Approaches to the Quaternary Stereocentre and to the Heterocyclic Core in

 Diazonamide A using the Heck Reaction and Related Coupling Reactions

 Diazonamide A using the Heck Reaction and Related Coupling Reactions}

Supplementary material

Experimental

2-Bromo-6-(trimethylsilyl)phenol 7. A solution of 2,6-dibromophenol ($60.6 \mathrm{~g}, 0.24 \mathrm{~mol}$) in tetrahydrofuran $(60 \mathrm{~mL})$ was added dropwise over 20 min to a stirred suspension of petrolwashed sodium hydride ($10.1 \mathrm{~g}, 0.25 \mathrm{~mol}$) in tetrahydrofuran (60 mL) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and the mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h . Chlorotrimethylsilane (30.5 mL , 0.24 mol) was added dropwise over 0.5 h and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of n-butyllithium (1.6 M) in hexanes ($150 \mathrm{~mL}, 0.24 \mathrm{~mol}$) was added dropwise over 20 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 h , then warmed to room temperature when saturated aqueous ammonium chloride (100 mL) was added. The separated organic phase was diluted with diethyl ether $(200 \mathrm{~mL})$, then washed with water $(300 \mathrm{~mL})$, dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ether in petrol (1:19), to give the arylsilane ($58.7 \mathrm{~g}, 99 \%$) as a colourless oil; (Found: C, 44.5; H, 5.5; $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{OBrSi}$ requires: C, 44.1; H, 5.3%); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 211$ (4000), 283 (2700); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3517,1584 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.3, \mathrm{Ar} H), 7.27(1 \mathrm{H}, \mathrm{d}, J$ 6.9, ArH$)$, $6.75(1 \mathrm{H}, \operatorname{app} \mathrm{t}, J 7.6, \mathrm{Ar} H), 5.69(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}), 0.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$; $\delta_{\mathrm{C}}(67.8$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 157.2 (s), 135.7 (d), 133.0 (d), 127.0 (s), 121.6 (d), 110.5 (s), -1.2 (q); m/z (EI) Found: $243.9929\left(\mathrm{M}^{+}, \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{OBrSi}\right.$ requires 243.9920), 229 (100), 215 (7), 149 (73).

2-(2-Bromo-6-(trimethylsilyl)phenoxy)-1-phenylethanone 8a. A solution of 2-bromo-6(trimethylsilyl)phenol ($73.7 \mathrm{~g}, 0.30 \mathrm{~mol}$), 2-bromoacetophenone ($59.8 \mathrm{~g}, 0.30 \mathrm{~mol}$) and sodium carbonate ($38.2 \mathrm{~g}, 100 \mathrm{mmol}$) in acetonitrile $(1400 \mathrm{~mL})$ was stirred at room temperature under a nitrogen atmosphere for 72 h , and then 2 N aqueous hydrochloric acid (1500 mL) was added. The mixture was extracted with ethyl acetate $(2 \times 1500 \mathrm{~mL})$ and the organic extract was then washed
with 2 N aqueous $\mathrm{NaOH}(150 \mathrm{~mL})$, dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ether in petrol (1:99), graduated to $1: 9$, to give the recovered starting material ($16.8 \mathrm{~g}, 27 \%$) and the ketone ($70.3 \mathrm{~g}, 64 \%$) as a colourless oil; (Found: C, 56.4; $\mathrm{H}, 5.2 ; \mathrm{Br}, 22.2 ; \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{Si}$ requires: C, 56.2; $\left.\mathrm{H}, 5.3 ; \mathrm{Br}, 22.0 \%\right) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 211$ (10200), 242 (7600), 273 (1300), 279 (1300); $v_{\max }(f i l m) / \mathrm{cm}^{-1} 1705 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00$ $(2 \mathrm{H}, \mathrm{dd}, J 7.3$ and $1.3, \mathrm{Ph} H), 7.61(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{Ph} H), 7.59(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.6, \mathrm{Ar} H), 7.50$ (2H, app t, $J 7.9, \mathrm{Ph} H), 7.40(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and $1.6, \mathrm{Ar} H), 7.04(1 \mathrm{H}$, app t, $J 7.9, \mathrm{Ar} H), 5.36(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}\right), 0.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.3(\mathrm{~s}), 159.6(\mathrm{~s}), 135.7(\mathrm{~s}), 135.2$ (d), 134.6 (d), 133.6 (d), 128.7 (d), 127.8 (d), 125.8 (d), 116.2 (s), 75.1 (t), -0.5 (q); m/z (EI) Found: $362.0328\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2}\right.$ BrSi requires 362.0338), 347 (11), 283 (52), 105 (76), 75 (100).

2-(2-Bromo-6-iodophenoxy)-1-phenylethanone 8b. Silver tetrafluoroborate ($23.8 \mathrm{~g}, 0.12 \mathrm{~mol}$) was added to a stirred solution of the arylsilane $8 \mathbf{8 a}(40.6 \mathrm{~g}, 0.11 \mathrm{~mol})$ in dry methanol $(1000 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. The solution was cooled to $0^{\circ} \mathrm{C}$ and then iodine ($33.9 \mathrm{~g}, 0.13 \mathrm{~mol}$) was added portionwise over 20 min . The mixture was allowed to warm to room temperature, then stirred for a further 12 h and diluted with diethyl ether $(500 \mathrm{~mL})$. The mixture was filtered and the filtrate was then concentrated in vacuo. The residue was dissolved in ethyl acetate (500 mL) and the solution was washed successively with water (500 mL), 2 N hydrochloric acid $(500 \mathrm{~mL})$ and brine $(500 \mathrm{~mL})$, then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (1:19), to give the bromoiodo ketone ($43.5 \mathrm{~g}, 95 \%$) as colourless crystals, m.p. $96-97^{\circ} \mathrm{C}$. (Found: C, $40.6 ; \mathrm{H}, 2.4$; I, 30.6; $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{IBr}$ requires: $\mathrm{C}, 40.3 ; \mathrm{H}, 2.4 ; \mathrm{I}, 30.4 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1706 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.03(2 \mathrm{H}, \mathrm{dt}, J 7.0$ and $1.5, \mathrm{Ph} H), 7.76(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.5, \mathrm{Ar} H), 7.63(1 \mathrm{H}, \mathrm{tt}, J 7.3$ and 1.4, $\mathrm{Ph} H), 7.57(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.5, \mathrm{Ar} H), 7.51(2 \mathrm{H}, \mathrm{tt}, J 7.3$ and $1.4, \mathrm{Ph} H), 6.79(1 \mathrm{H}, \mathrm{t}, J$ 7.9, ArH), $5.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.0(\mathrm{~s}), 154.8(\mathrm{~s}), 138.8$ (d), 134.4 (s), 133.9 (d), 133.8 (d), 128.7 (d), 128.1 (d), 127.7 (d), 117.2 (s), 92.3 (s), 74.4 (t); m/z (EI) Found: $415.8925\left(\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{IBr}\right.$ requires 415.8911$), 337$ (18), 298 (1), 289 (23).

2-Trimethylsilylethyl E-2-(trimethylstannyl)but-2-enoate (10). A solution of

 trimethylsilylethanol $(1.3 \mathrm{~g}, 10.7 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added over 15 min to astirred solution of butynoic acid $9 \mathrm{a}(0.75 \mathrm{~g}, 8.9 \mathrm{mmol})$ in dichloromethane (25 mL) and DCC $(2.8 \mathrm{~g}, 13.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. DMAP ($75 \mathrm{mg}, 10 \mathrm{~mol} \%$) was added and the mixture was stirred overnight and then filtered through silica. The filtrate was evaporated in vacuo to leave (2trimethylsilyl)ethyl but-2-ynoate 9b, as an oil, $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.20\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2}\right)$, $1.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.10\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right),-0.9\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, which was used straightaway.

The but-2-ynoate 9b ($0.4 \mathrm{~g}, 2.2 \mathrm{mmol}$) was added to a stirred mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{PPh}_{3}(45.5 \mathrm{mg}, 8 \mathrm{~mol} \%)$ in benzene $(5 \mathrm{~mL})$ and the mixture was stirred at room temperature for $5 \mathrm{~min} . \mathrm{Bu}_{3} \mathrm{SnH}(1.0 \mathrm{~g}, 0.33 \mathrm{mmol})$ was added and the mixture was stirred for 20 min and then evaporated to dryness in vacuo. The residue was purified by chromatography on silica, eluting with ether in petroleum ether (2:98), to give the vinyl stannane ($0.9 \mathrm{~g}, 85 \%$) as a colourless liquid; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.2\left(1 \mathrm{H}, \mathrm{q}, J 6.6,=\mathrm{CHCH}_{3}\right), 4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 2.0(3 \mathrm{H}, \mathrm{d}, J$ $\left.6.6,=\mathrm{CHCH}_{3}\right), 1.5(6 \mathrm{H}, \mathrm{m}), 1.3(6 \mathrm{H}, \mathrm{m}), 1.3(6 \mathrm{H}, \mathrm{m}), 1.1(2 \mathrm{H}, \mathrm{m}), 0.9-0.5(18 \mathrm{H}, \mathrm{m}), 0.2(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.5,164.6,147.3,137.3,128.5,62.2,29.1,27.4,22.4,18.3$, $17.5,13.7,12.2,10.3,9.5,8.4,-1.4,-1.5 ; \mathrm{m} / \mathrm{z}$ (ESI) Found: $540.2288\left(\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}\right.$, $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{SnSi}$ requires 540.2290).
(S)-3-(4-Benzyloxy-3-iodo-phenyl)-2-dibutylamino-propionic acid methyl ester (11). Iodotyrosine ($0.6 \mathrm{~g}, 1.95 \mathrm{mmol}$) was added slowly, over 10 min , to a stirred suspension of NaH ($0.37 \mathrm{~g}, 8 \mathrm{mmol}, 50 \%$ emulsion) in tetrahydrofuran $(50 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 min , and then benzyl bromide ($1.6 \mathrm{~mL}, 9.8 \mathrm{mmol}$) was added. The mixture was heated under reflux for 30 h , then poured into ice-cold dil. HCl and extracted into ethyl acetate. The ethyl acetate extract was washed with brine, dried and then evaporated to dryness in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (3:97), to give the corresponding benzylated tyrosine ($0.83 \mathrm{~g}, 62 \%$) as a colourless liquid. The benzylated tyrosine was dissolved in dioxane (20 mL), and aqueous $\mathrm{LiOH}(10 \%, 6 \mathrm{~mL})$ was added. The mixture was heated at $50^{\circ} \mathrm{C}$ for 4 h (monitored by TLC), then cooled and acidified with dil. $\mathrm{HCl}(\mathrm{pH}=3-4)$, and extracted into ethyl acetate. The ethyl acetate extract was washed with brine then dried and evaporated in vacuo to leave the corresponding carboxylic acid (0.7 g , 93%), as a viscous oil. Diazomethane (1 mL of 0.7 M) in ether was added to a solution of the
carboxylic acid ($800 \mathrm{mg}, 1.38 \mathrm{mmol}$) in ether $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min. The solvent was evaporated in vacuo, and the residue was crystallised from methanol to give the methyl ester ($650 \mathrm{mg}, 79 \%$) as colourless crystals; (Found: C, 63.0; H, 5.1; N, 2.4; $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NI}$ requires: $\left.\mathrm{C}, 62.95 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.4 \%\right) ;[\alpha]_{D}^{22}-34.4\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.6(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{Ar} H), 7.5-7.4(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.4(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Ar} H), 7.3(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$, $7.2(4 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Ar} H), 6.9(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar} H), 6.75(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.6$ (s), 155.7 (s), 140.2 (s), 139.0 (d), 136.6 (s), 132.9 (s), 130.3 (d), 128.6 (s), 128.5 (d), 128.2 (2 x d), 127.8 (d), 126.9 (d), 112.3 (d), 86.5, 70.9 (t), 62.1, 54.3 (q), 51.2 (q), 34.2 (q).
(E)-2-[2-Benzyloxy-5-(2-dibenzylamino-2-methoxycarbonyl-ethyl)-phenyl]-but-2-enoic acid 2-trimethylsilanyl ethyl ester (12a). The vinyl stannane $\mathbf{1 0}(0.64 \mathrm{~g}, 1.3 \mathrm{mmol})$ was added to a stirred mixture of the iodotyrosine $11(0.66 \mathrm{~g}, 1.2 \mathrm{mmol})$, triphenylarsine ($137 \mathrm{mg}, 0.45 \mathrm{mmol}$) and $\mathrm{CuI}(42.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ in degassed NMP. The mixture was heated at $80^{\circ} \mathrm{C}$ under a nitrogen atmosphere, then $\mathrm{Pd} / \mathrm{C}(66 \mathrm{mg}, 10 \%)$ was added and the mixture was stirred for 13 h . The cooled mixture was filtered through celite ${ }^{\circledR}$, then diluted with ether. The ether extracts were washed with 2 M NaOH and brine, dried and evaporated in vacuo. The residue was purified by chromatography, eluting with ether in petroleum ether (1:1), to give the substituted styrene (0.5 $\mathrm{g}, 55 \%)$ as a viscous liquid; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.6-7.2(16 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.95(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H})$, $6.85(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.15\left(1 \mathrm{H}, \mathrm{q}, J 7,=\mathrm{CHCH}_{3}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} H_{2} \mathrm{OAr}\right), 4.2(2 \mathrm{H}, \mathrm{m}), 4.05(2 \mathrm{H}$, dd, $J 6$ and 14), $3.85(3 \mathrm{H}, \mathrm{m}), 3.7(1 \mathrm{H}, \mathrm{m}), 3.6(2 \mathrm{H}, \mathrm{dd}, J 6$ and 14$), 3.1(2 \mathrm{H}, \mathrm{ABq}), 2.0(3 \mathrm{H}, \mathrm{d}, J$ $\left.7,=\mathrm{CHCH}_{3}\right), 1.2(2 \mathrm{H}, \mathrm{m}), 0.99(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.0,168.0,165.6,133.2,131.5$, $130.7,130.2,129.8,129.2,128.8,128.7,128.6,128.5,128.2,127.7,127.3,127.2,127.0,127.0$, $126.9,70.4,62.4,61.9,54.5,54.4,51.9,51.2,35.0,26.6,20.2,17.4,15.9,-1.4 ; \mathrm{m} / \mathrm{z}$ (ESI) Found: $672.3133\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{41} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{SiNa}\right.$ requires 672.3121$)$.

(Z)-2-[2-Benzyloxy-5-((S)-2-dibutylamino-2-methoxycarbonyl-ethyl)-phenyl]-but-2-enoic

 acid (12b). A solution of TBAF ($0.5 \mathrm{~g}, 1.6 \mathrm{mmol}$) in tetrahydrofuran (5 mL) was added over 10 min to a stirred solution of the silylethyl ester $\mathbf{1 2 a}(340 \mathrm{mg}, 0.52 \mathrm{mmol})$ in tetrahydrofuran (10 mL) at $0-5^{\circ} \mathrm{C}$ (ice bath). The mixture was stirred for 15 h at room temperature, then acidified with cold 2 M HCl , and extracted with ethyl acetate. The extracts were evaporated and theresidue was purified by chromatography, eluting with ether in petroleum ether (3:7), to give the acid (18 mg, 63\%) as an amorphous solid; (Found: C, $76.5 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.4 ; \mathrm{C}_{35} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{~N}$ requires: $\mathrm{C}, 75.6 ; \mathrm{H}, 6.45 ; \mathrm{N}, 2.5 \%) ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.5-7.15(16 \mathrm{H}, \mathrm{m}), 6.9(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{ArH}), 6.8$ $(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar} H), 6.2\left(1 \mathrm{H}, \mathrm{q}, J 7,=\mathrm{CHCH}_{3}\right), 5.02(2 \mathrm{H}, \mathrm{s}), 3.95\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.8(3 \mathrm{H}, \mathrm{s})$, $3.6(1 \mathrm{H}, \mathrm{m}), 3.5(2 \mathrm{H}, \mathrm{d}), 3.05(2 \mathrm{H}, \mathrm{ABq}), 2.12\left(3 \mathrm{H}, \mathrm{d}, J 7,=\mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $173.2,140.8,134.5,130.2,129.0,128.8,128.7,128.4,127.4,112.1,70.7,62.5,54.6,51.4,35.1$, 28.1, 16.3.

