SUPPORTING INFORMATION

A Practical Synthetic Route to Functionalized THBCs and Oxygenated Analogous via Intramolecular Friedel-Crafts Reactions

Marco Angeli, Marco Bandini, ${ }^{\text {, }}$ Andrea Garelli, Fabio Piccinelli, Simona Tommasi, Achille Umani-Ronchi* ${ }^{*}$

Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum -Università di Bologna - Alma Mater Studiorum -
Via Selmi 2, 40126, Bologna, Italy.

Fax: +39 (0)51/2099456
E-mail: marco.bandini@unibo.it; achille.umanironchi@unibo.it

General Remarks: ${ }^{1} \mathrm{H}$-NMR spectra were recorded on Varian $200(200 \mathrm{MHz})$ or Varian 300 (300 $\mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 7.27 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ duplet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian $200(50 \mathrm{MHz})$ or Varian $300(75 \mathrm{MHz})$ spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal standard (deuterochloroform: $\delta 77.0$ ppm). Mass spectra were performed at an ionizing voltage of 70 eV . Analytical high performance liquid chromatography (HPLC) was performed on a HP 1090 liquid chromatograph equipped with a variable wavelength UV detector (deuterium lamp 190-600 nm) and using a Daicel Chiralcel ${ }^{\mathrm{TM}}$ OD and OF columns (0.46 cm I.D. x 25 cm) (Daicel Inc.). HPLC grade isopropanol and n-hexane were used as the eluting solvents. Elemental analyses were carried out by using a EACE 1110 CHNOS analyzer. All the commercially available reagents were used without further purification. Melting points were determined with Büchi 150 melting point unit and are not corrected. IR analysis were performed with a FT-IR NICOLET 205 spectrophotometer and the spectra are expressed by wavenumber $\left(\mathrm{cm}^{-1}\right)$. LC-electrospray ionization mass spectra were obtained with Agilent Technologies MSD1 100 single-quadrupole mass spectrometer.

Typical procedure for the synthesis of Nprotected-allylindole (6).

A 50 mL two-necked flask equipped with a magnetic stirrer flamed under vacuum was charged, under nitrogen atmosphere, with 15 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.52 \mathrm{mmol}$ of allylamine. ${ }^{1}$ Then 211
$\mu \mathrm{L}(1.52 \mathrm{mmol})$ of triethylamine, $18 \mathrm{mg}(0.152 \mathrm{mmol})$ of DMAP and finally $111 \mu \mathrm{~L}(1.44 \mathrm{mmol})$ of the desired reagent $\left(\mathbf{6 a}:(\mathrm{Boc})_{2} \mathrm{O}, \mathbf{6 b}: \mathrm{ClCbz}, \mathbf{6 c}: \mathrm{ClCO}_{2} \mathrm{Me}, \mathbf{6 d}:\left(\mathrm{COCF}_{3}\right)_{2} \mathrm{O}\right)$ were added. The mixture was stirred for 15 hs at rt and then judged complete by TLC analysis and finally quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The two phases separated and the aqueous phase was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The collected organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and the crude was purified by flash-chromatography.

2-[methylen- N-(\boldsymbol{t}-butoxycarbonyl)-allylamine]-indole 6a ($400 \mathrm{mg}, 92 \%$) as a pale brown solid, mp 76-77 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O}$ 95/5); (Found: C, 71.22; H, 7.68; N, 9.75. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $71.30 ; \mathrm{H}, 7.74 ; \mathrm{N}, 9.78$); $v_{\max }($ nujol $) / \mathrm{cm}^{-1} 3264 \mathrm{~m}, 1671 \mathrm{~s}, 1409 \mathrm{~m}, 1318 \mathrm{w}, 1269 \mathrm{~m}$, $1251 \mathrm{~m}, 1160 \mathrm{~s}, 1125 \mathrm{~m}, 914 \mathrm{~m}$ and $864 \mathrm{~m} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.56$ ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}$), $7.35(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.05-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.35(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 5.65-5.80$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.12-5.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{NBoc}\right), 3.81(2 \mathrm{H}, \mathrm{d}, J$ $\left.7.8, \mathrm{NCH}_{2} \mathrm{CH}\right), 1.51(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 156.8$, 136.4, 135.8, 133.5, 127.7, $121.8,120.2,119.6,116.7,110.9,101.5,80.4,49.7,43.5,28.4 ;$

2-[methylen- N-(carbobenzoxy)-allylamine]-indole $\mathbf{6 b}(413 \mathrm{mg}, 85 \%)$ as a brown viscous oil; R_{f} 0.3 (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O}$ 9/1); (Found: C, 74.95 ; H, 6.25; N, 8.70. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 74.98; H, 6.29 ; N, 8.74); $v_{\max } / \mathrm{cm}^{-1} 3642 \mathrm{w}, 3403 \mathrm{br}, 3324 \mathrm{br}, 3078 \mathrm{~m}, 3059 \mathrm{~m}, 3025 \mathrm{~m}, 2946 \mathrm{br}, 2243 \mathrm{w}, 1686 \mathrm{~s}$, $1613 \mathrm{~m}, 1546 \mathrm{~m}, 1447 \mathrm{~s}, 1407 \mathrm{~s}, 1334 \mathrm{~s}, 1241 \mathrm{~s}, 1136 \mathrm{~s}, 990 \mathrm{~s}$, 910 s and $738 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.93(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.60-7.04(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.37(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 5.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.18-5.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{NCbz}\right), 3.92(2 \mathrm{H}, \mathrm{d}, J$ 5.8, $\left.\mathrm{NCH}_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 157.4,136.3,135.0,134.4,133.1,128.9,128.5,128.2$, 128.1, 127.6, 122.0, 120.3, 119.6, 117.3, 110.9, 101.9, 67.6, 49.3, 43.9;

