Supplementary Information

Episulfonium-ion mediated cyclic peptide and triazine synthesis

David J. Fox,* Thomas J. Morley and Stuart Warren. University Chemical Laboratory, Lensfield Road, Cambridge, UK, CB2 1EW; E-mail: djf34@cam.ac.uk

Experimental

All solvents were BOC standard grade and distilled before use. THF was distilled from sodium wire with benzophenone as an indicator. Ether, acetonitrile and dichloromethane were distilled from calcium hydride. Toluene was also distilled from calcium hydride and stored over 4Å molecular sieves. Pyridine, N,N-dimethylformamide, triethylamine and diisopropylamine were dried and stored over 4Å molecular sieves. TFA was used under nitrogen and stored in a dessicator over anhydrous potassium hydroxide. n-Butyllithium was titrated against L-menthol using N-(4-phenylbenzylidene)benzylamine as indicator before use. pH 2 Sulfate buffer was prepared by dissolving sodium sulfate (1.5 mol) and sulfuric acid (0.5 mol) in distilled water to give a total volume of 2000 cm³. For reactions conducted under anhydrous conditions, all glassware was dried overnight in an oven (120°C) and allowed to cool under a vacuum with the reactions being carried out under an argon or nitrogen atmosphere. Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). Thin layer chromatography was carried out on commercially available pre-coated glass-backed plates (Merck Kieselgel 60F₂₅₄). Proton and carbon NMR spectra were recorded on Bruker Avance DPX400 (5 mm ONP probe) and Bruker Avance DPX500 (5 mm dual ¹³C-¹H cryo probe) Fourier Transform spectrometers using an internal deuterium lock. Chemical shifts are quoted in parts per million (ppm) downfield of tetramethylsilane. ¹H chemical shifts are rounded to the nearest 0.01 ppm and ¹³C chemical shifts are rounded to the nearest 0.1ppm. Coupling constants (J) are given in Hertz (Hz) and are quoted to the nearest 0.5 Hz. Carbon NMR spectra were recorded with broadband proton decoupling and were recorded with APT or DEPT. Complex ¹H and ¹³C spectra were assigned on the basis of ¹H, COSY, ¹³C, APT or DEPT, ¹H-¹³C HMQC and ¹H-¹³C HMBC as relevant. LC-MS was run on a Waters Alliance LC/MS system consisting of a Water 2795 Separations Module, a Waters 2996 Photodiode Array Detector and a Waters Micromass ZQ on a C18 analytical Reverse Phase Supercosil[™] ABZ+PLUS column (3.3 cm x 4.6 mm, 3 µm) using the following gradient: 0.00-0.70 min 100% solvent A, 0.70-4.20 min 100% solvent A to 100 % solvent B, 4.20-7.70 min 100% solvent B, 7.70-8.00 min solvent B to solvent A (solvent A: 10 mM ammonium acetate in water containing 0.1% formic acid; solvent B: 95% acetonitrile in water) with a flow rate of 1 cm^3/min . EI and LSIMS mass spectra were recorded on a Kratos concept 1H double focusing magnetic sector instrument using a MACH 3 data system. +ESI mass spectra were recorded using a Bruker Bio-Apex II FT-ICR instrument or a Micromass Q-Tof 1 machine. Melting points were measured on a microscope hot stage melting point apparatus (C. Reichert Optische Werke AG) and are uncorrected. Film phase infrared spectra were recorded using a Perkin Elmer Spectrum One (FT-IR) spectrophotometer with a universal ATR sampling accessory.

3-Hydroxy-4-methyl-4-(phenylthio)pentanoic acid 23: a solution of diisopropylamine (117 mmol) in THF (500 cm³) under nitrogen was cooled to -78 °C before the dropwise addition of *n*-butyllithium (117 mmol, 2.5 mol dm⁻³ in hexanes). The mixture was stirred for 20 minutes to give the pale yellow LDA solution. Ethyl acetate (112 mmol) was added and the reaction was stirred for 20 minutes. 2-Methyl-2-phenylsulfanylpropional¹ (20.0 g, 111.1 mmol) in THF (20 cm³) was added dropwise and the solution was stirred for a further 30 minutes before allowing warming to room temperature over three hours. Saturated ammonium chloride solution (100 cm³) was added and the solvent was evaporated under reduced pressure. The remaining aqueous phase was extracted with ethyl acetate (2 x 200 cm³) and the combined organic extracts were washed with saturated sodium bicarbonate solution (2 x 100 cm^3) and brine (100 cm³), dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:20 to 1:4) to give ethyl 3-hydroxy-4-methyl-4-(phenylthio)pentanoate as a pale yellow oil (14.4 g, 53.6 mmol, 48%); Rf (EtOAc-hexane 1:4) 0.22; δ_H (500 MHz; CDCl₃) 7.55-7.50 (2 H, m, *o*-Ph), 7.36-7.29 (3 H, m, *m* and *p*-Ph), 4.15 (2 H, q, J 7.0, OCH₂Me), 3.88 (1 H, dt, J 10.0, 3.0, CHOH), 3.19 (1 H, d, J 2.0, OH), 2.73 (1 H, dd, J 15.5 and 2.0, CH_AH_BCO₂), 2.47 (1 H, dd, J 15.5 and 10.5, CH_AH_BCO₂), 1.25 (3 H, t, J 7.0, CH₂Me), 1.24 (3 H, s, CMe_AMe_B), 1.19 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 172.8 (CO₂), 137.5 (*o*-Ph), 130.4 (*i*-

Ph), 129.2 (p-Ph), 128.7 (m-Ph), 72.7 (CHOH), 60.8 (CH₂Me), 53.2 (SCMe₂), 36.6 (CH₂CO₂), 24.6 (CMe_AMe_B) , 23.8 (CMe_AMe_B) and 14.1 (CH_2Me) ; m/z = 291.10280 $(C_{14}H_{20}O_3Na$ requires M+Na, 291.10309, dev. -1.09 ppm); v_{max} (CDCl₃/cm⁻¹) 3500 (broad OH), 1724 (CO). The ester (14.4 g, 53.6 mmol) was dissolved in methanol (200 cm³) and water (20 cm³). Potassium hydroxide (3.30 g, 59.0 mmol) was added and the reaction was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and saturated sodium bicarbonate solution (100 cm³), water (100 cm³) and a hexane and ethyl acetate mixture (1:1 ratio, 200 cm³) were added. The organic layer was subsequently separated and discarded. The aqueous phase was extracted with further portions of ethyl acetate and hexane (1:1 ratio, $2 \times 100 \text{ cm}^3$) and each organic phase was discarded. The aqueous phase was acidified with pH 2 sulfate buffer (200 cm³) and hydrochloric acid as required to bring the pH of the solution to pH 2 before extracting with diethylether $(2 \times 200 \text{ cm}^3)$ and ethyl acetate (200 cm^3) . The combined organic phases were dried (Na₂SO₄) and evaporated under reduced pressure to give a pale yellow solid (12.8 g, 52.5 mmol, 98%); δ_H (500 MHz; CDCl₃) 7.53-7.50 (2 H, m, *o*-Ph), 7.39-7.33 (3 H, m, m-Ph and p-Ph), 3.84 (1 H, dd, J 10.5 and 2.5, CHOH), 2.73 (1 H, dd, J 16.0 and 2.5, CHAHB), 2.52 (1 H, dd, J 15.5 and 10.5, CH_AH_B), 1.27 (3 H, s, CMe_AMe_B), 1.21 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 176.0 (CO), 137.5 (o-Ph), 129.9 (i-Ph), 129.4 (p-Ph), 128.9 (m-Ph), 72.2 (CHOH), 53.4 $(SCMe_2)$, 36.0 (CH₂CO), 24.9 (CMe_AMe_B), 23.1 (CMe_AMe_B); m/z = 263.07039 (C₁₂H₁₆O₃SNa requires M+Na, 263.07123, dev. 2.27 ppm); v_{max} (CDCl₃/ cm⁻¹) 3300 (broad OH), 1713 (CO); m.p. (EtOAc/Hexane) 105-108 °C.

3-Hydroxy-4-methyl-4-phenylsulfanyl-pentanamide 7: carboxylic acid 23 (1.00 g, 4.20 mmol) was dissolved in THF (50 cm³) under a nitrogen atmosphere at room temperature. To the rapidly stirring solution was added N-hydroxy-succinimide (0.51 g, 4.41 mmol) followed by dicyclohexylcarbodimide (0.91 g, 4.41 mmol) and stirring was continued overnight. The dicyclohexyl-urea precipitate was filtered out under gravity and the filter was washed with THF (10 cm³). Concentrated ammonia (3.0 cm³) was added to the THF solution of activated acid and the mixture was stirred overnight. The solution was filtered and the solvent was evaporated under reduced pressure. The solid residue was dissolved in ethyl acetate (50 cm³), filtered under gravity and washed with saturated sodium bicarbonate solution (2 x 50 cm³), pH 2 sulfate buffer (2 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:1) to give the *amide* as white crystals (925 mg, 92 %); R_f (EtOAchexanes 1:1) 0.21; δ_H (500 MHz; CDCl₃) 7.52-7.47 (2 H, m, o-Ph), 7.40-7.36 (1 H, m, p-Ph), 7.35-7.31 (2 H, m, m-Ph), 6.31 (1 H, br s, NH), 5.63 (1 H, br s, NH), 3.77 (1 H, s, OH), 3.74 (1 H, d, J 10.5, CHOH), 2.51 (1 H, d, J 15.0, CHAHB), 2.37 (1 H, dd, J 15.0 and 10.5, CHAHB), 1.24 (3 H, s, CMe_AMe_B), 1.21 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 174.5 (CO), 137.4 (o-Ph), 130.0 (i-Ph), 129.4 (p-Ph), 128.9 (m-Ph), 72.3 (CHOH), 54.0 (SCMe₂), 37.7 (CH₂), 25.0 (CMe_AMe_B), 22.9 (CMe_AMe_B) ; m/z = 262.08850 $(C_{12}H_{17}NO_2SNa$ requires M+Na = 262.0878, dev. 2.88); v_{max} (CHCl₃ / cm⁻¹) 3413 (NH), 3350 (broad OH), 1662 (CO); m.p. (EtOAc/Hexane) 97-101 °C.

2,4,6-Tris-(2'-phenylsulfanyl-3'-hydroxyl-3'-methyl-but-1-yl)-1,3,5-triazine 42: amide 7 (24 mg, 0.10 mmol) was added to a mixture of toluene (0.9 cm³) and TFA (0.1 cm³) under nitrogen. An ovendried air condenser was cooled under a stream of nitrogen and attached to the reaction flask before being fitted with an argon balloon. The reaction mixture was heated to 40 °C overnight. After the reaction was allowed to cool to room temperature saturated sodium bicarbonate solution (5 cm^3) was added, followed by ethyl acetate (5 cm³). The aqueous layer was extracted with ethyl acetate (2 x 5 cm^3) and the combined organic phases were washed with saturated sodium bicarbonate (2 x 10 cm³) and brine (10 cm^3), dried (Na₂SO₄) and evaporated to yield the crude reaction residue. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:1) to give the trimer as a white solid (20 mg, 92%) with three spin system environments in a ratio of 8:4:3 (e1:e2:e3); R_f (EtOAc) 0.49; δ_H (500 MHz, CDCl₃) 7.32-7.28 (6 H, m, o-Ph), 7.19-7.08 (9H, m, m and p-Ph), 3.90 (1 H, dd, J 9.5 and 4.5, e2 SC<u>H</u>), 3.86 (1 H, dd, J 10.0 and 4.5, e1 SC<u>H</u>), 3.85 (1 H, dd, J 10.5 and 4.5, e3 SC<u>H</u>), 3.32 (1 H, dd, J 15.5 and 4.5, e2 CH_AH_B , 3.22 (1 H, dd, J 15.5 and 4.0, e3 CH_AH_B), 3.18 (1 H, dd, J 15.5 and 4.0, e1 CH_AH_B), 3.00 (1 H, dd, J 15.5 and 9.5, e2 CH_AH_B), 2.96 (1 H, dd, J 15.5 and 10.5, e3 CH_AH_B), 2.94 (1 H, dd, J 15.5 and 10.0, e1 CH_A<u>H</u>_B), 2.73 (1 H, br s, e2 OH), 2.69 (1 H, br s, e3 OH), 2.66 (1 H, br s, e1 OH), 1.36 (3 H, s, e2 CMe_AMe_B), 1.35 (3 H, s, e3, CMe_AMe_B), 1.34 (6 H, s, e1 CMe_AMe_B and e2 CMe_AMe_B), 1.32 (3 H, s, e3 CMe_AMe_B), 1.31 (3 H, s, e1 CMe_AMe_B); δ_C (125 MHz, CDCl₃) 176.7 (CN e2), 176.8 (CN e1 and e3), 136.6 (i-Ph, e3), 136.5 (i-Ph, e1), 136.4 (i-Ph, e2), 130.9 (o-Ph, e3), 130.8 (o-Ph, e1), 130.7 (o-Ph, e2), 128.8 (m-Ph, e1, e2 and e3), 126.7 (p-Ph e3), 126.6 (p-Ph e1), 126.6 (p-Ph e2), 73.2 and 73.1 (CMe₂ e1, e2 and e3), 59.9 (SCH e3), 59.6 (SCH e1 and e2), 41.2 (CH₂ e3), 41.1 (CH₂ e2), 41.0 (CH₂ e1), 27.7 (CMe_AMe_B e2), 27.6 (CMe_AMe_B e1), 27.5 (CMe_AMe_B e3), 26.7

 $(C\underline{Me}_AMe_B e3)$, 26.6 $(C\underline{Me}_AMe_B e1)$, 26.6 $(C\underline{Me}_AMe_B e2)$; m/z = 686.25220 $(C_{36}H_{45}N_3O_3S_3Na$ requires M+Na, 686.2515, dev. 2.36 ppm); v_{max} (CHCl₃ / cm⁻¹) 1538 (CN); m.p. (EtOAc/Hexane) 135-138 °C.