(Z)-2-[2-Benzyloxy-5-((S)-2-dibutylamino-2-methoxycarbonyl-ethyl)-phenyl]-but-2-enoic

 acid 2-bromo-6-iodo-phenyl ester (13). EDCI ($0.31 \mathrm{~g}, 1.64 \mathrm{mmol}$) was added to a stirred solution of the carboxylic acid $\mathbf{1 2 b}(450 \mathrm{mg}, 0.82 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. 2-Bromo-6-iodophenol ($293 \mathrm{mg}, 0.98 \mathrm{mmol}$) and DMAP ($200.3 \mathrm{mg}, 1.64 \mathrm{mmol}$) were added, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 14 h , then diluted with dichloromethane. The resulting solution was washed successively with water, saturated NaHCO_{3} and brine, then dried and evaporated in vacuo. The residue was purified by chromatography, eluting with ether in petroleum ether (1:9), to give the ester ($400 \mathrm{mg}, 60 \%$) as a colourless solid; (Found: C, 58.7; H, 4.4; N, 1.6; $\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{NIBr}$ requires: $\left.\mathrm{C}, 59.3 ; \mathrm{H}, 4.5 ; \mathrm{N}, 1.7 \%\right) ; \mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1731,1640$, $1561 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar} H), 7.62(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar} H), 7.59(1 \mathrm{H}, \mathrm{d}, J 9$, $\mathrm{Ar} H), 7.3(1 \mathrm{H}, \mathrm{d}, J 9, \operatorname{Ar} H), 7.2(15 \mathrm{H}, \mathrm{brs}), 7.05(1 \mathrm{H}, \mathrm{s}), 6.99-6.8(2 \mathrm{H}, \mathrm{m}), 5.1(1 \mathrm{H}, \mathrm{d}), 3.98$ $(2 \mathrm{H}, \mathrm{d}, J 14), 3.8(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{m}), 3.58(2 \mathrm{H}, \mathrm{d}, J 14), 3.1(2 \mathrm{H}, \mathrm{ABq}), 1.86(1 \mathrm{H}, \mathrm{d}, J 6.5) ; \delta_{\mathrm{C}}$ ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 173.0, 163.0, 160.6, 155.0, 139.4,138.6, 138.4, 137.6, 133.6, 133.4, 132.7, $130.4,130.2,128.8,128.5,128.4,128.3,128.3,128.0,127.7,127.3,127.2,127.1,127.0,123.6$, $117.5,117.0,112.8,112.7,70.7,62.5,54.5,51.3,35.0,16.2$.(S)-3-[4-Benzyloxy-3-(7-bromo-2-ox0-3-vinyl-2,3-dihydro-benzofuran-3-yl)-phenyl]-2-dibutylamino-propionic acid methyl ester (14). A mixture of dppp ($23.8 \mathrm{mg}, 0.06 \mathrm{mmol}$), silver phosphate ($90 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NBr}(23.3 \mathrm{mg}, 0.072 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was stirred at room temperature under a nitrogen atmosphere. A solution of the aryl iodide $\mathbf{1 3}$ (120 $\mathrm{mg}, 0.145 \mathrm{mmol}$) in toluene (1 mL) was added followed by $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(26.5 \mathrm{mg}, 20 \mathrm{~mol} \%) /$ $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ as a solution in toluene. The mixture was heated at $90-95^{\circ} \mathrm{C}$ for 26 h under a
nitrogen atmosphere, then cooled and filtered through celite ${ }^{\circledR}$. The filtrate was evaporated in vacuo to leave a residue which was purified by chromatography, eluting with ether in petroleum ether (15:85), to give the benzofuranone ($50 \mathrm{mg}, 49 \%$) as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1821,$1731 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.49-6.9(21 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.2(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 10 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.44(1 \mathrm{H}, \mathrm{d}, J 10,=\mathrm{CHH}), 5.05(1 \mathrm{H}, \mathrm{d}, J 17.3,=\mathrm{C} H \mathrm{H}), 5.0-4.8(2 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{d}$, $J 13.5), 3.85(3 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{m}), 3.55(2 \mathrm{H}, \mathrm{d}, J 14), 3.1(2 \mathrm{H}, \mathrm{ABq}) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $176.1,172.5,156.0,154.1,144.2,140.0,139.2,139.1,137.5,137.1,136.2,135.0,132.1,132.0$, $131.8,131.5,130.0,129.5,128.6,128.5,127.5,127.2,127.1,126.5,126.4,126.4,124.9,124.8$, $123.5,119.9,104.5,70.2,62.5,62.4,60.5,60.4,57.3,54.5,50.0,44.9,44.8,34.9,34.7,16.5$; m/z (ESI) Found: $704.29\left([\mathrm{M}+\mathrm{H}]^{+}, 624.4\right.$ ([M-HBr]), 598, 434.47.

2-(2-Benzyloxyphenyl)-3-hydroxybutanoic acid (16a). A solution of n-butyllithium (2.5 M) in hexanes ($7.44 \mathrm{~mL}, 18.6 \mathrm{mmol}$) was added dropwise over 10 min to a stirred solution of di-isopropylamine ($2.62 \mathrm{~mL}, 18.6 \mathrm{mmol}$) in dry tetrahydrofuran $(15 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The solution of LDA was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and then stirred at $0^{\circ} \mathrm{C}$ for 25 min. The solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of 2-benzyloxyphenylacetic acid 15 (1.79 $\mathrm{g}, 7.40 \mathrm{mmol})$ in tetrahydrofuran $(20 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$ over 10 min . The solution was allowed to warm to room temperature over 1 h , then cooled to $-50{ }^{\circ} \mathrm{C}$, and acetaldehyde $(0.63 \mathrm{~mL}, 11.1 \mathrm{mmol})$ at $-10^{\circ} \mathrm{C}$ was added rapidly. The mixture was stirred for a further 20 min then quenched with water (5 mL) and warmed to room temperature. The solvent was removed in vacuo and the residue was diluted with ethyl acetate $(50 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The separated aqueous layer was acidified to pH 4 with HCl solution (2 M) and then extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography, eluting with 40% ethyl acetate in petroleum ether, to give the hydroxy acid ($2.0 \mathrm{~g}, 92 \%, 6: 5$ mixture of diastereomers) as a viscous yellow oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3512,2871$ (br), 1732, 1703; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer) 7.44-7.30 (7H, m, ArH), 6.97-6.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.12-5.03 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArOCH}_{2}\right), 4.48-4.43(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.98(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{CHCOOH}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right)$; minor diastereomer: 7.44-7.30 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.97-6.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 5.12-5.03 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArOCH}_{2}\right), 4.48-4.43(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.25(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{CHCOOH}), 1.18(3 \mathrm{H}, \mathrm{d}, J 6.3$,
$\left.\mathrm{CH}_{3} \mathrm{CHOH}\right) ; \delta_{\mathrm{C}}(90.6 \mathrm{MHz})$ major diastereomer: $178.9(\mathrm{~s}), 155.8(\mathrm{~s}), 136.5(\mathrm{~s}), 129.9(\mathrm{~d}), 128.4$ (d), 127.8 (d), 127.5 (d), 127.0 (d), 125.0 (s$), 121.0$ (d), 112.2 (d), 70.2 (t), 68.3 (d), 52.3 (d), 20.1 (q); minor diastereomer: 178.3 (s), 156.5 (s), 136.6 (s), 130.3 (d), 128.8 (d), 128.5 (d), 127.9 (d), 127.2 (d), 123.3 (s$), 121.0$ (d), 112.2 (d), 70.3 (t), 67.8 (d), 50.2 (d), 20.1 (q); m / z (ESI) Found: $309.1125\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\right.$ requires 309.1103), 251 (8), 223 (7).

Methyl 2-(2-Benzyloxyphenyl)-3-hydroxybutanoate (16b). A solution of the carboxylic acid 16a ($121 \mathrm{mg}, 0.42 \mathrm{mmol}$) in methanol (3 mL) was added dropwise over 2 min to a stirred solution of acetyl chloride $(91.0 \mu \mathrm{~L}, 1.30 \mathrm{mmol})$ in methanol $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. This solution was stirred at room temperature for 10 min , then heated at reflux for 3 h , and finally cooled to room temperature. Water (5 mL) was added and the solvent was then removed in vacuo. Diethyl ether (20 mL) was added and the separated aqueous layer was extracted with diethyl ether ($3 \times$ 20 mL). The combined organic extracts were washed with saturated sodium hydrogen carbonate solution (20 mL) and brine (20 mL), then dried over MgSO_{4} and concentrated in vacuo to leave the ester ($107 \mathrm{mg}, 84 \%$ 1.2:1 mixture of diastereomers) as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3566, 2953, 1716; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer) 7.42-7.32 (5H, m, ArH), 7.277.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 6.97 ($2 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{Ar} H$), 5.14-5.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{OAr}$), 4.48-4.38 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 3.97\left(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{CHCOOCH}_{3}\right), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 1.03(3 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right)$; minor diastereomer: 7.42-7.32 (5H, m, ArH), 7.27-7.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.97(2 \mathrm{H}, \mathrm{t}$, J 7.2, $\mathrm{Ar} H), 5.14-5.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{OAr}\right), 4.48-4.38(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.25(1 \mathrm{H}, \mathrm{d}, J 5.2$, $\left.\mathrm{CHCOOCH}_{3}\right), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CH}_{3} \mathrm{CHOH}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer) 175.1 (s), 156.6 (s), 136.8 (s), 129.7 (d), 128.8 (d), 128.6 (d), 128.0 (d), 127.1 (d), 125.6 (s), 121.1 (d), 112.2 (d), 70.2 (t$), 68.7$ (d), 53.3 (d), 52.1 (q), 20.3 (q); minor diastereomer: 174.3 (s), 155.9 (s), 136.8 (s), 130.1 (d), 128.8 (d), 128.6 (d), 128.0 (d), 127.4 (d), 123.8 (s), 121.1 (d), 112.3 (d), 70.5 (t), 68.1 (d), 52.0 (q), 50.1 (d), 20.2 (q); m / z (ESI) Found: $323.1232\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\right.$ requires 323.1260), 283 (5), 251 (12), 223 (93), 205 (18).

Methyl (2E/Z)-2-[2-(benzyloxy)phenyl]but-2-enoate (17). Methane sulfonyl chloride (87.0 $\boldsymbol{\mu} \mathrm{L}$, 1.10 mmol) was added dropwise over 1 min to a stirred solution of the ester $\mathbf{1 6 b}(107 \mathrm{mg}, 0.37$ $\mathrm{mmol})$ in dichloromethane $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room
temperature and then stirred at this temperature for 1 h . 1,8-Diazabicyclo[5.4.0]undec-7-ene $(0.56 \mathrm{~mL}, 3.70 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 12 h , then quenched with water (3 mL), and the solvent removed in vacuo. Diethyl ether (10 mL) was added to the residue and the separated aqueous layer was then extracted with diethyl ether ($3 \times$ 10 mL). The combined organic extracts were washed with brine (20 mL), then dried over MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography, eluting with 10% ethyl acetate in petroleum ether to give a $2: 1$ mixture of E - and Z - isomers of the alkene $(100 \mathrm{mg}, 97 \%)$, as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2951,1713,1643 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (E isomer) 7.40-7.25 (7H, m, ArH), $7.17\left(1 \mathrm{H}, \mathrm{q}, J 7.1,=\mathrm{CHCH}_{3}\right), 7.03-6.96(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.08$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{OAr}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 1.74\left(3 \mathrm{H}, \mathrm{d}, J 7.1,=\mathrm{CHCH}_{3}\right) ; Z$ isomer: 7.40-7.25 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.13(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and 1.8, $\mathrm{Ar} H), 7.03-6.96(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.27(1 \mathrm{H}, \mathrm{q}, J 7.3$, $\left.=\mathrm{CHCH}_{3}\right), 5.08(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} 2 \mathrm{OAr}), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 2.12\left(3 \mathrm{H}, \mathrm{d}, J 7.3,=\mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}$ (90.6 MHz, CDCl_{3}) 168.1 (s), 167.9 (s), 156.3 (s), 155.8 (s), 140.1 (d), 138.0 (d), 137.2 (s) 136.9 (s), 132.7 (s), 131.7 (s$), 131.3$ (d), 130.2 (d), 129.2 (d), 129.2 (d), 128.5 (d), 127.8 (d), 127.6 (d), 127.0 (d), 126.8 (d), 124.8 (s), 121.2 (d), 120.6 (d), 112.5 (d), 112.0 (d), 70.3 (t), 70.0 (t), 51.9 (d), 51.3 (d), 15.9 (d), 15.5 (q); m / z (ESI) Found: $282.1246\left(\mathrm{M}^{+}, 36 \%, \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}\right.$ requires 282.1256), 192 (32), 190 (35), 160 (27), 159 (24), 131 (39), 119 (33), 92 (54), 91 (100).

Methyl (2S)-3-(4-Benzyloxy-3-iodophenyl)-2-[(isopropoxycarbonyl)amino] propanoate

 (20b). Potassium carbonate ($16.4 \mathrm{~g}, 119 \mathrm{mmol}$) was added in one portion to a stirred solution of the phenol $20 \mathrm{a}(16.7 \mathrm{~g}, 39.7 \mathrm{mmol})^{31}$ in dimethylformamide $(100 \mathrm{~mL})$ at room temperature and the mixture was stirred at room temperature for 10 min . Benzyl bromide ($7.30 \mathrm{ml}, 59.6 \mathrm{mmol}$) was added and the solution was stirred for 16 h , then diluted with water (100 mL) and ethyl acetate (100 mL), and stirred for a further 20 min . The separated aqueous layer was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were then washed with water $(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography, eluting with 5\% ethyl acetate in petroleum ether, to give the benzyl ether ($18.2 \mathrm{~g}, 90 \%$) as colourless crystals; $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$ (from petroleum ether, bp $60-80$ ${ }^{\circ} \mathrm{C} /$ acetone); $[\alpha]_{\mathrm{D}}^{22}+48.77$ (c 1.6 in CHCl_{3}) (Found: C, $51.9 ; \mathrm{H}, 5.4 ; \mathrm{N}, 2.7 ; \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{I}$ requires: $\mathrm{C}, 51.7 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.7 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3436,1742,1713,900 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.57$$(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.49\left(2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{OCH}_{2} \mathrm{Ar} H\right), 7.40\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Ar} H\right), 7.32(1 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{OCH}_{2} \mathrm{ArH}\right), 7.04\left(1 \mathrm{H}, \mathrm{dd}, J 8.4\right.$ and $\left.2.0, \mathrm{CH}_{2} \mathrm{OArH}\right) 6.78\left(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{CH}_{2} \mathrm{OAr} H\right), 5.12(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2} \mathrm{OAr}\right), 5.03(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{~N} H), 4.53(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.04(1 \mathrm{H}$, dd, $J 13.8$ and 5.7, CHHCHNH), $2.94(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $6.1, \mathrm{CHHCHNH}$), $1.44(9 \mathrm{H}, \mathrm{s}$, $\left.\operatorname{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.0(\mathrm{~s}), 156.2(\mathrm{~s}), 154.9(\mathrm{~s}), 140.2(\mathrm{~d}), 136.4$ (s), 130.5 (s), 130.1 (d), 128.4 (d), 127.8 (d), 126.9 (d), 112.4 (d), 86.6 (s), 79.8 ($s), 70.7$ (t), 54.4 (d), 52.3 (q), 36.8 (t), 28.2 (q); m / z (ESI) Found: $534.0751\left([M+N a]^{+}, \quad \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{Na}\right.$ requires 534.0749), 488 (18), 453 (30), 412 (72), 407 (17), 366 (12).

tert-Butyl (4S)-4-(4-Benzyloxy-3-iodobenzyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate

 (21). A solution of lithium borohydride (2 M) in tetrahydrofuran ($2.4 \mathrm{~mL}, 4.8 \mathrm{mmol}$) was added dropwise over 10 min to a stirred solution of the ester $\mathbf{2 0 b}(4.9 \mathrm{~g}, 9.6 \mathrm{mmol})$ in tetrahydrofuran $(100 \mathrm{~mL})$ at $-50^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $-50^{\circ} \mathrm{C}$ for 4 h , then allowed to warm to room temperature and stirred for 36 h . The solvent was removed in vacuo and then ethyl acetate $(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ were added slowly to the residue. The resulting solution was stirred at room temperature for 10 min . The separated aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$), and the combined organic extracts were then washed with brine (150 mL), dried over MgSO_{4} and concentrated in vacuo to leave the corresponding amino alcohol ($4.3 \mathrm{~g}, 93 \%$) as colourless crystals; mp 117-119 ${ }^{\circ} \mathrm{C}$ (from chloroform); $[\alpha]_{\mathrm{D}}^{20}-16.2$ (c 1.3 in CHCl_{3}) (Found: $\mathrm{C}, 51.9 ; \mathrm{H}, 5.3 ; \mathrm{N}, 2.6 ; \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{I}$ requires: $\mathrm{C}, 52.2 ; \mathrm{H}, 5.4 ; \mathrm{N}, 2.9 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3626,3442,1705 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.66(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{CICH}), 7.50$ (2H, d, $J 7.3, \operatorname{Ar} H), 7.40(2 \mathrm{H}, \mathrm{t}, J 7.3, \operatorname{Ar} H), 7.33(1 \mathrm{H}, \mathrm{t}, J 7.3, \operatorname{Ar} H), 7.12(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 2.0, $\mathrm{Ar} H), 6.79(1 \mathrm{H}, J 8.4, \mathrm{Ar} H), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{OAr}\right), 4.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 3.80(1 \mathrm{H}, \mathrm{br}$, $\mathrm{NHCH}), 3.67(1 \mathrm{H}$, app d, $J 11.1, \mathrm{NCHCHHOH}), 3.56(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and 4.3 , NCHCHHOH$)$, $2.76\left(2 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{ArCH}_{2} \mathrm{CH}\right), 2.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(90.6 \mathrm{MHz}$, CDCl_{3}) 156.0 (s), 140.1 (d), 136.6 (s$), 132.5$ (s), 130.2 (d), 128.6 (d), 127.9 (d), 127.0 (d), 112.7 (d), 86.9 (s), 79.9 (s), 71.0 (t), 64.1 (t), 53.9 (d), 36.0 (t), 28.4 (q); m / z (ESI) Found: 506.0794 ($[\mathrm{M}+\mathrm{Na}]^{+}, 62 \%, \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{INa}$ requires 506.0804), 384 (100), 323 (30), 240 (5).Boron trifluoride diethyl etherate ($0.1 \mathrm{~mL}, 0.7 \mathrm{mmol}$) was added to a solution of the amino alcohol ($4.3 \mathrm{~g}, 8.9 \mathrm{mmol}$) in acetone $(36 \mathrm{~mL})$ and 2,2-dimethoxypropane $(10 \mathrm{~mL})$ at room
temperature under a nitrogen atmosphere. The solution was stirred at room temperature for 18 h and then ethyl acetate $(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ were added. The separated aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$) and the combined organic extracts were then washed with brine (150 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography, eluting with 10% ethyl acetate in petroleum ether, to give the acetonide ($4.2 \mathrm{~g}, 90 \%$) as a colourless viscous oil; $[\alpha]_{\mathrm{D}}^{20}-26.7$ (c 1.7 in CHCl_{3}); (Found: C, 55.4; $\mathrm{H}, 6.0 ; \mathrm{N}, 2.7 ; \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{INO}_{4}$ requires: $\left.\mathrm{C}, 55.1 ; \mathrm{H}, 5.8 ; \mathrm{N}, 2.7 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1693 ; \delta_{\mathrm{H}}(360$ MHz at $\left.318 \mathrm{~K}, \mathrm{CDCl}_{3}\right) 7.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} H), 7.49(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{Ar} H), 7.41-7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H})$, $7.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{OAr}\right), 4.00(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH})$, 3.83-3.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}_{2} \mathrm{O}$), $3.06(1 \mathrm{H}, \mathrm{br}, \mathrm{ArCHHCH}), 2.61(1 \mathrm{H}$, app t, $J 11.2$, ArCHHCH), 1.59-1.49 ($15 \mathrm{H}, \mathrm{m}, \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}\right.$ at $\left.318 \mathrm{~K}, \mathrm{CDCl}_{3}\right) 156.1$ (s), 151.7 (s), 140.3 (d), 136.6 (s), 133.2 (s), 130.2 (d), 128.5 (d), 127.9 (d), 127.0 (d), 112.9 (d), 93.6 (s), 87.0 (s), 79.9 (s), 71.1 (t), 66.1 (t), 59.0 (d), 38.4 (t), 28.6 (q), 27.7 (q), 24.7 (q); m/z (EI) Found: $523.1214\left(\mathrm{M}^{+}, 18 \%, \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{I}\right.$ requires 523.1220), 450 (6), 200 (52), 144 (42), 100 (71), 91 (71), 57 (100).
tert-Butyl (4S)-4-[4-Benzyloxy-3-((Z)-1-methoxycarbonyl-propenyl)-benzyl]-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (22). Triphenylarsine ($2.4 \mathrm{~g}, 7.7 \mathrm{mmol}$) was added in one portion to a stirred suspension of $\operatorname{tris}($ dibenzylideneacetone $)$ dipalladium $(0)(0.9 \mathrm{~g}, 1.0 \mathrm{mmol})$ in 1 -methyl-2-pyrrolidinone (10 mL) at room temperature under a nitrogen atmosphere, and the mixture was then stirred at room temperature for 15 min . The acetonide $21(6.7 \mathrm{~g}, 13 \mathrm{mmol})$, followed by a solution of methyl E-2-(trimethylstannyl)but-2-enoate $(6.2 \mathrm{~g}, 16 \mathrm{mmol})^{32}$ in 1-methyl-2-pyrrolidinone (30 mL) were added, and the mixture was degassed with nitrogen for 45 min. Copper (I) iodide ($4.4 \mathrm{~g}, 23 \mathrm{mmol}$) was added and the mixture was then stirred at room temperature for 24 h . Saturated aqueous potassium fluoride solution (5 mL) was added dropwise over 10 min , and the mixture was then stirred at room temperature for 30 min . Water (50 mL) containing concentrated aqueous ammonia solution (15 mL) and diethyl ether (200 mL) were then added. The separated aqueous layer was extracted with diethyl ether $(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were washed with brine (150 mL), then dried over MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography, eluting with 10% ethyl
acetate in petroleum ether, to give the $\operatorname{ester}(4.8 \mathrm{~g}, 76 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{18}-22.9$ (c 2.2 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1713,1692 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}\right.$ at $318 \mathrm{~K}, \mathrm{CDCl}_{3}$) 7.36-7.27 (5H, m, $\mathrm{Ar} H$), $7.10(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} H), 6.83(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ar} H), 6.24\left(1 \mathrm{H}, \mathrm{q}, J 6.9,=\mathrm{CHCH}_{3}\right), 5.03(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2} \mathrm{OAr}\right), 4.04(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}), 3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCHCH}_{2} \mathrm{O}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.07(1 \mathrm{H}, \mathrm{br}$, $\mathrm{ArCHHCH}), 2.65(1 \mathrm{H}, \mathrm{app} \mathrm{t}, J 12.8, \mathrm{ArCH} H \mathrm{CH}), 2.09\left(3 \mathrm{H}, \mathrm{d}, J 6.9,=\mathrm{CHCH}_{3}\right), 1.59-1.50(15 \mathrm{H}$, $\mathrm{m}, \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}\right.$ at $\left.318 \mathrm{~K}, \mathrm{CDCl}_{3}\right) 168.0$ (s), 154.7 (s), 152.5 (s), 137.8 (d), 137.1 (s), 132.7 (s), 131.3 (d), 131.2 (s), 129.7 (d), 129.5 (s), 128.4 (d), 127.8 (d), 127.1 (d), 112.4 (d), 94.2 (s$), 79.8$ (s$), 70.6$ (t$), 66.4$ (t$), 59.2$ (d), 51.2 (q), 38.2 (t$), 28.6$ (q), 27.7 (q), 24.7 (q), 15.8 (q); m / z (EI) Found: $495.2605\left(\mathrm{M}^{+}, 16 \%, \mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}_{6}\right.$ requires 495.2621), 295 (9), 263 (12), 205 (30), 200 (35), 173 (32), 57 (100).
tert-Butyl (4S)-4-[4-Benzyloxy-3-((E)-1-(2-iodophenylcarbamoyl)prop-1-enyl)- benzyl]-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (23a). A solution of trimethylaluminium (2 M) in hexane ($2.3 \mathrm{~mL}, 4.6 \mathrm{mmol}$) was added dropwise over 20 min to a solution of 2-iodoaniline (1.0 $\mathrm{g}, 4.6 \mathrm{mmol})$ in dichloromethane $(4.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of nitrogen, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The ester $22(0.8 \mathrm{~g}, 1.5 \mathrm{mmol})$ was added and the mixture was heated under reflux for 36 h and then cooled to $0^{\circ} \mathrm{C}$. Saturated Rochelle's solution (5 mL) was added dropwise over 15 min , and after 20 min , diethyl ether (30 mL) and water (30 mL) were added. The separated aqueous layer was extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$ and the combined organic extracts were then washed with brine (50 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography, eluting with 5-20\% ethyl acetate in petroleum ether, to give the anilide $\left(0.77 \mathrm{~g}, 74 \%\right.$) as a yellow oil; $[\alpha]_{\mathrm{D}}^{22}-13.6$ (c 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3347,2901,1794,1683 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}\right.$ at $\left.333 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 9.08(1 \mathrm{H}, \mathrm{dd}$, $J 7.3$ and 1.5, $\operatorname{Ar} H), 7.93(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.52(1 \mathrm{H}$, app. $\mathrm{t}, J 7.9, \operatorname{Ar} H), 7.50(1 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.=\mathrm{CHCH}_{3}\right), 7.28-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar} H), 7.16-7.08(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.88(1 \mathrm{H}, \mathrm{d}, J$ 8.4, $\mathrm{Ar} H), 6.48(1 \mathrm{H}, \mathrm{dt}, J 7.3$ and 1.5, $\mathrm{Ar} H), 4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{OAr}\right), 4.15(1 \mathrm{H}, \mathrm{br}, \mathrm{CHN}), 3.85$ $\left(1 \mathrm{H}, \mathrm{dd}, J 8.9\right.$ and $\left.1.5, \mathrm{ArCH}_{2} \mathrm{CHCHH}\right), 3.74\left(1 \mathrm{H}, J 8.9\right.$ and $\left.5.7, \mathrm{ArCH}_{2} \mathrm{CHCH}\right), 3.30(1 \mathrm{H}, \mathrm{br}$, $\mathrm{ArCHH}), 2.82(1 \mathrm{H}, \mathrm{dd}, J 13.1$ and $10.2, \mathrm{ArCH} H), 1.80\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{\mathrm{a}}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 1.62(3 \mathrm{H}, \mathrm{d}, J$ $\left.7.1,=\mathrm{CHCH}_{3}\right), 1.58\left(12 \mathrm{H}, \mathrm{s}, \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}\right.$ at $\left.333 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ 164.6 (s), 155.9 (s), 152.0 (s), 140.0 (s), 138.8 (d), 137.6 (d), 137.2 (s), 135.1 (s), 133.3 (d),
132.2 (s), 131.1 (d), 129.5 (d), 128.6 (d), 127.9 (d), 127.3 (d), 125.1 (d), 121.2 (d), 114.0 (d), $94.2(\mathrm{~s}), 88.5(\mathrm{~s}), 79.5(\mathrm{~s}), 70.6(\mathrm{t}), 66.5(\mathrm{t}), 59.7(\mathrm{~d}), 39.0(\mathrm{t}), 28.6$ (q), 27.7 (q), 24.7 (q), 15.2 (q); m / z (ESI) Found: $705.1849\left([\mathrm{M}+\mathrm{Na}]^{+}, 85 \%, \mathrm{C}_{34} \mathrm{H}_{39} \mathrm{IN}_{2} \mathrm{O}_{5} \mathrm{Na}\right.$ requires 705.1801), 627 (100), 592 (33), 518 (13), 440 (20).
tert-Butyl
(4S)-4-[4-Benzyloxy-3-((E)-1-(N-((2-(trimethylsilyl)ethoxy)methyl)- N-(2iodophenyl) carbamoyl)prop-1-enyl) benzyl]-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (23b). A solution of sodium hexamethyldisilazide (2 M) in tetrahydrofuran ($1.8 \mathrm{~mL}, 3.6 \mathrm{mmol}$) was added dropwise over 10 min to a stirred solution of the anilide $\mathbf{2 3 a}(1.9 \mathrm{~g}, 2.8 \mathrm{mmol})$ in tetrahydrofuran $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The solution was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 20 min , then 2-trimethylsilyl ethoxymethyl chloride ($1.2 \mathrm{~g}, 1.2 \mathrm{~mL}, 6.9 \mathrm{mmol}$) was added dropwise over 10 min , and the mixture was stirred at room temperature for 14 h . Water (15 mL) and diethyl ether (20 mL) were added and the separated aqueous layer was extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine $(30 \mathrm{~mL})$, then dried over MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography, eluting with $10-20 \%$ ethyl acetate in petroleum ether, to give the iodide ($2.0 \mathrm{~g}, 90 \%$) as a yellow oil; $[\alpha]_{\mathrm{D}}^{17}-15.0\left(c 1.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2987,1690 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}\right.$ at $\left.368 \mathrm{~K},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (the spectrum was complex, with broad peaks due to non-coalescing rotamers) 7.71, 7.50-7.25, $7.20-6.80,6.50,5.30,5.01,4.54,3.84,3.66,3.49,3.01,2.84,1.57,1.50,0.79,0.03 ; \delta_{\mathrm{C}}(90.6$ $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 154.0$ (s), 151.1 (s), 139.3 (s), 137.2 (d), 136.2 (d), 135.8 (d), 131.0 (d), 129.7 (d), 128.8 (d), 128.3 (d), 127.6 (d), 127.1 (d), 112.3 (d), 100.6 ($s), 93.3$ (s), 79.1 ($s), 69.5$ (t), 65.9 (t), $65.6(\mathrm{t}), 65.4(\mathrm{t}), 58.6(\mathrm{~d}), 38.4(\mathrm{t}), 28.4(\mathrm{q}), 26.8(\mathrm{q}), 23.2(\mathrm{q}), 17.7(\mathrm{t}), 15.1(\mathrm{q}),-1.3(\mathrm{q}) ; \mathrm{m} / \mathrm{z}$ (ESI) Found: $835.2601\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{40} \mathrm{H}_{53} \mathrm{IN}_{2} \mathrm{O}_{6} \mathrm{SiNa}\right.$ requires 835.2615), 707 (7), 295 (5).
(\pm)-7-Bromo-3-Phenyl-2,3-dihydrobenzofuran-3-carboxylic acid (25b). Ozone was bubbled through a solution of the olefin $\mathbf{5}(26.4 \mathrm{~g}, 88.0 \mathrm{mmol})$ in dichloromethane $(600 \mathrm{~mL})$ containing a crystal of Sudan Red 7B at $-78^{\circ} \mathrm{C}$. When the solution had decolourised, after $c a .8 \mathrm{~h}$ the ozone supply was turned off and the solution was then purged with oxygen for 10 min , followed by nitrogen for 10 min . A solution of triphenylphosphine ($25.3 \mathrm{~g}, 96.8 \mathrm{mmol}$) in dichloromethane $(100 \mathrm{~mL})$ was added over 5 min and the mixture was then allowed to warm to room temperature.

The solution was washed with water $(2 \times 700 \mathrm{~mL})$ then dried and concentrated in vacuo. Diethyl ether (150 mL) was added to the residue, and the mixture was cooled to $0^{\circ} \mathrm{C}$. Pentane (300 mL) was added to the rapidly stirred solution and the mixture was kept at $0^{\circ} \mathrm{C}$ for 30 min . The precipitated solid was removed by filtration, and the filtrate was concentrated in vacuo. The residue was purified by chromatography on silica, eluting with 5% ethyl acetate in petroleum ether, to give the aldehyde $\mathbf{2 5 a}(22.3 \mathrm{~g}, 84 \%)$ as a colourless oil; $\mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2821,1726$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.68(1 \mathrm{H}, \mathrm{d}, J 1.1, \mathrm{CHO}), 7.49(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Ar} H), 7.44-7.37(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.24(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Ar} H), 7.15(2 \mathrm{H}, \mathrm{dd}, J 7.0$ and $1.2, \mathrm{Ar} H), 6.92(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Ar} H), 5.57$ $(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OCH} H), 4.41\left(1 \mathrm{H}, \mathrm{dd}, J 9.2\right.$ and 1.1, OCHHCCHO); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 192.7$ (d), 158.7 (s), 137.2 (s$), 133.5$ (d), 129.6 (d), 128.5 (d), 127.4 (d), 125.1 (s), 124.8 (d), 122.5 (d), 104.2 (s), 77.5 (t), 67.5 (s); $m / z(E I)$ Found: $301.9944\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}\right.$ requires 301.9942), 273 (53), 194 (100).

