First Synthesis of 1,2,3-Triazolo-Linked (1,6)-α-D-Oligomannoses (Triazolomannoses) by Iterative Cu(I)-Catalyzed Alkyne-Azide Cycloaddition

Pavel Cheshev, Alberto Marra,* and Alessandro Dondoni* Laboratorio di Chimica Organica, Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy

Electronic Supplementary Information

All moisture-sensitive reactions were performed under a nitrogen atmosphere using oven-dried glassware. Anhydrous solvents were dried over standard drying agents¹⁹ and freshly distilled prior to use. Reactions were monitored by TLC on silica gel 60 F₂₅₄ with detection by charring with sulfuric acid. Flash column chromatography²⁰ was performed on silica gel 60 (230-400 mesh). Optical rotations were measured at 20 \pm 2 °C in the stated solvent; [α]_D values are given in 10⁻¹ deg cm² g⁻¹. ¹H NMR (300 and 400 MHz) and ¹³C NMR spectra (75 and 100 MHz) spectra were recorded for CDCl₃ solutions at rt unless otherwise specified; chemical shifts are in ppm (δ) from SiMe₄ (TMS) as internal standard; assignments were aided by homo- and heteronuclear two-dimensional experiments. MALDI-TOF mass spectra were performed using 2,6-dihydroxy-benzoic acid as the matrix. The closed vessel MW experiments were performed using a Biotage Initiator apparatus; the reaction time was counted when the reaction mixture reached the preset temperature.

Preparation of building block 1 and platform 2

8-O-Acetyl-3,7-anhydro-4,5,6-tri-O-benzyl-1,2-dideoxy-D-glycero-D-talo-oct-1-ynitol (13).²¹ To a stirred solution of known¹⁶ tetra-O-benzyl derivative **12** (96 mg, 0.17 mmol) in a 2:1 mixture of acetic anhydride and acetic acid (3 cm³), ZnCl₂ (238 mg, 1.75 mmol) was added. The resulting mixture was stirred at rt for 4 h, then diluted with AcOEt (30 cm³), washed with H₂O (2 x 20 cm³) and saturated aqueous NaHCO₃ (20 cm³), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 5:1 cyclohexane-AcOEt to give **13** (83 mg, 95%) as an

amorphous solid; $[\alpha]_D = +20.7$ (*c* 1.0, CHCl₃). The ¹H NMR data of **13** were identical to those previously reported²¹. Anal. Calcd. for C₃₁H₃₂O₆: C, 74.38; H, 6.44;. Found: C, 74.10; H, 6.20.

3,7-Anhydro-4,5,6-tri-O-benzyl-1,2-dideoxy-D-glycero-D-talo-oct-1-ynitol (1). To a stirred solution of known¹⁶ tetra-O-benzyl derivative **12** (577 mg, 1.05 mmol) in a 2:1 mixture of acetic anhydride and acetic acid (15 cm³), ZnCl₂ (1,43 g, 10.5 mmol) was added. The resulting mixture was stirred at rt for 7 h, then diluted with AcOEt (50 cm³), washed with H₂O (2 x 30 cm³) and saturated aqueous NaHCO₃ (30 cm³), dried (Na₂SO₄), concentrated, and dried under high vacuum to give crude acetate 13. To a solution of 13 in MeOH (20 cm³) was added a 0.2 M solution of NaOMe in MeOH (3 cm³, freshly prepared from Na and MeOH). The solution was kept at rt for 1 h, then neutralized with acetic acid, and concentrated. A solution of the residue in AcOEt (50 cm³) was washed with H₂O (30 cm³) and saturated aqueous NaHCO₃ (30 cm³), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 3:1 cyclohexane-AcOEt to afford alcohol 1 (420 mg, 87%) as an amorphous solid; $[\alpha]_D = +27.7$ (c 1.0, CHCl₃). ¹H NMR: δ 7.45-7.23 (15 H, m, 3 Ph), 5.02-4.62 (7 H, m, PhC H_2 and 3-H), 4.11 (1 H, dd, $J_{4.5} = 2.5, J_{5.6} = 9.0$ Hz, 5-H), 4.01 (1 H, t, J_{6.7} = 10.5 Hz, 6-H), 3.96-3.78 (4 H, m, 4-H, 7-H and 8-H), 2.58 (2 H, d, $J_{1,3} = 2.5$ Hz, 1-H), 2.12 (1 H, br t, OH). ¹³C NMR: δ 138.1 (C), 137.8 (C), 128.4 (CH), 128.1 (CH), 127.8 (CH), 127.7 (CH), 80.1 (CH₂), 78.4 (C), 77.5 (CH), 76.4 (CH), 75.3 (CH), 75.0 (CH₂), 74.6 (CH₂), 72.2 (CH), 66.3 (CH₂), 62.3 (CH). MALDI-TOF MS: 481.3 (M⁺ + Na). Anal. Calcd. for C₂₉H₃₀O₅: C, 75.96; H, 6.59. Found: C, 75.76; H, 6.30.