Hydroxy-nitrile **1** was reacted in an analogous fashion (except that the reaction solvent mixture TFA / hexanes 1:5 v/v was used) to give triazine **2** in 63% yield. In incomplete reactions, **5,5-dimethyl-4-phenylsulfanyl-dihydro-furan-2-imine 9** was observed as an unstable intermediate which hydrolysed in air or during silica column chromatography: δ_H (500 MHz; CDCl₃) 7.49-7.44 (2 H, m, *o*-Ph), 7.32-7.27 (2 H, m, *m*-Ph), 7.15-7.07 (1 H, m, *p*-Ph), 3.62 (1 H, dd, *J* 10.5 and 8.0, SCH), 3.01 (1 H, dd, *J* 17.0 and 8.0, CH_AH_B), 2.75 (1 H, dd, *J* 17.0 and 10.5, CH_AH_B), 1.40 (3 H, s, CMe_AMe_B), 1.37 (3 H, s, CMe_AMe_B);

 δ_C (125 MHz; CDCl₃) 176.6 (CON), 136.5 (*i*-Ph), 131.1 (*o*-Ph), 129.4 (*m*-Ph), 127.8 (*p*-Ph), 87.4 (OCMe₂), 53.7 (SCH), 37.1 (CH₂), 29.6 (CMe_AMe_B), 23.0 (CMe_AMe_B); *m*/*z* = 221.08818 (C₁₂H₁₅NOS requires *M*+, 221.08743, dev. 3.34 ppm).

Hydrolysis of imide **9** produces the previously reported lactone² **5,5-dimethyl-4-phenylsulfanyl-dihydro-furan-2-one 3** and **4-hydroxy-4-methyl-3-phenylsulfanyl-pentanamide 8**: R_f (EtOAc) 0.10; δ_H (500 MHz; CDCl₃) 7.50-7.47 (2 H, m, o-Ph), 7.29-7.24 (2 H, m, m-Ph), 7.22-7.18 (1 H, m, p-Ph), 5.56 (1 H, br s, NH), 5.37 (1 H, br s, NH), 3.63 (1 H, dd, *J* 8.0 and 5.0, SCH), 2.82 (1 H, dd, *J* 15.5 and 5.0, C<u>H</u>_AH_B), 2.69 (1 H, br s, OH), 2.48 (1 H, dd, *J* 16.0 and 8.0, CH_AH_B), 1.33 (3 H, s, C<u>Me</u>_AMe_B), 1.32 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 173.6 (CON), 134.7 (o-Ph), 131.1 (p-Ph), 129.1 (m-Ph), 127.0 (*i*-Ph), 73.1 (OCMe₂), 57.7 (SCH), 38.3 (CH₂), 27.9 CMe_AMe_B), 26.6 (C<u>Me</u>_AMe_B); m/z = 262.08720 (C₁₂H₁₇NO₂Na requires *M*+*Na*, 262.0878, dev. -2.30 ppm); ν_{max} (CHCl₃ / cm⁻¹) 3320 (broad, OH and NH), 1671 (CO); m.p. (EtOAc/Hexane) 129.0-131.4°C.

2-Methyl-2-(4-methylphenylsulfanyl)-propionaldehyde³ **12**: 4-Methylbenzenethiol (23.8 g, 0.22 mol) was dissolved in dry pentane (200 cm³) and stirred with dry triethylamine (1.00 cm³) under argon before cooling to 0 °C. Sulfuryl chloride (28.5 g, 0.21 mol) was added slowly over a period of one hour, and the resulting mixture was stirred for one hour at 0 °C and then for two hours at room temperature to yield a deep red solution to which was added THF (200 cm³). This mixture was slowly transferred to a solution of trimethyl-(2-methyl-propenyloxy)-silane (25.0 g 0.20 mol) in THF (200 cm³) stirred at –78 °C under argon. The reaction mixture was stirred for three hours before water (200 cm³) was added and the resulting aqueous phase was extracted with ether (3 x 100 cm³). The combined organic extracts were washed with dilute hydrochloric acid (1 M, 2 x 250 cm³), saturated sodium bicarbonate solution (3 x 100 cm³) and brine (100 cm³), dried (Na₂SO₄) and the solvent evaporated under reduced pressure to yield the aldehyde as a pale yellow oil (35.8 g, 92 %); δ_H (500 MHz; CDCl₃) 9.25 (1 H, s, CHO), 7.26 (2 H, d, *J* 8.0, *o*-Ph), 7.10 (2 H, d, *J* 8.0, *m*-Ph), 2.32 (3 H, s, Ph<u>Me</u>), 1.30 (6 H, s, C<u>Me₂</u>); δ_C (125 MHz; CDCl₃) 195.3 (CHO), 139.9 (*i*-Ph), 136.9 (*o*-Ph), 129.8 (*m*-Ph), 126.2 (*p*-Ph), 55.3 (S<u>C</u>Me₂), 21.2 (Ph<u>Me</u>), 21.1 (SC<u>Me₂</u>); m/z = 217.06610 (C₁₁H₁₄OSNa requires *M*+*Na* = 217.06630, dev. –1.10 ppm); v_{max} (CHCl₃ / cm⁻¹) 1712 (CO), 1492 (Ph), 1457 (Ph).

2-(4-Butyl-phenylsulfanyl)-2-methyl-propionaldehyde 13: 4-butylbenzenethiol (4.80 g, 28.9 mmol) was dissolved in dry pentane (50 cm³) and stirred with dry triethylamine (1.00 cm³) under argon before cooling to 0 °C. Sulfuryl chloride (4.10 g, 30.4 mmol) was added slowly over a period of one hour, and the resulting mixture was stirred for one hour at 0 °C and then for two hours at room temperature to yield a deep red solution to which was added THF (50 cm³). This mixture was slowly transferred to a solution of trimethyl-(2-methyl-propenyloxy)-silane (4.16 g, 28.9 mmol) in THF (50 cm³) stirred at -78 °C under argon. The reaction mixture was stirred for three hours before water (50 cm³) was added and the resulting aqueous phase was extracted with ether $(3 \times 25 \text{ cm}^3)$. The combined organic extracts were washed with dilute hydrochloric acid (1 M, 2 x 50 cm³), saturated sodium bicarbonate solution (3 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and the solvent evaporated under reduced pressure to yield the *aldehyde* as a pale yellow oil (5.40 g, 79 %); δ_H (500 MHz; CDCl₃) 9.33 (1 H, s, CHO), 7.28 (2 H, d, J 8.0, o-Ph), 7.10 (2 H, d, J 8.0, m-Ph), 2.57 (1 H, t, J 8.0, ArCH₂), 1.60-1.52 (2 H, m, ArCH₂CH₂), 1.32 (2 H, sextet, J 7.5, CH₂Me), 1.30 (6 H, s, SCMe₂), 0.91 (3 H, t, J 7.5, CH₂Me); δ_C (125 MHz; CDCl₃) 195.4 (CHO), 144.8 (p-Ph), 136.9 (o-Ph), 129.1 (m-Ph), 126.4 (i-Ph), 55.3 $(S\underline{C}Me_2)$, 35.4 $(Ar\underline{C}H_2)$, 33.3 $(ArCH_2\underline{C}H_2)$, 22.3 $(\underline{C}H_2Me)$, 21.1 $(C\underline{M}e_2)$ 13.9 $(CH_2\underline{M}e)$; $m/z = 10^{-10}$ 236.12426 (C₁₄H₂₀OS requires M = 236.12348, dev. 3.68 ppm); v_{max} (neat / cm⁻¹) 1712, (CO), 1596 (Ph), 1489 (Ph), 1458 (Ph).

3-Hydroxy-4-methyl-4-(4'-methylphenyl)sulfanyl-pentanamide 14: a solution of diisopropylamine (25.8 mmol) in THF (250 cm³) under nitrogen was cooled to -78 °C before the dropwise addition of *n*butyllithium (25.8 mmol, 2.5 M in hexanes). The mixture was stirred for 20 minutes to give the pale yellow LDA solution. Ethyl acetate (2.38 g, 27.1 mmol) was added and the reaction was stirred for 20 minutes. 2-Methyl-2-(4-methylphenyl)sulfanylpropional 12 (5.00 g, 25.8 mmol) in THF (10 cm³) was added dropwise and the solution was stirred for a further 30 minutes before allowing warming to room temperature over three hours. Saturated ammonium chloride solution (50 cm³) was added and the organic solvent was evaporated under reduced pressure. The remaining aqueous phase was extracted with ethyl acetate (3 x 50 cm^3) and the combined organic extracts were washed with saturated sodium bicarbonate solution (100 cm³) and brine (100 cm³), dried (Na₂SO₄) and were evaporated under reduced pressure to give ethyl 3-hydroxy-4-methyl-4-(4'-methylphenylthio)pentanoate as a yellow oil (6.48 g, 89 %); δ_H (500 MHz; CDCl₃) 7.39 (2 H, dt, J 8.0 and 2.0, o-Ph), 7.13 (2 H, d, J 8.0, m-Ph), 4.16 (2 H, q, J 7.0, CH₂Me), 3.86 (1 H, dt, J 10.5 and 2.5, CHOH), 3.15 (1 H, d, J 2.5, OH), 2.70 (1 H, dd, J 15.5 and 2.0, CH_AH_B), 2.46 (1 H, dd, J 15.5 and 10.5, CH_AH_B), 2.34 (3 H, s, PhMe), 1.26 (3 H, t, J 7.0, CH₂Me), 1.24 (3 H, s, CMe_AMe_B), 1.18 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 172.7 (CO₂), 139.4 (i-Ph), 137.4 (o-Ph), 129.6 (m-Ph), 126.8 (p-Ph), 72.6 (CHOH), 60.8 (CH₂Me), 53.0 (SCMe₂), 36.5 (CH₂), 24.7 (CMe_AMe_B), 23.6 (CMe_AMe_B), 21.2 (PhMe), 14.2 (CH₂Me); m/z = 305.11820 $(C_{15}H_{22}O_3SNa \text{ requires } M + Na = 305.11873, \text{ dev.} -1.86 \text{ ppm}); v_{max} (CHCl_3 / \text{ cm}^{-1}) 3500 (\text{br OH}), 1732$ (CO), 1492 (Ph), 1461 (Ph). The ester (3.00 g, 10.6 mmol) was dissolved in methanol (25 cm³) and water (2.5 cm³). Potassium hydroxide (0.65 g, 11.7 mmol) was added and the reaction was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and saturated sodium bicarbonate solution (20 cm³), water (20 cm³) and a hexane and ethyl acetate mixture (1:1 ratio, 50 cm³) were added. The organic layer was separated and discarded. The aqueous phase was extracted with further portions of ethyl acetate and hexane (1:1 ratio, 2 x 20 cm³) and each organic phase was discarded. The aqueous phase was acidified with pH 2 sulfate buffer (20 cm³) and hydrochloric acid as required to bring the pH of the solution to pH 2 before extracting with diethylether (2 x 500 cm³) and ethyl acetate (50 cm³). The combined organic phases were dried (Na_2SO_4) and evaporated under reduced pressure to give 3-hydroxy-4-methyl-4-(4'-methylphenylthio) pentanoic acid as an amorphous off white solid (2.41 g, 9.48 mmol, 89 %); δ_H (500 MHz; CDCl₃) 7.38 (2 H, dt, J 8.0 and 2.0, o-Ph), 7.14 (2 H, dd, J 8.0 and 0.5, m-Ph), 3.83 (1 H, dd, J 10.5 and 2.5, CHOH), 2.71 (1 H, dd, J 15.5 and 2.5, CH_AH_B), 2.49 (1 H, dd, J 15.5 and 10.5, CH_AH_B), 2.35 (3 H, s, PhMe), 1.25 (3 H, s, CMe_AMe_B), 1.20 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 176.3 (CO₂), 139.7 (*p*-Ph), 137.4 (*o*-Ph), 129.7 (*m*-Ph), 126.3 (*i*-Ph), 72.1 (CHOH), 53.1 (SCMe₂), 36.0 (CH₂), 24.8 (CMe_AMe_B), 22.9 (CMe_AMe_B), 21.2 (Ph<u>Me</u>); m/z = 277.08740 (C₁₃H₁₉O₃SNa requires M+Na = 277.08743, dev. -0.24 ppm); v_{max} (CHCl₃ / cm⁻¹) 3450 (br OH), 1708 (CO), 1492 (Ph). The carboxylic acid (2.40 g, 9.40 mmol) was dissolved in THF (100 cm³) under a nitrogen atmosphere at room temperature. To the rapidly stirring solution was added N-hydroxy-succimide (1.14 g, 9.90 mmol) followed by dicyclohexylcarbodimide (2.04 g, 9.90 mmol) and stirring was continued overnight. The dicyclohexyl-urea precipitate was filtered out under gravity and the filter was washed with THF (25 cm³). Concentrated ammonia (5.0 cm³) was added and the mixture was stirred overnight. The solution was filtered and the solvent was evaporated under reduced pressure. The residue was suspended in ethyl acetate (50 cm³), filtered and washed with saturated sodium bicarbonate solution (2 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAchexane 1:2 to EtOAc-MeOH 9:1) to give 3-hydroxy-4-methyl-4-(4'-methylphenyl)sulfanyl-pentanamide 14 as off white plates (1.48 g, 5.85 mmol, 62 %); R_f (EtOAc) 0.26; δ_H (500 MHz; CDCl₃) 7.27 (2 H, d, J 8.0, o-Ph), 7.14 (2 H, d, J 8.0, m-Ph), 6.30 (1 H, br s, NH_AH_B), 5.38 (1 H, br s, NH_AH_B), 3.72 (1 H, dt, J 11.0 and 2.0, CHOH), 3.70 (1 H, d, J 1.5, OH), 2.47 (1 H, d, J 15.0, CHAHB), 2.36 (1 H, dd, J 15 and 11.0, CH_AH_B), 2.35 (3 H, s, PhMe), 1.23 (3 H, s, CMe_AMe_B), 1.20 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 174.3 (CON), 139.7 (p-Ph), 137.2 (o-Ph), 129.7 (m-Ph), 126.3 (i-Ph), 72.1 (CHOH), 53.9 (SCMe₂), 37.2 (CH₂), 25.1 (CMe_AMe_B), 22.5 (CMe_AMe_B), 21.1 (PhMe); m/z = 276.10390 $(C_{13}H_{19}NO_2SNa \text{ requires } M+Na = 276.10342, \text{ dev. } 1.62 \text{ ppm}); v_{max} (CHCl_3 / \text{ cm}^{-1}) 3350 (br OH), 1661$ (CO), 1492 (Ph); m.p. (EtOAc/Hexane) 88.7-89.9 °C.