A solution of sodium chlorite $(11.1 \mathrm{~g}, 123 \mathrm{mmol})$ and potassium dihydrogenphosphate $(17.5 \mathrm{~g}, 128 \mathrm{mmol})$ in water $(190 \mathrm{~mL})$ was added dropwise over 10 min to a stirred solution of the aldehyde 25 a ($22.3 \mathrm{~g}, 73.5 \mathrm{mmol}$) and 2-methyl-2-butene ($93 \mathrm{~mL}, 88.0 \mathrm{mmol}$) in t-butanol $(650 \mathrm{~mL})$. The mixture was stirred at room temperature for 24 h and then concentrated in vacuo. The aqueous residue was basified to pH 10 with 2 M aqueous sodium hydroxide solution, then washed with diethyl ether $(2 \times 300 \mathrm{~mL})$, acidified to pH 2 with 2 M hydrochloric acid and extracted with diethyl ether $(2 \times 300 \mathrm{~mL})$. The combined ether extracts were dried and concentrated in vacuo to leave the carboxylic acid (19.6 g, 85\%) as a colourless solid, mp 67-68 ${ }^{\circ} \mathrm{C}$; (Found: C, 56.3; H, 3.7; $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Br}$ requires: $\mathrm{C}, 56.4 ; \mathrm{H}, 3.5 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3171$, 2625,$1713 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.30\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.46(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $1.3, \mathrm{Ar} \mathrm{H})$, $7.44(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.3, $\mathrm{Ar} H), 7.36-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.19(2 \mathrm{H}, \mathrm{dd}, J 7.7$ and 1.7, ArH$)$, $6.88(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{Ar} H), 5.45(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OCH} H), 4.54(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OC} H \mathrm{H}) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz}$, CDCl_{3}) 157.6 (s), 140.2 (s), 133.1 (d), 129.0 (d), 128.1 (d), 127.4 (s), 126.4 (d), 126.3 (d), 122.4 (d), 103.4 (s), 80.8 (t), 62.8 (s); m / z (EI) Found: $317.9867\left(\mathrm{M}^{+}, 14 \%, \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Br}\right.$ requires 317.9892), 274 (31), 240 (4), 194 (98), 164 (8), 77 (18), 75 (4).
\boldsymbol{N}-(7-Bromo-3-phenyl-2,3-dihydrobenzofuran-3-oyl)-1-amino-1-phenylethane (26). Thionyl chloride (15 mL) was added dropwise over 15 min to the carboxylic acid $\mathbf{2 5 b}$ ($280 \mathrm{mg}, 0.91$
mmol) and the resulting suspension was then heated under reflux for 4 h . The solution was allowed to cool and was then concentrated in vacuo. The residue was twice taken up in dry toluene and the combined organic extracts concentrated in vacuo to leave the corresponding acid chloride ($305 \mathrm{mg}, 99 \%$) as a colourless solid; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3171,2625,1713 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{Ar} H), 7.31(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{Ar} H), 7.21-7.12(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.05-$ $6.95(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.75(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $7.6, \mathrm{Ar} H), 5.29(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{OCH} H), 4.27(1 \mathrm{H}, \mathrm{d}, J$ 9.6, OCHH); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.0(\mathrm{~s}), 158.2$ (s), 137.6 (s), 134.0 (d), 129.4 (d), 128.7 (d), 126.9 (d), 126.5 (d), 124.9 (s), 122.6 (d), 103.9 (s), 80.2 (t), 72.3 ($s)$; which was used without further purification.

A solution of the acid chloride ($305 \mathrm{mg}, 0.90 \mathrm{mmol}$) in dichloromethane (5 mL) was added dropwise over 5 min to a stirred solution of $(S)-(-)-\alpha-$ methylbenzylamine $(0.40 \mathrm{~mL}, 3.0$ mmol) and triethylamine (6 mL) in dichloromethane (5 mL) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and the mixture was then heated under reflux for 16 h . The mixture was cooled to room temperature, then washed with 2 M hydrochloric acid (10 mL), and the separated organic extract was dried and concentrated in vacuo. The residue was purified by chromatography, eluting with 10% ethyl acetate in petroleum ether, to give (i) a less polar amide 26a (160 mg , 46%) (eluted first) as a colourless oil; $[\alpha]_{\mathrm{D}}^{25}+193.6\left(c 0.56\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3421$, 3030, 2971, 1673, 1599, 1494; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47$ ($1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 1.3, ArH), 7.36$7.14(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.91(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{Ar} H), 5.88(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{CONHCH}), 5.66(1 \mathrm{H}, \mathrm{d}, J 9.2$, $\mathrm{OCHH}), 5.13\left(1 \mathrm{H}, \mathrm{dq}, J 7.9\right.$ and $\left.6.9, \mathrm{NHCHCH}_{3}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OCH} H), 1.39(3 \mathrm{H}, \mathrm{d}, J 6.9$, $\left.\mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.3$ (s), 157.8 (s), 142.6 (s), 140.6 (s), 132.9 (d), 129.6 (s), 128.9 (d), 128.5 (d), 127.9 (d), 127.3 (d), 127.2 (d), 125.8 (d), 123.9 (d), 122.1 (d), 104.0 (s), 82.2 (t), 63.8 (s), 49.4 (d), $21.6(\mathrm{q}) ; m / z(\mathrm{FAB})$ Found: $421.0654\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrNO}_{2}\right.$ requires 421.0677), 273 (38), 194 (43), 105 (53); and (ii) a more polar amide 26b ($170 \mathrm{mg}, 48 \%$) (eluted second) as a colourless crystalline solid, mp $145-147^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}^{25}-158.3$ (c 1.16 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3421,3030,2971,1673,1599,1494 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43-$ $7.08(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.81(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{Ar} H), 5.76(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{CONHCH}), 5.66(1 \mathrm{H}, \mathrm{d}, J 8.9$, $\mathrm{OCHH}), 5.15\left(1 \mathrm{H}, \mathrm{dq}, J 7.9\right.$ and $\left.6.9, \mathrm{NHCHCH}_{3}\right), 4.58(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{OCH} H), 1.45(3 \mathrm{H}, \mathrm{d}, J 6.9$, CHCH_{3}); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.5(\mathrm{~s}), 157.8$ (s), 142.3 (s), 140.7 (s), 132.9 (d), 129.5 (s), 129.1 (d), 128.6 (d), 128.1 (d), 127.4 (d), 127.3 (d), 125.9 (d), 124.0 (d), 122.1 (d), 104.0 (s),
82.2 (t), 63.9 (s), 49.3 (d), $21.1(\mathrm{q}) ; m / z(\mathrm{FAB})$ Found: $421.0654\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrNO}_{2}\right.$ requires 421.0677), 273 (38), 194 (43), 105 (53).

X-ray Crystal Structure of (-) α-Methylbenzylamide 26b

Crystal data. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrNO}_{2}, M=422.31$, orthorhombic, $a=12.865(11), b=15.761(11), c=$ $19.557(11) \AA, U=3910.0(5) \AA^{3}, T=210(2) \mathrm{K}$, space group $P 2_{2} 2_{1} 2_{1}$ (No. 19), $Z=8, D_{\mathrm{c}}=1.415$ $\mathrm{g} \mathrm{cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=2.090 \mathrm{~mm}^{-1}, 3102$ unique reflections collected and used in all calculations. Final $R_{1}[1755 F>4 \sigma(F)]=0.112$ and $w R_{2}\left(\right.$ all $\left.F^{2}\right)$ was 0.240 . The absolute structure parameter refined to $0.00(7)$.
(+)-7-Bromo-3-Phenyl-2,3-dihydrobenzofuran-3-carboxylic acid (27). p-Toluenesulfonic acid $(300 \mathrm{mg}, 1.6 \mathrm{mmol})$ was added to a stirred solution of the less polar α-methyl benzylamide 26a ($160 \mathrm{mg}, 0.40 \mathrm{mmol}$) in toluene (5 mL) under a nitrogen atmosphere, and the mixture was then heated under reflux for 16 h . The solution was concentrated in vacuo and the residue was purified by chromatography, eluting with ethyl acetate, to give the corresponding primary amide ($99 \mathrm{mg}, 83 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}^{25}+155.9$ (c 0.98 in EtOH); (Found: C, 55.6; H, 3,8; N, 4.4; $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrNO}_{2}$ requires: $\left.\mathrm{C}, 55.6 ; \mathrm{H}, 3.8 ; \mathrm{N}, 4.4 \%\right) ; \mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3515,3402,3032,2928$, 1689,$1580 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{Ar} H), 7.39-7.24(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.88(1 \mathrm{H}, \mathrm{t}$, $J 7.7, \mathrm{ArH}), 6.40\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{CONH}_{2}\right), 5.58(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{OCHH}), 4.58(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{OCHH}) ; \delta_{\mathrm{C}}$ ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 174.4 (s), 158.1 (s), 140.7 (s), 133.4 (d), 129.8 (s), 129.5 (d), 128.5 (d), 127.6 (d), 124.6 (d), 122.7 (d), 104.3 (s), 82.5 (t), 64.2 (s); m/z (FAB) Found: 317.0056 ($\mathrm{M}^{+}, 1 \%$, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrNO}_{2}$ requires 317.0052), 273 (57), 194 (100), 165 (47).

3 M Aqueous potassium hydroxide (4 mL) was added to a stirred solution of the amide ($80 \mathrm{mg}, 0.26 \mathrm{mmol}$) in ethanol (5 mL), and the mixture was then heated under reflux for 16 h . The mixture was cooled to room temperature and then concentrated in vacuo to half volume. The residue was acidified to pH 2 with concentrated hydrochloric acid and the mixture was then extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were dried and concentrated in vacuo to leave a residue which was purified by column chromatography, eluting with petrol:ethyl acetate, $1: 1$, to give the $\operatorname{acid}(67 \mathrm{mg}, 84 \%)$ as a colourless solid; $[\alpha]_{\mathrm{D}}^{25}+230.6$ (c 0.45 in EtOH$)$.
(-)-7-Bromo-3-Phenyl-2,3-dihydrobenzofuran-3-carboxylic acid (ent-27) The more polar α methylbenzylamide 26 was converted into the carboxylic acid amide, $[\alpha]_{\mathrm{D}}^{25}-160.3$ (c 0.87 in CHCl_{3}) and then into the carboxylic acid $[\alpha]_{\mathrm{D}}^{25}-241.2$ (c 0.55 in EtOH) using an identical procedure to that described for the conversion of the less polar α-methylbenzylamide 26 into the corresponding (+)-carboxylic acid.

Ethyl-3-(7-bromo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-3-oxopropionate (28). A solution of ethyl diazoacetate $(1.2 \mathrm{~mL}, 10.9 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ followed by a solution of the aldehyde $\mathbf{2 5 a}(1.11 \mathrm{~g}, 3.64 \mathrm{mmol})$ in dichloromethane (8 mL) were added dropwise over 0.5 h to a stirred solution of zirconium chloride $(0.85 \mathrm{~g}, 3.64 \mathrm{mmol})$ in dichloromethane $(15 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 2 h, then warmed to room temperature and poured into brine $(30 \mathrm{~mL})$. The separated aqueous layer was extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$ and the combined organic extracts were then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (1:9) to give the β-keto ester $(1.19 \mathrm{~g}, 84 \%)$ as a pale red oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1744,$1716 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H)$, 7.42 - $7.32(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22-$ $7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.91(1 \mathrm{H}, \mathrm{t}, J 7.8, \operatorname{Ar} H), 5.64(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{C} H \mathrm{HOAr}), 4.28(1 \mathrm{H}, \mathrm{d}, J 9.1$, $\mathrm{CH} H \mathrm{OAr}), 4.05\left(2 \mathrm{H}, \mathrm{dq}, J 7.1\right.$ and 1.9, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.54\left(2 \mathrm{H}, \mathrm{d}, J 2.6, \mathrm{CH}_{2} \mathrm{CO}\right), 1.17(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 197.1(\mathrm{~s}), 166.3$ (s), 158.3 (s), 137.8 (s), 133.2 (d), 129.4 (d), 128.3 (d), 126.7 (d), 126.1 (s$), 125.2$ (d), 122.2 (d), 104.0 (s$), 79.0$ (t$), 69.3$ (s$), 61.2$ (t$), 44.6$ (t), 13.8 (q); $\mathrm{m} / \mathrm{z}(\mathrm{EI})$ Found: $388.0323\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Br}\right.$ requires 388.0310).

(E/Z)-Ethyl-3-(7-bromo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-2-hydroxyimino-3-

 oxopropionate 29a. A solution of sodium nitrite $(1.69 \mathrm{~g}, 23.8 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ was added dropwise over 3 min to a stirred solution of the β-keto ester $28(1.16 \mathrm{~g}, 2.97 \mathrm{mmol})$ in acetic acid $(5 \mathrm{~mL})$ at room temperature. The mixture was stirred at room temperature for 2 h , then diluted with water (20 mL) and extracted with ethyl acetate (3 x 30 mL). The combined organic extracts were washed successively with water (70 mL), saturated aqueous sodium hydrogen carbonate $(70 \mathrm{~mL})$ and water $(70 \mathrm{~mL})$, then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (3:7), to give the oxime ($1.17 \mathrm{~g}, 94 \%$) as ayellow oil in a $2: 1$ mixture of geometrical isomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3536,1630 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, CDCl_{3}) (major isomer) $9.24(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.41(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and $1.1, \mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and 1.1, $\mathrm{Ar} H), 7.35-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.25(1 \mathrm{H}, \mathrm{tt}, J 7.1$ and $2.2, \mathrm{Ph} H), 7.19-7.16(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 6.84(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{Ar} H), 5.37(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{CHHOAr}), 4.77$ (1H, d, $J 9.7, \mathrm{CHHOAr}), 4.34$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.8(\mathrm{~s}), 160.8(\mathrm{~s}), 157.3$ (s), 148.3 (s$), 140.8$ (s), 133.8 (d), 129.2 (d), 127.6 (d), 127.5 (s), 127.2 (d), 125.6 (d), 122.4 (d), $103.4(\mathrm{~s}), 79.4(\mathrm{t}), 67.1(\mathrm{~s}), 60.8(\mathrm{t}), 13.9(\mathrm{q}) ; \mathrm{m} / \mathrm{z}$ (EI) Found: $399.0114\left(\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right.$, $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{Br}$ requires 399.0106).

Ethyl-2-acetylamino-3-(7-bromo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-3-oxopropionate

29c. Zinc dust ($21 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added in a single portion to a stirred solution of the oxime 29a ($68 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 80% aqueous acetic acid (2 mL) at room temperature. The mixture was stirred at room temperature for a total period of 3.5 h , and more zinc dust (21 mg , 0.32 mmol) was added after 2.5 h . The precipitate was removed by filtration and washed with acetic acid. The filtrate was concentrated in vacuo to leave the salt of the amine 29b (74 mg , 100%) as a pale yellow solid, which was used immediately without purification. A solution of acetyl chloride ($40 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) in dichloromethane (2 mL) was added dropwise over 1 min to a stirred solution of the amine salt ($74 \mathrm{mg}, 0.16 \mathrm{mmol}$) and triethylamine ($70 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) in dichloromethane $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was warmed to room temperature over 1 h , stirred at room temperature for 9.5 h , then diluted with dichloromethane $(15 \mathrm{~mL})$ and washed with water $(20 \mathrm{~mL})$. The organic extracts were dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (1:1), to give the keto amide ($51 \mathrm{mg}, 71 \%$), as a pale yellow oil as a $2: 1$ mixture of diastereoisomers; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3427,1749,1717,1682 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79(1 \mathrm{H}$, dd, $J 7.6$ and 1.1, $\mathrm{Ar} H)$, 7.58 ($1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.1, $\mathrm{Ar} H$), $7.49-7.44$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.40-7.30$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.23-7.19(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.97(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{Ar} H), 6.92(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{Ar} H), 6.68$ $(1 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{~N} H), 6.55(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{~N} H), 5.81(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{C} H \mathrm{~N}), 5.64(1 \mathrm{H}, \mathrm{d}, J 9.2$, CHHOAr), $5.61(1 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{C} H \mathrm{~N}), 5.54(1 \mathrm{H}, \mathrm{d}, J 9.4, \mathrm{C} H \mathrm{HOAr}), 4.54(1 \mathrm{H}, \mathrm{d}, J 9.4$, CHHOAr), 4.29 ($1 \mathrm{H}, \mathrm{d}, J 9.2$, CHHOAr), $3.93-3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.44(2 \mathrm{H}, \mathrm{dq}, J 10.7$ and 7.2, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.03\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03$
$\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 199.4(\mathrm{~s}), 197.0(\mathrm{~s}), 169.5(\mathrm{~s}), 169.0(\mathrm{~s}), 166.3(\mathrm{~s})$, 166.1 (s), 158.4 (s), 158.2 (s), 137.2 (s), 137.1 (s), 133.5 (d), 133.2 (d), 129.2 (d), 129.1 (d), 128.4 (d), 128.3 (d), 126.7 (d), 126.6 (d), 126.4 (d), 126.3 (d), 125.6 (s), 122.7 (d), 122.5 (d),
 (q), 13.5 ($q \times 2$); m/z (EI) Found: $446.0599\left([M+H]^{+}, \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Br}\right.$ requires 446.0603).