3,7-Anhydro-4,5,6-tri-O-benzyl-8-O-tert-butyldimethylsilyl-1,2-dideoxy-D-glycero-D-talo-oct-

1-ynitol (14). To a stirred solution of alcohol **1** (310 mg, 0.68 mmol) in anhydrous DMF (5 cm³) was added imidazole (460 mg, 6.80 mmol), followed by *tert*-butyldimethylsilyl chloride (510 mg, 3.38 mmol). The resulting solution was kept at rt for 3 h, then diluted with AcOEt (50 cm³), washed with H₂O (2 x 30 cm³) and brine (20 cm³), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 9:1 cyclohexane-AcOEt to afford **14** (387 mg, 100%) as a syrup; $[\alpha]_D = +13.7$ (*c* 1.0, CHCl₃). ¹H NMR: δ 7.45-7.23 (15 H, m, 3 Ph), 5.02-4.62 (6 H, m, 3 PhCH₂), 4.80 (1 H, t, *J*_{3,4} = 2.5 Hz, 3-H), 4.07 (2 H, m, 8-H), 4.01 (1 H, dd, *J*_{4,5} = 4.0 Hz, *J*_{5,6} = 11.5 Hz, 5-H), 3.95 (1 H, dd, *J*_{6,7} = 1.7 Hz, 6-H), 3.84 (1 H, dd, 4-H), 3.82 (1 H, ddd, *J* = 1.7, 5.0, 5.0 Hz, 7-H), 2.53 (1 H, d, *J*_{1,3} = 2.5 Hz, 1-H), 0.93 (9 H, s, C(CH₃)₃), 0.13 and 0.16 (6 H, 2 s, 2 CH₃). MALDI-TOF MS: 595.6 (M⁺ + Na), 609.6 (M⁺ + K). Anal. Calcd. for C₃₅H₄₄O₅Si: C, 73.39; H, 7.74. Found: C, 73.16; H, 7.50.

3,7-Anhydro-4,5,6-tri-O-benzyl-8-O-tert-butyldimethylsylil-2-deoxy-D-glycero-D-talo-octitol

(15). To a stirred solution of 14 (118 mg, 0.21 mmol) in anhydrous THF (2 cm³) was added dropwise 9-BBN (1.0 mmol, 2 cm³ of a 0.5 M solution in THF). Stirring was continued at rt for18 h, then to the reaction mixture was added an alkaline solution of H_2O_2 (freshly prepared from 1 cm³ of 6 M aqueous solution of NaOH and 400 mm³ of a ca. 35% solution of H_2O_2 in water). The

reaction mixture was stirred at rt for 2 h, then cooled to 0 °C and treated with NaBH₄ (100 mg, 2.6 mmol). The mixture was stirred for an additional 30 min at rt, then diluted with acetic acid (0.5 cm³) and AcOEt (30 cm³), washed with H₂O (30 cm³) and saturated NaHCO₃ (30 cm³), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 3:1 cyclohexane-AcOEt to give **15** (100 mg, 82%) as a syrup; $[\alpha]_D = +19.2$ (*c* 1.4, CHCl₃). ¹H NMR selected data: δ 7.48-7.25 (15 H, m, 3 Ph), 4.68-4.50 (6 H, m, 3 PhCH₂), 4.18 (1 H, ddd, *J* = 3.5, 6.0, 10.0 Hz, 3-H), 2.82 (1 H, br t, OH), 1.98-1.70 (2 H, m, 2-H), 0.91 (9 H, s, C(CH₃)₃), 0.12 and 0.14 (6 H, 2 s, 2 CH₃). MALDI-TOF MS: 615.9 (M⁺ + Na). Anal. Calcd. for C₃₅H₄₈O₆Si: C, 70.91; H, 8.16. Found: C, 70.77; H, 8.10.