3-Hydroxy-4-methyl-4-(4'-butylphenyl)sulfanyl-pentanamide 15: a solution of diisopropylamine (15 mmol) in THF (150 cm³) under nitrogen was cooled to -78 °C before the dropwise addition of *n*-butyllithium (15 mmol, 2.5 M in hexanes). The mixture was stirred for 20 minutes to give the pale yellow LDA solution. Ethyl acetate (1.39 g, 15.8 mmol) was added and the reaction was stirred for 20 minutes. 2-Methyl-2-(4-butylphenyl)sulfanylpropional **13** (3.54 g, 15.0 mmol) in THF (5 cm³) was added dropwise and the solution was stirred for a further 30 minutes before allowing warming to room temperature over three hours. Saturated ammonium chloride solution (50 cm³) was added and the

organic solvent was evaporated under reduced pressure. The remaining aqueous phase was extracted with ethyl acetate (3 x 50 cm³) and the combined organic extracts were washed with saturated sodium bicarbonate solution (100 cm³) and brine (100 cm³), dried (Na₂SO₄) and were evaporated under reduced pressure to give crude ethyl 3-hydroxy-4-methyl-4-(4'-butylphenylthio)pentanoate as a yellow oil; δ_H (500 MHz; CDCl₃) 7.41 (2 H, d, J 8.0, o-Ph), 7.13 (2 H, d, J 8.0, m-Ph), 4.16 (2 H, q, J 7.0, OCH₂), 3.88 (1 H, dd, J 10.5 and 2.5, CHOH), 3.15 (1 H, br s, OH), 2.71 (1 H, dd, J 15.5 and 2.5, CH_AH_BCO₂), 2.60 (1 H, t, J 8.0, ArCH₂), 2.46 (1 H, dd, J 15.5 and 10.5, CH_AH_BCO₂), 1.62-1.55 (2 H, m, ArCH₂CH₂), 1.34 (2 H, sextet, J 7.5, CH₂Me), 1.24 (3 H, t, J 7.0, OCH₂Me), 1.24 (3 H, s, CMe_AMe_B , 1.19 (3 H, s, CMe_AMe_B), 0.92 (3 H, t, J 7.5, CH_2Me); δ_C (125 MHz; $CDCl_3$) 172.8 (CO₂), 144.4 (p-Ph), 137.4 (o-Ph), 128.9 (m-Ph), 126.9 (i-Ph), 72.6 (CHOH), 60.8 (OCH₂), 53.1 (SCMe₂), 36.5 (CH₂CO), 35.3 (ArCH₂), 33.4 (ArCH₂CH₂), 24.7 (CMe_AMe_B), 23.6 (CMe_AMe_B), 22.3 (CH₂CH₂Me), 14.2 (OCH₂Me) 13.9 (CH₂CH₂Me); v_{max} (CH₂Cl₂ / cm⁻¹) 3500 (br OH), 1733 (CO), 1597 (Ph), 1463 (Ph). The crude ester was dissolved in methanol (100 cm³) and water (10 cm³). Potassium hydroxide (0.93 g, 16.5 mmol) was added and the reaction was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and saturated sodium bicarbonate solution (50 cm³), water (50 cm³) and a hexane and ethyl acetate mixture (1:1 ratio, 100 cm³) were added. The organic layer was subsequently separated and discarded. The aqueous phase was extracted with further portions of ethyl acetate and hexane (1:1 ratio, $2 \times 50 \text{ cm}^3$) and each organic phase was discarded. The aqueous phase was acidified with pH 2 sulfate buffer (50 cm³) and hydrochloric acid as required to bring the pH of the solution to pH 2 before extracting with diethylether $(2 \times 50 \text{ cm}^3)$ and ethyl acetate (50 cm^3) . The combined organic phases were dried (Na₂SO₄) and evaporated under reduced pressure to give the 3-hydroxy-4-methyl-4-(4'-butylphenylthio) pentanoic acid as an amorphous off white solid $(3.70 \text{ g}, 83 \% \text{ over 2 steps}); \delta_H$ (500 MHz; CDCl₃) 7.40 (2 H, d, J 8.0, o-Ph), 7.14 (2 H, d, J 8.0, m-Ph), 3.84 (1 H, dd, J 10.5 and 2.0, CHOH), 2.72 (1 H, dd, J 15.5 and 1.5, CH_AH_B), 2.60 (1 H, t, J 8.0, ArCH₂), 2.49 (1 H, dd, J 15.5 and 10.5, CH_AH_B), 1.62-1.55 (2 H, m, ArCH₂CH₂), 1.34 (2 H, sextet, J 7.5, CH₂Me), 1.25 (3 H, s, CMe_AMe_B), 1.20 (3 H, s, CMe_AMe_B), 0.92 (3 H, t, J 7.5, CH₂Me); δ_C (125 MHz; CDCl₃); 176.6 (CO₂), 144.6 (p-Ph), 137.3 (o-Ph), 129.0 (m-Ph), 126.5 (i-Ph), 72.2 (CHOH), 53.2 (SCMe₂), 36.1 (CH₂CO), 35.3 (ArCH₂), 33.3 (ArCH₂CH₂), 24.8 (CMe_AMe_B), 23.0 (CMe_AMe_B), 22.3 (CH₂Me), 13.9 (CH₂Me); m/z = 319.1333 (C₁₆H₂₄O₃SNa requires M+Na = 319.1344, dev. -3.4 ppm); v_{max} (CH₂Cl₂ / cm⁻¹) 3420 (br OH), 1709 (CO), 1597 (Ph), 1488 (Ph), 1460 (Ph). The carboxylic acid (3.70 g, 12.5 mmol) was dissolved in THF (120 cm³) under a nitrogen atmosphere at room temperature. To the rapidly stirring solution was added N-hydroxy-succimide (1.51 g, 13.1 mmol) followed by dicyclohexylcarbodimide (2.70 g, 13.1 mmol) and stirring was continued overnight. The dicyclohexylurea precipitate was filtered out under gravity and the filter was washed with THF (30 cm³). Concentrated ammonia (5.0 cm³) was added and the mixture was stirred overnight. The solution was filtered and the solvent was evaporated under reduced pressure. The residue was suspended in ethyl acetate (75 cm³), filtered and washed with pH 2 sulfate buffer (2 x 50 cm³), saturated sodium bicarbonate solution (2 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and the solvent was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:2 to neat EtOAc) to give the 3-hydroxy-4-methyl-4-(4'-butylphenyl)sulfanyl-pentanamide 15 as an amorphous white solid (1.81 g, 6.1 mmol, 49 %), R_f (EtOAc) 0.28; δ_H (500 MHz; CDCl₃) 7.39 (2 H, d, J 8.0, o-Ph), 7.13 (2 H, d, J 8.0, m-Ph), 6.35 (1 H, br s, NH_AH_B), 5.55 (1 H, br s, NH_AH_B), 3.77 (1 H, s, OH), 3.73 (1 H, dd, J 10.5 and 2.0, CHOH), 2.59 (1 H, t, J 8.0, ArCH₂), 2.48 (1 H, dd, J 15.0 and 2.0, CH_AH_BCO₂), 2.36 (1 H, dd, J 15.0 and 10.5, CH_AH_BCO₂), 1.62-1.54 (2 H, m, ArCH₂CH₂), 1.34 (2 H, sextet, J 7.5, CH₂Me), 1.23 (3 H, s, CMe_AMe_B), 1.19 (3 H, s, CMe_AMe_B), 0.91 (3 H, t, J 7.5, CH₂Me); δ_C (125 MHz; CDCl₃) 174.5 (CON), 144.6 (p-Ph), 137.3 (o-Ph), 129.0 (m-Ph), 126.5 (i-Ph), 72.1 (CHOH), 53.9 (SCMe₂), 37.3 (CH₂CO), 35.3 (ArCH₂), 33.3 (ArCH₂CH₂), 25.0 (CMe_AMe_B), 22.6 (CMe_AMe_B) , 22.3 (CH_2Me) , 13.9 (CH_2Me) ; m/z = 318.1508 $(C_{16}H_{25}NO_2SNa$ requires M+Na =318.1504, dev. 1.3 ppm); v_{max} (cm⁻¹) 3330 (OH), 3189 (NH), 1668 (CO), 1489 (Ph), 1436 (Ph); m.p. (EtOAc/Hexane) 32.3-33.4 °C.

2,4,6-Tris-(2'-[4''-methyl-phenylsulfanyl]-3'-hydroxyl-3'-methyl-but-1-yl)-1,3,5-triazine 16: amide **14** (0.4 mmol) was added to a mixture of toluene (3.6 cm³) and TFA (0.37 cm³). An oven dried air condenser was cooled under a stream of nitrogen and attached to the reaction flask before being fitted with an argon balloon. The reaction mixture was heated to 40 °C overnight. After the reaction was allowed to cool to room temperature saturated sodium bicarbonate solution (20 cm³) was added, followed by ethyl acetate (20 cm³). The aqueous layer was extracted with ethyl acetate (2 x 10 cm³) and the combined organic phases were washed with saturated sodium bicarbonate (2 x 20 cm³) and brine (20 cm³), dried (Na₂SO₄) and evaporated to yield the crude reaction residue. The residue was chromatographed (SiO₂, eluting with EtOAc-hexane 1:10 to neat EtOAc) to give the *triazine* as a white

solid (62 mg, 0.26 mmol, 65%) with three spin system environments in a ratio of 5:2:1 (e1:e2:e3); R_f (EtOAc) 0.52; δ_H (500 MHz; CDCl₃) 7.20-7.16 (6 H, m, o-Ph), 6.96 (2 H, d, J 8.0, m-Ph e3), 6.93 (2 H, d, J 8.0, m-Ph e1), 6.90 (2 H, d, J 8.0, m-Ph e2), 3.84 (1 H, dd, J 9.5 and 4.5, SCH e2), 3.79 (1 H, dd, J 10.0 and 4.5, SCH e1), 3.78 (1 H, dd, J 10.0 and 3.5, SCH e3), 3.33 (1 H, dd, J 15.5 and 4.5, CHAHB e2), 3.20 (1 H, dd, J 15.5 and 4.0, CHAHB e3), 3.16 (1 H, dd, J 15.5 and 4.5, CHAHB e1), 2.99 (1 H, dd, J J 15.5 and 10.0, CH_AH_B e2), 2.97 (1 H, dd, J 15.5 and 10.5, CH_AH_B e3), 2.93 (1 H, dd, J 15.5 and 10.0, CH_A<u>H</u>_B e1), 2.85 (1 H, br s, OH e2), 2.81 (1 H, br s, OH e3), 2.78 (1 H, br s, OH e1), 2.22 (6 H, s, PhMe e1 and e3), 2.21 (3 H, s, PhMe e2), 1.35 (3 H, s, CMe_AMe_B e2), 1.34 (6 H, s, CMe_AMe_B e2 and $CMe_AMe_B e^{3}$, 1.33 (3 H, s, $CMe_AMe_B e^{1}$), 1.31 (3 H, s, $CMe_AMe_B e^{3}$), 1.31 (3 H, s, $CMe_AMe_B e^{1}$); δ_C (125 MHz; CDCl₃) 176.7 (CN e2 and e3), 176.6 (CN e1), 136.8 (p-Ph e3), 136.7 (p-Ph e1), 136.6 (p-Ph e2), 132.8 (i-Ph e3), 132.7 (i-Ph e1), 132.6 (i-Ph e2), 131.5 (m-Ph e3), 131.3 (m-Ph e1), 131.3 (m-Ph e2), 129.6 (o-Ph e3), 129.6 (o-Ph e1), 129.6 (o-Ph e2), 73.2 (Me2C e1), 73.1 (Me2C e2 and e3), 73.1 (Me₂<u>C</u> e1), 60.4 (SCH e2), 60.4 (SCH e3), 60.3 (SCH e1), 41.2 (CH₂ e2), 41.1 (CH₂ e3), 41.0 (CH₂ e1), 27.7 (CMe_AMe_B e2), 27.5 (CMe_AMe_B e1), 27.4 (CMe_AMe_B e3), 26.7 (CMe_AMe_B e1), 26.7 (CMe_AMe_B e3), 26.6 (C<u>Me</u>_AMe_B e2), 21.0 (Ph<u>Me</u> e3), 20.9 (Ph<u>Me</u> e1 and e2); Accurate mass, m/z = 728.29765 $(C_{39}H_{51}N_3O_3S_3Na \text{ requires } M + Na = 728.29848, \text{ dev. } 1.13 \text{ ppm}); v_{max} (CHCl_3 / \text{ cm}^{-1}) 3410 (OH), 1540$ (CN), 1492 (Ph).

