-tert-Butyl 5-phenyl-pent-4-enoate 8

tert-Butyl acetate $(1.0 \mathrm{~g}, 8.6 \mathrm{mmol})$ was dissolved in anhydrous THF $\left(40 \mathrm{~cm}^{3}\right)$ and cooled to -78 ${ }^{\circ}$ C. Freshly prepared LDA (9.0 mmol) was added by cannula to give a red solution. After $1 / 2$ hour HMPA $\left(1.5 \mathrm{~cm}^{3}, 8.6 \mathrm{mmol}\right)$ was added. After an additional $1 / 2$ hour (E)-cinnamyl bromide $(1.7 \mathrm{~g}$, $8.6 \mathrm{mmol})$ dissolved in anhydrous THF $\left(10 \mathrm{~cm}^{3}\right)$ and cooled to $-78{ }^{\circ} \mathrm{C}$ was added by cannula. After 4 hours the reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$ and allowed to warm to room temperature. The reaction mixture was transferred to a separatory funnel with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with water $\left(3 \times 50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow liquid. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $6 \times$ hexanes; 2.5-20\% EtOAc in hexanes (v/v) - 2.5% increments; two fractions of each solvent mixture were collected] to give tert-butyl ester $8(1.92 \mathrm{~g}, 96 \%)$ as a clear colourless liquid. $R_{\mathrm{f}} 0.30$ ($5 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v})$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1722(\mathrm{C}=\mathrm{O})$ and $1149(\mathrm{C}-\mathrm{O}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 255.1367. $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\right.$ requires $\left.M, 355.1356\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.36-7.34(2 \mathrm{H}$, m, ortho- Ph), 7.32-7.29 ($2 \mathrm{H}, \mathrm{m}$, meta- Ph), $7.21(1 \mathrm{H}, \mathrm{tt}, J 7.0$ and 1.5 . para -Ph$), 6.44(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{CH}=\mathrm{CHPh})$,
$6.22(1 \mathrm{H}, \mathrm{dt}, J 16.0$ and $7.0, \mathrm{CH}=\mathrm{CHPh}), 2.53-2.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.42-2.39(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$) and $1.47\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right] ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 172.3(\mathrm{C} 1), 137.4$ (ipso- Ph), 130.7 (C5), 128.7 (C4), 128.4 (meta- Ph), 127.0 (para- Ph), 126.0 (ortho- Ph), $80.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 35.2$ (C2), $28.5(\mathrm{C} 3)$ and $28.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$; (Found: $\mathrm{C}, 77.81 ; \mathrm{H}, 8.73 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.55 ; \mathrm{H}$, $8.68 \%)$. Compound $\mathbf{8}$ has been reported before with no characterisation. ${ }^{7}$

(4R,5R)-tert-Butyl 4,5-dihydroxy-5-phenyl-pentanoate 9

By method $\mathbf{1}$ tert-butyl ester $\mathbf{8}(3.0 \mathrm{~g}, 12.9 \mathrm{mmol})$ after 4 days at $3{ }^{\circ} \mathrm{C}$ gave a viscous yellow liquid that was purified by DCVC [id $6 \mathrm{~cm} ; 50 \mathrm{~cm}^{3}$ fractions; $3 \times$ hexanes; 10-100\% EtOAc in hexanes (v/v) -10% increments; $3 \times$ EtOAc] to give diol $9(2.95 \mathrm{~g}, 86 \%)$ as white needles. e.e. $>95 \%$ (determined by chiral HPLC); HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 4 \% \mathrm{EtOH}$ in iso-hexane (v/v)]: 18.7; $[\alpha]_{D}^{23}-22\left(c .1 .7, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$ (from EtOAc, hexanes); $R_{\mathrm{f}} 0.70(50 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v})$; $m / z(+\mathrm{ESI})$ found: MNa^{+}, 289.1402. $\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\right.$ requires $\left.M, 289.1416\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3386$ (br., $\left.\mathrm{O}-\mathrm{H}\right), 1724(\mathrm{C}=\mathrm{O})$ and $1148(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ 7.38-7.28 (5H, m, Ph), $4.43(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{PhCHOH}), 3.68\left(1 \mathrm{H}, \mathrm{ddd}, J 9.0,7.0\right.$ and $\left.3.5, \mathrm{CH}_{2} \mathrm{CHOH}\right)$, $3.12(1 \mathrm{H}, \mathrm{br}$ s, OH$), 3.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.38\left(1 \mathrm{H}, \mathrm{dt}, J 16.5\right.$ and $\left.7.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.32(1 \mathrm{H}, \mathrm{dt}, J$ 16.5 and $\left.7.0, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 1.70-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CHOH}\right)$ and $1.41\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\right] ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 173.7(\mathrm{C} 1), 140.8$ (ipso- Ph), 128.5 (Ph), 128.1 (para- Ph), 126.9 (Ph), 80.7
 8.44. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 67.64 ; \mathrm{H}, 8.33 \%\right)$.

(4RS,5RS)-tert-Butyl 4,5-dihydroxy-5-phenyl-pentanoate (\pm)-9

By method $\mathbf{2}$ tert-butyl ester $\mathbf{8}(0.20 \mathrm{~g}, 0.90 \mathrm{mmol})$ after 24 hours gave $\operatorname{diol}(\pm)-\mathbf{9}(0.23 \mathrm{~g}, 95 \%)$ as a clear gum that required no further purification. HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 4 \% \mathrm{EtOH}$ in iso-hexane (v / v)]: 14.7 and 19.3; All analytical data were identical with that for tert-butyl $(4 R, 5 R)-9$ reported above.

(4R,5R)-tert-Butyl 4,5-diphenylphosphinoyloxy-5-phenyl-pentanoate 10

By method $\mathbf{3}$ diol $9(0.47 \mathrm{~g}, 1.76 \mathrm{mmol})$ after 1 day gave a yellow foam. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions: $2 \times$ hexanes; $10-100 \%$ EtOAc in hexanes $(\mathrm{v} / \mathrm{v})-10 \%$ increments; $11 \times$ EtOAc] gave bis-phosphinate $10(0.62 \mathrm{~g}, 52 \%)$ as a clear gum. $[\alpha]_{D}^{23}+18\left(\mathrm{c} .1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.25$
(80% EtOAc in hexanes, v / v); m / z (+ESI) found: MH^{+}, 667.2398. $\left(\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{P}_{2}\right.$ requires M, 667.2378); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1724(\mathrm{C}=\mathrm{O}), 1439(\mathrm{P}-\mathrm{Ph})$ and $1226(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 7.83-7.75(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.65-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.53-7.42(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.38-7.32(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.24-7.14(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.50(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $6.0, \mathrm{PhCH}), 4.84-4.79(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH})$, 2.25-2.15 ($2 \mathrm{H}, \quad \mathrm{m}, ~ \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 2.06-1.99 ($1 \mathrm{H}, \quad \mathrm{m}, ~ \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 1.69-1.62 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$) and $1.32\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 32.2(\times 2) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 172.0(\mathrm{C1}), 136.3$ (ipso-PhC), 132.1 (d, J 2.5), 132.0 (d, J 3.0) ($2 \times$ para-PhP), 131.9-131.5 (m, Ph), 131.8 (d, $J 138.0$), 131.4 (d, J 140.5) ($2 \times$ ipso-Ph), $130.5(\times 2), 128.5-128.0$ $(\mathrm{m})(\mathrm{Ph}), 127.6\left(\right.$ para-PhC), $80.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 77.4(\mathrm{t}, J 5.5, \mathrm{C} 5), 76.9(\mathrm{t}, J 6.0, \mathrm{C} 4), 30.6(\mathrm{C} 2), 28.0$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $26.2(\mathrm{~d}, \mathrm{~J} 2.5, \mathrm{C} 3)$.