3,7-Anhydro-4,5,6-tri-*O***-benzyl-2-deoxy-1***-O***-methoxymethyl-D***-glycero***-D***-talo***-octitol** (16). To a stirred, cooled (0 °C) solution of alcohol 15 (90 mg, 0.15 mmol) in anhydrous CH₂Cl₂ (2 cm³) was added *N,N*-diisopropylethylamine (150 mm³, 0.86 mmol) and chloromethyl metyl ether (35 mm³, 0.46 mmol). The mixture was stirred at rt for 3 h, then diluted with MeOH (0.5 cm³) and concentrated. To a solution of the residue in THF (3 cm³) was added tetrabutylammonium fluoride trihydrate (80 mg, 0.3 mmol). The reaction mixture was stirred at rt for 15 h, then concentrated. The residue was eluted from a column of silica gel with 1:1 cyclohexane-AcOEt to afford syrupy 16 (58 mg, 73%); [α]_D = +9.8 (*c* 1, CHCl₃). ¹H NMR: δ 7.45-7.23 (15 H, m, 3 Ph), 4.90-4.55 (8 H, m, PhCH₂ and OCH₂OMe), 4.21 (1 H, ddd, *J*_{3,4} = 4.0 Hz, *J*_{2,3} = 9.5 Hz, 3-H), 3.98-3.56 (8 H, m, 1,4,5,6,7,8-H), 3.36 (3 H, s, CH₃), 2.45 (1 H, br s, OH), 1.96-1.75 (2 H, m, 2-H). ¹³C NMR: δ 138.4 (*C*), 128.7 (CH), 128.2 (CH), 128.1 (CH), 96.7 (CH₂), 78.0 (CH), 76.5 (CH), 75.4 (CH), 74.5 (CH) and (CH₂), 72.6 (CH₂), 72.1 (CH₂), 70.6 (CH), 64.3 (CH₂), 62.1 (CH₂), 55.6 (CH₃), 29.8 (CH₂). MALDI-TOF MS: 545.6 (M⁺ + Na). Anal. Calcd. for C₃₁H₃₈O₇: C, 71.24; H, 7.33. Found: C, 70.96; H, 7.40.

3,7-Anhydro-8-azido-4,5,6-tri-O-benzyl-1,2,8-trideoxy-1-O-methoxymethyl-D-glycero-D-talo-

octitol (2). A mixture of alcohol 16 (218 mg, 0.42 mmol), diphenyl phosphoryl azide (270 mm³, 1.25 mmol), 1,8-diazabicyclo[5.4.0.]undec-7-ene (125 mm³, 0.84 mmol), and anhydrous DMF (2.5 cm³) was stirred at 120 °C for 20 h, then cooled to room temperature, diluted with AcOEt (50 cm³), washed with saturated aqueous Na₂CO₃ (30 cm³), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 3:1 cyclohexane-AcOEt to afford 2 (197 mg, 86%) as a syrup; $[\alpha]_D = + 6.0$ (*c* 1, CHCl₃). ¹H NMR: δ 7.45-7.21 (15 H, m, 3 Ph), 4.90-4.55 (8 H, m, 3 PhCH₂ and OCH₂OMe), 4.21 (1 H, ddd, $J_{3,4} = 4.0$ Hz, $J_{2,3} = 8.5$ Hz, 3-H), 3.77 (1 H, m, 5-H), 3.70 (1 H, ddd, J = 3.1, 7.0 Hz, 7-H), 3.64 (1 H, dd, $J_{4,5} = 2.2$ Hz, 4-H), 3.59 (1 H, m, 1-H), 3.55 (1 H, t, $J_{6,7} = 7.0$ Hz, 6-H), 3.51 and 3.38 (2 H, 2 m, 8-H), 3.36 (3 H, s, CH₃), 1.97-1.70 (2 H, m, 2-H). ¹³C NMR: δ 138.0 (*C*), 128.5 (CH), 128.4 (CH), 128.0 (CH), 127.7 (CH), 96.5 (CH₂), 77.6 (CH), 75.8 (CH), 75.6 (CH), 74.3 (CH₂), 73.3 (CH), 72.1 (CH₂), 71.7 (CH₂), 70.6 (CH), 64.0 (CH₂), 55.2 (CH₃), 51.3 (CH₂), 29.6 (CH₂). MALDI-TOF MS: 585.5 (M⁺ + K). Anal. Calcd. for C₃₁H₃₇N₃O₆: C, 67.99; H, 6.81; N, 7.67. Found: C, 68.30; H, 6.93; N, 7.52.