Ethyl 2-bromo-3-oxo-3-(7-bromo-3-phenyl-2,3-dihydrobenzofur-3-yl)-propanoate 29d. A solution of the β-keto ester 28 ($3.00 \mathrm{~g}, 7.71 \mathrm{mmol}$) in tetrahydrofuran (30 mL) was added dropwise over 15 min to a stirred suspension of petrol-washed sodium hydride ($308 \mathrm{mg}, 7.71$ $\mathrm{mmol})$ in tetrahydrofuran $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min . Bromine ($0.397 \mathrm{~mL}, 7.71 \mathrm{mmol}$) was added over 5 min , and the solution was stirred at $0^{\circ} \mathrm{C}$ for 20 min . The solution was diluted with water $(80 \mathrm{~mL})$ and then solid sodium thiosulphate was added until the solution decolourised. The mixture was extracted with diethyl ether ($3 \times 60 \mathrm{~mL}$) and the combined extracts were dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (1:4), to give the bromide $(3.67 \mathrm{~g}, 99 \%)$ as an oil and as a $2: 1$ mixture of diasteromers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2941, 1754, 1731, 1598; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34-7.52(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph} H), 7.23-7.27(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 6.97(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{Ar} H), 6.91(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{Ar} H), 5.65(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OCHHC}), 5.63(1 \mathrm{H}$, d, $J 9.4, \mathrm{OCH} H \mathrm{C}), 5.13(1 \mathrm{H}, \mathrm{s}, \mathrm{COCHBrCO}), 5.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{COCHBrCO}_{2}\right), 4.42(1 \mathrm{H}, \mathrm{d}, J 9.4$, OCHHC), $4.34(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OC} H \mathrm{HC}), 4.01\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.91(1 \mathrm{H}, \mathrm{dq}, J 10.7$ and $\left.7.1, \mathrm{CO}_{2} \mathrm{CHHCH}_{3}\right), 3.81\left(1 \mathrm{H}, \mathrm{dq}, J 10.7\right.$ and $\left.7.1, \mathrm{CO}_{2} \mathrm{CHHCH}_{3}\right), 1.15(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.8(\mathrm{~s}), 193.5(\mathrm{~s}), 164.4(\mathrm{~s})$, 164.2 (s), 158.7 (s), 158.3 (s), 136.8 (s), 136.5 (s), 133.8 (d), 129.6 (d), 129.3 (d), 128.8 (d), 128.7 (d), 127.2 (d), 127.1 (d), 125.8 (d), 125.6 (s), 125.5 (s$), 125.4$ (d), 122.6 (d), 122.4 (d), $104.3(\mathrm{~s}), 104.2(\mathrm{~s}), 80.0(\mathrm{t}), 79.9(\mathrm{t}), 69.3(\mathrm{~s}), 69.2(\mathrm{~s}), 63.2(\mathrm{t}), 63.1(\mathrm{t}), 45.6(\mathrm{~d}), 43.8(\mathrm{~d}), 13.7$ (q), $13.5(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ Found: $465.9415\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Br}_{2}\right.$ requires 465.9416), 273 (2), 164 (11).

Ethyl 2-azido-3-hydroxy-3-(7-bromo-3-phenyl-2,3-dihydrobenzofur-3-yl)-prop-2-enoate

 29e. Sodium azide ($139 \mathrm{mg}, 2.14 \mathrm{mmol}$) was added to a solution of the bromide $\mathbf{2 9 d}(1.00 \mathrm{~g}$, $2.14 \mathrm{mmol})$ in dimethylformamide (25 mL) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Water (120 mL) was added, and the mixture was then extractedwith diethyl ether ($2 \times 100 \mathrm{~mL}$). The combined extracts were dried and then concentrated in vacuo to leave the azide ($730 \mathrm{mg}, 79 \%$) as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2940,2133,1744$, 1731,$1673 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.61(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{COH}), 7.42(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH}), 7.26-7.38$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.84(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{Ar} H), 5.69(1 \mathrm{H}, \mathrm{d}, J 9.4, \mathrm{OCHHC}), 4.61(1 \mathrm{H}, \mathrm{d}, J 9.4$, $\mathrm{OCHHC}), 4.11\left(1 \mathrm{H}, \mathrm{dq}, J 10.7\right.$ and $\left.7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.04(1 \mathrm{H}, \mathrm{dq}, J 10.7$ and 7.1, $\mathrm{CO}_{2} \mathrm{CHHCH}_{3}$), $1.15\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 196.8(\mathrm{~s}), 165.4(\mathrm{~s}), 158.4$ (s), 158.3 (s , 138.3 (s), 133.2 (d), 129.1 (d), 128.2 (d), 126.8 (d), 126.5 (d), 122.4 (s$), 122.3$ (d), $103.6(\mathrm{~s}), 80.0(\mathrm{t}), 67.9(\mathrm{~s}), 63.1(\mathrm{t}), 13.6(\mathrm{q})$, which was used immediately without further purification.

Ethyl 2-amino-3-oxo-3-(7-bromo-3-phenyl-2,3-dihydrobenzofur-3-yl)-propanoate 29b. A solution of triphenylphosphine ($750 \mathrm{mg}, 2.86 \mathrm{mmol}$) in tetrahydrofuran (5 mL) was added portionwise to a mixture of the azide 29e ($1.17 \mathrm{~g}, 2.72 \mathrm{mmol}$) and water $(0.10 \mathrm{~mL})$ in tetrahydrofuran $(20 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. The mixture was heated at reflux temperature for 24 h , then cooled to room temperature, diluted with diethyl ether $(30 \mathrm{~mL})$ and extracted with 1 N hydrochloric acid $(40 \mathrm{~mL})$. The separated aqueous extract was basified to pH 8 with saturated aqueous sodium bicarbonate and the resulting emulsion was extracted with diethyl ether (2 x 30 mL). The separated organic extract was dried and concentrated in vacuo to leave the amine ($870 \mathrm{mg}, 79 \%$) as an oil and as a $2: 1$ mixture of diastereomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3671,3395,3327,2991,1744,1716,1598 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.67(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.3, $\mathrm{Ar} H), 7.47(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.3, \mathrm{Ar} H), 7.44(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.3, $\mathrm{Ar} H$), $7.31-7.41(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph} H), 7.19-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph} H), 6.95(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 7.6, $\mathrm{Ar} H), 6.88(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 7.6, $\mathrm{Ar} H), 5.64(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OCHHC}), 5.63(1 \mathrm{H}, \mathrm{d}, J 9.2$, OC $H \mathrm{HC}$), $4.60\left(1 \mathrm{H}, \mathrm{s}, \mathrm{COC} H\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2}\right), 4.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{COC} H\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J 9.2$, OCHHC), $4.38(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{OCHHC}), 3.74-3.90\left(2 \mathrm{H}+1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CO}_{2} \mathrm{CHHCH}_{3}\right)$, $3.63\left(1 \mathrm{H}, \mathrm{dq}, J 10.9\right.$ and $\left.7.3, \mathrm{CO}_{2} \mathrm{CHHCH}_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.04(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.7(\mathrm{~s}), 200.9(\mathrm{~s}), 169.8(\mathrm{~s}), 169.3(\mathrm{~s}), 158.5(\mathrm{~s}), 138.0(\mathrm{~s})$, 137.8 (s), 133.4 (d), 133.3 (d), 129.3 (d), 129.2 (d), 128.7 (s), 128.6 (s), 128.3 (d), 128.2 (d), 127.0 (d), 126.8 (d), 126.4 (d), 126.1 (d), 122.5 (d), 122.3 (d), 104.2 (s), 103.8 (s), 80.2 (t), 79.9
(t), $69.1(\mathrm{~s}), 68.9(\mathrm{~s}), 62.0(\mathrm{t}), 61.9(\mathrm{t}), 60.1(\mathrm{~d}), 60.0(\mathrm{~d}), 13.7(\mathrm{q}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ Found: 403.0415 $\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{Br}\right.$ requires 403.0420), 273 (61), 259 (1), 164 (55), 77(6).

Ethyl-5-(7-bromo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-2-methyloxazole-4-carboxylate

30a. Method a: Triethylamine ($0.17 \mathrm{~mL}, 1.20 \mathrm{mmol}$), followed by a solution of the amide 29e $(0.13 \mathrm{~g}, 0.30 \mathrm{mmol})$ in dichloromethane (3 mL) were added dropwise over 10 min to a stirred solution of triphenylphosphine $(0.16 \mathrm{~g}, 0.60 \mathrm{mmol})$ and iodine $(0.15 \mathrm{~g}, 0.60 \mathrm{mmol})$ in dichloromethane (6 mL) at room temperature under a nitrogen atmosphere. The mixture was stirred at room temperature for 12 h , then concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (1:1), to give the oxazole ($0.11 \mathrm{~g}, 86 \%)$ as a pale yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1722$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.1, $\mathrm{ArH})$, 7.38 ($1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.1, $\mathrm{Ar} H$), $7.31-7.24$ (3H, m, ArH), $7.14-7.11$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.83(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{Ar} H), 5.29(1 \mathrm{H}, \mathrm{d}, J 9.9, \mathrm{C} H \mathrm{HOAr}), 5.19(1 \mathrm{H}, \mathrm{d}, J 9.9, \mathrm{CH} H \mathrm{OAr}), 4.24(1 \mathrm{H}$, dq, $J 10.9$ and $\left.7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.17\left(1 \mathrm{H}, \mathrm{dq}, J 10.9\right.$ and $\left.7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right) \mathrm{N}\right)$, $1.20\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.2(\mathrm{~s}), 159.9(\mathrm{~s}), 158.5(\mathrm{~s}), 156.8(\mathrm{~s}), 143.0$ (s), 132.5 (d), 131.2 (s), 128.7 (d), 128.2 (s), 127.4 (d), 126.2 (d), 125.7 (d), 122.5 (d), 103.4 (s), 83.7 (t), 61.3 (t), 56.5 (s), $14.0(q)$; m/z (EI) Found: $428.0493\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Br}\right.$ requires 428.0497).

Method b: A solution of acetyl chloride ($0.41 \mathrm{~mL}, 5.73 \mathrm{mmol}$) in dichloromethane (5 mL) was added dropwise over 10 min to a stirred solution of the amine $\mathbf{2 9 b}(0.77 \mathrm{~g}, 1.91 \mathrm{mmol})$ and triethylamine ($0.80 \mathrm{~mL}, 5.73 \mathrm{mmol}$) in dichloromethane (25 mL) at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was warmed to room temperature over 2 h , and then stirred at this temperature for 16 h . Dichloromethane (25 mL) was added, the mixture was washed with water $(50 \mathrm{~mL})$. The separated organic extract was dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (1:4), to give the oxazole (0.51 $\mathrm{g}, 63 \%$) as a colourless oil whose spectroscopic data were identical with those recorded under method (a).

5-(7-Bromo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-2-methyloxazole-4-carboxylic acid 30b.

Lithium hydroxide ($29 \mathrm{mg}, 0.70 \mathrm{mmol}$) was added in a single portion to a stirred solution of the oxazole 30a $(30 \mathrm{mg}, 70 \mu \mathrm{~mol})$ in methanol $(1.5 \mathrm{~mL})$ and water $(0.5 \mathrm{~mL})$ at room temperature. The mixture was stirred at room temperature for 8 h , then acidified with 10% aqueous citric acid (2 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried
and concentrated in vacuo to leave the carboxylic acid ($28 \mathrm{mg}, 98 \%$) as a colourless solid; m.p. $194-196^{\circ} \mathrm{C}$ (hexane), $\lambda_{\max }(\mathrm{EtOH}) 291\left(1.85 \times 10^{4}\right), 284\left(1.80 \times 10^{4}\right), 291 \mathrm{~nm}\left(1.08 \times 10^{5}\right) ; v_{\max }$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3494,3241$ (br), 1762, 1702, 1077; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44-7.41(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.31-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.13-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.86(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{Ar} H), 5.41(1 \mathrm{H}, \mathrm{d}$, $J 10.0, \mathrm{C} H \mathrm{HOAr}), 5.14(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CH} H \mathrm{OAr}), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right) \mathrm{N}\right) ; \delta_{\mathrm{C}}(90 \mathrm{MHz}$, CDCl_{3}) 162.9 (s), 160.3 (s), 159.3 (s), 157.0 (s), 142.3 (s$), 132.7$ (d), 130.7 (s), 128.8 (d), 127.6 (d), 126.3 (d), 125.9 (d), 122.5 (d), 103.5 (s), 83.3 (t), 56.5 (s), 13.7 (q); m/z (ESI) Found: 463.0269 ([MNaMeCN$]^{+}, \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{BrNa}$ requires 463.0309).

2-(4-Iodo-1H-indol-3-yl)-2-oxoethylammonium bromide 31 .

Benzyl-[2-(1H)-indol-3-yl]-2-oxoethylcarbamate $(20 \mathrm{mg}, 60 \mu \mathrm{~mol})^{33}$ was added, in a single portion, to a stirred solution of thallium trifluoroacetate ($44 \mathrm{mg}, 80 \mu \mathrm{~mol}$) in trifluoroacetic acid $(0.1 \mathrm{~mL})$ at room temperature under a nitrogen atmosphere. The mixture was heated at $30^{\circ} \mathrm{C}$ for 2 h , then cooled to room temperature and concentrated in vacuo. Iodine ($48 \mathrm{mg}, 0.19 \mathrm{mmol}$), copper iodide ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$), and then DMF (0.44 mL), were added to the residue at room temperature under a nitrogen atmosphere. The mixture was heated at $25^{\circ} \mathrm{C}$ for 2 h , then cooled to room temperature and diluted with a solution of methanol (2 mL) in dichloromethane (40 mL). The mixture was filtered through celite ${ }^{\circledR}$ and the filtrate was then washed with brine (40 mL) and water (40 mL), dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (2:1), to give benzyl-[2-(4-iodo-1H-indol-3-yl)-2-oxoethylcarbamate ($15 \mathrm{mg}, 58 \%$) as a yellow oil which solidified on standing; m.p. $170-$ $172{ }^{\circ} \mathrm{C}$; (Found: C, 49.7; H, 3.4; N, 6.1; I, 29.1; $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{IN}_{2} \mathrm{O}_{3}$ requires: C, 49.8; H, 3.5; N, 6.5; I, $29.2 \%) ; \lambda_{\max }(\mathrm{MeOH}) 257\left(1.46 \times 10^{4}\right), 217\left(3.88 \times 10^{4}\right), 194 \mathrm{~nm}\left(3.99 \times 10^{4}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-}$ ${ }^{1} 3454,1716,1673,1048 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, indole NH$), 7.83(1 \mathrm{H}, \mathrm{d}, J 7.6$, $\mathrm{Ar} H), 7.80(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.42-7.32(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.96(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{Ar} H), 5.93(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NHCO}), 5.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.52\left(2 \mathrm{H}, \mathrm{d}, J 4.7, \mathrm{CH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 193.0(\mathrm{~s}), 160.0$ (s), 140.3 (s), 139.1 (s), 136.9 (d), 135.5 (d), 130.7 (s), 130.3 (d), 129.8 (d), 129.7 (d), 126.4 (d), $118.0(\mathrm{~s}), 114.0(\mathrm{~d}), 86.4(\mathrm{~s}), 68.6(\mathrm{t}), 51.2(\mathrm{t}) ; \mathrm{m} / \mathrm{z}$ (ESI) Found: $457.0055\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{INa}$ requires 457.0025).

The above iodide ($19 \mathrm{mg}, 40 \mu \mathrm{mmol}$) was added in a single portion to a stirred solution of hydrogen bromide in acetic acid ($1.2 \mathrm{ml}, 30 \mathrm{wt} \%$) at room temperature under a nitrogen atmosphere. The mixture was stirred at room temperature for 1.5 h , then diluted with diethyl ether (5 mL). The precipitate was filtered and dried in vacuo $(1 \mathrm{~mm} \mathrm{Hg})$ to leave the salt $(17 \mathrm{mg}$, 99%) as a pale brown solid; m.p. $210-212{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ; \lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 305\left(6.3 \times 10^{3}\right), 253(9.2 \mathrm{x}$ $\left.10^{3}\right), 216 \mathrm{~nm}\left(2.09 \times 10^{4}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3407,3103,2924,1654 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 7.94$ $(1 \mathrm{H}, \mathrm{s}$, indole $H), 7.61(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Ar} H), 7.30(1 \mathrm{H}, \mathrm{d}, J 8.1, \operatorname{ArH}), 6.80(1 \mathrm{H}$, app. t, $J 7.7$, $\operatorname{Ar} H), 4.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 186.5$ (s), 137.7 (s), 136.0 (d), 135.4 (d), 127.4 (s), 125.1 (d), 113.2 (s), 112.6 (d), 83.5 (s), 45.6 (t); m/z (ESI) Found: 342.0106 ([MHMeCN $\mathrm{HBr}]^{+}, \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OI}$ requires 342.0103).