(4RS,5RS)-tert-Butyl 4,5-diphenylphosphinoyloxy-5-phenyl-pentanoate (\pm)-10

By method 3 diol (\pm) $9(0.20 \mathrm{~g}, 0.75 \mathrm{mmol})$ after 14 hours gave a yellow gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v/v) -10% increments; $10 \times$ EtOAc] gave bis-phosphinate $(\pm) \mathbf{- 1 0}(0.27 \mathrm{~g}, 54 \%)$ as a clear gum. All analytical data were identical with that for $(4 R, 5 R)-\mathbf{1 0}$ reported above.
($1^{\prime} R, 2^{\prime} R, 1$ ''S)-tert-Butyl $\quad 2^{\prime}$-(1''-diphenylphosphinoyloxy-1''-phenyl-methyl)-cyclopropane carboxylate 11
By method 7b bis-phosphinate $10(0.27 \mathrm{~g}, 0.41 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v / v) -10% increments; $5 \times$ EtOAc] to give cyclopropane $\mathbf{1 1}(75 \mathrm{mg}, 41 \%)$ as a white amorphous solid. e.e. $>95 \%$ (determined by chiral HPLC); HPLC [$R_{\mathrm{T}}\left(\mathrm{min}\right.$), flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 5 \%$ iso-propanol in isohexane (v/v)]: 57.1; $[\alpha]_{D}^{23}-29\left(c .0 .7, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.50(60 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 471.1684. $\left(\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{PNa}\right.$ requires $\left.M, 471.1701\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1717(\mathrm{C}=\mathrm{O})$, $1439(\mathrm{PPh}), 1220(\mathrm{P}=\mathrm{O})$ and $1151(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.85-7.81(2 \mathrm{H}, \mathrm{m}$, ortho$\mathrm{PPh}), 7.59-7.54(2 \mathrm{H}, \mathrm{m}$, ortho -PPh$), 7.53-7.49(1 \mathrm{H}, \mathrm{m}$, para -PhP$), 7.46-7.42(2 \mathrm{H}, \mathrm{m}$, meta -PhP$)$, 7.40-7.37 (1H, m, para-PhP), 7.29-7.24 (7H, m, meta-PhP and PhC), $5.09(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 7.5 , $\mathrm{PhCH}), 1.89(1 \mathrm{H}$, dddd, $J 8.5,7.5,6.5$ and $4.5, \mathrm{PhCHCH}), 1.62(1 \mathrm{H}$, ddd, $J 8.5,5.0$ and 4.5, $\mathrm{CHC}=\mathrm{O}), 1.35\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and 1.08-1.02 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 32.3$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 172.3$ (C1), 139.4 (d, J 4.0, ipso-PhC), 132.4 (d, J 93.0, ipso-PhP),
132.1 (d, J 2.5, para-PhP), 131.9 (d, J 3.0, para-PhP), 131.6 (d, J 10.5, ortho-PhP), 131.5 (d, J 10.5, ortho-PhP), 128.4 (d, J 13.0, meta-PhP), 128.3 (PhC), 128.2 (PhC), 128.1 (d, J 13.5, meta-PhP),
 (C3').
(1'RS,2'RS,1''SR)-tert-Butyl 2'-(1''-diphenylphosphinoyloxy-1''-phenyl-methyl)-cyclopropane carboxylate (\pm)-11

By method 7b bis-phosphinate ($\mathbf{~}) \mathbf{- 1 0}(0.27 \mathrm{~g}, 0.44 \mathrm{mmol})$ gave a yellow residue. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v / v) -10% increments; $5 \times$ EtOAc] to give cyclopropane (\pm)-11 ($25 \mathrm{mg}, 14 \%$) as a white amorphous solid. HPLC [$R_{\mathrm{T}}(\mathrm{min})$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 5 \%$ iso-propanol in iso-hexane (v/v)]: 39.5 and 58.5 ; All analytical data were identical with that for $\left(1^{\prime} R, 2^{\prime} R, 1^{\prime} S\right)$ - $\mathbf{1 1}$ reported above.

($1^{\prime} R S, 4^{\prime} R, 5^{\prime}$ ' $)$-tert-Butyl 3-(1'-Oxo-3'-phenyl-[2',5', $\left.\mathbf{1}^{\prime}\right]$ dioxathiolan-4'-yl)-propanoate 15

By method 4 diol $9(0.60 \mathrm{~g}, 2.25 \mathrm{mmol})$, after 4 hours, gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $3 \times$ hexanes; 5-50\% EtOAc in hexanes (v/v) -5% increments; $1-5 \% \mathrm{MeOH}$ in $\operatorname{EtOAc}(\mathrm{v} / \mathrm{v})-1 \%$ increments] to give cyclic sulfite $\mathbf{1 5}(0.60 \mathrm{~g}, 85 \%)$ as a viscous yellow liquid. d.r. $=56: 44\left({ }^{1} \mathrm{H}\right.$ NMR, epimers at S$) ; R_{\mathrm{f}} 0.25(10 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v})$; m / z (+ESI) found: MNa^{+}, 335.0921. $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{SNa}\right.$ requires M, 335.0929); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1724(\mathrm{C}=\mathrm{O}), 1207(\mathrm{~S}=\mathrm{O})$ and $1150(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) Two diastereoisomers A: major isomer, B: minor isomer. $\delta 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph} \mathrm{A}, \mathrm{B}), 5.51(\mathrm{~d}, 1 \mathrm{H}, J 9.5, \mathrm{CHPh} \mathrm{A}), 4.95(\mathrm{~d}$, $1 \mathrm{H}, J 9.5, \mathrm{C} H \mathrm{Ph}$ B), $4.75\left(\mathrm{dt}, 1 \mathrm{H}, J 9.5\right.$ and $3.0, \mathrm{CH}_{2} \mathrm{CHB}$), $4.38\left(\mathrm{dt}, 1 \mathrm{H}, J 9.0\right.$ and $\left.6.0, \mathrm{CH}_{2} \mathrm{CH} \mathrm{A}\right)$, 2.55-2.31 (m, 4H, $\left.2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{O} \mathrm{A}, \mathrm{B}\right), 2.16-1.97\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH} \mathrm{A}, \mathrm{B}\right)$ and $1.39[\mathrm{~s}, 18 \mathrm{H}, 2 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR (126 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 171.4,171.3(2 \times \mathrm{C} 1 \mathrm{~A}, \mathrm{~B}), 133.8,133.1(2 \times$ ipso-Ph A,B), 129.8, 129.4, 129.1 ($\times 2$), 127.7, $127.2(6 \times \mathrm{Ph} \mathrm{A}, \mathrm{B}), 89.6(\mathrm{C} 5 \mathrm{~B}), 88.3(\mathrm{C} 4 \mathrm{~A}), 84.3(\mathrm{C} 5 \mathrm{~A})$, 83.9 (C4 B), 80.9, $83.9\left[2 \times C\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~A}, \mathrm{~B}\right], 31.6,31.5(2 \times \mathrm{C} 2 \mathrm{~A}, \mathrm{~B}), 28.0\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~A}, \mathrm{~B}\right], 27.5$ and $25.3(2 \times \mathrm{C} 3 \mathrm{~A}, \mathrm{~B})$; (Found: C, 57.96; H, 6.43. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}$ requires C, $57.67 ; \mathrm{H}, 6.45 \%$).