Also isolated from this reaction was **5,5-dimethyl-4-(4'-methylphenylsulfanyl)-dihydro-furan-2-one 18** as a pale yellow oil (11 mg, 12%); R_f (EtOAc:Hexane, 1:4) 0.29; δ_H (500 MHz; CDCl₃) 7.33 (2 H, dt, *J* 8.0 and 1.5, *o*-Ph), 7.13 (2 H, d, *J* 8.0, *m*-Ph), 3.63 (1 H, dd, *J* 10.5 and 8.0, SCH), 2.88 (1 H, dd, *J* 17.5 and 8.0, CH_AH_B), 2.66 (1 H, dd, *J* 17.5 and 10.5, CH_AH_B), 2.33 (3 H, s, PhMe), 1.46 (3 H, s, CMe_AMe_B), 1.40 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 173.5 (CO₂), 138.5 (*p*-Ph), 132.9 (*o*-Ph), 130.2 (*m*-Ph), 129.7 (*i*-Ph), 87.0 (CMe₂), 53.1 (SCH), 36.9 (CH₂), 27.4 (CMe_AMe_B), 23.0 (CMe_AMe_B), 21.1 (PhMe); m/z = 259.07740 (C₁₃H₁₆O₂SNa requires M+Na = 259.07687, dev. 1.92 ppm); v_{max} (CHCl₃ / cm⁻¹) 1766 (CO), 1493 Ph), 1457 (Ph).

Also isolated from this reaction was **4-hydroxy-4-methyl-3-(4'-methylphenylsulfanyl)-pentanamide 20** as an amorphous white solid (15 mg, 15%); R_f (EtOAc) 0.10; δ_H (500 MHz; CDCl₃) 7.39-7.36 (2 H, d, *J* 8.0, *o*-Ph), 7.10-7.07 (2 H, d, *J* 8.0, *m*-Ph), 5.62 (1 H, br s, NH_AH_B), 5.46 (1 H, br s, NH_AH_B), 3.54 (1 H, dd, *J* 8.0 and 5.0, SCH), 2.79 (1 H, dd, *J* 15.5 and 5.0, CH_AH_B), 2.47 (1 H, dd, *J* 15.5 and 8.0, CH_AH_B), 2.30 (3 H, s, Ph<u>Me</u>), 1.32 (3 H, s, CMe_AMe_B), 1.31 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 173.8 (CON), 137.3 (*p*-Ph), 132.1 (*i*-Ph), 131.7 (*o*-Ph), 129.9 (*m*-Ph), 73.1 (OCMe₂), 58.3 (SCH), 38.3 (CH₂), 27.9 (CMe_AMe_B), 26.6 (CMe_AMe_B), 21.0 (PhMe); *m/z* = 253.11361 (C₁₃H₁₉NO₂ requires *M*+ 253.11365, dev. -0.18 ppm); v_{max} (CHCl₃ / cm⁻¹) 3340 (br OH), 1670 (CO), 1492 (Ph), 1457 (Ph).

2,4,6-Tris-(2'-[4''-butyl-phenylsulfanyl]-3'-hydroxyl-3'-methyl-but-1-yl)-1,3,5-triazine 17: amide 15 (0.20 mmol) was added to a mixture of toluene (1.8 cm^3) and TFA (0.18 cm^3). An oven dried air condenser was cooled under a stream of nitrogen and attached to the reaction flask before being fitted with an argon balloon. The reaction mixture was heated to 40 °C overnight. After the reaction was allowed to cool to room temperature saturated sodium bicarbonate solution (10 cm³) was added, followed by ethyl acetate (10 cm³). The aqueous layer was extracted with ethyl acetate (2 x 10 cm³) and the combined organic phases was washed with saturated sodium bicarbonate (2 x 20 cm^3) and brine (20 cm³), dried (Na₂SO₄) and evaporated to yield the crude reaction residue. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:10 to neat EtOAc) to give the trimer as an amorphous white solid (24 mg, 44%) with spin system environments in a 4:2;1 ratio (e1:e2:e3); R_f (EtOAc) 0.68; δ_H (500 MHz; CDCl₃) 7.21 (2 H, d, J 8.5, o-Ph e3), 7.20 (2 H, d, J 8.0, o-Ph e1), 7.19 (2 H, d, J 8.0, o-Ph e2), 6.96 (2 H, d, J 8.5, m-Ph e3), 6.94 (2 H, d, J 8.0, m-Ph e1), 6.90 (2 H, d, J 8.0, m-Ph e2), 3.84 (1 H, dd, J 10.0 and 4.5, SCH e2), 3.82 (2 H, dd, J 10.0 and 4.5, SCH e1 and e3), 3.34 (1 H, dd, J 15.5 and 4.5, CH_AH_BCN e2), 3.22 (1 H, dd, J 15.5 and 4.5, CH_AH_BCN e3), 3.18 (1 H, dd, J 15.5 and 4.5, CH_AH_BCN e1), 3.01 (1 H, dd, J 15.5 and 10.0, CH_AH_BCN e2), 2.99 (1 H, dd, J 15.5 and 10.5, CH_A<u>H</u>_BCN e3), 2.95 (1 H, dd, J 15.5 and 10.0, CH_A<u>H</u>_BCN e1), 2.83 (1 H, s, OH e2), 2.78 (1 H, s, OH e3), 2.77 (1 H, s, OH e1), 2.50-2.44 (6 H, m, ArCH₂), 1.53-1.45 (6 H, m, ArCH₂CH₂), 1.36 (3 H, s, CMe_AMe_B e2), 1.35 (3 H, s, CMe_AMe_B e3), 1.34 (3 H, s, CMe_AMe_B e1), 1.33 (3 H, s, CMe_AMe_B e2), 1.31 (3 H, s, CMe_AMe_B e3) 1.31 (3 H, s, CMe_AMe_B e1), 1.32-1.24 (6 H, m, CH₂Me), 0.89 (6 H, t, J 7.5, CH_2Me e1 and e2), 0.88 (3 H, t, J 7.5, CH_2Me e3); δ_C (125 MHz; $CDCl_3$) 176.8 (CN e2), 176.7 (CN e3), 176.6 (CN e1), 141.8 (p-Ph e3), 141.7 (p-Ph e1), 141.7 (p-Ph e2), 132.9 (i-Ph e1 and e3), 132.8 (i-Ph e2), 131.4 (o-Ph e3), 131.3 (o-Ph e2), 131.2 (o-Ph e1), 129.0 (m-Ph), 73.1 (CMe₂ e2 and e3), 73.1 (CMe₂ e1), 60.3 (SCH e2), 60.3 (SCH e3), 60.2 (SCH e1), 41.2 (CH₂CN e2), 41.2 (CH₂CN e3), 41.1 (<u>CH₂CN e1</u>), 35.1 (Ar<u>CH₂</u>), 33.4 (ArCH₂<u>CH₂</u>), 27.6 (CMe_A<u>Me_B</u> e2), 27.5 (CMe_A<u>Me_B</u> e1), 27.4

(CMe_A<u>Me_B</u> e3), 26.7 (C<u>Me_A</u>Me_B e1 and e3), 26.7 (C<u>Me_A</u>Me_B e2), 22.3 (<u>C</u>H₂Me e1 and e3), 22.3 (<u>C</u>H₂Me e2), 13.9 (CH₂<u>Me</u>); m/z = 854.4440 (C₄₈H₆₉N₃O₃S₃Na requires M+Na = 854.4399, dev. 4.8 ppm); v_{max} (CHCl₃/ cm⁻¹) 1541 (CN), 1494 (Ph); m.p. (EtOAc/Hexane) 62.5-65.1 °C.

Also isolated from this reaction was **5,5-dimethyl-4-(4'-butylphenylsulfanyl)-dihydro-furan-2-one 19** as a pale yellow oil (7 mg, 0.03 mmol, 15 %), R_f (EtOAc:Hexane, 1:4) 0.32; δ_H (500 MHz; CDCl₃) 7.35 (2 H, d, *J* 8.0, *o*-Ph), 7.14 (2 H, d, *J* 8.0, *m*-Ph), 3.64 (1 H, dd, *J* 10.5 and 8.0, SCH), 2.88 (1 H, dd, *J* 17.5 and 8.0, CH_AH_BCO₂), 2.67 (1 H, dd, *J* 17.5 and 10.5, CH_AH_BCO₂), 2.58 (1 H, t, *J* 7.5, ArCH₂), 1.60-1.53 (2 H, m, ArCH₂CH₂), 1.46 (3 H, s, CMe_AMe_B), 1.41 (3 H, s, CMe_AMe_B), 1.33 (2 H, sextet, *J* 7.5, CH₂Me), 0.91 (3 H, t, *J* 7.5, CH₂Me); δ_C (125 MHz; CDCl₃) 173.6 (CO₂), 143.5 (*i*-Ph), 132.9 (*o*-Ph), 129.9 (*p*-Ph), 129.5 (*m*-Ph), 87.0 (OCMe₂), 53.1 (SCH), 37.0 (CH₂CO), 35.2 (ArCH₂), 33.4 (ArCH₂CH₂), 27.4 (CMe_AMe_B), 23.0 (CMe_AMe_B), 22.2 (CH₂Me), 13.9 (CH₂Me); Accurate mass, *m*/*z* = 279.1403 (C₁₆H₂₃O₂S requires *M*+*H* = 279.1419, dev. -5.7 ppm); v_{max} (CH₂Cl₂ / cm⁻¹) 1772 (CO), 1494 (Ph), 1465 (Ph).

Also isolated from this reaction was **4-hydroxy-4-methyl-3-(4-methylphenylsulfanyl)-pentanamide 21** as an amorphous pale yellow solid (18 mg, 0.06 mmol, 30 %), R_f (EtOAc) 0.26; δ_H (500 MHz; CDCl₃) 7.39 (2 H, d, *J* 8.0, *o*-Ph), 7.09 (2 H, d, *J* 8.0, *m*-Ph), 5.63 (1 H, br s, NH_AH_B), 5.47 (1 H, br s, NH_AH_B), 3.55 (1 H, dd, *J* 8.0 and 5.0, CHSPh), 2.82 (1 H, br s, OH), 2.79 (1 H, dd, *J* 15.5 and 5.0, CH_AH_BCO), 2.55 (1 H, t, *J* 8.0, ArCH₂), 2.48 (1 H, dd, *J* 15.5 and 8.0, CH_AH_BCO), 1.58-1.52 (2 H, m, ArCH₂CH₂), 1.35-1.29 (2 H, m, CH₂Me), 1.32 (3 H, s, CMe_AMe_B), 1.32 (3 H, s, CMe_AMe_B), 0.98 (3 H, t, *J* 7.5, CH₂Me); δ_C (125 MHz; CDCl₃) 173.8 (CO), 142.2 (*i*-Ph), 132.3 (*p*-Ph), 131.6 (*o*-Ph), 129.3 (*m*-Ph), 73.1 (OCMe₂), 58.2 (SCH), 38.4 (CH₂CO), 35.2 (ArCH₂), 33.4 (ArCH₂CH₂), 27.9 (CMe_AMe_A), 26.6 (CMe_AMe_B), 22.3 (CH₂Me), 13.9 (CH₂Me); *m*/z = 318.1510 (C₁₆H₂₅NO₂SNa requires *M*+Na = 318.1504, dev. 2.0 ppm); v_{max} (CH₂Cl₂ / cm⁻¹) 3348 (OH), 3171 (NH), 1678 (CO), 1491 (Ph), 1464 (Ph), 1437 (Ph); m.p. (EtOAc/Hexane) 113.3-116.0 °C.

tert-Butyl-4-(3'-hydroxy-4'-methyl-4'-phenylsulfanyl-pentanoylamino)-4-methyl-pentanoate 24: acid 23 (2.69 g, 11.2 mmol) was dissolved in THF (100 cm³) under a nitrogen atmosphere at room temperature. To the rapidly stirring solution was added HOBt (1.51 g, 11.2 mmol), followed by DCC (2.31 g, 11.2 mmol) and stirring was continued overnight. DCU precipitate was filtered out under gravity and the filter was washed with THF (10 cm³) to give the required solution of the activated acid. A solution of amino ester⁴ 22 (2.10 g, 11.2 mmol) in THF (5 cm³) and triethylamine (2.26 g, 22.4 mmol) was added and the mixture was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and the residue was dissolved in ethyl acetate (150 cm³), filtered and washed with pH 2 sulfate buffer (2 x 100 cm³), saturated sodium bicarbonate solution (2 x 100 cm³) and brine (100 cm³), dried (Na₂SO₄) and was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:10 to 1:1) to give the ester as a highly viscous pale yellow oil (3.60 g, 8.8 mmol, 79%), R_f (EtOAc-hexanes, 1:1) 0.51; δ_H (500 MHz; CDCl₃) 7.53-7.49 (2 H, m, o-Ph), 7.39-7.28 (3 H, m, m and p-Ph), 6.12 (1 H, br s, NH), 3.96 (1 H, dd, J 2.0 and 0.5, OH), 3.75 (1 H, dt, J 10.5 and 2.0, CHOH), 2.44 (1 H, ddd, J 15.0, 1.5 and 1.0, CHAHBCON), 2.26 (1 H, dd, J 15.0 and 10.5, CH_AH_BCON), 2.25 (2 H, t, J 7.5, CH₂CO₂^tBu), 2.05-1.89 (2 H, m, NCMe₂CH₂), 1.44 (9 H, s, 'Bu), 1.33 (3 H, s, NCMe_AMe_B), 1.31 (3 H, s, NCMe_AMe_B), 1.23 (3 H, s, SCMe_AMe_B), 1.19 (3 H, s, NCMe_AMe_B); δ_C (125 MHz; CDCl₃) 173.4 (CON), 171.6 (<u>C</u>O₂^{*t*}Bu), 137.5 (*o*-Ph), 130.3 (i-Ph), 129.2 (p-Ph), 128.8 (m-Ph), 80.6 (CMe₃), 72.9 (CHOH), 53.7 (NCMe₂), 53.3 (SCMe₂), 38.4 (<u>CH</u>₂CON), 35.1 (NCMe₂<u>C</u>H₂), 30.6 (<u>C</u>H₂CO₂^tBu), 28.1 (C<u>Me</u>₃), 26.7 (NCMe_A<u>Me</u>_B), 26.6 $(NCMe_AMe_B)$, 24.8 $(SCMe_AMe_B)$, 23.5 $(SCMe_AMe_B)$; $m/z = 432.2201 (C_{22}H_{35}NO_4SNa requires M+Na)$ = 432.2185, dev. 3.8 ppm); v_{max} (CHCl₃ / cm⁻¹) 3335 (br OH), 1728 (CO₂^{*t*}Bu), 1647 (CONH), 1474 (Ph), 1439 (Ph).