Allyl-(1H-indol-2-ylmethyl)-carbamic acid methyl ester $\mathbf{6 c}(327 \mathrm{mg}, 88 \%)$ as a brown viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/Et $\mathrm{O}_{2} \mathrm{O}$ 9/1); (Found: C, 68.83; H, 6.60; N, 11.47. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $68.80 ; \mathrm{H}, 6.55 ; \mathrm{N}, 11.45) ; v_{\max } / \mathrm{cm}^{-1} 3324 \mathrm{br}, 3052 \mathrm{~s}, 2952 \mathrm{~s}, 2243 \mathrm{~m}, 1693 \mathrm{~s}, 1580 \mathrm{~m}, 1547 \mathrm{~m}, 1454 \mathrm{br}$, 1235s, 1136s, $997 \mathrm{~m}, ~ 924 \mathrm{~s}$, 785 s and725s; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.95(1 \mathrm{H}, \mathrm{br}$ s, NH), 7.57 (1H, d, J 8.0, Ar), 7.35 (1H, d, J 8.0, Ar), 7.05-7.26 (2H, m, Ar), 6.37 (1H, s, Ar), 5.68-5.87 (1H, m, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.15-5.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{NCO}\right), 3.86(2 \mathrm{H}, \mathrm{d}, J 8.1$, $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 158.7,136.4,134.8,132.9,127.6$, 121.7, 120.1, 119.4, 116.9, 110.8, 101.6, 52.8, 48.8, 43.5;

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2006

2-[methylen- N-(trifluoroacetyl)-allylamine]-indole $\mathbf{6 d}(287 \mathrm{mg}, 67 \%)$ as a pale pink solid, mp $68-69^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Found: C, 59.61 ; H, 4.61; N, 9.90. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.57 ; \mathrm{H}, 4.64 ; \mathrm{N}, 9.92) ; v_{\max }($ nujol $) / \mathrm{cm}^{-1} 3360 \mathrm{~s}, 1672 \mathrm{~s}, 1339 \mathrm{~m}, 1299 \mathrm{~m}, 1198 \mathrm{~s}, 1170 \mathrm{~s}$, 1001w, $921 \mathrm{~m}, 786 \mathrm{~s}, 752 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.59(1 \mathrm{H}, \mathrm{d}, J 7.8$, Ar), $7.37(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ar}), 7.25-7.08(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 5.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.40-5.45 (2 H , dd, $J 9.0, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $4.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{NCO}\right), 4.03\left(2 \mathrm{H}, \mathrm{d}, J 5.7, \mathrm{NCH}_{2} \mathrm{CH}\right)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 158.0$, 136.7, 132.4, 131.2, 130.4, 127.3, 122.7, 120.5, 119.9, 113.6, 111.2, 103.3, 49.6, 43.4.

Synthesis of 2-[(Phenyl)-methylen- N-(\boldsymbol{t}-butoxycarbonyl)-allylamine]-indole $\mathbf{6 f}$

In a flamed two-necked flask under N_{2} and equipped with a condenser, were added 50 mL of dry toluene, 500 mg (3.5 mmol) of indole-2-carboxaldehyde, $2.0 \mathrm{~g}(17.5 \mathrm{mmol})$ of MgSO_{4} and $260 \mu \mathrm{~L}$ (3.5 mmol) of allylamine. The reaction was refluxed for 24 h and, after elimination of MgSO_{4} by filtration on pad of celite, the solvent was evaporated under reduced pressure and the crude imine was isolated as a brown viscous oil; $v_{\max } / \mathrm{cm}^{-1} 2923 \mathrm{~s}, 2853 \mathrm{~s}, 1713 \mathrm{~s}, 1633 \mathrm{~s}, 1447 \mathrm{~m}, 1221 \mathrm{~s}$ and $1001 \mathrm{~m} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H \mathrm{~N}), 8.27(1 \mathrm{H}, \mathrm{t}, J 1.2, \mathrm{Ar}), 7.65(1 \mathrm{H}, \mathrm{d}, J$ 7.4, Ar), 7.39-7.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.79(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.21-5.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.31-5.08(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.27-4.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}$). The crude imine (3.5 mmol) was dissolved in anhydrous THF (30 mL) and the solution cooled to $-23^{\circ} \mathrm{C}$. Then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3.8 \mathrm{mmol})$ was added. After stirring for 15 min a solution of $\mathrm{PhLi}\left(2.1 \mathrm{M}, \mathrm{Et}_{2} \mathrm{O}\right)$ was added dropwise over 20 min and the mixture allowed stirring at $-23^{\circ} \mathrm{C}$ over 4 h . The reaction mixture was then quenched with NaOH $(10 \%, 8 \mathrm{~mL})$ and the phases separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and the combined organic phases washed with brine and dried under $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation the crude was purified by flash chromatography on silica using a mixture of cyclohexane/AcOEt 85:15 to give the intermediate deprotected amine-indole ($596 \mathrm{mg}, 65 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$) 8.56 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$), 7.53 ($1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Ar}$), 7.28-7.41 (7H, m, Ar), 7.03-7.18 (2H, m, Ar), 6.31 (1 H , $\mathrm{s}, \mathrm{Ar})$, $5.89-6.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.12-5.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.08(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCHNH})$, $3.29\left(2 \mathrm{H}, \mathrm{dd}, J 1.4\right.$ and $\left.5.8, \mathrm{NCH}_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 141.8,140.5,136.2,135.8$, 128.4, 128.7 (2 C), 127.6, 127.3 (2 C), 121.5, 120.2, 119.6, 116.6, 110.8, 100.4, 60.3, 50.0. The purifies allyliamine was monoprotected (Boc) as described for $\mathbf{6 a}$. Starting from 0.4 mmol of amine, $\mathbf{6 f}$ was obtained ($75 \mathrm{mg}, 52 \%$) as a yellow oil; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.00(1 \mathrm{H}, \mathrm{d}, J$ 8.8, NH), 7.50-7.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.20-7.32 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 6.69 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), 5.89-6.09 (m, 1H,