(4R,5R)-tert-Butyl 4,5-methanesulfonyloxy-5-phenyl-pentanoate 16

By method 5 diol $9(0.52 \mathrm{~g}, 1.95 \mathrm{mmol})$ after 20 hours gave a yellow liquid. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions: $2 \times$ hexanes; $0-50 \%$ EtOAc in hexanes (v / v) -5% increments; $50-100 \%$

EtOAc in hexanes (v / v) -10% increments; $5 \times$ EtOAc] gave mesylate $16(0.61 \mathrm{~g}, 73 \%)$ as a white amorphous solid. $[\alpha]_{D}^{23}-35$ (c. $0.2, \mathrm{CHCl}_{3}$); mp 52-54 ${ }^{\circ} \mathrm{C}$ (EtOAc, hexanes); $R_{\mathrm{f}} 0.55(50 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v})$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1723(\mathrm{C}=\mathrm{O}), 1349\left(\mathrm{SO}_{2}\right)$ and $1168\left(\mathrm{SO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.50-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.52(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{PhCH}), 5.11(1 \mathrm{H}, \mathrm{dt}, J 8.0$ and 6.5 , $\mathrm{PhCHCH}), 3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right)$, $2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.40\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, 1.73-1.67(2H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$) and $1.40\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 171.4(\mathrm{C} 1), 133.7$ (ipsoPh), 130.4 (para- Ph), 129.5, 127.8 (ortho- and meta- Ph), 84.3 (C 5), $81.6(\mathrm{C} 4), 80.9\left[C\left(\mathrm{CH}_{3}\right)_{3}\right]$, 39.5, $39.1\left(2 \times \mathrm{CH}_{3} \mathrm{~S}\right)$, $30.4(\mathrm{C} 2), 28.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right]}\right.$ and $26.4(\mathrm{C} 3)$; (Found: C, 48.79; H, 6.10. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}_{2}$ requires C, $48.33 ; \mathrm{H}, 6.20 \%$).

(4R,5R)-tert-Butyl 4,5-bis-(4'-methyl-phenylsulfonyloxy)-5-phenyl-pentanoate 17

Diol 9 ($0.25 \mathrm{~g}, 0.94 \mathrm{mmol}$) was dissolved in anhydrous pyridine ($5 \mathrm{~cm}^{3}$) and para-phenylsulfonyl chloride ($1.14 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added. After 20 hours the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(15 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a clear gum that was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 5-90\% EtOAc in hexanes (v/v) -5% increments] to give bis-tosylate $17(0.39 \mathrm{~g}, 72 \%)$ as a white amorphous solid. $[\alpha]_{D}^{23}+6.38$ (c. 1.27, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.30(30 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 597.1609. $\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}\right.$ requires M, 597.1593); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1711(\mathrm{C}=\mathrm{O}), 1364\left(\mathrm{SO}_{2}\right)$ and $1171\left(\mathrm{SO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.73-7.71(2 \mathrm{H}, \mathrm{m}$, ortho-Ts), $7.54-7.52(2 \mathrm{H}, \mathrm{m}$, ortho-Ts), 7.31-7.30 $(2 \mathrm{H}, \mathrm{m}$, meta-Ts), $7.21(1 \mathrm{H}, \mathrm{tt}, J 7.5$ and 1.5, para-Ph), 7.16-7.12 ($4 \mathrm{H}, \mathrm{m}$, meta-Ts and meta-Ph), 7.08-7.06 ($2 \mathrm{H}, \mathrm{m}$, ortho- Ph), 5.49 ($1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{CHPh}$), 4.88 (1 H , ddd, $J 9.1,9.0$ and 5.5, CHCHPh), 2.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}$), $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.23-2.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.93-1.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}\right)$, 1.61-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}$) and $1.39\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 171.3$ (C1), 144.9, $144.6(2 \times$ para-Ts) $133.3(\times 2), 133.1(2 \times$ ipso-Ts and ipso-Ph $), 129.8,129.4(2 \times$ meta-Ts), 128.8 (para-Ph), 128.3 (meta-Ph), 128.0, 127.9 ($2 \times$ ortho-Ts), 127.3 (ortho- Ph), 81.7
 (Found: C, 57.30; H, 5.56. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot 0.15 \mathrm{EtOAc}$ requires C, $57.18 ; \mathrm{H}, 5.69 \%$).

(Z)-tert-Butyl 5-methanesulfonyloxy-5-phenyl-pent-4-enoate 18

By method 7b bis-mesylate $\mathbf{1 6}(126 \mathrm{mg}, 0.30 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $1 \mathrm{~cm} ; 9 \mathrm{~cm}^{3}$ fractions; $4 \times$ hexanes; $5-70 \%$ EtOAc in hexanes (v / v) -5% increments; two fractions of each solvent mixture were collected] to give olefin $18(30 \mathrm{mg}, 30 \%)$ as a clear liquid. $R_{\mathrm{f}} 0.35(30 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 349.1080. $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{SNa}\right.$ requires $M, 349.1086)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1721(\mathrm{C}=\mathrm{O}), 1364\left(\mathrm{SO}_{2}\right)$ and $1174\left(\mathrm{SO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 7.49-7.47 ($2 \mathrm{H}, \mathrm{m}$, ortho- Ph), $7.41-7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.84(1 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{PhC}=\mathrm{CH}), 2.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.65\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CHCH}_{2}\right), 2.42\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.45[9 \mathrm{H}, \mathrm{s}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$]; ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 171.9(\mathrm{C} 1), 146.4(\mathrm{C} 5), 134.5$ (ipso- Ph), 129.0 (para- Ph), 128.7 (meta-Ph), 125.7 (ortho- Ph), 121.3 (C4), $80.5\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 39.4\left(\mathrm{CH}_{3} \mathrm{~S}\right), 34.5(\mathrm{C} 2), 28.1$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $22.6(\mathrm{C} 3)$.
No NOE was observed between the C 4 proton and the mesyl
group and a strong NOE between the C 4 proton and the
ortho-protons on the aromatic ring was observed indicating
that the compound has the (Z)-geometry as shown.

(Z)-tert-Butyl 5-(4-methyl-phenylsulfonyloxy)-5-phenyl-pent-4-enoate 19

According to method 7b bis-tosylate $17(0.12 \mathrm{~g}, 0.21 \mathrm{mmol})$ gave a grey gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v / v) -10% increments; $4 \times$ EtOAc] to give starting material $17(47 \mathrm{mg}, 39 \%)$ and olefin $19(8 \mathrm{mg}, 10 \%)$ as a clear film. $R_{\mathrm{f}} 0.30(20 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z$ (+ESI) found: MNa^{+}, 425.1386. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{SNa}\right.$ requires $\left.M, 425.1399\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1726(\mathrm{C}=\mathrm{O}), 1368\left(\mathrm{SO}_{2}\right), 1177\left(\mathrm{SO}_{2}\right)$ and $1152(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.67(2 \mathrm{H}, \mathrm{dt}, J 8.5$ and 2.0 , ortho-Ts), 7.27-7.25 $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.21-7.17(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 2.43\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CHCH}_{2}\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} H_{3} \mathrm{Ar}\right), 2.29(2 \mathrm{H}, \mathrm{t}, J$ $\left.7.0, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.44\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 171.9(\mathrm{C} 1), 146.9,144.9$, 134.6, 133.6 (C5, ipso-Ph, ipso-Ts and para-Ts), 129.5, 128.3 ($\times 2$), 128.1, 125.7 (Ph and Ts), 120.8

(4R,5S)-tert-Butyl 5-azido-4-hydroxy-5-phenyl-pentanoate 26

By method $\mathbf{4}$ diol $9(0.74 \mathrm{~g}, 2.80 \mathrm{mmol})$ gave a dark brown gum. According to method $\mathbf{8}$ the crude cyclic sulfite produced a brown gum that was purified by DCVC [id $4 \mathrm{~cm}, 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; $0-100 \%$ EtOAc in hexanes (v / v) -10% increments; $5 \times$ EtOAc) to give azide $26(0.53 \mathrm{~g}$,
65%) as a yellow gum. $[\alpha]_{D}^{23}+113$ (c. $\left.1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.50(30 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 314.1475. $\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}\right.$ requires $\mathrm{M}, 314.1480$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3443$ (br., O H), $2101\left(\mathrm{~N}_{3}\right), 1724(\mathrm{C}=\mathrm{O})$ and $1148(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.42-7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.36-7.33 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $4.52(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{CHPh}), 3.84-3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H C H P h), 2.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 4.0, OH), $2.39\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.85\left(1 \mathrm{H}\right.$, dtd, $J 10.0,7.0$ and $\left.2.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.64$ (1 H , tdd, J 14.5, 10.0 and $7.0, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$) and $1.43\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR (126 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 173.5(\mathrm{C} 1), 136.2$ (ipso- Ph), $128.8(\mathrm{Ph}), 128.5$ (para- Ph), $127.8(\mathrm{Ph}), 80.7\left[C\left(\mathrm{CH}_{3}\right)_{3}\right]$, $73.9(\mathrm{C} 4), 70.4(\mathrm{C} 5), 31.9(\mathrm{C} 2), 28.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $27.3(\mathrm{C} 3)$; (Found: C, $61.78 ; \mathrm{H}, 7.25 ; \mathrm{N}, 14.20$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 61.84; H, 7.27; N, 14.42\%).