Methyl 4-(3'-hydroxy-4'-methyl-4'-phenylsulfanyl-pentanoylamino)-4-methyl-pentanoate 25: ester 24 (3.60 g, 8.56 mmol) was dissolved in methanol (100 cm³) under nitrogen. Thionyl chloride (0.30 g, 2.5 mmol) was added and the solution was heated to 40 °C for two days before the addition of saturated sodium bicarbonate solution (40 cm³). The organic solvent was evaporated under reduced pressure and the residue was dissolved in ethyl acetate (100 cm³) and washed with saturated sodium bicarbonate solution (2 x 100 cm³) and brine (100 cm³), dried (Na₂SO₄) and was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:4 to 1:1) to give the *ester* as a pale yellow oil (2.17 g, 5.91 mmol, 69%), R_f (EtOAc-hexanes, 1:1) 0.44; δ_H (500 MHz; CDCl₃) 7.52-7.49 (2 H, m, *o*-Ph), 7.39-7.35 (1 H, m, *p*-Ph), 7.35-7.30 (2 H, m, *m*-Ph), 6.02 (1 H, br s, NH), 3.85 (1 H, s, OH), 3.74 (1 H, dt, *J* 10.5 and 2.0, C<u>H</u>OH), 3.67 (3 H, s, OMe), 2.43 (1 H, dd, *J* 15.0 and 1.5, C<u>H</u>_AH_BCON), 2.33 (2 H, t, *J* 8.0, C<u>H</u>₂CO₂Me), 2.25 (1 H, dd, *J* 15.0 and 10.5, CH_A<u>H</u>_BCON), 2.12-2.06 (1 H, m, NCMe₂C<u>H</u>_AH_B), 1.98-2.04 (1 H, m, NCMe₂CH_A<u>H</u>_B), 1.33 (3 H, s, NC<u>Me</u>_AMe_B), 1.30 (3 H, s, NCMe_A<u>Me</u>_B), 1.23 (3 H, s, SC<u>Me</u>_AMe_B), 1.19 (3 H, s, SCMe_A<u>Me</u>_B); δ_C (125 MHz; CDCl₃) 174.4 (CONH), 172.4 (<u>CO</u>₂Me), 137.4 (*o*-Ph), 130.3 (*i*-Ph), 129.2 (*p*-Ph), 128.8 (*m*-Ph), 72.9 (CHOH), 53.8 (N<u>C</u>Me₂), 53.2 (S<u>C</u>Me₂), 51.8 (OMe), 38.6 (<u>C</u>H₂CON), 34.7 (NCMe₂<u>C</u>H₂), 29.3 (<u>C</u>H₂CO₂Me), 26.9 (NCMe_A<u>Me</u>_B), 26.8 (NC<u>Me</u>_AMe_B), 24.8 (SCMe_A<u>Me</u>_B), 24.0 (SC<u>Me</u>_AMe_B); *m/z* = 390.1703 (C₁₉H₂₉NO₄SNa requires *M*+*Na* = 390.1717, dev. -3.2 ppm); v_{max} (CHCl₃ / cm⁻¹) 3320 (br OH), 1736 (CO₂Me), 1647 (CONH), 1438 (Ph).

4-(3'-Hydroxy-4'-methyl-4'-phenylsulfanyl-pentanoylamino)-4-methyl-pentanoic acid 26: ester 25 (2.17 g, 5.91 mmol) was dissolved in methanol (50 cm³) and water (10 cm³). Potassium hydroxide (0.40 g, 7.09 mmol) was added and the reaction was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and saturated sodium bicarbonate solution (50 cm³), water (50 cm³) and a hexane and ethyl acetate mixture (1:1 ratio, 100 cm³) were added. The organic layer was subsequently separated and discarded. The aqueous phase was extracted with further portions of ethyl acetate and hexane (1:1 ratio, 2 x 100 cm³) and each organic phase was discarded. The aqueous phase was acidified with pH 2 sulfate buffer (200 cm³) and hydrochloric acid as required to bring the pH of the solution to pH 2 before extracting with diethylether (2 x 200 cm³) and ethyl acetate (200 cm^3). The combined organic phases were dried (Na₂SO₄) and evaporated under reduced pressure to give the *acid* as an amorphous white solid (1.70 g, 4.82 mmol, 82%); δ_H (500 MHz; CDCl₃) 7.52-7.49 (2 H, m, o-Ph), 7.39-7.28 (3 H, m, m and p-Ph), 6.00 (1 H, br s, NH), 3.78 (1 H, dd, J 10.5 and 2.0, C<u>H</u>OH), 2.47 (1 H, dd, J 14.5 and 2.0, C<u>H</u>_AH_BCON), 2.35 (2 H, t, J 8.0, C<u>H</u>₂CO₂H), 2.25 (1 H, dd, J 14.5 and 10.5, CH_AH_BCON), 2.19 (1 H, dt, J 14.5 and 8.0, NCMe₂CH_AH_B), 2.00-1.94 (1 H, m, NCMe₂CH_A<u>H</u>_B), 1.35 (3 H, s, NC<u>Me</u>_AMe_B), 1.29 (3 H, s, NCMe_A<u>Me</u>_B), 1.23 (3 H, s, SC<u>Me</u>_AMe_B), 1.19 (3 H, s, SCMe_AMe_B); δ_C (125 MHz; CDCl₃) 177.5 (CO₂H), 171.8 (CONH), 137.4 (o-Ph), 130.2 (i-Ph), 129.3 (p-Ph), 128.8 (m-Ph), 72.9 (CHOH), 53.8 (NCMe2), 53.3 (SCMe2), 38.8 (CH2CON), 34.2 (NCMe2CH2), 29.1 (CH2CO2Me), 27.1 (NCMeAMeB), 27.0 (NCMeAMeB), 24.9 (SCMeAMeB), 23.4 $(SCMe_AMe_B); m/z = 354.1736 (C_{18}H_{28}NO_4S requires M+H = 354.1739, dev. -0.9 ppm); v_{max} (CHCl_3 / 1000) (CHCl_3 / 1$ cm⁻¹) 3727 (NH), 3340 (br OH), 1711 (CO₂H), 1648 (CONH), 1439 (Ph).

3-Hydroxy-4-methyl-4-phenylsulfanyl-(3'-carbamoyl-1',1'-dimethyl-propyl)-pentanamide 27: acid 26 (300 mg, 0.85 mmol) was dissolved in THF (10 cm³) under a nitrogen atmosphere at room temperature. To the stirred solution was added HOBt (120 mg, 0.89 mmol), followed by CDI (145 mg, 0.89 mmol) and stirring was continued overnight to give the required solution of the activated acid. Concentrated ammonia (2 cm³) was added and the mixture was stirred at room temperature overnight before the organic solvent was evaporated under reduced pressure. The residue was dissolved in a mixture of ethyl acetate (50 cm³) and methanol (10 cm³) and washed with saturated sodium bicarbonate solution (2 x 50 cm³), pH 2 sulfate buffer (2 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and was evaporated to yield the *amide* as white platelets (155 mg, 0.61 mmol, 72%); δ_H (500 MHz; D₆-DMSO) 7.56-7.53 (2 H, m, o-Ph), 7.43-7.33 (4 H, m, m and p-Ph, NH), 7.21 (1 H, s, NH) 6.70 (1 H, s, NH), 5.03 (1 H, d, J 5.5, OH), 3.77 (1 H, ddd, J 9.5, 5.5 and 2.0, CHOH), 2.61 (1 H, dd, J 14.0 and 2.0, CH_AH_BCONH), 2.22 (1 H, dd, J 14.0 and 10.0, CH_AH_BCONH), 2.35 (2 H, t, J 8.0, CH₂CO₂H), 2.09-1.97 (2 H, m, CH₂CONH₂), 1.90-1.77 (2 H, m, NCMe₂CH₂), 1.22 (3 H, s, NCMe_AMe_B), 1.20 (3 H, s, NCMe_AMe_B), 1.11 (3 H, s, SCMe_AMe_B), 1.09 (3 H, s, SCMe_AMe_B); δ_C (125 MHz; D₆-DMSO) 174.8 (CONH₂), 171.1 (CONH), 137.5 (o-Ph), 131.4 (i-Ph), 129.0 (p-Ph), 128.8 (m-Ph), 72.9 (CHOH), 52.8 (NCMe2), 52.3 (SCMe2), 39.2 (CH2CONH), 35.4 (NCMe2CH2), 30.4 (CH2CONH2), 26.7 and 26.7 (NCMe₂), 25.9 (SCMe_AMe_B), 23.5 (SCMe_AMe_B); m/z = 353.1892 (C₁₈H₂₉N₂O₃S requires M+H =353.1899, dev. -1.9 ppm); v_{max} (neat / cm⁻¹) 3411 (OH), 3319 (NH), 3198 (NH), 1672 (CONH), 1644 (CONH₂), 1524 (Ph), 1438 (Ph); m.p. (EtOAc/Hexane) 199.8-201.1 °C.

tert-Butyl 4-[4'-(3"-hydroxy-4"-methyl-4"-phenylsulfanyl-pentanoylamino)-4'-methylpentanoylamino]-4-methyl-pentanoate 28: acid 26 (1.40 g, 4.0 mmol) was dissolved in THF (50 cm³) under a nitrogen atmosphere at room temperature. To the rapidly stirring solution was added HOBt (562 mg, 4.2 mmol), followed by DCC (858 mg, 4.2 mmol) and stirring was continued overnight. DCU precipitate was filtered out under gravity and the filter was washed with THF (2 cm³) to give the required solution of the activated acid. A solution of amino ester⁴ 22 (779 mg, 4.2 mmol) in THF (5 cm³) and triethylamine (808 mg, 8.0 mmol) was added and the mixture was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and the residue was dissolved in ethyl acetate (50 cm³), filtered and washed with pH 2 sulfate buffer (2 x 50 cm³), saturated sodium bicarbonate solution (2 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexane 1:4 to 4:1) to give the *ester* as a highly viscous pale yellow oil (1.40 g, 2.7 mmol, 67%), R_f (EtOAc-Hexane, 1:1) 0.45; δ_H (500 MHz; CDCl₃) 7.53-7.50 (2 H, m, *o*-Ph), 7.37-7.33 (1 H, m, *p*-Ph), 7.33-7.29 (2 H, m, *m*-Ph), 6.62 (1 H, br s, NH), 5.90 (1 H, br s, NH), 3.78 (1 H, dd, *J* 10.5 and 2.0, CHOH), 2.49 (1 H, dd, *J* 14.5 and 2.0, CHOHCH_AH_B), 2.25 (1 H, dd, *J* 14.5 and 10.5, CHOHCH_AH_B), 2.24 (2 H, t, *J* 7.5, CH₂CO₂^tBu), 2.17-2.13 (2 H, m, CH₂CH₂CONH), 1.97 (1 H, dt, *J* 14.0 and 7.0, CH_AH_BCH₂CONH), 1.92 (2 H, t, *J* 7.5, CH₂CH₂CO₂^tBu), 1.90 (1 H, dt, *J* 14.0 and 7.0, CH_AH_BCH₂CONH), 1.92 (2 H, t, *J* 7.5, CH₂CH₂CO₂^tBu), 1.90 (1 H, dt, *J* 14.0 and 7.0, CH_AH_BCH₂CONH), 1.42 (9 H, s, CMe₃), 1.33 (3 H, s, NCMe), 1.31 (3 H, s, NCMe), 1.30 (3 H, s, NCMe), 1.30 (3 H, s, NCMe), 1.23 (3 H, s, SCMe_AMe_B), 1.19 (3 H, s, SCMe_AMe_B); δ_C (125 MHz; CDCl₃) 173.6 (CONH), 173.0 (CONH), 171.9 (CO₂^tBu), 137.5 (*o*-Ph), 130.7 (*i*-Ph), 129.1 (*p*-Ph), 128.3 (*m*-Ph), 80.7 (CMe₃), 73.3 (CHOH), 53.5 and 53.4 and 53.3 (NCMe₂ x2 and SCMe₂), 38.5 (CHOHCH₂), 36.3 (CH₂CH₂CO₂^tBu), 35.4 (CH₂CH₂CONH), 32.4 (CH₂CONH), 30.6 (CH₂CO₂^tBu), 28.0 (CMe₃), 26.8 and 26.6 and 26.5 and 26.5 (NCMe₂ x 2), 24.8 (SCMe_AMe_B), 24.0 (SCMe_AMe_B); *m*/z = 545.3039 (C₂₈H₄₆N₂O₅SNa requires *M*+Na = 545.3025, dev. -2.5 ppm); v_{max} (CHCl₃ / cm⁻¹) 3310 (br OH), 1727 (CO₂^tBu), 1644 (CONH), 1451 (Ph), 1439 (Ph).