5-(7-Bromo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-2-methyloxazole-4-carboxylic acid [2-(4-Iodo- $\mathbf{1 H}$-indol-3-yl)-2-oxoethyl]amide 32. A solution of the carboxylic acid 30b (0.13 g , 0.32 mmol) in oxalyl chloride (4 mL) was stirred at room temperature for 3 h . The solution was concentrated in vacuo to leave the crude acid chloride $(0.13 \mathrm{~g}, 100 \%)$ as a yellow oil, which was used immediately without characterisation. Triethylamine ($0.45 \mathrm{~mL}, 3.20 \mathrm{mmol}$) was added dropwise over 1 min to a stirred suspension of the salt $31(0.46 \mathrm{~g}, 1.22 \mathrm{mmol})$ in dichloromethane $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , and then a solution of the acid chloride $(0.13 \mathrm{~g}, 0.32 \mathrm{mmol})$ in dichloromethane (3 mL) was added dropwise over 1 min . The mixture was warmed to room temperature for 16 h , then diluted with dichloromethane (10 mL) and washed with water $(10 \mathrm{~mL})$. The separated aqueous phase was extracted with dichloromethane (2 x 10 mL) and the combined organic extracts were then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (2:1), to give the amide ($0.13 \mathrm{~g}, 60 \%$) as a yellow solid; m.p. $139-142{ }^{\circ} \mathrm{C}$; $\lambda_{\max }(\mathrm{EtOH}) 290\left(1.55 \times 10^{4}\right), 203 \mathrm{~nm}\left(6.35 \times 10^{4}\right) ; v_{\max }$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3454,3391,2926,2855,1659,1610 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, indole $\mathrm{N} H), 8.14(1 \mathrm{H}, \mathrm{t}, J 4.9, \mathrm{~N} H \mathrm{CO}), 7.78(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Ar} H), 7.73(1 \mathrm{H}, \mathrm{d}, J 3.0$, indole $H), 7.44(1 \mathrm{H}$, dd, $J 7.6$ and 1.1, $\operatorname{Ar} H)$, $7.41(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.1, $\mathrm{Ar} H), 7.28-7.14(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.89(1 \mathrm{H}$, app. t, $J 7.8, \operatorname{Ar} H), 6.85(1 \mathrm{H}$, app. t, $J 7.8, \operatorname{Ar} H), 5.56(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CHHOAr}), 5.22(1 \mathrm{H}, \mathrm{d}, J$ 10.0, CHHOAr), $4.61\left(2 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{CH}_{2} \mathrm{~N}\right), 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 187.7(\mathrm{~s})$,
161.2 (s), 159.2 (s), 157.0 (s), 155.5 (s), 143.3 (s), 137.6 (s), 135.5 (d), 132.5 (d), 132.3 (d), 131.4 (s), 129.9 (s), 128.7 (s), 128.2 (s), 127.4 (d), 126.5 (d), 126.0 (d), 124.9 (d), 122.4 (d), 115.9 (s), 112.1 (d), 103.3 (s), 84.3 (s), 84.1 (t), 56.3 (s), 47.7 (t), 13.8 (q); m/z (ESI) Found: $703.9727\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{BrINa}\right.$ requires 703.9658).

3-[5'-(7-Bromo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-2'-methyl-[2,4']-bisoxazolyl-5-yl]-4-

iodo- $\mathbf{H} \boldsymbol{H}$-indole 33. Triethylamine ($30 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$), followed by a solution of the amide 32 ($40 \mathrm{mg}, 30 \mu \mathrm{mmol}$) in dichloromethane (1 mL) were added dropwise over 10 min to a stirred solution of triphenylphosphine ($31 \mathrm{mg}, 0.12 \mathrm{mmol}$) and hexachloroethane ($28 \mathrm{mg}, 0.12 \mathrm{mmol}$) in dichloromethane $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was warmed to room temperature and stirred for 3 h , then more triphenylphosphine ($31 \mathrm{mg}, 0.12 \mathrm{mmol}$), hexachloroethane ($28 \mathrm{mg}, 0.12 \mathrm{mmol}$) and triethylamine ($30 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) were added. The mixture was stirred for a further 2 h , then diluted with dichloromethane (10 mL), and washed with water (10 mL). The separated aqueous phase was extracted with dichloromethane (2 x 10 mL), and the combined organic extracts were then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (2:1), to give the bis-oxazole $(32 \mathrm{mg}, 81 \%)$ as a yellow oil; $\lambda_{\max }(\mathrm{EtOH}) 284\left(2.51 \times 10^{4}\right), 202 \mathrm{~nm}\left(7.71 \times 10^{4}\right) ; v_{\max }$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3467,1640,1595 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.18(1 \mathrm{H}, \mathrm{br}$ s, indole $\mathrm{N} H), 7.58(1 \mathrm{H}, \mathrm{d}, J$ $7.5, \mathrm{Ar} H), 7.53(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.1, $\mathrm{Ar} H), 7.41(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and $1.1, \mathrm{Ar} H), 7.39(1 \mathrm{H}, \mathrm{dd}, J$ 6.0 and 1.1, $\operatorname{Ar} H$), $7.28-7.20(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.14(1 \mathrm{H}, \mathrm{s}$, oxazole $H), 6.90(1 \mathrm{H}$, app. t, $J 7.9$, $\mathrm{Ar} H), 6.87(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{Ar} H), 5.69(1 \mathrm{H}, \mathrm{d}, J 9.9, \mathrm{C} H \mathrm{HOAr}), 5.12(1 \mathrm{H}, \mathrm{d}, J 9.9, \mathrm{CH} H O A r)$, $2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.7(\mathrm{~s}), 157.1(\mathrm{~s}), 154.3(\mathrm{~s}), 151.8(\mathrm{~s}), 144.1(\mathrm{~s}), 142.6$ (s), 135.7 (s), 132.7 (d), 132.0 (d), 131.4 (s), 129.2 (d), 128.7 (d), 128.5 (s), 127.9 (d), 127.4 (d), 126.6 (d), 126.4 (d), 126.3 (s), 123.9 (d), 122.5 (d), 111.6 (d), 105.0 (s), 103.4 (s), 84.9 (s), 83.3 (t), 56.4 (s), 13.9 (q); m/z (ESI) Found: $663.9786\left([M+H]^{+}, \mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{BrI}\right.$ requires 663.9734).

3-Phenyl-3-triisopropylsilanyloxy-2,3-dihydro-benzofuran-7-boronic acid 35. Ozone (50 $\mathrm{mL} / \mathrm{min}, 1.5 \mathrm{~A})$ was bubbled through a solution of the alkene $5(6.54 \mathrm{~g}, 21.7 \mathrm{mmol})$ in dichloromethane $(260 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ for 2 hours and then oxygen and nitrogen were bubbled
through the solution for 10 minutes. Methanol $(50 \mathrm{~mL})$ was added and the solution was then warmed to $0{ }^{\circ} \mathrm{C}$. Sodium borohydride ($4.23 \mathrm{~g}, 108.5 \mathrm{mmol}$) was cautiously added and the resulting mixture was then stirred at this temperature for 2 hours. Ammonium chloride (100 mL) was added dropwise and the mixture was then concentrated in vacuo. The residue was partitioned between water $(100 \mathrm{~mL})$ and ether $(100 \mathrm{~mL})$ and the separated aqueous phase was then extracted with ether ($2 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine $(100 \mathrm{~mL})$, dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ether in petrol (1:2 to 1:1), to give 3-phenyl-2,3-dihydrobenzofuran-3-methanol (4.40 g, 61%) as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3385,3058,3025,1598,1582 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.28-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.14(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.1, $\mathrm{Ar} H), 6.85(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{Ar} H)$, 4.87 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{CHHOAr}$), 4.70 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{CH} H O A r$), 4.13 ($1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CHHOH}$), 4.04 $(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CHHOH}), 1.74(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 157.8(\mathrm{~s}), 142.0(\mathrm{~s}), 132.2(\mathrm{~d})$, 131.7 (d), 128.8 (d), 127.3 (d), 126.8 (s), 124.4 (d), 122.1 (d), 103.3 (s), 81.4 (t), 67.4 (s), 57.3 (t); m/z (ESI) Found: $304.0085\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Br}\right.$ requires 304.0099), 306 (5), 304 (5), 273 (52), 194 (100), 127 (12), 107 (13).

Triisopropylsilyl chloride ($4.6 \mathrm{~mL}, 21.6 \mathrm{mmol}$) was added to a stirred solution of imidazole ($1.96 \mathrm{~g}, 28.8 \mathrm{mmol}$) and the benzofuranmethanol ($4.40 \mathrm{~g}, 14.4 \mathrm{mmol}$) in N, N dimethylformamide (14 mL), and the mixture was stirred at room temperature for 17 hours. Ammonium chloride (10 mL) was added and the mixture was then partitioned between ether $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic extracts were washed with water ($3 \times 100 \mathrm{~mL}$), and the combined aqueous extracts were then extracted with ether (2 x 100 mL). The combined organic phases were then washed with brine $(100 \mathrm{~mL})$, dried, concentrated in vacuo. The residue was purified by chromatography, eluting with ether in petrol (1:40), to give the corresponding silyl ether $(5.34 \mathrm{~g}, 83 \%)$ as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1600,1584 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.30-7.37(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.00(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.2, $\mathrm{Ar} H), 6.79(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{Ar} H)$, $4.95(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C} H \mathrm{HOAr}), 4.67$ ($1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHHOAr}$), 4.20 ($1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{C} H H O S i), 4.15$ $(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{CHHOSi}), 0.97\left(21 \mathrm{H}, \mathrm{m},\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{3} \mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 157.8(\mathrm{~s}), 142.9$ (s), 132.9 (d), 131.6 (d), 128.4 (d), 127.2 (d), 126.9 ($s), 124.6$ (d), 121.7 (d), 102.8 (s), 81.6 (t), 68.4 (s), 57.5 (t), 17.6 (s), 12.0 (q); m/z (ESI) Found: 381.2233 ([M- Br] ${ }^{+}, \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{BrSi}$ requires 381.2250), 417 (17), 381 (12), 273 (12), 145 (76), 91 (100).

Butyllithium (3.69 mL of a 1.6 M solution in hexanes, 5.89 mmol) was added dropwise over 0.5 h to a solution of the above bromobenzofuran ($1.29 \mathrm{~g}, 2.80 \mathrm{mmol}$) in tetrahydrofuran $(60 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then trimethyl borate $(1.55$ $\mathrm{mL}, 13.83 \mathrm{mmol}$) was added dropwise over 10 min and the resulting solution was allowed to warm slowly to room temperature over 17 h . The mixture was concentrated in vacuo, and the residual boronic acid ($\sim 1.2 \mathrm{~g}$) was used directly without purification, in the Suzuki coupling reaction with the 5-bromoindole 36 .

\{2-[4-(3-Phenyl-3-triisopropylsilanyloxymethyl-2,3-dihydro-benzofuran-7-yl)-1H-indol-3-

yl]-ethyl\}-carbamic acid tert-butyl ester 37a. The crude boronic acid $35(\sim 1.2 \mathrm{~g})$ was dissolved in degassed dimethoxyethane (60 mL), and sufficient degassed water ($\sim 8 \mathrm{~mL}$) was then added to obtain a clear solution. The solution was stirred for 2 h , and then a solution of the 5 -bromoindole $36(1.34 \mathrm{~g}, 3.96 \mathrm{mmol})^{21}$ in degassed DME (31 mL) was added dropwise via a cannula over 1 h . Tetrakis(triphenylphosphine)palladium ($333 \mathrm{mg}, 0.28 \mathrm{mmol}$) was introduced, and then a solution of potassium carbonate ($6.65 \mathrm{~g}, 48.2 \mathrm{mmol}$) in degassed water $(9.3 \mathrm{~mL})$ was added. The mixture was heated under reflux for 17 h , then cooled and partitioned between brine (20 mL) and dichloromethane (100 mL). The separated organic phase was washed with brine ($3 \times 20 \mathrm{~mL}$) and the combined aqueous extracts were then extracted with dichloromethane (30 mL). The organic extracts were dried, and then concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (1:3 to 1:1), to give the bis-aryl (1.41 g , 80%) as an almost colourless solid as a $3: 1$ mixture of stereoisomers; $\delta_{H}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.27$ $(0.75 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 8.14(0.25 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 6.87-7.49(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.86(0.25 \mathrm{H}, \mathrm{d}, J 9.0$, CHHOAr), 4.80 ($0.75 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHHOAr}$), 4.63 ($0.75 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHHOAr}$), 4.56 ($0.25 \mathrm{H}, \mathrm{d}, J$ 9.0, CHHOAr), $4.26(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C} H \mathrm{HOSi}), 4.22(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CH} H \mathrm{OSi}), 4.09(0.25 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{N} H), 3.49(0.75 \mathrm{H}$, br s, $\mathrm{N} H), 2.84-3.12\left(2.5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.42-2.61\left(1.5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $1.63-1.71\left(3 \mathrm{H}, \mathrm{m},\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{3} \mathrm{Si}\right), 1.48\left(2.25 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.41\left(6.75 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.03(4.5 \mathrm{H}, \mathrm{d}, J$ 6.2, $\left.\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{3} \mathrm{Si}\right), 0.97\left(13.5 \mathrm{H}, \mathrm{d}, J 6.2,\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{3} \mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.2,155.8$, $143.7,136.8,130.8,130.5,130.1,128.4,128.2,127.5,127.2,126.8,126.5,124.9,124.5,123.1$, $121.6,121.4,120.3,110.9,109.6,81.2,80.8,78.8,68.4,67.9,56.6,40.9,28.4,17.9,11.9 ; \mathrm{m} / \mathrm{z}$
(ESI) Found: $640.3724\left(\mathrm{M}^{+}, \mathrm{C}_{39} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ Si requires 640.3696), 640 (70), 541 (61), 397 (60), 350 (72), 336 (100), 322 (17), 91 (26).

(Z)-3-\{7-[3-(2-tert-Butoxycarbonylamino-ethyl)-1H-indol-4-yl]-3-phenyl-2,3-dihydro-