8-[1-(2,3,4-tri-*O*-benzyl-α-D-mannopyranosyl)-1*H*-1,2,3-triazol-4-yl]-3,7-anhydro-4,5,6-tri-*O*-benzyl-1,2,8-trideoxy-1-*O*-methoxymethyl-D-*glycero*-D-*talo*-octitol (3).

A mixture of sugar acetylene **1** (120 mg, 0.26 mmol), sugar azide **2** (129 mg, 0.24 mmol), *N*,*N*-diisopropylethylamine (170 mm³, 1.00 mmol), CuI (10 mg, 0.05 mmol), and toluene (3 cm³) was stirred in the dark at rt for 18 h, then diluted with AcOEt (50 cm³), washed with saturated aqueous NaHCO₃ (30 cm³), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with cyclohexane-AcOEt (from 2:1 to 1:1) to give first unreacted acetylene **1** (15 mg, 12%). Eluted second was **3** (190 mg, 80%) as an amorphous solid; $[\alpha]_D = +22.4$ (*c* 1.0, CHCl₃). ¹H NMR selected data: δ 7.68 (1 H, s, triazole 4-H), 5.24 (1 H, d, $J_{1',2'} = 1.8$ Hz, 1'-H), 4.20 (1 H, ddd, J = 4.0, 4.0, 6.5 Hz, 3-H), 3.36 (3 H, s, CH₃), 2.39 (1 H, br s, OH), 1.97-1.70 (2 H, m, 2-H). ¹³C NMR selected data: δ 144.6 (*C*, triazole 4-C), 123.9 (*C*H, triazole 5-C), 96.4 (OCH₂O), 71.1 (*C*H, 1'-C), 70.3 (*C*H, 3-C), 55.3 (*C*H₃), 29.7 (*C*H₂, 2-C). MALDI-TOF MS: 1027.8 (M⁺ + Na). Anal. Calcd. for C₆₀H₆₇N₃O₁₁: C, 71.62; H, 6.71; N, 4.18. Found: C, 71.83; H, 6.66; N, 3.89.

8-[1-(6-azido-2,3,4-tri-*O*-benzyl-6-deoxy-α-D-mannopyranosyl)-1*H*-1,2,3-triazol-4-yl]-3,7anhydro-4,5,6-tri-*O*-benzyl-1,2,8-trideoxy-1-*O*-methoxymethyl-D-*glycero*-D-*talo*-octitol (4).

The replacement of the hydroxy group of **3** (180 mg, 0.18 mmol) with an azido group was performed as described for the synthesis of **2** to give, after column chromatography on silica gel (2:1 cyclohexane-AcOEt) azide **4** as an amophous solid (150 mg, 81%); $[\alpha]_D = +13.4$ (*c* 1.0, CHCl₃). ¹H NMR selected data: δ 7.73 (1 H, s, triazole 4-H), 5.23 (1 H, d, $J_{1',2'} = 1.8$ Hz, 1'-H), 4.22 (1 H, ddd, J = 4.0, 4.0, 6.0 Hz, 3-H), 3.30 (3 H, s, CH₃), 1.97-1.70 (2 H, m, 2-H). ¹³C NMR selected data: δ 144.5 (*C*, triazole 4-C), 124.1 (*C*H, triazole 5-C), 96.4 (OCH₂O), 70.9 (*C*H, 1'-C), 70.8 (*C*H, 3-C), 55.3 (*C*H₃), 29.6 (*C*H₂, 2-C). MALDI-TOF MS: 1070.2 (M⁺ + H + K). Anal. Calcd. for C₆₀H₆₆N₆O₁₀: C, 69.88; H, 6.45; N, 8.15. Found: C, 70.11; H, 6.77; N, 8.43.