Methyl 4-[4'-(3"-hydroxy-4"-methyl-4"-phenylsulfanyl-pentanoylamino)-4'-methyl**pentanoylamino]-4-methyl-pentanoate 29**: ester **28** (1.40 g, 2.68 mmol) was dissolved in methanol (30 cm³) under nitrogen. Concentrated aqueous HCl (0.20 cm³) was added and the solution was stirred at ambient temperature for 24 hours before the addition of saturated sodium bicarbonate solution (40 cm^3). The organic solvent was evaporated and the residue was dissolved in ethyl acetate (50 cm^3) and washed with saturated sodium bicarbonate solution (2 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexane 1:4 EtOAc) to give the ester as a pale yellow oil (0.80 g, 1.67 mmol, 62%), R_f (EtOAc-Hexane, 1:1) 0.11; δ_H (500 MHz; CDCl₃) 7.53-7.50 (2 H, m, o-Ph), 7.38-7.34 (1 H, m, p-Ph), 7.33-7.30 (2 H, m, m-Ph), 6.51 (1 H, br s, NH), 5.76 (1 H, br s, NH), 4.07 (1 H, dd, J 2.5 and 0.5, OH), 3.79 (1 H, dt, J 10.5 and 2.5, CHOH), 3.65 (3 H, s, OMe), 2.49 (1 H, ddd, J 14.5, 2.5 and 0.5, CHOHCH_AH_B), 2.32 (2 H, t, J 7.5, CH₂CO₂Me), 2.25 (1 H, dd, J 14.5 and 10.5, CHOHCH_AH_B), 2.17-2.13 (2 H, m, CH₂CDNH), 2.05-1.97 (3 H, m, CH₄H_BCH₂CONH and CH₂CH₂CO₂Me), 1.94-1.86 (1 H, m, CH_AH_BCH₂CONH), 1.34 (3 H, s, NCMe), 1.31 (6 H, s, NCMe x2), 1.29 (3 H, s, NCMe), 1.23 (3 H, s, SCMe₄Me₈), 1.19 (3 H, s, SCMe₄Me₈); δ_C (125 MHz; CDCl₃) 174.6 (CONH), 173.0 (CONH), 171.9 (CO2Me), 137.5 (o-Ph), 130.6 (i-Ph), 129.1 (p-Ph), 128.7 (m-Ph), 73.3 (CHOH), 53.5 and 53.4 and 53.2 (NCMe₂ x2 and SCMe₂), 51.8 (OMe), 38.6 (CHOHCH₂), 36.2 (CH₂CH₂CONH), 35.0 (CH2CH2CO2Me), 32.4 (CH2CONH), 29.3 (CH2CO2Me), 26.9 and 26.8 and 26.7 and 26.7 (NCMe2 x 2), 24.8 (SCMe_AMe_B), 23.9 (SCMe_AMe_B); m/z = 503.2578 (C₂₅H₄₀N₂O₅SNa requires M+Na =503.2556, dev. 4.5 ppm); v_{max} (CHCl₃ / cm⁻¹) 3300 (br OH), 1737 (CO₂Me), 1644 (CONH), 1545 (Ph), 1439 (Ph).

4-[4'-(3''-Hydroxy-4''-methyl-4''-phenylsulfanyl-pentanoylamino)-4'-methyl-pentanoylamino]-4-methyl-pentanoic acid 30: ester 23 (800 mg, 1.67 mmol) was dissolved in methanol (20 cm³) and water (2 cm³). Potassium hydroxide (112 mg, 2.00 mmol) was added and the reaction was stirred at room temperature overnight. The excess solvent was evaporated under reduced pressure and saturated sodium bicarbonate solution (10 cm³), water (10 cm³) and a hexane and ethyl acetate mixture (1:1 ratio, 20 cm³) were added. The organic layer was subsequently separated and discarded. The aqueous phase was extracted with further portions of ethyl acetate and hexane (1:1 ratio, $2 \times 20 \text{ cm}^3$) and each organic phase was discarded. The aqueous phase was acidified with pH 2 sulfate buffer (40 cm^3) and hydrochloric acid as required to bring the pH of the solution to pH 2 before extracting with diethylether $(2 \times 50 \text{ cm}^3)$ and ethyl acetate (50 cm³). The combined organic phases were dried (Na₂SO₄) and evaporated under reduced pressure to give the acid as a highly viscous pale yellow oil (575 mg, 1.23 mmol, 74%); δ_H (500 MHz; CDCl₃) 7.55-7.51 (2 H, m, o-Ph), 7.38-7.30 (3 H, m, m and p-Ph), 6.11 (1 H, br s, NH), 5.75 (1 H, br s, NH), 3.79 (1 H, dd, J 10.5 and 2.0, CHOH), 2.66 (1 H, dd, J 14.5 and 2.0, CHOHCHAHB), 2.44-2.34 (2 H, m, CH2CO2H), 2.33 (1 H, dd, J 14.5 and 10.5, CHOHCHAHB), 2.25-2.18 (1 H, m, CH₂CH_AH_BCONH), 2.11-1.87 (5 H, m, CH₂CH_AH_BCONH, CH₂CH₂CONH and CH₂CH₂CO₂Me), 1.38 (3 H, s, NCMe), 1.34 (3 H, s, NCMe), 1.33 (3 H, s, NCMe), 1.23 (3 H, s, $SCMe_AMe_B$, 1.23 (3 H, s, NCMe), 1.21 (3 H, s, $SCMe_AMe_B$); δ_C (125 MHz; CDCl₃) 177.5 (CO₂H), 172.9 (CONH), 172.9 (CONH), 137.5 (o-Ph), 130.6 (i-Ph), 129.1 (p-Ph), 128.7 (m-Ph), 73.0 (CHOH), 54.0 and 53.5 and 53.3 (NCMe2 x2 and SCMe2), 39.6 (CHOHCH2), 35.4 and 35.3 (CH2CH2CONH and CH₂CH₂CO₂H), 32.6 (CH₂CONH), 29.8 (CH₂CO₂H), 27.4 and 27.3 and 26.8 and 26.6 (NCMe₂ x 2), 24.7 (SCMe_AMe_B), 24.3 (SCMe_AMe_B); m/z = 489.2401 (C₂₄H₃₈N₂O₅SNa requires M+Na = 489.2399, dev. 0.5 ppm); v_{max} (CHCl₃ / cm⁻¹) 3325 (br OH), 1710 (CO₂H), 1647 (CONH), 1548 (Ph), 1453 (Ph).

4-[4'-(3''-Hydroxy-4''-methyl-4''-phenylsulfanyl-pentanoylamino)-4'-methyl-pentanoylamino]-4-methyl-pentanamide 31: acid 30 (300 mg, 0.54 mmol) was dissolved in THF (10 cm³) under a nitrogen atmosphere at room temperature. To the stirred solution was added CDI (125 mg, 0.77 mmol) and stirring was continued overnight to give the required solution of the activated acid. Concentrated ammonia (2 cm³) was added and the mixture was stirred overnight. The organic solvent was evaporated under reduced pressure and the residue was suspended in a mixture of ethyl acetate and hexane (1:1 mixture, 20 cm³) and the solid was obtained by filtration. The solid was suspended in the same solvent mixture and the process repeated. The solid was suspended in saturated sodium bicarbonate solution (20 cm³) and was filtered. This process was repeated twice. The solid was washed on the filter with toluene (3 x 20 cm³), suspended in toluene (20 cm³) and the solvent was evaporated under reduced pressure to yield the *amide* as a white amorphous solid (189 mg, 0.34 mmol, 63 %); δ_H (500 MHz; D₆-DMSO) 7.56-7.53 (2 H, m, o-Ph), 7.43-7.35 (4 H, m, m and p-Ph, NH), 7.23 (1 H, br s, NH), 6.70 (1 H, br s, NH), 5.02 (1 H, d, J 5.5, OH), 3.78 (1 H, ddd, J 10.0, 5.5 and 2.0, CHOH), 2.62 (1 H, dd, J 14.5 and 2.0, CHOHCHAHB), 2.21 (1 H, dd, J 14.5 and 10.0, CHOHCHAHB), 2.04-1.97 (4 H, m, CH2CONH and CH₂CONH₂), 1.84-1.78 (4 H, m, CH₂CH₂CONH and CH₂CH₂CONH₂), 1.21 (6 H, s, NCMe x2), 1.19 (6 H, s, NCMe x2), 1.11 (3 H, s, SCMe_AMe_B), 1.09 (3 H, s, SCMe_AMe_B); δ_C (125 MHz; D₆-DMSO) 174.7 (CONH₂), 172.1 (CONH), 171.1 (CONH), 137.5 (o-Ph), 131.4 (i-Ph), 129.0 (p-Ph), 128.8 (m-Ph), 72.9 (CHOH), 52.8 and 52.4 and 52.1 (NCMe₂ x2 and CSPh), 39.0 (CHOHCH₂), 35.8 (CH2CONH2), 35.4 (CH2CONH), 31.4 (CH2CONH2), 30.4 (CH2CONH), 26.6 and 26.6 and 26.5 and 26.5 (NCMe₂ x 2), 25.9 (SCMe_AMe_B), 23.5 (SCMe_AMe_B); m/z = 466.2739 (C₂₄H₄₀N₃O₄S requires M+H = 466.2740, dev. -0.2 ppm); v_{max} (cm⁻¹) 3299 (OH or NH), 3208 (OH or NH), 1645 (CONH), 1619 (CONH₂), 1550 (Ph), 1439 (Ph); m.p. (EtOAc/Hexane) 206.3-209.9 °C.

N-(1'-Carbamoyl-1'-methyl-ethyl)-3-hydroxy-4-methyl-4-phenylsulfanyl-pentanamide 32: acid 23 (480 mg, 2.0 mmol) was dissolved in THF (20 cm^3) under a nitrogen atmosphere at room temperature. To the rapidly stirring solution was added NHS (412 mg, 2.0 mmol), followed by DCC (270 mg, 2.0 mmol) and stirring was continued overnight. DCU precipitate was filtered out under gravity and the filter was washed with THF (5 cm^3) to give the required solution of the activated acid. A solution of 2amino isobutyric acid (206 mg, 2.0 mmol) and potassium carbonate (552 mg, 4.0 mmol) in water (3 cm³) was added and the mixture was stirred at room temperature overnight. The mixture was filtered through a thin pad of celite and the organic solvent was evaporated under reduced pressure. Saturated sodium bicarbonate solution (10 cm³) was added and the aqueous phase was washed with a mixture of ethyl acetate and hexanes (1:1 mixture, 2 x 30 cm³). The aqueous phase was acidified with pH 2 sulfate buffer (30 cm³) and dilute hydrochloric acid (3 N solution) to bring the solution to pH 2 before extraction with diethylether (2 x 50 cm³) and ethyl acetate (50 cm³). The combined organic extracts were washed with brine (100 cm³), dried (Na₂SO₄) and were evaporated under reduced pressure. The residue was dissolved in methanol (20 cm³) and concentrated hydrochloric acid (0.1 cm³) and was stirred at room temperature overnight. The organic solvent was evaporated and the residue was dissolved in ethyl acetate (50 cm³) and washed with saturated sodium bicarbonate solution (2 x 50 cm³) and brine (50 cm³), dried (Na₂SO₄) and was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:10 to 1:1) to give the ester as a pale oil (385 mg, 1.13 mmol, 57%), R_f (EtOAc-hexanes, 1:1) 0.57; δ_H (400 MHz; CDCl₃) 7.53-7.49 (2 H, o-Ph), 7.39-7.29 (3 H, m, m and p-Ph), 6.62 (1 H, br s, NH), 3.79 (1 H, dt, J 10.0 and 2.0, CHOH), 3.77 (1 H, br s, OH), 3.73 (3 H, s, OMe), 2.55-2.50 (1 H, m, CH_AH_B), 2.34 (1 H, dd, J 15.0 and 10.0, CH_AH_B), 1.55 (3 H, s, NCMe_AMe_B), 1.54 (3 H, s, NCMe_AMe_B), 1.24 (3 H, s, SCMe_AMe_B), 1.20 (3 H, s, SCMe_AMe_B). The ester (385 mg, 1.13 mmol) was dissolved in methanol (10 cm³) and water (1 cm³). Potassium hydroxide (76 mg, 1.36 mmol) was added and the reaction was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and saturated sodium bicarbonate solution (5 cm³), water (5 cm³) and a hexane and ethyl acetate mixture (1:1 ratio, 10 cm³) were added. The organic layer was subsequently separated and discarded. The aqueous phase was extracted with further portions of ethyl acetate and hexane (1:1 ratio, 2 x 10 cm³) and each organic phase was discarded. The aqueous phase was acidified with pH 2 sulfate buffer (20 cm^3) and hydrochloric acid as required to bring the pH of the solution to pH 2 before extracting with diethylether $(2 \times 25 \text{ cm}^3)$ and ethyl acetate (25 cm^3) . The combined organic phases were dried (Na_2SO_4) and evaporated under reduced pressure to give 2-(3-hydroxy-4-methyl-4-[phenylthio]pentanamido)-2methylpropanoic acid as a pale oil (367 mg, 1.13 mmol, 99%), obtained as a mixture of two rotamers in a ratio of three to one $(r_1:r_2)$; δ_H (500 MHz; CDCl₃) 7.53-7.47 (4 H, m, o-Ph r₁ and r₂), 7.37-7.27 (6 H, m, m and p-Ph r₁ and r₂), 7.01 (1 H, br s, NH r₁), 3.87 (1 H, dd, J 10.5 and 2.5, CHOH r₂), 3.79 (1 H, dd, J 10.5 and 2.0, CHOH r₁), 2.75 (1 H, dd, J 16.0 and 2.5, CH_AH_B r₂), 2.57 (1 H, dd, J 15.0 and 2.0, CH_AH_B r₁), 2.52 (1 H, dd, *J* 16.0 and 10.5, CH_AH_B r₂), 2.39 (1 H, dd, *J* 15.0 and 10.5, CH_AH_B r₁), 1.57