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2006

$\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCHNH}), 5.26-5.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.10-5.19(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.29-3.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}$), $1.53(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; m / z(\mathrm{LC}-\mathrm{ESI}-\mathrm{MS}) 363\left(\mathrm{MH}^{+}\right)$.

Typical procedure for the synthesis of \boldsymbol{O}-allylindole (10).

In a flamed two-necked flask was added, under a nitrogen atmosphere, 15 mL of anhydrous THF and $\mathrm{NaH}(69 \mathrm{mg}, 3.0 \mathrm{mmol})$. This suspension was cooled to $0^{\circ} \mathrm{C}$ and 2.0 mmol of N-methyl-indolyl alcohol ${ }^{[1]}$ were carefully added at once. After 2 h stirring at $0^{\circ} \mathrm{C}, 345 \mu \mathrm{~L}$ of allylbromide (4.0 mmol) were introduced by syringe and the temperature was allowed to warm at room temperature by removing the cooling bath. The reaction course was monitored by TLC and after $20 \mathrm{~h}, 10 \mathrm{~mL}$ of a saturated NaHCO_{3} were added to the solution at $0^{\circ} \mathrm{C}$ to quench the reaction. After evaporation of THF and usual work-up ($\mathrm{Et}_{2} \mathrm{O}$, brine, $\mathrm{Na}_{2} \mathrm{SO}_{4}$) the crude mixture was purified by flash chromatography to afford 10a; $\mathrm{R}_{\mathrm{f}} 0.35$ (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 70: 30$) (Found: C, 77.52; H, 7.45; N, 6.96. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{C}, 77.58 ; \mathrm{H}, 7.51 ; \mathrm{N}, 6.96$); $v_{\max } / \mathrm{cm}^{-1} 3050 \mathrm{~s}, 2949 \mathrm{~s}, 2853 \mathrm{~m}, 1738 \mathrm{~m}$, $1649 \mathrm{~s}, 1546 \mathrm{~m}, 1462 \mathrm{~m}, 1064 \mathrm{~m}$ and $738 \mathrm{~m} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; Me Me_{4}) $7.56-7.65(1 \mathrm{H}, \mathrm{d}, J 8.8$ Ar), 7.25-7.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.01-7.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.49(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar})$, 5.85-6.05 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.22-5.41 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{O}\right), 4.02(2 \mathrm{H}, \mathrm{dt}, J 1.8$ and J 5.6, $\mathrm{OCH}_{2} \mathrm{CH}$), $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 138.0, 135.6, 134.4, 127.1, 121.7, 120.6, 119.3, 117.3, 109.0, 102.8, 70.2, 63.9, 29.8.

2-Allyloxymethyl-5-chloro-1-methyl-1H-indole 10b was obtained ($165 \mathrm{mg}, 75 \%$) as a pale yellow solid; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 9 / 1$); (Found: C, 66.20 ; H, 5.95; N, 5.95. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClNO}$ requires C, $66.24 ; \mathrm{H}, 5.99 ; \mathrm{N}, 5.94) ; v_{\max } / \mathrm{cm}^{-1} 3051 \mathrm{~s} 2955 \mathrm{~m}, 2850 \mathrm{~s}, 1739 \mathrm{~s}, 1648 \mathrm{~m}, 1550 \mathrm{~m}, 1462 \mathrm{~m}, 1064 \mathrm{w}$ and $738 \mathrm{w} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.18-7.26$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 5.87-6.00 ($1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.42(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 5.21-5.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{O}\right), 4.02(2 \mathrm{H}$, d, $\left.J 5.4, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 137.5,136.8,134.6,128.4$, 125.4, 122.4, 120.3, 118.0, 110.5, 102.7, 70.8, 64.2, 30.4.

Typical CM procedure for the synthesis of indolyl enones (8/12).

To a 50 mL flamed two-necked flask, equipped with a magnetic stirrer, was added 2.5 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was degassed by freezing-pump procedure and then a solution of protected allylindole derivative $\mathbf{6} / \mathbf{1 0}\left(0.2 \mathrm{mmol}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 13 \mathrm{mg}(0.016 \mathrm{mmol}, 8 \mathrm{~mol} \%)$ of ruthenium carbene catalyst and 1.2 mmol (6 equiv.) of the desired enone ($7 \mathbf{a} / 7 \mathbf{b}$) were added and the deep brown mixture was refluxed for 1 hr . The solution was then cooled to rt and a second drop of catalyst (0.007 mmol) was added. The procedure was repeated for the third time after a subsequent hour of refluxing. After the third addition, the mixture was stirred and refluxed for 15 hs

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2006

and then judged complete by TLC analysis. The crude was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated under reduced pressure and finally purified by flash-chromatography thus affording:

8aa ($43 \mathrm{mg}, 65 \%$) as a brown viscous oil [recovered starting $=26 \%$]; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/ AcOEt 8/2); (Found: C, 69.45; H, 7.31; N, 8.52. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 69.49; H, 7.37; N, 8.53); $v_{\max } / \mathrm{cm}^{-1}$ $3330 \mathrm{br}, 3085 \mathrm{~m}, 3058 \mathrm{~m}, 2979 \mathrm{~s}, 2926 \mathrm{~s}$, 2302w, 1699s, 1627s, 1547m, 1448s, 1401s, 1361s, 1242s, $1151 \mathrm{~s}, 1109 \mathrm{~m}, 950 \mathrm{~m}, 877 \mathrm{~m}$ and 744 s ; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.56(1 \mathrm{H}$, d, $J 7.4, \mathrm{Ar}), 7.35(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.23-7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.62\left(1 \mathrm{H}, \mathrm{dt}, J_{1} 15.8\right.$ and $J_{2} 4.4$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.35(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.08\left(1 \mathrm{H}, \mathrm{d}, J 15.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{~N}\right), 4.00(2 \mathrm{H}$, d, $J 4.2, \mathrm{NCH}_{2} \mathrm{CH}$), $2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.51(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 197.4,156.5$, 142.2, 136.6, 135.2, 131.1, 128.0, 122.0, 120.3, 119.7, 111.0, 101.8, 80.9, 48.4, 44.3, 28.2, 27.0; m / z (LC -ESI-MS) $363\left(\mathrm{MH}^{+}\right), 351\left(\mathrm{MNa}^{+}\right)$;

8ba ($25 \mathrm{mg}, 34 \%$) as a brown viscous oil [recovered starting $=41 \%$] $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/ AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.91; H, 6.12; N, 7.73. Found: C, 72.85; H, 6.08; N, 7.70); $v_{\max } / \mathrm{cm}^{-1} 3403 \mathrm{br}, 3310 \mathrm{br}, 3051 \mathrm{~s}, 2952 \mathrm{~s}, 2913 \mathrm{~s}, 2236 \mathrm{w}, 1706 \mathrm{~s}, 1666 \mathrm{~s}, 1586 \mathrm{~m}, 1474 \mathrm{~s}, 1427 \mathrm{~s}, 1355 \mathrm{~s}$, $1262 \mathrm{~s}, 1097 \mathrm{~s}, 910 \mathrm{~s}$ and $738 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.87(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.60-7.04(9 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}), 6.61\left(1 \mathrm{H}, \mathrm{dt}, J_{1} 15.4\right.$ and $\left.J_{2} 5.2, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.36(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.06(1 \mathrm{H}, \mathrm{d}, J 16.6$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{~N}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.08\left(2 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.18(3 \mathrm{H}$, $\mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 207.9,156.1,136.4,136.2,130.2,128.8,128.6,128.2,128.0$, 125.7, 125.1, 123.2, 122.0, 119.8, 118.8, 117.9, 111.5, 111.0, 67.4, 46.2, 42.2, 29.7; m/z (LC -ESIMS) $362\left(\mathrm{MH}^{+}\right)$;

8ca ($27 \mathrm{mg} 50 \%$) as a brown viscous oil [recovered starting $=27 \%$]; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.12; H, 6.34; N, 9.78. Found: C, 7.05; H, 6.29; N, 9.76); $v_{\max } / \mathrm{cm}^{-1} 3330 \mathrm{br} ; 1669 \mathrm{~s}, 1638 \mathrm{~s}, 1546 \mathrm{~s}, 1432 \mathrm{~m}, 1228 \mathrm{~s}, 1161 \mathrm{~m}, 1067 \mathrm{~m}$ and $739 \mathrm{~s} ; \delta_{\mathrm{H}}(300 \mathrm{MHz} ;$ CDCl_{3}; Me ${ }_{4} \mathrm{Si}$) $8.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.56(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.35(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ar}), 7.22-7.05(2 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}), 6.62\left(1 \mathrm{H}, \mathrm{dt}, J_{1} 15.9\right.$ and $\left.J_{2} 5.1, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.36(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.09\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 16.2\right.$ and J_{2} $\left.1.5, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{~N}\right), 4.04\left(2 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.18$ (3H, s, Me); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3 ;} \mathrm{Me}_{4} \mathrm{Si}\right) 195.6,156.3,139.1,136.1,135.2,129.2,127.6,121.8$, 120.6, 119.6, 111.0, 102.9, 51.5, 50.1, 48.0, 24.8;

8da ($27 \mathrm{mg}, 41 \%$) as a brown viscous oil [recovered starting $=18 \%$]; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 9/1); (Anal.: Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 59.26; H, 4.66; N, 8.64. Found: C, 59.20; H, 4.63; N, $8.60) ; v_{\text {max }} / \mathrm{cm}^{-1} 3327 \mathrm{br}, 1689 \mathrm{~s}, 1663 \mathrm{~s}, 1548 \mathrm{~s}, 1223 \mathrm{~s}, 1067 \mathrm{~m}$ and $734 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.68\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH), $7.45(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.35-7.05(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.72\left(1 \mathrm{H}, \mathrm{dt}, J_{1} 15.6\right.$ and $\left.J_{2} 1.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.36(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.04\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 16.0\right.$ and $\left.J_{2} 1.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 4.53(2 \mathrm{H}, \mathrm{s}$,
$\mathrm{CCH}_{2} \mathrm{~N}$), $4.04\left(2 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 197.0, 169.7, 140.1, 136.6, 135.2, 129.2, 127.5, 123.8, 121.7, 120.5, 119.7, 111.0, 102.9, 48.7, 45.4, 24.9;