(4R,5S)-tert-Butyl 5-azido-4-diphenylphosphinoyloxy-5-phenyl-pentanoate 27

By method 3 alcohol $26(0.38 \mathrm{~g}, 1.3 \mathrm{mmol})$ after 42 hours gave a yellow gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 0-100\% EtOAc in hexanes (v / v) -10% increments; $4 \times$ EtOAc] gave phosphinate $27(0.43 \mathrm{~g}, 67 \%)$ as a yellow gum. $[\alpha]_{D}^{23}+11.8\left(\mathrm{c} .1 .0, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ $0.55(50 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v})$; $m / z(+$ ESI $)$ found: MNa^{+}, 514.1878. $\left(\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{PNa}\right.$ requires $M, 514.1872)$; $\mathrm{IR} v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2106\left(\mathrm{~N}_{3}\right), 1727(\mathrm{C}=\mathrm{O}) 1440(\mathrm{P}-\mathrm{Ph}), 1231(\mathrm{P}=\mathrm{O})$ and $1153(\mathrm{C}-$ O); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.84-7.74(4 \mathrm{H}, \mathrm{m}$, ortho -PhP$), 7.55-7.50(2 \mathrm{H}, \mathrm{m}$, para -PhP$)$, 7.47-7.42 (4H, m, meta-PhP), 7.31-7.24 (3H, m, meta- and para-PhC), 7.19-7.17 ($2 \mathrm{H}, \mathrm{m}$, orthoPhC), 4.89 ($1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{PhCH}$), 4.62 (1 H , tdd, $J 9.0,3.5$ and $3.3, \mathrm{PhCHCH}), 2.91$ (1 H , ddd, J 17.5, 9.5 and $\left.5.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.78\left(1 \mathrm{H}\right.$, ddd, $J 17.5,9.0$ and $\left.6.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.08-2.0(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.80-1.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.32\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 32.6 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 172.0(\mathrm{C} 1), 135.6$ (ipso-PhC), $132.3(\times 2)(2 \times$ para-PhP), 131.6 (d, J 10.5, $2 \times$ ortho- PhP), 131.4 (d, J 135.0, ipso-PhP), 131.2 (d, J 138.0, ipsoPhP), 128.7 (ortho-PhC), 128.5 (d, J 13.0, meta-PhP), 128.3 (meta- PhC), 127.1 (para-PhC), 80.3 $\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 78.4(\mathrm{~d}, J 6.5, \mathrm{C} 4), 68.6(\mathrm{~d}, J 3.0, \mathrm{C} 5), 31.1(\mathrm{C} 2), 27.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $24.6(\mathrm{~d}, J 4.0, \mathrm{C} 3)$; (Found: C, $65.69 ; \mathrm{H}, 6.45 . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{C}, 65.98 ; \mathrm{H}, 6.15 \%$).

(4R,5S)-tert-Butyl 5-azido-4-methanesulfonyloxy-5-phenyl-pentanoate 28

According to method 5 alcohol $26(0.40 \mathrm{~g}, 1.37 \mathrm{mmol})$ after 26 hours gave a yellow oil. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $3 \times$ hexanes; 5-100\% EtOAc in hexanes (v/v) -5% increments] gave mesylate $\mathbf{2 8}(0.48 \mathrm{~g}, 94 \%)$ as yellow gum. $[\alpha]_{D}^{23}+105\left(c .1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.45(30 \%$

EtOAc in hexanes, $\mathrm{v} / \mathrm{v})$; m / z (+ESI) found: MNa^{+}, 392.1251. $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SNa}\right.$ requires M, 392.1256); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2108\left(\mathrm{~N}_{3}\right), 1726(\mathrm{C}=\mathrm{O}) 1366\left(\mathrm{SO}_{2}\right)$ and $1174\left(\mathrm{SO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.43-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.92(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{PhCH}), 4.89(1 \mathrm{H}$, ddd, $J 8.5,5.0$ and 4.0 , $\mathrm{C} H \mathrm{CHPh}), 2.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.39\left(1 \mathrm{H}, \mathrm{ddd}, J 17.0,7.5\right.$ and $\left.6.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.32(1 \mathrm{H}, \mathrm{dt}, J 17.0$ and 8.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 1.98-1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.40\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 171.6(\mathrm{C} 1), 135.0$ (ipso- Ph), 129.0 (para- Ph), 129.0, 127.7 (ortho- and meta- Ph),
 (Found: C, 52.27; H, 6.42; N, 11.62. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires C, 52.02; H, 6.28; N, 11.37\%).

(4R,5S)-tert-Butyl 5-azido-4-(4'-methyl-phenylsulfonyloxy)-5-phenyl-pentanoate 29

According to method 6 alcohol $26(0.22 \mathrm{~g}, 0.76 \mathrm{mmol})$ after 48 hours gave a brown gum. Purification by DCVC [id $4 \mathrm{~cm} ; 25 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; $5-40 \%$ EtOAc in hexanes (v/v) 5% increments; two fractions of each solvent mixture were collected) gave tosylate 29 (0.25 g , 73%) as a clear gum and starting material $26(45 \mathrm{mg}, 6 \%) .[\alpha]_{D}^{23}+110\left(\mathrm{c} .1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.60(30 \%$ EtOAc in hexanes, v / v); $m / z(+\mathrm{ESI})$ found: MH^{+}, 446.1762. $\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right.$ requires M, 446.1750); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2107\left(\mathrm{~N}_{3}\right), 1727(\mathrm{C}=\mathrm{O}) 1367\left(\mathrm{SO}_{2}\right)$ and $1176\left(\mathrm{SO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz ; CDCl_{3}) $\delta 7.79-7.78$ (2 H , ortho-Ts), 7.36-7.29 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and meta-Ts), 7.25-7.22 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 4.87 $(1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{PhCH}), 4.84(1 \mathrm{H}, \mathrm{ddd}, J 9.5,3.5$ and $3.0, \mathrm{CHCHPh}), 2.27(1 \mathrm{H}, \mathrm{ddd}, J 16.5,8.5$ and 5.5, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.12\left(1 \mathrm{H}\right.$, ddd, $J 16.5,8.5$ and $\left.7.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 1.94(1 \mathrm{H}$, dddd, $J 15.0,9.5,8.5$ and 5.5, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.75\left(1 \mathrm{H}\right.$, dddd, $J 15.0,8.5,7.5$ and $\left.3.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 171.6(\mathrm{C} 1), 145.1$ (para-Ts), 134.9, 133.7 (ipso-Ph and ipso-Ts), 129.9, 128.9 (Ph and meta-Ts), 128.6 (para- Ph), 127.8 (ortho- Ts), $127.2(\mathrm{Ph}), 83.6(\mathrm{C} 4), 80.6\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 67.7$ (C5), $30.7(\mathrm{C} 2), 28.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.8(\mathrm{C} 3)$ and $21.7\left(\mathrm{PhCH}_{3}\right)$.