Trimannoside (5).

The coupling of azide **4** (120 mg, 0.12 mmol) with sugar acetylene **1** (60 mg, 0.13 mmol) was performed as described for the synthesis of **3** to give, after column chromatography on silica gel (from 3:2 to 1:1 cyclohexane-AcOEt), **5** as an amophous solid (150 mg, 87%); $[\alpha]_D = +18.5$ (*c* 1, CHCl₃). ¹H NMR selected data: δ 7.83 and 7.52 (2 H, 2 s, triazole 4-H), 5.29 and 5.22 (2 H, 2 d, *J* = 1.7 Hz, 1'-H, 1"-H), 4.24 (1 H, ddd, *J* = 4.0, 4.0, 6.5 Hz, 3-H), 3.28 (3 H, s, CH₃), 2.33 (1 H, br t, OH), 1.83-1.70 (2 H, m, 2-H). ¹³C NMR selected data: δ 144.6 and 143.9 (*C*, triazole 4-C), 124.2 and 124.0 (*C*H, triazole 5-C), 96.4 (OCH₂O), 71.4 and 70.6 (*C*H, 1'-C, 1"-C and 3-C), 55.2 (*C*H₃), 29.7 (*C*H₂, 2-C). MALDI-TOF MS: 1513.1 (M⁺ + H + Na). Anal. Calcd. for C₈₉H₉₆N₆O₁₅: C, 71.75; H, 6.50; N, 5.64. Found: C, 71.90; H, 6.27; N, 5.37.

Trimannoside azide (6).

The replacement of the hydroxy group of **5** (110 mg, 0.074 mmol) with an azido group was performed as described for the synthesis of **2** to give, after column chromatography on silica gel (3:1 cyclohexane-AcOEt), azide **6** as an amophous solid (95 mg, 85%); $[\alpha]_D = +12.7$ (*c* 1.0, CHCl₃). ¹H NMR selected data: δ 7.91 and 7.56 (2 H, 2 s, triazole 4-H), 5.28 and 5.24 (2 H, 2 d, *J* = 1.7 Hz, 1'-H, 1"-H), 4.23 (1 H, ddd, *J* = 6.0, 6.0, 7.5 Hz, 3-H), 3.29 (3 H, s, CH₃), 1.80-1.70 (2 H, m, 2-H). ¹³C NMR selected data: δ 144.5 and 143.9 (*C*, triazole 4-C), 124.5 and 124.2 (*C*H, triazole 5-C), 96.4 (OCH₂O), 71.0, 70.7 and 70.5 (*C*H, 1'-C, 1"-C and 3-C), 55.2 (*C*H₃), 29.7 (*C*H₂, 2-C). MALDI-TOF MS: 1537.9 (M⁺ + H + Na). Anal. Calcd. for C₈₉H₉₅N₉O₁₄: C, 70.57; H, 6.32; N, 8.32. Found: C, 70.73; H, 6.11; N, 8.54.

Tetramannoside (7).

The coupling of azide **6** (80 mg, 0. 053 mmol) with sugar acetylene **1** (27 mg, 0.058 mmol) was performed as described for the synthesis of **3** to give, after column chromatography on silica gel (2:1 cyclohexane-AcOEt), **7** as an amophous solid (94 mg, 90%); $[\alpha]_D = +17.8$ (*c* 1.0, CHCl₃). ¹H NMR selected data: δ 7.82, 7.71 and 7.46 (3 H, 3 s, triazole 4-H), 5.31, 5.28 and 5.24 (3 H, 3 d, *J* = 1.7 Hz, 1'-H, 1'''-H), 4.23 (1 H, ddd, *J* = 4.5, 4.5, 7.5 Hz, 3-H), 3.25 (3 H, s, CH₃), 2.33 (1 H, br t, OH), 1.80-1.67 (2 H, m, 2-H). MALDI-TOF MS: 1996.5 (M⁺ + Na). Anal. Calcd. for C₁₁₈H₁₂₅N₉O₁₉: C, 71.82; H, 6.38; N, 6.39. Found: C, 71.54; H, 6.61; N, 6.73.