8ab ($30 \mathrm{mg}, 38 \%$) as a brown viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.82 ; H, 6.71; N, 7.17. Found: C, $73.80 ; \mathrm{H}, 6.66 ; \mathrm{N}, 7.15$); $v_{\max } / \mathrm{cm}^{-1} 3395 \mathrm{br}$, $3316 \mathrm{br}, 2226 \mathrm{~s}, 2847 \mathrm{~s}, 1683 \mathrm{~s}, 1616 \mathrm{~m}, 1452 \mathrm{~s}, 1418 \mathrm{~m}, 1362 \mathrm{~s}, 1277 \mathrm{~s}, 1243 \mathrm{~s}, 1158 \mathrm{~s}, 1017 \mathrm{~m}, 864 \mathrm{w}$, $797 \mathrm{~m}, 752 \mathrm{~s}$ and $695 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.00-7.07(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 6.83-6.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $6.38(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{~N}\right), 4.12(2 \mathrm{H}, \mathrm{d}, J 3.2$, $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 1.51(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 187.8,156.7,143.7,137.3,136.3,133.1$, $132.8,128.6,128.4,128.1,122.1,121.8,120.2,119.6,111.0,101.7,80.9,45.0,44.1,28.2 ; m / z(L C$ -ESI-MS) $391\left(\mathrm{MH}^{+}\right), 413\left(\mathrm{MNa}^{+}\right), 429\left(\mathrm{MK}^{+}\right)$;
12a ($35 \mathrm{mg}, 72 \%$) as yellow viscous oil [recovered starting $=17 \%$]; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 9/1); (Anal.: Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 74.05; H, 7.04; N, 5.76. Found: C, 74.00; H, 6.99; N, 5.75); $v_{\max } / \mathrm{cm}^{-1} 3397 \mathrm{br}, 3026 \mathrm{~s}, 2207 \mathrm{~m}, 1720 \mathrm{~s}, 1431 \mathrm{~s}, 1323 \mathrm{~s}, 1256 \mathrm{~s}, 1179 \mathrm{~s}, 1156 \mathrm{~s}$ and $741 \mathrm{~s} ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.60(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.36-7.06(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.77\left(2 \mathrm{H}, \mathrm{dt}, J_{1} 16.0\right.$ and $J_{2} 4.4$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.51(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.32\left(1 \mathrm{H}, \mathrm{dt}, J_{1} 16.2\right.$ and $\left.J_{2} 1.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{O}\right)$, $4.18\left(2 \mathrm{H}, \mathrm{dd}, J_{1} 4.4\right.$ and $\left.J_{2} 2.0, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 198.1,138.2,134.9,130.4,129.3,127.0,122.1,119.6,118.3,109.2,103.4,67.7,64.8,44.2$, 27.2;

12b ($24 \mathrm{mg}, 39 \%$) as a yellow viscous oil, see ref. 1 ;
12c (23 mg 42\%) as a pale brown viscous oil [recovering starting $=26 \%$]; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 75/25); (Anal.: Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{2}$: C, 64.87; H, 5.81; N, 5.04. Found: C, $64.85 ; \mathrm{H}, 5.78 ; \mathrm{N}, 5.00$); $v_{\max } / \mathrm{cm}^{-1} 3401 \mathrm{br}, 3030 \mathrm{~s}, 1722 \mathrm{~s}, 1428 \mathrm{~s}, 1326 \mathrm{~s}, 1260 \mathrm{~s} 1185 \mathrm{~s}$ and $748 \mathrm{~s} ;$ $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.55-7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.20-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.77\left(1 \mathrm{H}, \mathrm{dt} J_{1} 16.2\right.$ and $\left.J_{2} 5.6, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.21-6.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 4.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{O}\right), 4.18$ $\left(2 \mathrm{H}, \mathrm{dd}, J_{1} 4.4\right.$ and $\left.J_{2} 1.8, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.77(3 \mathrm{H}, \mathrm{s} \mathrm{NMe}), 2.56(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ $\mathrm{Me}_{4} \mathrm{Si}$) 198.0, 142.3, 136.6, 136.3, 130.4, 127.9, 125.2, 122.4, 120.1, 110.2, 102.8, 68.0, 65.8, 64.7, 27.2; m/z (LC -ESI-MS) $278\left(\mathrm{MH}^{+}\right)$;

9: the procedure described for $\mathbf{8} / \mathbf{1 2}$ but starting from $0.12 \mathrm{mmol}(45 \mathrm{mg})$ of $\mathbf{6 f}$, afforded $\mathbf{9}(20 \mathrm{mg}$, 43%) as a pale yellow viscous oil [10 mg of $\mathbf{6 f}$ were also recovered from the flash chromatography]; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 92/8); (Found: C, 73.40; H, 7.15; N, 7.10. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $\left.73.44 ; \mathrm{H}, 7.19 ; \mathrm{N}, 7.14\right) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.00\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 1.8\right.$ and $\left.J_{2} 7.6, \mathrm{Ar}\right), 7.49-7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.19-7.33(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.70(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 5.63(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph})$, $3.06\left(1 \mathrm{H}, \mathrm{dt}, J_{1} 6.2\right.$ and $\left.J_{2} 12.2, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.92\left(1 \mathrm{H}, \mathrm{dt}, J_{1} 5.4\right.$ and $\left.J_{2} 12.2, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.71(2 \mathrm{H}, \mathrm{t}$, $J 6.2, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.56(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 208.5,150.2$,