($1 R, 2 R, 1 ' R)$-tert-Butyl 2-(1'-azido-1'-phenyl-methyl)-cyclopropane carboxylate 30

By a modified method $7 \mathbf{a}^{8}$ mesylate $28(1.00 \mathrm{~g}, 2.73 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 0-50\% EtOAc in hexanes (v/v) -10% increments - two fractions of each solvent mixture were collected] to give starting material 28 (225 $\mathrm{mg}, 22 \%$) and cyclopropane $\mathbf{3 0}(103 \mathrm{mg}, 13 \%)$ as a clear oil. ${ }^{\S}$ The temperature was maintained at $-78^{\circ} \mathrm{C}$ for 24 hours and then raised to room temperature for an additional 24 hours. $[\alpha]_{D}^{23}+14$ (c. 1, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.25(5 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 296.1370. $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\right.$
requires $M, 296.1375$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2094\left(\mathrm{~N}_{3}\right), 1717(\mathrm{C}=\mathrm{O})$ and $1150(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.41-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.05(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{PhCH}), 1.83(1 \mathrm{H}$, dddd, $J 9.0,8.0,6.0$ and 4.0, PhCHCH$), 1.76(1 \mathrm{H}, \mathrm{dt}, J 9.0$ and $4.0, \mathrm{CHC}=\mathrm{O}), 1.46\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.17(1 \mathrm{H}, \mathrm{dt}, J 9.0$ and $5.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$) and $0.87\left(1 \mathrm{H}\right.$, ddd, $J 8.5,6.0$ and $\left.4.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 172.2(\mathrm{C} 1), 138.5\left(\right.$ ipso- Ph), $128.8(\mathrm{Ph}), 128.5$ (para- Ph), $127.0(\mathrm{Ph}), 80.7\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 67.3\left(\mathrm{C} 1{ }^{\prime}\right)$), $28.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.1\left(\mathrm{C}^{\prime}\right), 20.6\left(\mathrm{C}^{\prime}\right)$ and $12.0\left(\mathrm{C}^{\prime}\right)$.

By method 7b mesylate $28(126 \mathrm{mg}, 0.34 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $1 \mathrm{~cm} ; 9 \mathrm{~cm}^{3}$ fractions; $6 \times$ hexanes; $1-20 \%$ EtOAc in hexanes (v / v) -1% increments; two fractions of each solvent mixture were collected] to give cyclopropane $\mathbf{3 0}$ ($60 \mathrm{mg}, 64 \%$) as a clear oil. All analytical data were identical to that reported above.
($1^{\prime} R, 2^{\prime} R, 1 '$ ' R)-tert-Butyl 2^{\prime}-($1^{\prime \prime}$ '-azido-1''-phenyl-methyl)-cyclopropane carboxylate 30
According to method 7b tosylate $29(0.13 \mathrm{~g}, 0.30 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $6 \times$ hexanes; 2-20\% EtOAc in hexanes (v/v) -2% increments; two fractions of each solvent mixture were collected] to give cyclopropane $\mathbf{3 0}$ (42 mg , 52%) as a clear gum. All analytical data were identical with that reported above.
($1^{\prime} R, 2 ' R, 1 '$ ' R)-tert-Butyl 2^{\prime}-($1^{\prime \prime}$-amino-1''-phenyl-methyl)-cyclopropane carboxylate $\mathbf{3 4}$
Azide $30(169 \mathrm{mg}, 0.62 \mathrm{mmol})$ was dissolved in methanol $\left(10 \mathrm{~cm}^{3}\right)$ and the flask was flushed with argon. $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon ($32 \mathrm{mg} ; 20 \mathrm{wt} \%$ dry basis) was added and the flask was flushed with hydrogen, fitted with a hydrogen balloon and stirred vigorously. After stirring overnight (23 hours) the reaction mixture was filtered through a plug of celite and washed with boiling methanol (2×25 cm^{3}). The combined organic phases were concentrated in vacuo to give a yellow solid that was triturated with dichloromethane and dried under reduced pressure to give amine 34 ($140 \mathrm{mg}, 91 \%$) as a white amorphous powder. e.e. $>92 \%$ determined by NMR of Mosher's amide derivatives. ${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): Derivative made from R-(+)-Mosher's acid chloride $\delta-68.90$. Derivative made from racemic Mosher's acid chloride $\delta-68.78$ and $-68.90 ;[\alpha]_{D}^{23}-50(c .0 .3, \mathrm{MeOH}$); m / z (+ESI) found: MH^{+}, 248.1645. $\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}\right.$ requires M, 248.1651); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2900(\mathrm{v} \mathrm{br}$ NH_{2} and CH$), 1706(\mathrm{C}=\mathrm{O})$ and $1155(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.69\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$,
7.54-7.52 $(2 \mathrm{H}, \mathrm{m}$, ortho- Ph$), 7.44(2 \mathrm{H}, \mathrm{br} \mathrm{tt}, J 7.5$ and 1.5 , meta -Ph$), 7.39(1 \mathrm{H}, \mathrm{tt}, J 7.5$ and 1.5 , para -Ph$), 3.80(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{PhCH}), 1.88-1.80(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCHCH}$ and $\mathrm{CHC}=\mathrm{O}), 1.42[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.96\left(1 \mathrm{H}\right.$, ddd, $J 8.5,6.0$ and $\left.4.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$ and $0.90\left(1 \mathrm{H}, \mathrm{dt}, J 9.0\right.$ and $\left.4.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 171.4$ (C1), 134.5 (ipso- Ph), 128.7 (meta- Ph), 128.5 (para- Ph), 127.1

(E)-tert-Butyl hept-4-enoate 35

tert-Butyl acetate ($1.0 \mathrm{~g}, 8.6 \mathrm{mmol}$) was dissolved in anhydrous THF $\left(40 \mathrm{~cm}^{3}\right)$ and cooled to -78 ${ }^{\circ}$ C. Freshly prepared LDA ($2.76 \mathrm{M}, 9.0 \mathrm{mmol}$) was added by cannula to give a red solution. After $1 / 2$ hour HMPA $\left(1.5 \mathrm{~cm}^{3}, 8.6 \mathrm{mmol}\right)$ was added. After an additional $1 / 2$ hour (E)-cinnamyl bromide (1.7 $\mathrm{g}, 8.6 \mathrm{mmol})$ dissolved in anhydrous THF $\left(10 \mathrm{~cm}^{3}\right)$ and cooled to $-78{ }^{\circ} \mathrm{C}$ was added by cannula. After 6 hours the reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$ and allowed to warm to room temperature. The reaction mixture was transferred to a separatory funnel with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with water $\left(3 \times 50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give tert-butyl ester $\mathbf{3 5}(1.45 \mathrm{~g}, 91 \%)$ as a light brown liquid that required no further purification. $R_{\mathrm{f}} 0.35$ (5% EtOAc in hexanes, v / v); m / z (+ESI) found: M^{+}, 184.1457. $\left(\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}\right.$ requires $M, 184.1463$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1731(\mathrm{C}=\mathrm{O})$ and $1148(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 5.48(1 \mathrm{H}, \mathrm{dt}, J 15.5$ and 6.0, $\mathrm{EtCH}=\mathrm{CH}), 5.39-5.34(1 \mathrm{H}, \mathrm{m}, \mathrm{EtCH}=\mathrm{CH}), 2.25(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.24\left(2 \mathrm{H}, \mathrm{br}\right.$ s) $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, $1.97\left(2 \mathrm{H}\right.$, quintet, $\left.J 7.5, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.42\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $0.93\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 172.6(\mathrm{C} 1), 133.0(\mathrm{C} 5), 127.1(\mathrm{C} 4), 80.0\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 35.5(\mathrm{C} 2), 28.1[\mathrm{C} 3$ and $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 25.5 (C6) and $13.8(\mathrm{C} 7)$; (Found: C, 72.02; H, 11.07. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.70 ; \mathrm{H}$, 10.94\%).