(6 H, s, NCMe_AMe_B r₁ and r₂), 1.54 (3 H, s, NCMe_AMe_B r₁), 1.48 (3 H, s, NCMe_AMe_B r₂), 1.27 (3 H, s, SCMe_AMe_B r₂), 1.22 (3 H, s, SCMe_AMe_B r₁), 1.21 (3 H, s, SCMe_AMe_B r₂), 1.18 (3 H, s, SCMe_AMe_B r₁); δ_C (125 MHz; CDCl₃) 175.7 (CO₂H r₁), 170.9 (CONH r₁), 137.5 (*o*-Ph r₁), 137.4 (*o*-Ph r₂), 131.3 (*i*-Ph r₁), 131.2 (*i*-Ph r₂), 129.2 (*p*-Ph r₂), 129.1 (*p*-Ph r₁), 128.8 (*m*-Ph r₂), 128.8 (*m*-Ph r₁), 72.6 (CHOH r₁), 72.1 (CHOH r₂), 54.3 (NCMe₂ r₂), 54.8 (NCMe₂ r₁), 52.8 (SCMe₂ r₁), 52.6 (SCMe₂ r₂), 38.2 (CH₂ r₂), 37.9 (CH₂ r₁), 26.0 (SCMe_AMe_B r₂), 25.9 (SCMe_AMe_B r₁), 25.5 (NCMe_AMe_B r₂), 25.4 (NCMe_AMe_B r₁), 24.8 (NCMe_AMe_B r_1 and r_2), 23.4 (SCMe_AMe_B r_1), 23.1 (SCMe_AMe_B r_2); m/z = 348.1252 $(C_{16}H_{23}NO_4SNa \text{ requires } M + Na = 348.1246, \text{ dev. } 2.0 \text{ ppm}); v_{max} (CH_2Cl_2 / \text{ cm}^{-1}) 3250 \text{ (br OH and } 1.0 \text{ cm}^{-1})$ NH), 1710 (CO₂H), 1645 (CONH), 1470 (Ph); m.p. (EtOAc/ Hexanes) 93.6-95.5 °C. The acid (367 mg, 1.13 mmol) was dissolved in THF (10 cm^3) under a nitrogen atmosphere at room temperature. To the stirred solution was added HOBt (1.36 mmol), followed by CDI (221 mg, 1.36 mmol) and stirring was continued overnight to give the required solution of the activated acid. Concentrated ammonia (2 cm³) was added and the mixture was stirred at room temperature overnight. The organic solvent was evaporated under reduced pressure and the residue was dissolved in ethyl acetate (25 cm³) and washed with saturated sodium bicarbonate solution (2 x 25 cm³), pH 2 sulfate buffer (2 x 25 cm³) and brine (25 cm^3), dried (Na₂SO₄) and was evaporated under reduced pressure. The crude solid was recrystallised from ethyl acetate and hexane to yield the *amide* as white plates (142 mg, 0.43 mmol, 22% from 23); δ_H (500 MHz; D₆-DMSO) 7.87 (1 H, s, CONH), 7.56-7.53 (2 H, m, o-Ph), 7.43-7.35 (3 H, m, p and m-Ph), 6.94 (1 H, s, NH_AH_B), 6.82 (1 H, s, NH_AH_B), 5.07 (1 H, d, J 5.5, OH), 3.77 (1 H, ddd, J 10.0, 5.5 and 2.0, CHOH), 2.68 (1 H, dd, J 14.0 and 2.0, CHAHB), 2.28 (1 H, dd, J 14.0 and 10.0, CHAHB), 1.35 (3 H, s, NCMe_AMe_B), 1.33 (3 H, s, NCMe_AMe_B), 1.12 (3 H, s, SCMe_AMe_B), 1.11 (3 H, s, SCMe_AMe_B); δ_C (125 MHz; D₆-DMSO) 176.6 (CONH₂), 171.1 (CONH), 137.5 (*o*-Ph), 131.3 (*i*-Ph), 129.0 (*p*-Ph), 128.8 (m-Ph), 73.2 (CHOH), 55.9 (NCMe₂), 52.7 (SCMe₂), 38.9 (CH₂) 25.9 (SCMe_AMe_B), 25.6 $(NCMe_AMe_B)$, 25.1 $(NCMe_AMe_B)$, 23.4 $(SCMe_AMe_B)$; m/z = 325.1581 $(C_{16}H_{25}N_2O_3S)$ requires M+H = 0.000325.1586, dev. -1.5 ppm); v_{max} (cm⁻¹) 3410 (NH), 3316 (NH), 3196 (OH), 1671 (CONH₂), 1643 (CONH), 1453 (Ph), 1438 (Ph); m.p. (EtOAc/ Hexanes) 197.5-199.6 °C;

4-(5',5'-Dimethyl-5*H***-furan-2'-ylideneamino)-4-methyl-pentanamide 36**: amide 27 (70 mg, 0.20 mmol) was dissolved in toluene (2.0 cm³) and TFA (0.2 cm³) and the reaction was stirred at 40 °C overnight. After the reaction was allowed to cool to room temperature saturated sodium bicarbonate (300 mg, 3.6 mmol) and water (1 cm³) was added and the mixture was evaporated under reduced pressure with further portions of toluene (2 x 5 cm³). The residue was dissolved in methanol (2 cm³) and absorbed onto celite. The dry celite mixture was chromatographed (SiO₂, eluting with EtOAchexane 1:4 to neat methanol) to give the *cyclic imidate* as an amorphous white solid (30 mg, 0.14 mmol, 67%), R_f (EtOAc:MeOH, 10:1) 0.01; δ_H (500 MHz; CD₃OD) 7.05 (1 H, d, *J* 5.5, COCHC<u>H</u>), 5.98 (1 H, d, *J* 5.5, COC<u>H</u>CH), 2.24-2.18 (2 H, m, CH₂C<u>H</u>₂CO), 1.97-1.90 (2 H, m, C<u>H</u>₂CH₂CO), 1.45 (6 H, s, C<u>Me</u>₂); δ_C (125 MHz; CD₃OD) 179.5 (CONH₂), 164.8 (CN), 153.7 (CHCHCN), 123.4 (CHC<u>H</u>CN), 92.9 (OCMe₂), 56.8 (CMe₂), 39.2 (C<u>H</u>₂CH₂CO), 32.0 (CH₂C<u>H</u>₂CO), 27.7 (C<u>Me</u>₂), 26.2 (C<u>Me</u>₂); m/z = 225.1606 (C₁₂H₂1N₂O₂ requires M+H = 225.1603, dev. 1.5 ppm); ν_{max} (CHCl₃ / cm⁻¹) 3336 (NH), 3189 (NH), 1667 (CO), 1461 (Ph). Lactone **3** (10.3 mg, 23%) was also recovered fron this reaction.

In a repeat of the reaction amide 27 (4.0 mmol) was reacted to give crude 4-phenylsulfanyl-5,5,10,10-tetramethyl-[1,6]diazecane-2,7-dione 34 (108 mg, 8%). This product was treated with Raney nickel (1.0 g) in ethanol (5 cm³) and acetone (5 cm³) at room temperature for two hours. The mixture was filtered through a pad of celite (approx 1 cm³ thick) and washed on the filter with further portions of ethanol (2 x 20 cm³). The filtrate was evaporated under reduced pressure and the residue was suspended in toluene (20 cm³). The organic solvent was evaporated under reduced pressure to yield a residue which was chromatographed (SiO₂, eluting with EtOAc-hexane 1:2 to neat methanol) to give 5,5,10,10-tetramethyl-[1,6]diazecane-2,7-dione⁵ 35 as an amorphous white solid (42 mg, 0.18 mmol, 40 %), R_f (EtOAc) 0.04; δ_H (500 MHz; CD₃OD) 2.38 (4 H, t, *J* 8.0, CH₂CH₂CO), 1.92 (4 H, t, *J* 8.0, CH₂CH₂CO), 1.26 (12 H, s, CMe₂); δ_C (125 MHz; CD₃OD) 179.5 (CO), 58.3 (<u>CMe₂</u>), 36.1 (<u>CH₂CH₂CO), 31.6 (CH₂CH₂CO), 29.0 (CMe₂); *m/z* = 249.1578 (C₁₂H₂2N₂O₂Na requires *M*+*Na* = 249.1579, dev. -0.6 ppm); v_{max} (CHCl₃ / cm⁻¹) 3430 (br NH), 1668 (CO).</u>

4-[4'-(5'',5''-Dimethyl-4''-phenylsulfanyl-dihydro-furan-2''-ylideneamino)-4'-methyl-

pentanoylamino]-4-methyl-pentanamide 37: amide **31** (93 mg, 0.20 mmol) was dissolved in toluene (2.0 cm³) and TFA (0.2 cm³) and the reaction stirred at 40 °C overnight. After the reaction was allowed to cool saturated sodium bicarbonate (300 mg, 3.6 mmol) and water (1 cm³) was added and the mixture was evaporated under reduced pressure and dried with further portions of toluene (2 x 5 cm³). The

residue was dissolved in methanol (2 cm³) and absorbed onto celite, which was chromatographed (SiO₂, eluting with EtOAc to EtOAc:MeOH 6:4) to give the *cyclic imidate* as a white solid (80 mg, 0.18 mmol, 89%), R_f (EtOAc-MeOH 10:1) 0.04; δ_H (500 MHz; CD₃OD) 7.56-7.53 (2 H, m, *o*-Ph), 7.42-7.35 (3 H, m, *m* and *p*-Ph), 4.13 (1 H, dd, *J* 9.5 and 8.0, SCH), 3.61 (1 H, dd, *J* 18.0 and 8.0, SCHC<u>H</u>_AH_B), 3.39 (1 H, dd, *J* 18.0 and 9.5, SCHCH_AH_B), 2.27 (2 H, t, *J* 7.5, CH₂C<u>H</u>₂CO A), 2.22-2.18 (2 H, m, CH₂C<u>H</u>₂CO B), 2.10 (4 H, m, C<u>H</u>₂CH₂CO x2), 1.68 (3 H, s, Me_A), 1.62 (3 H, s, Me_B), 1.43 (3 H, s, Me_C), 1.42 (3 H, s, Me_D), 1.30 (6 H, s, Me_E and Me_F); δ_C (125 MHz; CD₃OD) 179.1 (CONH₂), 178.1 (CONH), 174.6 (OCN), 138.9 (*i*-Ph), 133.8 (*o*-Ph), 130.7 (*m*-Ph), 129.7 (*p*-Ph), 103.6 (O<u>C</u>Me₂), 60.5 and 54.8 (N<u>C</u>Me₂ x2), 52.6 (<u>C</u>HSPh), 40.1 (CH<u>C</u>H₂), 36.6 and 36.2 (<u>C</u>H₂CH₂CO x2), 32.0 (CH₂<u>C</u>H₂CO A), 31.7 (CH₂<u>C</u>H₂CO B), 27.0 and 27.0 (Me_E and Me_F), 26.9 (Me_B), 26.2 and 26.1 (Me_C and Me_D), 23.0 (Me_A); *m/z* = 448.2634 (C₂₄H₃₈N₃O₄S requires *M*+*H* = 448.2634, dev. 0.1 ppm); *v_{max}* (CHCl₃ / cm⁻¹) 3313 (NH), 1658 (CO), 1541 (CN), 1440 (Ph).

3,3,8,8-Tetramethyl-7-phenylsulfanyl-[1,4]diazocane-2,5-dione 38: amide **32** (32 mg, 0.1 mmol) was dissolved in toluene (1.0 cm³) and TFA (0.1 cm³) and the reaction stirred at 40 °C for seven days. After the reaction was allowed to cool a mixture of ethyl acetate and dichloromethane (10:1 mixture, 50 cm³) was added. The mixture was washed with saturated sodium bicarbonate solution (2 x 20 cm³) and brine (20 cm³), dried (Na₂SO₄) and was evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:5 to methanol-ethyl acetate 1:10) to give *the bis-lactam* as an amorphous white solid (2 mg, 0.007 mmol, 7%), R_f (EtOAc) 0.20; δ_H (500 MHz; CDCl₃) 7.48-7.45 (2 H, m, *o*-Ph), 7.35-7.28 (3 H, m *m* and *p*-Ph), 3.75 (1 H, dd, *J* 10.5 and 8.0, SCH), 2.97 (1 H, dd, *J* 17.5 and 8.0, CH_AH_B), 2.66 (1 H, dd, *J* 17.5 and 10.5, CH_AH_B), 1.55 (3 H, s, Me_A), 1.44 (3 H, s, Me_B), 1.31 (6 H, s, Me_C and Me_D); δ_C (125 MHz; CDCl₃) 182.8 (NCOCMe₂), 164.1 (NCOCH₂), 133.6 (*i*-Ph), 132.4 (*o*-Ph), 129.4 (*m*-Ph), 128.0 (*p*-Ph), 75.4 (CMe₂CO), 61.2 (CMe₂CH), 58.1 (SCH), 31.6 (CH₂), 34.9 (Me_A), 23.9 and 23.9 (Me_C and Me_D), 21.4 (Me_B); *m/z* = 307.1490 (C₁₆H₂₃N₂O₂S requires *M*+*H* = 307.1480, dev. 3.3 ppm); *v_{max}* (CHCl₃ / cm⁻¹) 1723 (CO), 1666 (CO), 1439 (Ph).

2-(5',5'-Dimethyl-4'-phenylsulfanyl-dihydro-furan-2'-ylideneamino)-2-methyl-propionamide 39 was also obtained as an amorphous white solid (10 mg, 0.033 mmol, 33%), R_f (EtOAc) 0.08; δ_H (500 MHz; CDCl₃) 7.47 (1 H, br s, NH_AH_B), 7.44-7.41 (2 H, m, *o*-Ph), 7.33-7.25 (3 H, m, *m* and *p*-Ph), 5.33 (1 H, br s, NH_AH_B), 3.54 (1 H, dd, *J* 10.5 and 8.0, SCH), 2.95 (1 H, dd, *J* 17.0 and 8.0, CH_AH_B), 2.72 (1 H, dd, *J* 17.0 and 10.5, CH_AH_B), 1.44 (3 H, s, Me_A), 1.43 (3 H, s, Me_B), 1.39 (s H, s, Me_C), 1.38 (3 H, s, Me_D); δ_C (125 MHz; CDCl₃); 180.9 (CON), 158.5 (CN), 134.0 (*i*-Ph), 132.0 (*o*-Ph), 129.3 (*m*-Ph), 127.7 (*p*-Ph), 88.1 (OCMe₂), 60.9 (NCMe₂), 52.6 (SCH), 38.9 (CH₂), 37.6 (Me_D), 24.0 and 23.9 (Me_A and Me_B), 22.9 (Me_C); *m*/*z* = 329.1312 (C₁₆H₂₂N₂O₂SNa requires *M*+*Na* = 329.1300, dev. 3.7 ppm); ν_{max} (CHCl₃ / cm⁻¹) 1681 (CONH₂), 1568 (CN), 1492 (Ph), 1422 (Ph); m.p. (EtOAc/ Hexanes) 156.3-158.7 °C.