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2006

$142.8,142.0,136.9,128.8,128.2(2 \mathrm{C}), 127.9(2 \mathrm{C}), 127.1,123.7,122.6,120.5,115.4,108.9,84.0$, 70.0, 44.0, 42.9, 30.1, 28.0(3C); m/z (LC -ESI-MS) $393\left(\mathrm{MH}^{+}\right)$;

Typical experimental procedure for the catalytic intramolecular Michael reaction catalyzed

 by $\mathbf{I n B r}_{3}$.A two-necked flask was charged, under a nitrogen atmosphere, with 5 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{InBr}_{3}(3.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and 0.1 mmol of indolyl enone. After completion of the reaction (judged by TLC, HPLC), the mixture was quenched with a saturated solution of NaHCO_{3} (3 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and the crude mixture was purified by flash chromatography to afford:

1aa ($39 \mathrm{mg}, 90 \%$) as a brown viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.49; H, 7.37; N, 8.53. Found: C, 69.50; H, 7.32; N, 8.50); $v_{\max } / \mathrm{cm}^{-1} 3337 \mathrm{~s}$, $2355 \mathrm{w}, 1706 \mathrm{~s}, 1666 \mathrm{~s}, 1275 \mathrm{~s}, 1242 \mathrm{~m}, 1149 \mathrm{~m}, 1102 \mathrm{~s}, 1010 \mathrm{~m}, 904 \mathrm{~m}, 798 \mathrm{w}, 731 \mathrm{~s}$, and $659 \mathrm{~m} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.50-7.05(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.07-5.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$, 4.24-4.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{~N}$), 3.54-3.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}$), 3.26-3.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH} 2 \mathrm{CH}$), $2.74(2 \mathrm{H}$, d, $\left.J 9.3, \mathrm{CHCH}_{2} \mathrm{CO}\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.50(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 207.7,155.5$, 136.2, 130.7, 125.9, 121.8, 119.6, 117.8, 111.4, 111.0, 80.3, 46.4, 46.2, 41.7, 30.4, 28.4, 28.1, 26.9; 1ba ($34 \mathrm{mg}, 95 \%$) as a brown viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.91 ; H, 6.12; N, 7.73. Found: C, $72.90 ; \mathrm{H}, 6.11 ; \mathrm{N}, 7.75$); $v_{\max } / \mathrm{cm}^{-1} 3303 \mathrm{br}$, $2959 \mathrm{~s}, 2912 \mathrm{~s}, 2859 \mathrm{~m}, 2249 \mathrm{w}, 1699 \mathrm{~s}, 1626 \mathrm{~s}, 1547 \mathrm{~m}, 1421 \mathrm{~s}, 1354 \mathrm{~m}, 1262 \mathrm{~s}, 1089 \mathrm{~s}$ and $791 \mathrm{~s} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.60-7.05(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.22-5.35\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}+\right.$ $\left.\mathrm{CCH}_{2} \mathrm{~N}\right), 4.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.08-4.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.63-3.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.31$ $(1 \mathrm{H}, \mathrm{m} \mathrm{CHCH} 2 \mathrm{CO}), 2.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 207.9$, 156.1, 136.4, 136.2, 130.2, 128.6, 128.4, 128.2, 128.0, 125.9, 122.0, 120.4, 119.8, 117.9, 111.7, 111.0, 67.4, 46.2, 45.7, 42.2, 27.9, 26.9;

1ca ($27 \mathrm{mg}, 95 \%$) as a brown viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.12; H, 6.34; N, 9.78. Found: C, 67.10; H, 6.29; N, 9.78); $v_{\max } / \mathrm{cm}^{-1} 3330 \mathrm{br}$, $1679 \mathrm{~s}, 1653 \mathrm{~s}, 1546 \mathrm{~s}, 1268 \mathrm{~s}, 1096 \mathrm{~m}$ and $711 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, 7.52-7.08 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.08-5.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 4.27-4.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{~N}\right), 3.79(3 \mathrm{H}, \mathrm{s}$, OMe), 3.64-3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}$), 3.37-3.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}$), 2.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}$), 2.18 (3H, s, Me); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 208.0,156.8,136.2,130.2,125.9,122.0,119.8,117.9$, $111.6,110.0,52.9,46.4,46.2,42.1,30.9,30.5,29.7,28.0$;

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2006

1da ($23 \mathrm{mg}, 70 \%$) as brown viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 56.47; H, 4.44; N, 8.23. Found: C, 56.40; H, 4.41; N, 8.22); $v_{\max } / \mathrm{c}^{-1} 3327 \mathrm{br}$, $1689 \mathrm{~s}, 1663 \mathrm{~s}, 1548 \mathrm{~s}, 1223 \mathrm{~s}, 1067 \mathrm{~m}$ and $734 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, 7.55-7.04 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $5.05-5.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 4.254 .31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{~N}\right), 3.613 .65(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.32-3.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}\right), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) 207.1, 169.4, 136.2, 135.3, 131.5, 123.2, 121.7, 120,6m 119.6, 112.8, 111.0, 57.1, 48.6, 44.2, 26.7, 25.1;