(4R,5R)-tert-Butyl 4,5-dihydroxy-heptanoate 36

By method $\mathbf{1}$ olefin $\mathbf{3 5}(0.97 \mathrm{~g}, 5.3 \mathrm{mmol})$ after 8 hours at $0^{\circ} \mathrm{C}$ gave $\operatorname{diol} \mathbf{3 6}(0.94 \mathrm{~g}, 81 \%)$ as a clear gum that required no further purification. $[\alpha]_{D}^{23}+10.3$ (c. $2.8, \mathrm{CHCl}_{3}$); $m / z(+\mathrm{ESI})$ found: MNa^{+}, 241.1416. $\left(\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\right.$ requires $M, 241.1411$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3435$ (br., $\left.\mathrm{O}-\mathrm{H}\right), 1729(\mathrm{C}=\mathrm{O})$ and $1153(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 3.43(1 \mathrm{H}$, ddd, $J 13.0,5.0$ and 4.0, EtCHCH), 3.31 ($1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 8.5$ and 4.5, EtCH), 2.44-2.34 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 1.83-1.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHOH}$), 1.62$1.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Me}\right), 1.50-1.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{Me}\right), 1.44\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $0.97(3 \mathrm{H}, \mathrm{t}, J$
7.5, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (126 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 173.9(\mathrm{C} 1), 80.7\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 75.7(\mathrm{C} 5), 73.5(\mathrm{C} 4), 32.0$ $\left.(\mathrm{C} 2), 28.6(\mathrm{C} 3), 28.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right], 26.3(\mathrm{C} 6)$ and $10.0(\mathrm{C} 7)$.

(4RS,5RS)-tert-Butyl 4,5-dihydroxy-heptanoate (\pm)-36

By method 2 olefin $35(0.11 \mathrm{~g}, 0.60 \mathrm{mmol})$ after 1 day gave $\operatorname{diol}(\mathbf{~} \mathbf{)} \mathbf{- 3 6}(0.11 \mathrm{~g}, 87 \%)$ as a clear gum that required no further purification. All analytical data for (\pm) - $\mathbf{3 6}$ were identical with that for $(4 R, 5 R)-\mathbf{3 6}$ reported above.

(4R,5R)-tert-Butyl 4,5-diphenylphosphinoyloxy-heptanoate 37

By method 3 diol $36(0.57 \mathrm{~g}, 2.6 \mathrm{mmol})$ after 16 hours gave a yellow gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; $0-100 \%$ EtOAc in hexanes (v / v) -10% increments] gave bis-phosphinate $37(1.20 \mathrm{~g}, 74 \%)$ as a clear gum. e.e. $>85 \%$ (determined by chiral HPLC); HPLC $\left[R_{\mathrm{T}}(\mathrm{min})\right.$, flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 20 \%$ iso-propanol in iso-hexane, $\left.\mathrm{v} / \mathrm{v}\right]: 24.8 ;[\alpha]_{D}^{23}+18.5$ (c. 1 , $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.55$ (EtOAc); $m / z(+\mathrm{ESI})$ found: MH^{+}, 619.2285. $\left(\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{P}_{2}\right.$ requires $\left.M, 619.2378\right)$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1723(\mathrm{C}=\mathrm{O}), 1439(\mathrm{P}-\mathrm{Ph})$ and $1225(\mathrm{P}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ 7.67-7.59 (8H, m, ortho- Ph), 7.42-7.36 (4H, m, para-Ph), 7.34-7.26 (8H, m, meta -Ph$), 4.55(1 \mathrm{H}, \mathrm{tt}$, $J 8.0$ and 4.0, EtCHCH), $4.38(1 \mathrm{H}, \mathrm{m}, \mathrm{EtCHCH}), 2.25\left(1 \mathrm{H}, \mathrm{ddd}, J 15.5,9.5\right.$ and $\left.5.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right)$, 2.14-2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}$ and $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $1.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.84-1.76(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{Me}\right), 1.73-1.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{Me}\right), 1.36\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $0.76\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right)$; ${ }^{31}{ }^{\mathrm{P}} \mathrm{NMR}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 31.5$ and $31.4 ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 172.1$ (C1), 132.3, 132.2-132.1 (m), 131.7, 131.6, 131.5, 131.2, 131.1, 131.0, 128.5-128.3 (m) ($16 \times \mathrm{Ph}$), 80.2 $\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 77.6(\mathrm{dd}, J 6.5$ and $3.5, \mathrm{C} 5), 75.3(\mathrm{dd}, J 6.5$ and $4.0, \mathrm{C} 4), 31.3(\mathrm{C} 2), 28.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.9$ (d, J 3.5, C6), 23.5 (d, $J 3.5, \mathrm{C} 3$) and 9.9 (C7); (Found: C, 66.43; H, 6.61. $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{P}_{2} \cdot 0.05$ EtOAc requires $\mathrm{C}, 66.68 ; \mathrm{H}, 6.42 \%$).
(4RS,5RS)-tert-Butyl 4,5-diphenylphosphinoyloxy-heptanoate (\pm)-37
By method $\mathbf{3}$ diol $(\pm) \mathbf{- 3 6}(82 \mathrm{mg}, 0.38 \mathrm{mmol})$ after 24 hours gave a white gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v/v) -10% increments; $6 \times$ EtOAc] gave bis-phosphinate $(\pm) \mathbf{- 3 7}(0.11 \mathrm{~g}, 48 \%)$ as a clear gum. HPLC $\left[R_{\mathrm{T}}\right.$ (min), flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 20 \%$ iso-propanol in iso-hexane (v / v)]: 24.8 and 33.2; All analytical data were identical with that for $(4 R, 5 R)$ - $\mathbf{3 7}$ reported above.

(4R,5R)-tert-Butyl 4,5-methanesulfonyloxy-heptanoate 38

By method 5 diol $36(0.52 \mathrm{~g}, 2.38 \mathrm{mmol})$ after 20 hours gave a yellow liquid. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions: $2 \times$ hexanes; 0-100\% EtOAc in hexanes (v / v) -10% increments; $4 \times$ EtOAc $]$ gave bis-mesylate $38(0.60 \mathrm{~g}, 67 \%)$ as a clear gum. $[\alpha]_{D}^{23}+15\left(\mathrm{c} .1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.50$ (50\% EtOAc in hexanes, v / v); m / z (+ESI) found: MNa^{+}, 397.0961. $\left(\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}\right.$ requires M, 397.0968); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1722(\mathrm{C}=\mathrm{O}), 1333\left(\mathrm{SO}_{2}\right)$ and $1172\left(\mathrm{SO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) \delta 4.88\left(1 \mathrm{H}, \mathrm{ddd}, J 9.0,5.0\right.$ and $\left.4.0, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 4.71\left(1 \mathrm{H}, \mathrm{dt}, J 7.5\right.$ and $\left.5.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.49-2.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.09(1 \mathrm{H}, \mathrm{dtd}, J 15.5,7.5$ and 4.0, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.96-1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right.$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right), 1.76(1 \mathrm{H}, \mathrm{dp}, J 14.5$ and 7.5, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}$), $1.44\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$
 25.7 (C3), 23.5 (C6) and 9.1 (C7); (Found: C, 36.20; H, 6.17. $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot 0.3$ EtOAc requires C, 35.82; H, 6.08\%).
(4R,5R)-tert-Butyl 4,5-bis-(4'-methyl-phenylsulfonyloxy)-heptanoate 39
By method 6 diol $36(0.46 \mathrm{~g}, 2.11 \mathrm{mmol})$ after 4 days gave a brown gum. Purification by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions: $2 \times$ hexanes; 5-50\% EtOAc in hexanes (v / v) -5% increments; two fractions of each solvent mixture were collected] gave bis-tosylate $39\left(0.72 \mathrm{~g}, 64 \%\right.$) as a clear gum. $[\alpha]_{D}^{23}$ +41 (c. $1, \mathrm{CHCl}_{3}$); $R_{\mathrm{f}} 0.45(30 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) ; \mathrm{m} / \mathrm{z}(+\mathrm{ESI})$ found: MNa^{+}, 549.1606. $\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}\right.$ requires M, 549.1593); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1726(\mathrm{C}=\mathrm{O}), 1366(\mathrm{~S}=\mathrm{O})$ and $1175(\mathrm{C}-$ O); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.81(2 \mathrm{H}, \mathrm{d}, J 8.5$, ortho-Ar), $7.79(2 \mathrm{H}, \mathrm{d}, J 8.5$, ortho-Ar), 7.37 ($2 \mathrm{H}, \mathrm{d}, J 8.5$, meta-Ar), $7.35\left(2 \mathrm{H}, \mathrm{d}, J 8.5\right.$, meta-Ar), $4.69\left(1 \mathrm{H}, \mathrm{dt}, J 9.5\right.$ and $\left.3.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 4.47$ ($1 \mathrm{H}, \mathrm{dt}, J 9.0$ and $4.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}$), $2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.46(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3 \mathrm{Ar}), 2.12(1 \mathrm{H}$, ddd, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right)$, 1.99-1.90 (2H, m, $\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, 1.78-1.63 (2H, m, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ and $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right), 1.57-1.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{3}\right), 1.42\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and 0.64 ($3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 171.3(\mathrm{Cl}), 145.2$, $145.1(2 \times$ para-Ar), 133.1, 133.0 ($2 \times$ ipso-Ar), 129.9, $129.8(2 \times$ meta-Ar), 128.2, 128.1 ($2 \times$ ortho-Ar), 82.1 (C5), 80.7 $\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 79.8(\mathrm{C} 4), 30.8,(\mathrm{C} 2), 28.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 24.1(\mathrm{C} 3), 21.7\left(\mathrm{br} . \mathrm{C} 6\right.$ and $\left.2 \times \mathrm{CH}_{3} \mathrm{Ar}\right)$ and 9.6 (C7); (Found: C, 56.91; H, 6.62. $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~S}_{2}$ requires C, $57.01 ; \mathrm{H}, 6.51 \%$).
($1^{\prime} R, 2^{\prime} R, 1$ ' R)-tert-Butyl 2^{\prime}-($1^{\prime \prime}$ '-Diphenylphosphinoyloxy-propyl)-cyclopropane carboxylate 40