Tetramannoside azide (8).

The replacement of the hydroxy group of **7** (50 mg, 0.025 mmol) with an azido group was performed as described for the synthesis of **2** to give, after column chromatography on silica gel (3:1 cyclohexane-AcOEt), azide **8** as an amophous solid (40 mg, 79%); $[\alpha]_D = +12.3$ (*c* 1.0, CHCl₃). ¹H NMR selected data: δ 7.90, 7.73 and 7.45 (3 H, 3 s, triazole 4-H), 5.31 and 5.27 (3 H, 3 d, *J* = 1.8 Hz, 1'-H, 1"'-H), 4.23 (1 H, ddd, *J* = 4.5, 4.5, 7.5 Hz, 3-H), 3.25 (3 H, s, CH₃), 1.80-1.67 (2 H, m, 2-H). ¹³C NMR selected data: δ 144.5 and 143.9 (*C*, triazole 4-C), 124.5 and 123.9 (*C*H, triazole 5-C), 96.4 (OCH₂O), 55.2 (*C*H₃), 29.6 (*C*H₂, 2-C). MALDI-TOF MS: 2021.4 (M⁺ + Na). Anal. Calcd. for C₁₁₈H₁₂₄N₁₂O₁₈: C, 70.92; H, 6.25; N, 8.41. Found: C, 70.67; H, 6.19; N, 8.33.

The coupling of azide **8** (28 mg, 0. 014 mmol) with sugar acetylene **1** (7 mg, 0.015 mmol) was performed as described for the synthesis of **3** to give, after column chromatography on silica gel (from 2:1 to 1:1 cyclohexane-AcOEt), **9** as an amophous solid (29 mg, 84%); $[\alpha]_D = +17.0$ (*c* 1.0, CHCl₃). ¹H NMR selected data: δ 7.84, 7.63, 7.60 and 7.44 (4 H, 4 s, triazole 4-H), 5.41, 5.39, 5.30 and 5.27 (4 H, 4 d, J = 1.7 Hz, 1'-H, 1"-H, 1""-H), 4.24 (1 H, ddd, J = 4.5, 4.5, 7.5 Hz, 3-H), 3.22 (3 H, s, CH₃), 2.38 (1 H, br s, OH), 1.80-1.67 (2 H, m, 2-H). ¹³C NMR selected data: δ 144.7 and 143.7 (*C*, triazole 4-C), 124.5, 124.3 and 123.9 (*C*H, triazole 5-C), 96.3 (OCH₂O), 71.5, 71.4, 71.2, 71.0 and 70.6 (*C*H, 1'-C, 1"-C, 1""-C and 3-C), 55.1 (*C*H₃), 29.7 (*C*H₂, 2-C). MALDI-TOF MS: 1027.8 (M⁺ + Na). Anal. Calcd. for C₁₄₇H₁₅₄N₁₂O₂₃: C, 71.86; H, 6.32; N, 6.84;. Found: C, 71.61; H, 6.27; N, 7.07.

Peracetylated pentamannoside (10).