1ab ($37 \mathrm{mg} 95 \%$) as a brown solid, $\mathrm{mp} 142-143{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8/2); (Anal.: Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $73.82 ; \mathrm{H}, 6.71 ; \mathrm{N}, 7.17$. Found: C, $\left.73.75 ; \mathrm{H}, 6.66 ; \mathrm{N}, 7.15\right) ; v_{\max } / \mathrm{cm}^{-1} 3324 \mathrm{br}$, $2979 \mathrm{~s}, 2935 \mathrm{~s}, 1679 \mathrm{~s}, 1646 \mathrm{~s}, 1454 \mathrm{~m}, 1414 \mathrm{~s}, 1367 \mathrm{~m}, 1275 \mathrm{~s}$ and $738 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $8.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.99(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.60-7.05(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.18-5.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$, 4.32-4.40 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{~N}\right), 3.80-3.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.35-3.40\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}+\right.$ $\left.\mathrm{CHCH}_{2} \mathrm{CO}\right), 1.51(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) \quad 198.9,156.8,136.9,136.4,135.0$, 133.5, 128.8, 128.2, 122.0, 119.8, 116.2, 113.5, 111.2, 81.5, 64.0, 46.2, 41.3, 29.8, 28.2;

2a ($24 \mathrm{mg}, 98 \%$) as yellow viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 8:2); (Anal.: Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, $74.05 ; \mathrm{H}, 7.04$; N, 5.76. Found: C, $73.99 ; \mathrm{H}, 7.01 ; \mathrm{N}, 5.75$); $v_{\max } / \mathrm{cm}^{-1} 3403 \mathrm{br}$, $3045 \mathrm{~s}, 2926 \mathrm{~s}, 2243 \mathrm{~m}, 1712 \mathrm{~s}, 1460 \mathrm{~s}, 1434 \mathrm{~s}, 1354 \mathrm{~s}, 1256 \mathrm{~s}, 1182 \mathrm{~s}, 1156 \mathrm{~s}, 1083 \mathrm{~s}$ and 738 s ; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.49(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar}), 7.36-7.07(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.81-4.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{O}\right)$, 4.01-4.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{O}$), 3.85-3.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}$), $3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.52-5.55(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $2.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CHCH}_{2} \mathrm{CO}\right)$, $2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 208.3, 142.7, 137.0, 133.1, 121.3, 119.3, 118.0, 109.3, 108.9, 69.6, 63.1, 46.8, 30.6, 29.4, 28.2;

2b ($30 \mathrm{mg}, 97 \%$) as viscous yellow oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 80:20); (Anal. calcd. for $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}\right)$: C, 78.66 ; H, 6.27; N, 4.59; Found: C, $\left.78.62 ; \mathrm{H}, 6.22 ; \mathrm{N}, 4.58\right) ; v_{\max } / \mathrm{cm}^{-1} 3045 \mathrm{~s}$, $2926 \mathrm{~s}, 2846 \mathrm{~m}, 1739 \mathrm{~s}, 1666 \mathrm{~m}, 1600 \mathrm{w}, 1461 \mathrm{~s}, 1374 \mathrm{~m}, 1242 \mathrm{~m}, 1082 \mathrm{~s}, 1036 \mathrm{w}$ and $738 \mathrm{~m} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.98(2 \mathrm{H}, \mathrm{dd}, J 1.5$ and $7.2, \mathrm{Ar}), 7.54-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.46(2 \mathrm{H}, \mathrm{t}, J 6.9$, Ar), $7.32(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ar}), 7.22(1 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{Ar}), 7.11(1 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{Ar}), 4.92(1 \mathrm{H}, \mathrm{d}, J 14.4$, $\left.\mathrm{CCH}_{2} \mathrm{O}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J 14.4, \mathrm{CCH}_{2} \mathrm{O}\right), 4.12\left(1 \mathrm{H}, \mathrm{dd}, J 1.8\right.$ and $\left.11.4, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.92(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and 11.4, $\mathrm{OCH}_{2} \mathrm{CH}$), 3.73-3.76 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $3.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 3.45-3.51(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CO}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 199.5,137.0,133.3,133.1,131.5,128.5(2 \mathrm{C}), 128.1(2 \mathrm{C})$, $125.8,121.3,119.3,118.1,109.6,108.9,69.6,63.2,41.8,29.7,28.6 ;$

2c $(27 \mathrm{mg}, 98 \%)$ as a yellow viscous oil; $\mathrm{R}_{\mathrm{f}} 0.3$ (cyclohexane/AcOEt 7:3); (Anal.: Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{2}$: C, $64.87 ; \mathrm{H}, 5.81 ; \mathrm{N}, 5.04$. Found: C, $\left.63.80 ; \mathrm{H}, 5.78 ; \mathrm{N}, 5.00\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 7.44(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.13-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 4.78-4.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CCH}_{2} \mathrm{O}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 1.8\right.$ and $\left.J_{2} 11.4, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.85\left(1 \mathrm{H}, \mathrm{dd}, J_{1} 8.2\right.$ and $\left.J_{2} 11.4, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.45-3.58(1 \mathrm{H}$,
$\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.90\left(2 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHCH}_{2} \mathrm{CO}\right), 2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $198.8,142.5,136.8,136.5,130.4,122.0,120.2,110.3,102.970 .0,63.5,46.7,30.8,29.0,28.6$.

Typical conditions for intramolecular FC reaction catalyzed by [SalenAICI]-lutidine.

A 25 mL two-necked flask equipped with a magnetic stirrer flamed under vacuum was charged, under nitrogen atmosphere, with 1 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.012 \mathrm{mmol}$ of catalyst $\mathbf{1 3 a} / \mathbf{b}$ and 0.012 mmol of 2,6 -lutidine. The mixture was stirred for 5 min to ensure the formation of the complex, then 0.06 mmol of substrate $(\mathbf{8} / \mathbf{1 0})$ were added. After stirring at rt until the reaction was judged complete by HPLC, the mixture was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The two phases were separated and the aqueous phase was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). Finally the organic layers were collected, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure and the crude was purified by flash-chromatography.