By method 7a bis-phosphinate $37(0.80 \mathrm{~g}, 1.29 \mathrm{mmol})$ gave a yellow gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v / v) -10% increments; $5 \times \mathrm{EtOAc} ;$] to give cyclopropane $\mathbf{4 0}(0.39 \mathrm{~g}, 75 \%)$ as a white amorphous solid. e.e. $>96 \%$ (determined by chiral HPLC); HPLC [$R_{\mathrm{T}}\left(\mathrm{min}\right.$), flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}, 5 \%$ iso-propanol in isohexane (v/v)]: 24.4; $[\alpha]_{D}^{23}-25\left(\mathrm{c} .1, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 91-92{ }^{\circ} \mathrm{C}\left(E t O A c\right.$, hexanes); $R_{\mathrm{f}} 0.60(80 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v})$; m / z (+ESI) found: MNa^{+}, 423.1721. $\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{PNa}\right.$ requires M, 423.1701); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1718(\mathrm{C}=\mathrm{O}), 1439(\mathrm{P}-\mathrm{Ph}), 1217(\mathrm{P}=\mathrm{O})$ and $1151(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 7.84-7.75(4 \mathrm{H}, \mathrm{m}$, ortho- Ph), 7.53-7.48 ($2 \mathrm{H}, \mathrm{m}$, para -Ph), 7.46-7.41 (4 H, m, meta -Ph), $3.91(1 \mathrm{H}, \mathrm{tt}, J 8.5$ and $6.0, \mathrm{EtCH}), 1.84-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.55(1 \mathrm{H}, \mathrm{ddt}, J 8.5,6.5$ and 4.0 , CHCHEt), $1.44-1.41\left[10 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{O}\right.$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.97\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right), 0.87(1 \mathrm{H}, \mathrm{dt}, J 8.5$ and 5.0 , ring- $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$) and $0.75\left(1 \mathrm{H}\right.$, ddd, $J 8.5,6.5$ and 4.5 , ring- $\left.\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 31.0 ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 172.5(\mathrm{C} 1), 132.6(\times 2)(\mathrm{d}, J 138.5$, ipso-Ph and d, J 136.0, ipso-Ph), 132.0 (d, J 3.0, para- Ph), 131.9 (d, J 2.5, para- Ph), 131.7 (d, J 10.0, ortho- Ph), 131.4 (d, J 10.5, ortho- Ph), $128.4(\times 2)\left(\mathrm{d}, J 13.5\right.$, para- $\mathrm{Ph} \mathrm{d}, J 13.0$, para- Ph), $80.5\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 80.1$ (d, $J 6.4, \mathrm{C} 1 '$ '), 29.4 (d, $J 4.0, \mathrm{C} 2 '$ ' $), 28.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.6(\mathrm{~d}, J 3.5, \mathrm{C} 2 '], 20.1(\mathrm{C} 1 '), 13.6(\mathrm{C} 3 ')$ and 9.5 (C3')); (Found: C, 68.79; H, 7.34. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P}$ requires C, 68.98; H, 7.30\%).
(1'RS,2'RS,1' $R S$)-tert-Butyl 2-(1-Diphenylphosphinoyloxy-propyl)-cyclopropane carboxylate (\pm) $\mathbf{4 0}$

By method 7a bis-phosphinate (\pm)-37 ($97 \mathrm{mg}, 0.16 \mathrm{mmol}$) gave a white solid. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-100\% EtOAc in hexanes (v / v) -10% increments; $6 \times$ EtOAc] to give cyclopropane $(\pm) \mathbf{4 0}(10 \mathrm{mg}, 16 \%)$ as a clear gum. HPLC $\left[R_{\mathrm{T}}\right.$ (min), flow rate $1 \mathrm{~cm}^{3} / \mathrm{min}$, 5% iso-propanol in iso-hexane (v / v)]: 20.3 and 24.1; All analytical data were identical with that for $\left(1^{\prime} R, 2^{\prime} R, 1^{\prime} ' R\right)-\mathbf{4 0}$ reported above.
($1^{\prime} R, 2^{\prime} R, 1{ }^{\prime}{ }^{\prime} R$)-Methyl 2^{\prime}-($1^{\prime \prime}$-hydroxy-propyl)-cyclopropane carboxylate 44
Cyclopropane $40(0.12 \mathrm{~g}, 0.30 \mathrm{mmol})$ was dissolved in anhydrous methanol $\left(5 \mathrm{~cm}^{3}\right)$ and sodium methoxide ($81 \mathrm{mg}, 1.50 \mathrm{mmol}$) was added. The reaction mixture was heated to reflux for 4 hours, allowed to cool to room temperature and transferred to a separatory funnel with aqueous sulfate
buffer $\left(25 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and carefully concentrated in vacuo to give a white gum. The product was purified by DCVC [id $4 \mathrm{~cm} ; 20 \mathrm{~cm}^{3}$ fractions; $2 \times$ hexanes; 10-90\% EtOAc in hexanes (v / v) -10% increments; $5 \times$ EtOAc; $]$ to give cyclopropane $44(34 \mathrm{mg}, 72 \%)$ as a clear liquid. $[\alpha]_{D}^{23}-78$ (c. 0.5 , $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.40(50 \% \mathrm{EtOAc}$ in hexanes, $\mathrm{v} / \mathrm{v}) ; m / z(+\mathrm{ESI})$ found: MNa^{+}, 181.0835. $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\right.$ requires M, 181.0841); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{br}$., $\mathrm{O}-\mathrm{H}), 1730(\mathrm{C}=\mathrm{O})$ and $1174(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.17(1 \mathrm{H}, \mathrm{td}, J 7.0$ and $5.5, \mathrm{CHOH}), 1.68-1.52(5 \mathrm{H}$, $\mathrm{m}, \mathrm{OH}, \mathrm{CHCHC}=\mathrm{O}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16\left(1 \mathrm{H}, \mathrm{dt}, J 9.0\right.$ and 4.5 , ring- $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.97(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $0.95\left(1 \mathrm{H}\right.$, ddd, J 8.5, 6.5 and 4.5 , ring $-\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}$); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 174.3$ (C1), $74.2(\mathrm{C} 1$ '' $), 51.8\left(\mathrm{OCH}_{3}\right), 30.1(\mathrm{C} 2$ ''), $27.7(\mathrm{C} 2$ '), $17.7(\mathrm{C} 1$ '), $11.9(\mathrm{C} 3$ ') and $9.9(\mathrm{C} 3$ '').