N-(1'-amino-2'-methyl-1'-oxopropan-2'-yl)-4-hydroxy-4-methyl-3-(phenylthio)pentanamide 40 was also obtained, but could not be purified completely: δ_H (500 MHz; CDCl₃) 7.57 (1 H, br s, CONH), 7.48-7.45 (2 H, m, *o*-Ph), 7.31-7.26 (2 H, m, *m*-Ph), 7.23-7.19 (1 H, m, *p*-Ph), 6.58 (1 H, br s, N<u>H</u>_AH_B), 6.35 (1 H, br s, NH_A<u>H</u>_B), 3.63 (1 H, dd, *J* 8.5 and 5.0, C<u>H</u>SPh), 2.78 (1 H, dd, *J* 15.0 and 5.0, C<u>H</u>_AH_BCO), 2.45 (1 H, dd, *J* 15.0 and 8.5, CH_A<u>H</u>_BCO), 1.55 (3 H, s, NC<u>Me</u>_AMe_B), 1.51 (3 H, s, NCMe_A<u>Me</u>_B), 1.33 (OC<u>Me</u>_AMe_B), 1.30 (OCMe_A<u>Me</u>_B); δ_C (125 MHz; CDCl₃) 176.7 (CONH₂), 171.3 (CONH), 135.6 (*i*-Ph), 130.9 (*o*-Ph), 129.2 (*m*-Ph), 127.1 (*p*-Ph), 73.4 (O<u>C</u>Me₂), 58.4 (SCH), 57.4 (N<u>C</u>Me₂), 39.3 (CH₂), 27.9 (OC<u>Me</u>_AMe_B), 26.6 (OCMe_A<u>Me</u>_B), 25.7 (NCMe_A<u>Me</u>_B), 25.2 (NC<u>Me</u>_AMe_B); *m*/*z* = 347.1415 (C₁₆H₂₄N₂O₂SNa requires *M*+*Na* = 347.1405, dev. 2.8 ppm); *v_{max}* (CH₂Cl₂/ cm⁻¹) 3330 (br OH or NH), 1660 (CO), 1460 (Ph).

2-(5,5-Dimethyl-5*H***-furan-2-ylideneamino)-2-methyl-propionamide 41** was also obtained as an amorphous white solid (7 mg, 0.036 mmol, 36%), R_f (EtOAc) 0.03; δ_H (500 MHz; CDCl₃) 6.77 (1 H, d, *J* 5.5, C<u>H</u>CHCN), 5.92 (1 H, d, *J* 5.5, CHC<u>H</u>CN), 1.50 (6 H, s, NC<u>Me₂</u>), 1.42 (6 H, s, OC<u>Me₂</u>); δ_C (125 MHz; CDCl₃); 181.1 (CONH₂), 161.9 (CN), 150.9 (<u>C</u>HCHCN), 123.9 (CHC<u>H</u>CN), 90.6 (O<u>C</u>Me₂), 60.9 (N<u>C</u>Me₂), 26.1 (OC<u>Me₂</u>), 24.0 (NC<u>Me₂</u>); m/z = 197.1275 (C₁₀H₁₇N₂O₂ requires M+H = 197.1290, dev. -0.8 ppm); v_{max} (cm⁻¹) 1682 (CONH₂), 1568 (CN), 1493 (CC); m.p. (EtOAc/ Hexanes) 164.6-166.9 °C.

5,5-dimethyl-4-phenylsulfanyl-dihydro-furan-2-one 3 was also obtained (5 mg, 23%).

2,4,6-Tris-(3'-hydroxyl-3'-methyl-but-1'-ene)-1,3,5-triazine 43: a suspension of sodium hydride (2.0 mg, 0.08 mmol) in THF (1 cm³) under nitrogen was cooled to 0 °C. Trimer **42** (16 mg, 0.02 mmol) in THF (0.5 cm³) was added dropwise and the mixture stirred for two hours before the addition of

saturated sodium bicarbonate solution (1 cm³). The mixture was extracted with ethyl acetate (3 x 5 cm³) and the combined organic extracts were washed with saturated sodium bicarbonate solution (10 cm³) and brine (10 cm³), dried (Na₂SO₄) and was evaporated under reduced pressure to yield the *triene* as a white solid (7 mg, 0.02 mmol, >95 %); δ_{H} (500 MHz; d_{6} -DMSO) 7.42 (3 H, d, J 15.5, CNCHC<u>H</u>), 6.46 (3 H, d, J 15.5, CNC<u>H</u>CH), 4.98 (3 H, s, OH), 1.28 (18 H, s, Me); δ_{C} (125 MHz; D₆-DMSO) 171.2 (CN), 154.0 (CNCHC<u>H</u>), 124.5 (CNC<u>H</u>CH), 69.9 (<u>C</u>Me₂), 29.8 (C<u>Me₂</u>); *m/z* = 356.1945 (C₁₈H₂₇N₃O₃SNa requires *M*+*Na* = 356.1950, dev. –1.6 ppm); v_{max} (cm⁻¹) 3325 (br OH), 1652 (CC), 1519 (CN); m.p. (EtOAc/Hexane) 118.7-120.6 °C.

1-(4',6'-Dimethyl-[1,3,5]triazin-2'-yl)-3-methyl-3-phenylsulfanyl-butan-2-ol 45: 2,4,6-trimethyl-1,3,5-triazine⁶ (400 mg, 3.30 mmol) was dissolved in diethylether (10 cm³) and cooled to -78 °C. n-Butyllithium (0.50 cm³, 4.7 mol dm⁻³ solution in hexanes, 3.30 mmol) was added dropwise and the solution warmed to 0 °C and stirred for 20 minutes. After cooling to -78 °C a solution of 2-methyl-2phenylsulfanylpropional (590 mg, 3.30 mmol) in diethylether (2 cm³) was added dropwise and the solution allowed to warm to room temperature over the period of 30 minutes before the addition of water (2 cm³). The aqueous phase was separated and extracted with ethyl acetate (2 x 25 cm³) and the combined organic extracts were washed with brine (25 cm³), dried (Na₂SO₄) and were evaporated under reduced pressure. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:10 to 1:1) to give the triazine as white platelets (574 mg, 1.89 mmol, 49%), R_f (EtOAc:Hexanes, 1:1) 0.13; δ_H (500 MHz; CDCl₃) 7.57-7.53 (2 H, m, o-Ph), 7.37-7.34 (1 H, m, p-Ph), 7.33-7.29 (2 H, m, m-Ph), 4.01 (1 H, dd, J 10.5 and 2.0, CHOH), 3.32 (1 H, dd, J 15.0 and 2.0, CHAHB), 3.01 (1 H, dd, J 15.0 and 10.5, $CH_{A}H_{B}$), 2.62 (6 H, s, $NCMe x^{2}$), 1.33 (3 H, s, $SCMe_{A}Me_{B}$), 1.30 (3 H, s, $SCMe_{A}Me_{B}$); δ_{C} (125 MHz; CDCl₃) 177.4 (NCCH₂), 176.0 (NCMe x2), 137.7 (o-Ph), 130.8 (i-Ph), 129.0 (p-Ph), 128.6 (m-Ph), 74.6 (CHOH), 53.2 (SCMe2), 40.0 (CH2), 25.5 (NCMe x2), 24.7 (SCMeAMeB), 24.5 $(SCMe_AMe_B); m/z = 304.1474 (C_{16}H_{22}N_3OS requires M+H = 304.1484, dev. -3.2 ppm); v_{max} (CHCl_3 / 1000); v_{ma$ cm⁻¹) 3400 (br OH), 1540 (CN) 1440 (Ph); m.p. (EtOAc/ Hexanes) 98.2-100.4 °C;

2,4-Dimethyl-6-(3'-methyl-3'-phenylsulfanyl-but-1'-enyl)-[1,3,5]triazine 47: triazine **45** (60 mg, 0.20 mmol) was dissolved in a mixture of toluene (2.0 cm³) and TFA (0.2 cm³) and the reaction was heated at 40 °C overnight. After the reaction was allowed to cool to room temperature saturated sodium bicarbonate solution (5 cm³) was added, followed by ethyl acetate (5 cm³). The aqueous layer was extracted with ethyl acetate (2 x 5 cm³) and the combined organic phases was washed with saturated sodium bicarbonate (2 x 10 cm³) and brine (10 cm³), dried (Na₂SO₄) and evaporated to yield the crude reaction residue. The residue was chromatographed (SiO₂, eluting with EtOAc-hexanes 1:10 to neat EtOAc) to give *the triazine* as an off white amorphous solid (18 mg, 0.06 mmol, 32%); R_f (EtOAc:hexanes, 1:1) 0.42; δ_H (500 MHz; CDCl₃) 7.53 (1 H, d, *J* 15.5, CHC<u>H</u>CMe₂), 7.42-7.38 (2 H, m, *o*-Ph), 7.32-7.27 (1 H, m, *p*-Ph), 7.25-7.21 (2 H, m, *m*-Ph), 5.92 (1 H, d, *J* 15.5, C<u>H</u>CHCMe₂), 2.58 (6 H, s, NC<u>Me</u> x2), 1.46 (6 H, s, C<u>Me₂</u>); δ_C (125 MHz; CDCl₃) 175.9 (NCMe x2), 170.7 (NCCH), 150.9 (CHCHCMe₂), 25.6 (NC<u>Me</u> x2); Accurate mass, *m/z* = 286.1368 (C₁₆H₂₀N₃S requires *M*+*H* = 286.1378, dev. -3.3 ppm); v_{max} (CHCl₃ / cm⁻¹) 1640 (CC), 1530 (CN), 1470 (Ph), 1440 (Ph).

N-(5,5-Dimethyl-4-phenylsulfanyl-dihydro-furan-2-ylidene)-acetamidine 46 was also obtained as an off white amorphous solid (10 mg, 0.04 mmol, 19%); R_f (EtOAc) 0.05; δ_H (500 MHz; CDCl₃) 7.43-7.40 (2 H, m, o-Ph), 7.31-7.28 (2 H, m, m-Ph), 7.27-7.23 (1 H, m, p-Ph), 3.55 (1 H, dd, J 9.5 and 8.0, SCH), 3.37-3.20 (1 H, br s, CH_AH_B), 2.94 (1 H, dd, J 18.0 and 9.5, CH_AH_B), 2.13 (3 H, s, CN<u>Me</u>), 1.33 (3 H, s, CMe_AMe_B), 1.32 (3 H, s, CMe_AMe_B); δ_C (125 MHz; CDCl₃) 134.4 (*i*-Ph), 131.8 (*o*-Ph), 129.2 (m-Ph), 127.5 (p-Ph), 53.3 (SCH), 41.5 (CH₂), 28.4 (CMe_AMe_B), 26.4 (CNMe), 23.9 (CMe_AMe_B), other peaks not found due to broadening; m/z = 263.1210 (C₁₄H₁₉N₂OS requires M+H = 263.1218, dev. -3.1 ppm); v_{max} (CHCl₃ / cm⁻¹) 3250 (br NH), 1680 (CN), 1640 (CN), 1540 (Ph), 1480 (Ph), 1440 (Ph). 2,4-bis-(3'-methyl-3'-phenylsulfanyl-but-1'-enyl)-6-methyl-[1,3,5]triazine 49 was also obtained as a pale oil (5 mg, 0.01 mmol, 6%); R_f (EtOAc:hexanes, 1:1) 0.68; δ_H (500 MHz; CDCl₃) 7.56 (2 H, d, J 15.5, CHCHCMe2), 7.45-7.42 (4 H, m, o-Ph), 7.35-7.31 (2 H, m, p-Ph), 7.29-7.26 (4 H, m, m-Ph), 6.01 (2 H, d, J 15.5, CHCHCMe₂), 2.62 (3 H, s, NCMe), 1.49 (12 H, s, SCMe₂); δ_C (125 MHz; CDCl₃) 175.7 (NCMe), 170.6 (NCCH), 151.2 (CHCHCMe2) 137.4 (o-Ph), 131.4 (i-Ph), 129.2 (p-Ph), 128.5 (m-Ph), 124.4 (<u>C</u>HCHCMe₂), 49.6 (<u>SCMe₂</u>), 27.1 (SC<u>Me₂</u>), 25.4 (NC<u>Me</u>); m/z = 448.1870 (C₂₆H₃₀N₃S₂) requires M+H = 448.1881, dev. -2.5 ppm); v_{max} (CHCl₃ / cm⁻¹) 1640 (CC), 1520 (CN) 1470 (Ph), 1440 (Ph).

Crystal Data for **42**: $C_{36}H_{45}N_3O_3S_3.1/2(H_2O)$, M= 672.94, triclinic, space group P-1, a = 12.2457(2), b = 13.6867(3), c = 22.7701(5) Å, α = 83.977(1)°, β = 80.763 (1)°, γ = 75.344 (1)° U = 3636.02(13) Å³, Z = 4, μ (Mo-K α) = 0.243 mm⁻¹, 39905 reflections measured at 120(2)K using an Oxford Cryosystems Cryostream cooling apparatus, 16301 unique (Rint = 0.088); R1 = 0.071, wR2 = 0.167 [I>2 σ (I)]. The structure was solved with SHELXS-97, and refined with SHELXL-97.⁷

References

- 1 M. D. Eastgate, D. J. Fox, T. J. Morley, and S. Warren, *Synthesis*, 2002, 2124.
- 2 P. Brownbridge, E. Egert, P. G. Hunt, O. Kennard, and S. Warren, J. Chem. Soc.: Perkin Trans. I, 1981, 2751.
- J. H. Youn, R. Herrmann, and I. Ugi, *Synthesis*, 1987, 159.
- 4 G. R. Newkome, C. N. Moorefield, and J. D. Epperson, Eur. J. Org. Chem., 2003, 3666.
- 5 J. W. Ducker and M. J. Gunter, *Aust. J. Chem.*, 1968, **21**, 2809.
- 6 F. C. Schaefer and G. A. Peters, J. Org. Chem., 1961, 26, 2778.
- 7 G. M. Sheldrick, 'ref 13 ver. SHELXS-97/SHELXL-97', University of Göttingen, Germany, 1997.