 benzofuran-3-yl\}-acrylic acid methyl ester 38. TBAF (867 mg , 2.76 mmol) was added, in one portion, to a stirred solution of the silyl ether $\mathbf{3 7 a}(1.35 \mathrm{~g}, 2.12 \mathrm{mmol})$ in tetrahydrofuran (40 mL) at room temperature. The mixture was stirred at room temperature for 17 h and then more TBAF ($867 \mathrm{mg}, 2.76 \mathrm{mmol}$) was added, followed by another portion ($300 \mathrm{mg}, 0.96 \mathrm{mmol}$) after a further 5 h . The mixture was heated at $60^{\circ} \mathrm{C}$ for 5 h , then cooled and aqueous ammonium chloride (10 mL) was added. The separated aqueous phase was extracted with ether ($3 \times 50 \mathrm{~mL}$) and the combined organic extracts were then washed with brine $(100 \mathrm{~mL})$, dried, and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol ($1: 2$ to $1: 1$), to give the alcohol $\mathbf{3 7 b}(933 \mathrm{mg}, 91 \%)$ as an almost colourless solid as a $3: 1$ mixture of diastereomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3415,3056,1693,1508 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.35(1 \mathrm{H}, \mathrm{br}$ s, NH), $7.22-7.42$ (10H, m, $\mathrm{Ar} H), 6.93-7.10$ (2H, m, ArH), 4.83 ($0.66 \mathrm{H}, \mathrm{d}, J 9.0$, CHHOAr), 4.74 ($0.33 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHHOAr}$), 4.65 ($0.33 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHHOAr}$), 4.56 ($0.66 \mathrm{H}, \mathrm{d}, ~ J$ 9.0, CHHOAr), 4.09-4.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 2.45-2.98 (4H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.42\left(10 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right.$, $\mathrm{OH}) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.3,158.2,143.3,142.9,137.0,136.7,130.8,128.8,127.2,127.1$, $127.0,126.9,125.0,124.6,124.5,123.3,121.6,121.3,120.7,120.4,113.1,112.9,111.0,81.0$, 80.9, 79.2, 78.9, 67.2, 60.4, 56.5, 53.4, 41.2, 40.9, 28.3; m/z (ESI) Found: 485.2441 (M^{+}, $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 485.2440), 485(7), 429 (17), 398 (32), 135 (100), 91 (39), 57 (31).Pyridine-sulfur trioxide complex ($140 \mathrm{mg}, 0.88 \mathrm{mmol}$) was added to a stirred solution of the alcohol 37b ($71 \mathrm{mg}, 0.15 \mathrm{mmol}$) in dimethylsulfoxide/dichloromethane ($0.7 \mathrm{~mL} / 3 \mathrm{~mL}$) containing triethylamine $(128 \mu \mathrm{~L}, 1 \mathrm{mmol})$ at room temperature. The mixture was stirred at room temperature for 23 h , and then the dichloromethane was removed in vacuo. The residue was partitioned between ether $(10 \mathrm{~mL})$ and ammonium chloride $(10 \mathrm{~mL})$ and the separated organic extract was subsequently washed with ammonium chloride (10 mL) and copper sulfate (2 x 10 $\mathrm{mL})$. The aqueous phase was extracted with ether $(4 \times 10 \mathrm{~mL})$ and the combined organic extracts were then washed with brine (20 mL), dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol (2:3 containing 1% triethylamine), to
give the corresponding aldehyde ($58 \mathrm{mg}, 82 \%$) as a colourless oil as a $3: 1$ mixture of diastereomers; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1721,1697 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.80(0.33 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 9.77$ $(0.66 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.35(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.34-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.21-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.14$ ($1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Ar} H$), $7.01(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Ar} H), 5.43(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C} H \mathrm{HOAr}), 4.46(0.33 \mathrm{H}, \mathrm{br}, \mathrm{N} H)$, $4.35(0.66 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{~N} H), 4.25(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CH} H \mathrm{OAr}), 3.02\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.48-2.56$ $\left(1.33 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.35-2.41\left(0.66 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.42\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}(90 \mathrm{MHz}$, CDCl_{3}) 193.7, 193.1, 158.6, 156.0, 138.4, 136.8, 132.2, 129.6, 129.3, 128.3, 127.7, 127.5, 125.7, 125.6, 124.9, 123.1, 122.9, 121.9, 121.7, 121.4, 121.1, 113.6, 113.2, 78.9, 66.8, 66.6, 60.4, 53.4, 40.8, 28.4; m/z (FAB) Found: $482.2245\left(\mathrm{M}^{+}, \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 482.2206), 482 (74), 454 (8), 427 (43), 409 (11), 398 (47), 336 (45), 324 (31), 307 (26), 154 (100), 136 (67), 107 (23), 57 (36). Potassium bis(trimethylsilyl)amide (5.9 mL of a 0.5 M solution in toluene, 2.95 mmol) was added dropwise over 15 min to a stirred solution of bis-(2,2,2trifluoroethyl)(methoxycarbonylmethyl)phosphonate ($938 \mathrm{mg}, 2.95 \mathrm{mmol}$) and 18-crown-6 (1.32 $\mathrm{g}, 5.04 \mathrm{mmol})$ in tetrahydrofuran $(28 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h , and then a solution of the above aldehyde ($406 \mathrm{mg}, 0.84 \mathrm{mmol}$) in tetrahydrofuran (14 mL) was added via a cannula. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for a further hour and then ammonium chloride $(8 \mathrm{~mL})$ was added. The mixture was warmed to room temperature and then partitioned between ether (30 mL) and ammonium chloride (30 mL). The organic phase was washed with ammonium chloride ($2 \times 30 \mathrm{~mL}$) and the separated aqueous phase was then extracted with ether ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with brine (30 mL), then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with acetone in benzene (1:5), to give a 3:1 mixture of isomers of the Z α, β-unsaturated ester ($433 \mathrm{mg}, 96 \%$) as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3416,2976,2949$, $1712,1697,1642,1508,1472,1438,1366,1250,1203,1174 ; \delta_{H}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.38(1 \mathrm{H}$, br s, NH), 7.23-7.38(9H, m, ArH), 6.97-7.05 (3H, m, ArH), $6.81(1 H, d, J 12.2,=C H), 6.13$ $(0.66 \mathrm{H}, \mathrm{d}, J 12.2,=\mathrm{C} H), 6.09(0.33 \mathrm{H}, \mathrm{d}, J 12.2,=\mathrm{C} H), 5.17(0.66 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{C} H \mathrm{HOAr}), 5.03$ ($0.33 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{CHHOAr}$), 4.79 ($0.33 \mathrm{H}, \mathrm{d}, J 9.1$, CHHOAr), 4.75 ($0.66 \mathrm{H}, \mathrm{d}, J 9.1$, CHHOAr), $4.48(0.33 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 4.37(0.66 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 3.47\left(0.9 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.42\left(2.1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.95$ ($2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.47-2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.42\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right)$; $\delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 165.7, 156.9, 155.8, 149.8, 149.0, 144.9, 144.6, 136.9, 133.3, 133.0, 130.7, 129.8, 128.6, 126.9, 40.8, 28.4, 26.5, 26.1; m/z (FAB) Found: $538.2485\left(\mathrm{M}^{+}, \mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}\right.$ requires 538.2468), 538 (61), 439 (27), 307 (16), 154 (100), 136 (82), 107 (36), 95 (42), 81 (48), 69 (92), 57 (94).

Macrolactam 39. Lithium hydroxide ($23 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added to a stirred solution of the ester $38(60 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dimethoxyethane $/$ water $(0.9 \mathrm{~mL} / 0.3 \mathrm{~mL})$ and the mixture was stirred at room temperature for 7 h . A further portion of lithium hydroxide was added $(9 \mathrm{mg}$, 0.22 mmol), and after 24 h the DME was removed in vacuo. Water (5 mL) and 0.1 M HCl (3 mL) were added to the residue and the mixture was then extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried and concentrated in vacuo to leave the crude carboxylic acid which was used directly.

Trifluoroacetic acid (2.4 mL) was added to a stirred solution of the crude carboxylic acid in dichloromethane (2.4 mL). The mixture was stirred at room temperature for 30 min and then concentrated in vacuo. The residue was azeotroped with ether ($3 \times 8 \mathrm{~mL}$) and then benzene (3 x 10 mL) to leave the amino acid as a colourless solid which was used directly in the next reaction.

Diphenylphosphoryl azide ($122 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) was added to a stirred solution of the crude amino acid and diisopropylethylamine ($70 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) in dichloromethane (24 mL). After 18 h more diphenylphosphoryl azide ($122 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) was added, and after a further 72 h a final portion ($122 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 16 h , then ammonium chloride (15 mL) was added and the mixture was extracted with dichloromethane (3 x 40 mL). The combined organic extracts were washed with brine (30 mL), dried concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate in petrol ($1: 10$ to 1:1), to give the macrolactam ($22 \mathrm{mg}, 49 \%$) as a colourless oil; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3404,3056,2924,1634,1513 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.29(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H)$, $7.22-7.42(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.08(2 \mathrm{H}, \mathrm{dd}, J 7.5$ and 2.6, $\mathrm{Ar} H), 7.00(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{Ar} H), 6.48(1 \mathrm{H}$, d, $J 12.7,=\mathrm{C} H), 6.11(1 \mathrm{H}, \mathrm{d}, J 12.7,=\mathrm{C} H), 4.93(1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{~N} H), 4.84(1 \mathrm{H}, \mathrm{d}, J 9.5$, CHHOAr), $4.70(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{CHHOAr}), 3.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.89(1 \mathrm{H}$, ddd, J 14.7, 8.4 and 5.8, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.20\left(1 \mathrm{H}, \mathrm{dt}, J 14.7\right.$ and $\left.5.1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; \mathrm{m} / \mathrm{z}$ (ESI) Found: $406.1658\left(\mathrm{M}^{+}, \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 406.1681$), 407$ (4), 154 (11), 123 (11), 109 (21), 95 (38), 81 (44), 69 (76), 55 (100).

1-(Benzyloxy)-2-prop-1-yn-1-ylbenzene (41). Bis(triphenylphosphine)palladium(II)chloride ($2.30 \mathrm{~g}, 3.15 \mathrm{mmol}$) and copper (I) iodide ($1.20 \mathrm{~g}, 6.32 \mathrm{mmol}$) were added to a stirred solution of the benzylether of 2-iodophenol ($20.0 \mathrm{~g}, 63.5 \mathrm{mmol}$) in diethylamine (300 mL) and the mixture was cooled to $0^{\circ} \mathrm{C}$. An excess of propyne was bubbled steadily through the slurry for 30 min and the mixture was then allowed to slowly warm to room temperature over $30-45 \mathrm{~min}$. Propyne was introduced for a further 2 hr at room temperature and the mixture was then left to stir overnight under an atmosphere of propyne. The mixture was concentrated in vacuo to leave a black viscous oil which was purified by chromatography, eluting with diethyl ether : pentane (3 : 97), to give the alkyne $(12.8 \mathrm{~g}, 91 \%)$ as a yellow oil; $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 2240,1599,1574$ and $1502 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 7.56-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.50(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.7, ArH), 7.47-7.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 7.40-7.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 7.27-7.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 6.98-6.92 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 2.18\left(3 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CCH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 159.1(\mathrm{~s}), 137.1$ (s), 133.5 (d), 128.7 (d), 128.4 (d), 127.6 (d), 126.9 (d), 120.8 (d), 114.0 (s), 112.9 (d), 90.1 (s), $76.0(\mathrm{~s}), 70.4(\mathrm{t}), 4.6(\mathrm{q}) ; m / z(\mathrm{FAB})$ Found: $222.1045\left([\mathrm{M}]^{+}, \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}\right.$ requires 222.1029), 222 ([M] $\left.{ }^{+}, 42 \%\right), 199(37), 176(15), 154$ (35), 136 (33), 91 (100) and 73 (41).

\{(1E)-1-[2-(Benzyloxy)phenyl]prop-1-en-1-yl\}(tributyl)stannane

Bis(triphenylphosphine)palladium(II)chloride $(0.33 \mathrm{~g}, 0.45 \mathrm{mmol})$ was added to a stirred solution of the alkyne $41(1.00 \mathrm{~g}, 4.50 \mathrm{mmol})$ in tetrahydrofuran $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. An excess of tributyltin hydride ($1.50 \mathrm{~g}, 1.4 \mathrm{~mL}, 5.15 \mathrm{mmol}$) was added dropwise over 3 hr and the mixture was then concentrated in vacuo. The residue was purified by chromatography on basic alumina, eluting with diethyl ether : pentane ($5: 95$), to give the stannane ($1.69 \mathrm{~g}, 73 \%$) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1}$ (film) $3066,2955,2926,1591,1574,867,748,696$ and 667 ; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, 298 K) 7.41-7.27 (5H, m, ArH), 7.09-7.07 (1H, m, ArH), 6.90 ($2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{ArH}), 6.87(1 \mathrm{H}, \mathrm{app} \mathrm{d}$, $J 8.2, \operatorname{Ar} H), 5.91(1 \mathrm{H}, \mathrm{q}, J 6.5,=\mathrm{CH}), 5.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 1.66\left(3 \mathrm{H}, \mathrm{d}, J 6.5,=\mathrm{HCH}_{3}\right), 1.41-$ $1.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SnCH}_{2} \mathrm{CH}_{2}\right), 1.22\left(6 \mathrm{H}, \mathrm{sx}, J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.83\left(9 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.85-$ 0.75 ($6 \mathrm{H}, \mathrm{m}, \mathrm{SnCH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 154.7(\mathrm{~s}), 142.7$ (s), 137.7 (s), 136.0 (d), 134.1 (s), 128.7 (d), 128.4 (d), 127.6 (d), 127.2 (d), 126.2 (d), 120.7 (d), 112.1 (d), 70.1 (t), 29.0 (t), $27.4(\mathrm{t}), 16.5(\mathrm{q}), 13.8(\mathrm{q}), 10.3(\mathrm{t}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ Found: $457.1537\left([\mathrm{M}-\mathrm{Bu}]^{+}, \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}^{120} \mathrm{Sn}\right.$
requires 457.1553$), 515\left([\mathrm{M}+\mathrm{H}]^{+}, 2 \%\right), 457(100), 366(30), 343(17), 309(15), 291$ (10), 251 (12), 179 (25) and 91 (50).

1-(Benzyloxy)-2-[(1E)-1-iodoprop-1-en-1-yl]benzene (53). Iodine ($1.48 \mathrm{~g}, 5.80 \mathrm{mmol}$) was added portionwise over 0.5 hr to a stirred solution of the vinylstannane $42(2.38 \mathrm{~g}, 4.64 \mathrm{mmol})$ in tetrahydrofuran $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was then allowed to warm to room temperature and stirred for 1 hr . The mixture was concentrated in vacuo and the residue was diluted with diethyl ether (100 mL) and stirred vigorously overnight with sat. aqueous potassium fluoride $(150 \mathrm{~mL})$. The ether extracts were washed successively with sat. aqueous sodium metabisulfite $(100 \mathrm{~mL})$, sat. aqueous sodium bicarbonate solution $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, then dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by chromatography on silica, eluting with diethyl ether : pentane $(5: 95)$ to give the vinyl iodide $(1.4 \mathrm{~g}, 81 \%)$ as a pale yellow oil; (Found: C, 55.2; H, 4.2; $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OI}$ requires: C, $54.9 ; \mathrm{H}, 4.3 \%$); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 3029, 1638, $1593,1579,859,750$ and $696 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 7.53-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.43-7.38$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.35-7.31(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.27-7.22(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.20(1 \mathrm{H}, \mathrm{app} \mathrm{dd}, J 7.6$ and 1.7, $\mathrm{Ar} H)$, 6.97-6.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $6.59(1 \mathrm{H}, \mathrm{q}, J 7.0,=\mathrm{CH}), 5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 1.53(3 \mathrm{H}, \mathrm{d}, J$ $\left.7.0,=\mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) 154.9(\mathrm{~s}), 139.0(\mathrm{~d}), 137.0(\mathrm{~s}), 130.6$ (s), 130.1 (d), 129.4 (d), 128.4 (d), 127.6 (d), 126.9 (d), 120.7 (d), 112.9 (d), 90.0 (s), 70.0 (t), 17.8 (q); m/z ($\mathrm{FAB}^{+} \mathrm{Ve}$): 350.0164 ($[\mathrm{M}]^{+}, \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OI}$ requires 350.0169), 350 ($[\mathrm{M}]^{+}, 2 \%$), 259 (7), 223 (30), 207 (10), 145 (8), 133 (13), 105 (35) and 91 (100).

[(E)-(1S,2R)-2-Benzyloxy-3-(2-benzyloxy-phenyl)-1-hydroxymethyl-pent-3-enyl]-carbamic

 acid tert-butyl ester (55). Sodium hydride (60% dispersion in oil, $27.5 \mathrm{mg}, 0.688 \mathrm{mmol}$) was added portionwise over 10 min to a cold solution of the anti-allylic alcohol $\mathbf{5 4 b}(155 \mathrm{mg}, 0.342$ $\mathrm{mmol})$ in tetrahydrofuran $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min . Benzyl bromide $(0.25 \mathrm{ml}, 175 \mathrm{mg}, 1.02 \mathrm{mmol})$ was added in one portion and the mixture was heated to $65{ }^{\circ} \mathrm{C}$ for 6 hr and then concentrated in vacuo. The residue was quenched with sat. aqueous ammonium chloride $(5 \mathrm{~mL})$ and extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with sat. aqueous sodium bicarbonate solution (5 mL) and brine (5 mL), then and concentrated in vacuo. The residue was purified by chromatography, eluting withethyl acetate in petrol (5:95 to 20:80), to give the corresponding benzyl ether ($170 \mathrm{mg}, 92 \%$) as a colourless viscous oil; $[\alpha]_{D}^{18}-8.9\left(c 1.67\right.$ in $\left.\mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right.$ soln. $) 2975,2935$, 1689,1238 and 1059; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 343 \mathrm{~K}\right) 7.50(2 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{Ar} H), 7.40-7.38(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.35-7.15(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.10-7.03(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.96(1 \mathrm{H}, \mathrm{dt}, J 7.4$ and 1.0, $\mathrm{Ar} H), 6.86$ $(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{Ar} H), 6.18\left(1 \mathrm{H}, \mathrm{q}, J 6.8\right.$, $[$ rotamer $\left.1+\operatorname{rotamer} 2]=\mathrm{CHCH}_{3}\right), 5.45-4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{CHO}), 4.88-4.81\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCHHOAr}\right.$ and $\left.\mathrm{ArCH}_{2} \mathrm{O}\right), 4.62(1 \mathrm{H}, \mathrm{d}, J 12.1$, ArCHHOAr$), 4.42$ ($1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 4.5, CHHO), 4.18 (1 H, app br s, CHN), $3.89(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 7.6, CHHO), $1.85\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right), 1.68\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right), 1.59(3 \mathrm{H}, \mathrm{d}, J 6.8$, [rotamer $1+$ rotamer 2] $\left.=\mathrm{CHCH}_{3}\right), 1.43\left(9 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 343 \mathrm{~K}\right) 156.3$ (s), 151.7 (s), 139.3 (s), 137.1 (s), $136.65(\mathrm{~s}), 130.9(\mathrm{~d}), 128.2-126.85((7 \times \mathrm{d})$ and (s)), $123.1(\mathrm{~d}), 120.8(\mathrm{~d})$, 112.4 (d), $94.5(\mathrm{~s}), 80.3(\mathrm{~d}), 78.55(\mathrm{~s}), 71.65(\mathrm{t}), 70.3(\mathrm{t}), 62.9(\mathrm{t}), 59.2(\mathrm{~d}), 28.0(\mathrm{q}), 25.7(\mathrm{q})$, 24.9 (q), 13.7 (q); m / z (ESI) Found: 566.2881 ($[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{Na}$ requires 566.2882), $566\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 322(50)$.