(7R,1'R)-7-(1'-Methanesulfonyloxy-propyl)-2,2,4-trioxo-[1,2]oxathiepane 45

By method 7b bis-mesylate $41(112 \mathrm{mg}, 0.30 \mathrm{mmol})$ and NaHMDS $\left(0.17 \mathrm{~cm}^{3}, 0.33 \mathrm{mmol}\right)$ gave a yellow gum. The product was purified by DCVC [id $1 \mathrm{~cm} ; 9 \mathrm{~cm}^{3}$ fractions; $4 \times$ hexanes; $10-100 \%$ EtOAc in hexanes (v / v) - 10% increments - two fractions of each solvent mixture were collected] to give oxathiepane 45 ($10 \mathrm{mg}, 11 \%$) as a yellow oil. $[\alpha]_{D}^{23}-53.8$ (c. $\left.0.5, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.55(80 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v})$; $m / z(+\mathrm{ESI})$ found: MNa^{+}, 323.0230. $\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Na}\right.$ requires $M, 323.0235$; IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1717(\mathrm{C}=\mathrm{O}), 1359\left(\mathrm{SO}_{2}\right)$ and $1166\left(\mathrm{SO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 4.98$ $(1 \mathrm{H}, \mathrm{ddd}, J 11.0,4.5$ and $2.0, \mathrm{C} 7-\mathrm{CH}), 4.70\left(1 \mathrm{H}, \mathrm{ddd}, J 7.5,6.0\right.$ and $\left.4.5, \mathrm{C} 2{ }^{\prime}-\mathrm{CH}\right), 4.35(1 \mathrm{H}, \mathrm{d}, J$ 16.0, $\left.\mathrm{SCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 4.27\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{SCH}_{\mathrm{a}} H_{\mathrm{b}}\right), 3.16\left(1 \mathrm{H}, \mathrm{ddd}, J 15.0,12.5\right.$ and $\left.3.0, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right)$, $3.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Ms}), 2.81\left(1 \mathrm{H}\right.$, ddd, $J 15.0,7.0$ and $\left.2.0, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{C}=\mathrm{O}\right), 2.30(1 \mathrm{H}$, dddd, $J 15.0,13.0$, 11.0 and 2.0, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $2.15\left(1 \mathrm{H}\right.$, ddt, $J 15.5,7.0$ and $2.5, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 1.96-1.78 (2 H , $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right)$ and $1.07\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 196.4(\mathrm{C} 4), 84.2,82.4(\mathrm{C} 7$ and C 1 '), $63.6(\mathrm{C} 3), 40.5(\mathrm{C} 5), 39.0\left(\mathrm{CH}_{3} \mathrm{~S}\right), 28.4,24.3(\mathrm{C} 6$ and C 2 ') and $9.3(\mathrm{C} 3$ ').

(1'R,2'R,1''S)-tert-Butyl 2'-(1''-azido-propyl)-cyclopropanoate 43

According to method 7b bis-tosylate $\mathbf{4 2}(0.27 \mathrm{~g}, 0.51 \mathrm{mmol})$ gave a white gum. The crude product was dissolved in anhydrous DMF ($5 \mathrm{~cm}^{3}$), sodium azide ($40 \mathrm{mg}, 0.62 \mathrm{mmol}$) was added and the reaction mixture heated to $50{ }^{\circ} \mathrm{C}$ overnight (19 hours). The reaction mixture was transferred to a separatory funnel with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with 3 M aqueous $\mathrm{HCl}\left(2 \times 20 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}(20$
cm^{3}), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to give a clear gum. The product was purified by DCVC [id $1 \mathrm{~cm} ; 7 \mathrm{~cm}^{3}$ fractions; $4 \times$ hexanes; 2-6\% EtOAc in hexanes (v/v) -2% increments; seven fractions of each solvent mixture were collected] to give cyclopropane 43 (75 $\mathrm{mg}, 62 \%$) as a clear gum. e.e. $>94 \%$ determined by NMR of Mosher's amide derivatives. ${ }^{19}$ F NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): Derivative made from $\mathrm{R}-(+)$-Mosher's acid chloride $\delta-69.33$. Derivative made from racemic Mosher's acid chloride $\delta-69.17$ and -69.32 ; $[\alpha]_{D}^{23}-51$ (c. 1.3, CHCl_{3}); $R_{\mathrm{f}} 0.45(10 \%$ EtOAc in hexanes, $\mathrm{v} / \mathrm{v}) ; ~ m / z(+\mathrm{ESI})$ found: MNa^{+}, 248.1370. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$ requires $M, 248.1370$); IR $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2095\left(\mathrm{~N}_{3}\right), 1721(\mathrm{C}=\mathrm{O})$ and $1154(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 2.76$ (1 H , ddd, $J 8.5,7.5$ and $6.0, \mathrm{CHN}_{3}$), 1.66-1.58 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CHC}=\mathrm{O}$), $1.49(1 \mathrm{H}, \mathrm{tdd}, J 8.5$, 6.0 and $4.0, \mathrm{CHCHC}=\mathrm{O}), 1.43\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.16\left(1 \mathrm{H}, \mathrm{dt}, J 9.0\right.$ and 4.5 , ring- $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 0.98(3 \mathrm{H}$, $\mathrm{t}, J 7.5, \mathrm{CH}_{3} \mathrm{CH}_{2}$) and $0.76\left(1 \mathrm{H}\right.$, ddd, $J 8.5,6.0$ and 4.5 , ring $\left.-\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 172.4(\mathrm{C} 1), 80.6\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 66.1\left(\mathrm{C}^{\prime}{ }^{\prime}\right), 28.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.8\left(\mathrm{C} 2{ }^{\prime}\right)$), $24.9(\mathrm{C} 2$ '), $19.6(\mathrm{C} 1 '), 12.0$ (C3') and 10.3 (C3'"); (Found: C, 58.45; H, 8.55. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 58.64; H, 8.50\%).

Crystal data for cyclopropane 40: $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P}, M=400.43$, Triclinic, $P 1, a=5.8939(2), b=$ 8.5144(3), $c=11.3355(4) \AA, \alpha=82.108(2), \beta=87.448(2), \gamma=82.337(2)^{\circ}, U=558.23(3) \AA^{3}, Z=1$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.147 \mathrm{~mm}^{-1}, 5699$ reflections collected at $180(2) \mathrm{K}$ using an Oxford Cryosystems Cryostream cooling apparatus, 3689 unique ($R_{\text {int }}=0.025$); $R 1=0.035$, $w R 2=0.096[I>2 \sigma(I)]$, Absolute structure parameter -0.08(8).
The structures were solved with SHELXS-97, ${ }^{8}$ and refined with SHELXL-97. ${ }^{8}$
CCDC reference number 600428. See http://www.rsc.org/suppdata/ for crystallographic data in .cif or other electronic format.

References

1. W. G. Kofron and L. M. Baclawski, J.Org.Chem., 1976, 41, 1879.
2. D. Sejer Pedersen and C. Rosenbohm, Synthesis, 2001, 2431.
3. Mestre-C software, ver. 4.5.6, www.mestrec.com.
4. H. Kolb, M. S. VanNiewenhze, and K. B. Sharpless, Chem.Rev., 1994, 94, 2483.
5. J. Eames, H. J. Mitchell, A. Nelson, P. O'Brien, S. Warren, and P. Wyatt, Tetrahedron Lett., 1995, 36, 1719.
6. J. Eames, H. J. Mitchell, A. Nelson, P. O'Brien, S. Warren, and P. Wyatt, J.Chem.Soc., Perkin Trans. 1, 1999, 1095.
7. U. Jahn, Chem.Commun., 2001, 1600.
8. Sheldrick, G. M., University of Göttingen, Germany, 1997, ver. SHELXS-97/SHELXL-97.