To a solution of 9 (15 mg, 6 µmol) in anhydrous CH₂Cl₂ (2 cm³) was added trifluoroacetic acid (100 mm³). The solution was kept at rt for 3 h, then concentrated and dried under high vacuum. The ¹H NMR analysis of the crude product proved the absence of the methoxymethyl protecting group. To a stirred, cooled (-60 °C) solution of the residue in anhydrous CH₂Cl₂ (2 cm³) was added a 1 M solution of BCl₃ in CH₂Cl₂ (480 mm³, 0.48 mmol). The solution was stirred at -60 °C for 1 h and, after an additional 1 h stirring at 0 °C, diluted with MeOH (0.5 cm³), stirred at 0 °C for 15 min, diluted with triethylamine (0.5 cm³), concentrated, and dried under high vacuum to give a white solid. A suspension of the residue in pyridine (2 cm^3) and acetic anhydride (0.5 cm^3) was stirred at rt for 18 h, then diluted with MeOH (1 cm³) and concentrated. The residue was eluted from a column of silica gel (3:1 CH₂Cl₂-AcOEt, then AcOEt) to give **10** (9 mg, 83%); $[\alpha]_D = +3.3$ (*c* 0.8, CHCl₃). ¹H NMR selected data: δ 8.05, 7.81, 7.79, and 7.69 (4 H, 4 s, triazole 4-H), 5.86, 5.85, 5.78 and 5.77 (4 H, 4 d, *J* = 1.9 Hz, 1'-H, 1"-H, 1"'-H, 1"'-H), 4.24 (1 H, ddd, *J* = 4.5, 7.5 Hz, 3-H), 1.64-1.58 (2 H, m, 2-H). ¹³C NMR selected data: δ 142.6, 142.1 and 141.7 (C, triazole 4-C), 124.4 and 124.3 (CH, triazole 5-C), 68.4, 68.0, 67.7, 66.6 and 64.9 (CH, 1'-C, 1"-C, 1"'-C, 1"'-C and 3-C). 29.7 (CH₂, 2-C). MALDI-TOF MS: 1798.9 (M⁺ + H + Na). Anal. Calcd. for C₇₄H₉₄N₁₂O₃₉: C, 50.06; H, 5.34; N, 9.47. Found: C, 49.93; H, 5.41; N, 9.66.

Free hydroxy pentamannoside (11).

To a solution of **10** (9 mg, 0.005 mmol) in MeOH (1 cm³) was added a ca. 0.2 M solution of NaOMe in MeOH (0.2 cm³, prepared from Na and MeOH immediately before the use) and, after 1 h, H₂O (0.3 cm³). The solution was kept at rt for an additional 1 h, then neutralized with Dowex 50X2-400 resin (H⁺ form, activated and washed with H₂O and MeOH immediately before the use). The resin was washed with H₂O and MeOH, the solution was concentrated and dried under high vacuum to give **11** (5 mg, 93%) as an amorphous solid; $[\alpha]_D = +0.6$ (*c* 0.5, H₂O). ¹H NMR (D₂O)

selected data: δ 8.00, 7.52, 7.32, and 7.20 (4 H, 4 s, triazole 4-H), 5.13, 5.11, 5.1 and 5.08 (4 H, 4 d, *J* = 1.9 Hz, 1'-H, 1"-H, 1"'-H).

Typical procedure for microwave assisted coupling for the synthesis of compounds 3, 5, 7, 9. A mixture of sugar acetylene (0.1 mmol), sugar azide (0.1 mmol), *N*,*N*-diisopropylethylamine (0.2 mmol), CuI (5 mg, 0.026 mmol) and DMF (0.6 cm³) in a vial sealed with a Teflon septum and aluminium crimp was subjected to microwave irradiation for 5 min at 100 °C. The work-up and purification were identical to the ones used in the conventional coupling procedure.

Typical procedure for microwave assisted alcohol-to-azide conversion for the synthesis of compounds 4, 6, 8. A mixture of sugar alcohol (0.1 mmol), diphenyl phosphoryl azide (0.3 mmol), 1,8-diazabicyclo[5.4.0.]undec-7-ene (0.2 mmol) and anhydrous DMF (0.6 cm³) in a vial sealed with a Teflon septum and aluminium crimp was subjected to microwave irradiation for 2 h at 120 °C. The work-up and purification were identical to the ones used in the conventional alcohol-to-azide conversion procedure.

References

- 19 W. L. F Armarego, D. D. Perrin, *Purification of Laboratory Chemicals*, 4th ed., Butterworth-Heinemann: Oxford, 1996.
- 20 W. C. Still, M. Kahn, A. Mitra, J. Org. Chem., 1978, 43, 2923-2925.
- 21 The compound **13** was already reported in the literature; however only its ¹H NMR data were described (T. Nishikawa, M. Ishikawa and M. Isobe, *Synlett*, 1999, 123-125.