1aa (19 mg, 98\%; ee 26\%); $[\alpha]_{D}{ }^{20}+6.0^{\circ}\left(c \quad 0.1, \mathrm{CHCl}_{3}\right)$; chiral HPLC: OD column n-hex/IPA $90 / 10$, flow $0.5 \mathrm{~mL} / \mathrm{min}(225 \mathrm{~nm}), \mathrm{t}_{1} 13.9 \mathrm{~min}$ and $\mathrm{t}_{2} 19.9 \mathrm{~min}$;

1ba (15 mg , yield 69\%; ee 11\%); chiral HPLC: OD column n-hex/IPA $80 / 20$, flow $0.5 \mathrm{~mL} / \mathrm{min}$ $(225 \mathrm{~nm}), \mathrm{t}_{1} 18.7 \mathrm{~min}$ and $\mathrm{t}_{2} 26.1 \mathrm{~min}$;

1ca (17 mg, yield 98\%; ee 11\%); chiral HPLC: OD column n-hex/IPA $80 / 20$, flow $0.6 \mathrm{~mL} / \mathrm{min}$ $(225 \mathrm{~nm}), \mathrm{t}_{1} 14.5 \mathrm{~min}$ and $\mathrm{t}_{2} 20.3 \mathrm{~min}$;
1da (10 mg , yield 47\%; ee 0\%); chiral HPLC: OF column n-hex/IPA 90/10, flow $0.6 \mathrm{~mL} / \mathrm{min}$ (225 nm), $\mathrm{t}_{1} 42.0 \mathrm{~min}$ and $\mathrm{t}_{2} 47.5 \mathrm{~min}$;
1ab (23 mg , yield 98\%; ee 27\%); chiral HPLC: OD column n-hex $/$ IPA $85 / 15$, flow $0.5 \mathrm{~mL} / \mathrm{min}$ $(225 \mathrm{~nm}), \mathrm{t}_{1} 11.4 \mathrm{~min}$ and $\mathrm{t}_{2} 13.6 \mathrm{~min}$;

Typical conditions for intramolecular FC reaction with [SalenAICl] $]_{2}-\mathrm{InBr}_{3}$.

A 25 mL two-necked flask equipped with a magnetic stirrer flamed under vacuum was charged, with 1 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.012 \mathrm{mmol}$ of catalyst $\mathbf{1 3 a}$ and 0.012 mmol of 2,6-lutidine. The mixture was stirred for 5 min , then 0.12 mmol of substrate (12) were added. After 16 h stirring, a solution $0.30 \mathrm{M}(20 \mu \mathrm{~L}, 5 \mathrm{~mol} \%)$ of InBr_{3} in $\mathrm{Et}_{2} \mathrm{O}$ was added and the reaction stirred for the times indicated. The mixture was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The two phases separated and the aqueous phase extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). Finally the organic layers were collected, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and the crude $\mathbf{2}$ was purified by flash-chromatography.

2a: Yield 80%; $\mathrm{Ee}=60 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+15.4^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; chiral HPLC: OD column; n-hex/IPA 90:10; flow $0.5 \mathrm{~mL} / \mathrm{min}(225 \mathrm{~nm}), \mathrm{t}_{\text {major }}=22.2 \mathrm{~min}, \mathrm{t}_{\text {minor }}=25.1 \mathrm{~min}$.

2b: Yield $61 \% ; \mathrm{Ee}=20 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+17.5\left(c=0.8, \mathrm{CHCl}_{3}\right)$; chiral HPLC: OD column; n-hex/IPA 95:5; flow $0.5 \mathrm{~mL} / \mathrm{min}(225 \mathrm{~nm}), \mathrm{t}_{\text {major }}=45.5 \mathrm{~min}, \mathrm{t}_{\text {minor }}=49.2 \mathrm{~min}$.

2c: Yield 80%; Ee $=60 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+18.1\left(c=0.5, \mathrm{CHCl}_{3}\right)$; chiral HPLC: OF column; n-hex/IPA 80:20; flow $0.9 \mathrm{~mL} / \mathrm{min}(225 \mathrm{~nm}), \mathrm{t}_{\text {major }}=24.2 \mathrm{~min}, \mathrm{t}_{\text {minor }}=29.9 \mathrm{~min}$.

${ }^{1} \mathbf{H}$ NMR investigation on $\left\{[\text { SalenAlCI }]_{\mathbf{x}}\left(\mathrm{InBr}_{3}\right)_{\mathrm{y}}\right\}$ species.

To a solution of $\mathbf{1 3 a}(11 \mathrm{mg}, 0.02 \mathrm{mmol})$ in anhydrous DCM were added the desired volume of a preformed solution of InB_{3} in dry $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{mM})$. The clear yellow mixture was stirred for 2 hrt the solvent removed under vacuum and replaced with anhydrous $\mathrm{CD}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{~L})$. The resulting solution was transferred into a flamed NMR tube and the spectra recorded at rt .

Supplementary Material (ESI) for Organic and Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2006

[^0]
[^0]: ${ }^{1}$ For the synthesis of indolyl-alcohols precursors see ref. M. Agnusdei, M. Bandini, A. Melloni, A. Umani-Ronchi, J. Org. Chem. 2003, 68, 7126.