Boron trifluoride-acetic acid complex ($0.27 \mathrm{~mL}, 1.90 \mathrm{mmol}$) was added in one portion to a solution of the above oxazolidine ($170 \mathrm{mg}, 0.319 \mathrm{mmol}$) in methanol $(4 \mathrm{~mL})$ and the mixture was stirred at room temperature for 3 hr , then quenched with sat. aqueous sodium bicarbonate solution (5 mL) and concentrated in vacuo. The residue was diluted with water (5 mL) and extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate : petrol (25:75), to give the alcohol ($156 \mathrm{mg}, 98 \%$) as a colourless viscous oil; $[\alpha]_{D}^{17}+2.3$ (c 1.0 in CDCl_{3}); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right.$ soln.) 3522,3441 , 1704 and $1500 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 343 \mathrm{~K}\right) 7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.32-7.25(5 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{ArH}), 7.24$ (1H, app br s, ArH), 7.21-7.14 (4H, m, ArH), 6.95 (1H, dt, J 7.4 and 1.0, $\mathrm{Ar} H), 6.86-6.84(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar} H), 6.07(1 \mathrm{H}, \mathrm{q}, J 6.8$, [rotamer $1+$ rotamer 2$]=\mathrm{C} H), 5.32(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6.8, \mathrm{~N} H), 4.86(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{ArCH}_{2} \mathrm{OAr}\right), 4.72(1 \mathrm{H}, \mathrm{d}, J 11.9$, ArCHHOCH$), 4.67(1 \mathrm{H}, \mathrm{br}$ s, CHO), 4.36 ($1 \mathrm{H}, \mathrm{d}, J 11.9$, ArCHHOCH), 4.12 ($1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $4.2, \mathrm{C} H \mathrm{HOH}), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{~N}), 3.82(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $11.5, \mathrm{CH} H \mathrm{OH}), 2.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.61\left(3 \mathrm{H}, \mathrm{d}, J 6.8,[\right.$ rotamer $\left.1+\operatorname{rotamer} 2]=\mathrm{CHCH}_{3}\right), 1.45$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 343 \mathrm{~K}\right) 156.3(\mathrm{~s}), 155.4(\mathrm{~s}), 138.7(\mathrm{~s}), 137.15(\mathrm{~s}), 135.8(\mathrm{~s})$, 131.0 (d), 128.4 (d), 128.2 (d), 128.1 (d), 127.8 (d), 127.6 (d), 127.3 (s), 127.2 (d), 126.8 (d),
124.5 (d), 120.8 (d), 112.45 (d), 84.7 (d), 78.3 (s$), 71.85(\mathrm{t}), 70.35(\mathrm{t}), 61.7(\mathrm{t}), 54.1(\mathrm{~d}), 28.0(\mathrm{q})$, 13.9 (q); $m / z(E S I)$ Found: $526.2540\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Na}\right.$ requires 526.2569), 526 ([M + $\left.\mathrm{Na}]^{+}, 100 \%\right), 404$ (18), 296 (70).

(E)-(2R,3R)-3-Benzyloxy-4-(2-benzyloxy-phenyl)-2-tert-butoxycarbonylamino-hex-4-enoic

 acid (56). Sodium bicarbonate ($435 \mathrm{mg}, 3.10 \mathrm{mmol}$) and Dess-Martin periodinane ($447 \mathrm{mg}, 1.03$ $\mathrm{mmol})$ were added to a stirred solution of the alcohol 55 ($130 \mathrm{mg}, 0.258 \mathrm{mmol}$) in dichloromethane $(3 \mathrm{~mL})$ and the mixture was then stirred at room temperature for 2 hr . The solution was washed with water $(3 \times 4 \mathrm{~mL})$, and the seperated aqueous extracts were then extracted with dichloromethane $(3 \times 4 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate : petrol ($30: 70$), to give the corresponding aldehyde ($70 \mathrm{mg}, 54 \%$) as a colourless viscous oil; $[\alpha]_{D}^{18}-49.5$ (c 0.767 in CDCl_{3}); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3435,1707$ and $1499 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 333 \mathrm{~K}\right) 9.56$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), 7.40-7.25 (9H, m, $\mathrm{Ar} H$), 7.24-7.21 (2 H , $\mathrm{m}, \mathrm{Ar} H), 7.11(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and 1.7, $\mathrm{Ar} H), 7.03-6.99(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.04(1 \mathrm{H}, \mathrm{q}, J 6.9$, [rotamer $1+$ rotamer 2$]=\mathrm{C} H), 5.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{OAr}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J 12.1$, ArCHHOCH$), ~ 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{~N}), 4.32(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{ArCHHOCH}), 4.26-4.21(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOBn}), 1.58\left(3 \mathrm{H}, \mathrm{d}, J 6.9\right.$, $[$ rotamer $1+$ rotamer 2$\left.]=\mathrm{CHCH}_{3}\right), 1.37\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}$ ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 333 \mathrm{~K}$) 198.85 (d), 156.55 (s), 155.35 (s), 138.4 (s), 137.1 (s), 134.1 (s), 131.45 (d), 129.3 (d), 128.75 (d), 128.45 (d), 128.25 (d), 127.85 (d), 127.7 (d), 127.6 (d), 126.9 (), 126.3 (d), 121.45 (d), 112.7 (d), 82.9 (d), 79.8 (s), 71.7 (t), 70.9 (t), 61.7 (d), 28.4 (q), 14.4 (q); m / z (ESI) Found: $524.2421\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Na}\right.$ requires 524.2413), $524\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, 100\%).An aliquot (3.5 mL) of a solution of $\mathrm{NaClO}_{2}(119 \mathrm{mg}, 1.32 \mathrm{mmol})$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}(131 \mathrm{mg}$, $0.961 \mathrm{mmol})$ in water (4.2 mL) was added in one portion to a rapidly stirred solution of the above aldehyde ($70 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $t-\mathrm{BuOH}(6.5 \mathrm{~mL})$ and 2-methyl-2-butene $(3.0 \mathrm{~mL})$ at room temperature. The mixture was stirred at room temperature for 4 h and then concentrated in vacuo. Water (5 mL) was added and the separated aqueous layer was extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (5 mL), dried, and concentrated in vacuo to leave the carboxylic acid ($52 \mathrm{mg}, 72 \%$) as a colourless
viscous oil; $[\alpha]_{D}^{20}-16.6\left(c 0.43\right.$ in $\left.\mathrm{CDCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3500-2500,3435,1760,1713$ and $1500 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 332 \mathrm{~K}\right) 7.42-7.20(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.15(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{Ar} H), 7.00(2 \mathrm{H}$, d, $J 7.9, \operatorname{Ar} H), 6.07\left(1 \mathrm{H}, \mathrm{q}, J 6.8,=\mathrm{CHCH}_{3}\right), 5.21(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.5, \mathrm{~N} H), 5.10(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{2} \mathrm{OAr}\right), 4.70(1 \mathrm{H}, \mathrm{d}, J 12.0$, ArCHHOCH$), 4.50(1 \mathrm{H}, \operatorname{app} \mathrm{d}, J 3.8, \mathrm{C} H \mathrm{~N}), 4.38(1 \mathrm{H}, \mathrm{d}, J$ 12.0, ArCHHOCH$), 4.29(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 4.6 CHOBn$), 1.57\left(3 \mathrm{H}, \mathrm{d}, J 6.8,=\mathrm{CHCH}_{3}\right), 1.37$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 333 \mathrm{~K}\right) 171.5(\mathrm{~s}), 156.2(\mathrm{~s}), 155.4(\mathrm{~s}), 138.2(\mathrm{~s}), 136.8(\mathrm{~s})$, 133.4 (s), 131.7 (d), 129.25 (d), 128.8 (d), 128.5 (d), 128.3 (d), 127.9 (d), 127.65 (d), 127.45 (d), 126.55 (s), 121.5 (d), 112.6 (d), 82.1 (d), 80.15 (s), 71.6 (t), 70.95 (t), 57.0 (d), 28.4 (q), 14.4 (q); m / z (ESI) Found: $540.2387\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{Na}\right.$ requires 540.2362), $540\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, 100\%), 321 (80).

(E)-(2R,3R)-3-Benzyloxy-4-(2-benzyloxy-phenyl)-2-tert-butoxycarbonylamino-hex-4-enoic

 acid 2-bromo-6-iodo-phenyl ester (57). A solution of the carboxylic acid $\mathbf{5 6}$ ($36 \mathrm{mg}, 0.069$ mmol) in dichloromethane $(0.5 \mathrm{~mL})$ together with EDC ($21 \mathrm{mg}, 0.10 \mathrm{mmol}$) and DMAP (20 mg , 0.15 mmol) were added sequentially to a stirred solution of 2-iodo-6-bromophenol ($24 \mathrm{mg}, 0.077$ $\mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ at room temperature. The mixture was stirred at room temperature for 24 hours then diluted with dichloromethane (5 mL) and washed successively with water $(5 \times 5 \mathrm{~mL})$, sat. aqueous sodium bicarbonate solution $(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. Evaporation of the dried extract in vacuo left a colourless viscous oil which was purified by chromatography, eluting with ethyl acetate : petrol (5:95 to 20:80), to give the ester (30 mg , 55%) as a colourless viscous oil; $[\alpha]_{D}^{20}+35.3\left(c 0.63\right.$ in $\left.\mathrm{CDCl}_{3}\right) ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3692,3440$, 1770 and $1713 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 334 \mathrm{~K}\right) 7.74(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $1.5, \mathrm{Ar} H), 7.54(1 \mathrm{H}, \mathrm{dd}, J$ 8.0 and 1.4, $\mathrm{Ar} H), 7.42(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.35-7.20(9 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{Ar} H), 7.01(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.79(1 \mathrm{H}$, app t, $J 7.9, \operatorname{Ar} H), 6.23(1 \mathrm{H}, \mathrm{q}, J 6.8$, [rotamer $\left.1+\operatorname{rotamer} 2]=\mathrm{CHCH}_{3}\right), 5.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H)$, $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{OAr}\right), 4.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H \mathrm{NH}), 4.74$ (1H, d, J 11.9, CHOCHHAr), 4.69-6.64 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 4.32(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{CHOCHHAr}), 1.60(3 \mathrm{H}, \mathrm{d}, J 6.8$, [rotamer $1+$ rotamer 2] $\left.=\mathrm{CHCH}_{3}\right), 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 334 \mathrm{~K}\right) 166.6$ (s), 156.7 (s), 154.7 (s), 149.6 (s), 138.9 (d), 137.3 (s), 133.9 (s), 133.7 (d), 132.4 (d), 128.9 (d), 128.7 (d), 128.25 (d),128.1 (d), 128.0 (d), 127.9 (d), 127.7 (d), 127.35 (d), 127.3 (s), 121.3 (d), 116.8 (s), 112.7 (d), 91.6 (s), 82.7 (d), 79.8 (s), 71.6 (t), 70.8 (t), 57.5 (d), 28.6 (q), 14.5 (q).

(S)-4-[$[(E)-(R)$-2-(2-Benzyloxy-phenyl)-1-(2-iodo-benzyloxy)-but-2-enyl]-2,2-dimethyl-

 oxazolidine-3-carboxylic acid tert-butyl ester (59b). Sodium hydride (60\% dispersion in oil, $53 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added portionwise over 10 min to a stirred solution of the anti-allylic alcohol $\mathbf{5 4 b}$ ($500 \mathrm{mg}, 1.10 \mathrm{mmol}$) in tetrahydrofuran $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . 2-Iodobenzyl bromide ($448 \mathrm{mg}, 1.43 \mathrm{mmol}$) was added and the mixture was heated to $55^{\circ} \mathrm{C}$ for 20 hr and then concentrated in vacuo. The residue was quenched with sat. aqueous ammonium chloride $(5 \mathrm{~mL})$ and extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with sat. aqueous sodium bicarbonate solution (5 mL) and brine (5 mL), then dried and concentrated in vacuo. The residue was purified by chromatography, eluting with ethyl acetate : petrol (5:95 to $20: 80$), to give the corresponding benzyl ether (582 $\mathrm{mg}, 79 \%$) as an oil; $[\alpha]_{\mathrm{D}}^{24}+5.0\left(c 0.93\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 2935$ and 1694; $\delta_{\mathrm{H}}(360$ MHz, DMSO, 353 K) 7.83 (1 H , app d, $J 7.3$, ArH), 7.56 (1 H, app d, $J 7.5$, ArH), 7.45-7.25 (7H, $\mathrm{m}, \mathrm{Ar} H), 7.15(1 \mathrm{H}, \operatorname{app} \mathrm{d}, J 8.0, \mathrm{Ar} H), 7.10-6.95(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 5.98\left(1 \mathrm{H}, \mathrm{d}, J 6.7,=\mathrm{CHCH}_{3}\right)$, 5.20-5.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{O}$), $4.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHO}), 4.68(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{ArCHHO}), 4.42(1 \mathrm{H}, \mathrm{d}, J$ 13.2, ArCHHO), 4.01-3.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHHO}$), 3.85 ($1 \mathrm{H}, \mathrm{br}$ s, CHHO), 3.70 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHN}$), 1.49 $\left(3 \mathrm{H}, \mathrm{d}, J 6.7,=\mathrm{CHCH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right), 1.29(9 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(90 \mathrm{MHz}, \mathrm{DMSO}, 353 \mathrm{~K}) 156.2(\mathrm{~s}), 151.7(\mathrm{~s}), 141.2(\mathrm{~s}), 139.1(\mathrm{~d}), 137.6$ (s), 131.0 (d), 129.6 (d), 129.1 (d), 129.0 (d), 128.7 (d), 128.5 (d), 128.1 (d), 127.9 (d), 127.7 (s), 123.4 (d), 121.1 (d), 113.3 (d), 97.6 (s), 94.3 (s$), 81.1$ (d), 79.4 (s$), 75.7$ (t$), 70.4$ (t), 62.6 (t), 59.0 (d), 28.5 (q), 26.0 (q), 24.8 (q), 14.3 (q); m / z (ESI) Found: $692.1794\left(\mathrm{M}^{+}+\mathrm{Na}, \mathrm{C}_{34} \mathrm{H}_{40} \mathrm{NO}_{5}\right.$ INa requires 692.1849), $692\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right), 576(22) ;(1 R, 7 \mathrm{aS})-1-\{(1 E)-1-[2-(B e n z y l o x y) p h e n y l]$ prop-1-en-1-yl\}-5,5-dimethyldihydro-1 H -[1,3]oxazolo [3,4-c][1,3]oxazol-3-one ($50 \mathrm{mg}, 12 \%$) was also obtained as an oil; $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 2937,1754$ and $1692 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 318 \mathrm{~K}\right) 7.40-$ $7.28(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.07(1 \mathrm{H}, \mathrm{dd}, J 7.45$ and $1.8, \mathrm{Ar} H), 7.02(1 \mathrm{H}, \mathrm{app} \mathrm{d}, J 8.4, \mathrm{Ar} H), 6.99(1 \mathrm{H}$, $\mathrm{dt}, J 7.4$ and $1.0, \mathrm{Ar} H) 6.09\left(1 \mathrm{H}, \mathrm{q}, J 6.9\right.$, $[$ rotamer $\left.1+\operatorname{rotamer} 2]=\mathrm{CHCH}_{3}\right), 5.52(1 \mathrm{H}, \mathrm{dt}, J 8.1$ and 1.5, CHO), $5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.10(1 \mathrm{H}, \mathrm{ddd}, J 9.0,8.2$ and 6.4 CHN$), 3.63(1 \mathrm{H}, \mathrm{dd}, J$ 9.0 and $8.6, \mathrm{C} H \mathrm{HO}), 3.54(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $6.4, \mathrm{CHHO}), 1.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right), 1.61(3 \mathrm{H}$,d, $J 6.9$, $\left[\right.$ rotamer $1+$ rotamer 2] $\left.=\mathrm{CHCH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; \delta_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}, 318\right.$ K) 157.0 (s), 156.3 (s), 136.7 (s), 132.0 (s), 131.5 (d) 129.6 (d), 128.8 (d), 128.3 (d), 127.4 (d), 125.8 (d), 125.5 (s , 121.3 (d) 113.1 (d), 94.8 (s$), 75.6$ (d), 70.7 (t), 65.1 (t$), 61.7$ (d), 28.4 (q), 23.5 (q), 14.5 (q); m / z (ESI) Found: 402.1719 ($[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}$ requires 402.1681), $402\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$.

References

31. E. Morera and G. Ortar, Synth. Commun., 2001, 31, 2215-2222.
32. G. Li, H.-X. Wei, B. R. Whittlesey and N. N. Batrice, J. Org. Chem., 1999, 64, 1061-1064.
33. D. E. Ames, R. E. Bowman, D. D. Evans and W. A. Jones, J. Chem. Soc., 1956, 1984-1989.
