First Synthesis of 1,2,3-Triazolo-Linked (1,6)- α-d-Oligomannoses (Triazolomannoses) by Iterative Cu(I)-Catalyzed Alkyne-Azide Cycloaddition

Pavel Cheshev, Alberto Marra,* and Alessandro Dondoni*
Laboratorio di Chimica Organica, Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy

Electronic Supplementary Information

All moisture-sensitive reactions were performed under a nitrogen atmosphere using oven-dried glassware. Anhydrous solvents were dried over standard drying agents ${ }^{19}$ and freshly distilled prior to use. Reactions were monitored by TLC on silica gel $60 \mathrm{~F}_{254}$ with detection by charring with sulfuric acid. Flash column chromatography ${ }^{20}$ was performed on silica gel 60 (230-400 mesh). Optical rotations were measured at $20 \pm 2{ }^{\circ} \mathrm{C}$ in the stated solvent; $[\alpha]_{\mathrm{D}}$ values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 and 400 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra (75 and 100 MHz) spectra were recorded for CDCl_{3} solutions at rt unless otherwise specified; chemical shifts are in ppm (δ) from SiMe_{4} (TMS) as internal standard; assignments were aided by homo- and heteronuclear twodimensional experiments. MALDI-TOF mass spectra were acquired using 2,6-dihydroxy-benzoic acid as the matrix. The closed vessel MW experiments were performed using a Biotage Initiator apparatus; the reaction time was counted when the reaction mixture reached the preset temperature.

Preparation of building block 1 and platform 2

8-O-Acetyl-3,7-anhydro-4,5,6-tri-O-benzyl-1,2-dideoxy-D-glycero-D-talo-oct-1-ynitol (13). ${ }^{21}$ To a stirred solution of known ${ }^{16}$ tetra-O-benzyl derivative $\mathbf{1 2}(96 \mathrm{mg}, 0.17 \mathrm{mmol})$ in a $2: 1$ mixture of acetic anhydride and acetic acid ($3 \mathrm{~cm}^{3}$), $\mathrm{ZnCl}_{2}(238 \mathrm{mg}, 1.75 \mathrm{mmol}$) was added. The resulting mixture was stirred at rt for 4 h , then diluted with $\mathrm{AcOEt}\left(30 \mathrm{~cm}^{3}\right)$, washed with $\mathrm{H}_{2} \mathrm{O}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was eluted from a column of silica gel with 5:1 cyclohexane-AcOEt to give $\mathbf{1 3}$ ($83 \mathrm{mg}, 95 \%$) as an
amorphous solid; $[\alpha]_{\mathrm{D}}=+20.7$ (c 1.0, CHCl_{3}). The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1 3}$ were identical to those previously reported ${ }^{21}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{6}$: C, 74.38; H, 6.44;. Found: C, 74.10; H, 6.20.

3,7-Anhydro-4,5,6-tri-O-benzyl-1,2-dideoxy-D-glycero-D-talo-oct-1-ynitol (1). To a stirred solution of known ${ }^{16}$ tetra- O-benzyl derivative $\mathbf{1 2}(577 \mathrm{mg}, 1.05 \mathrm{mmol})$ in a 2:1 mixture of acetic anhydride and acetic acid $\left(15 \mathrm{~cm}^{3}\right), \mathrm{ZnCl}_{2}(1,43 \mathrm{~g}, 10.5 \mathrm{mmol})$ was added. The resulting mixture was stirred at rt for 7 h , then diluted with $\mathrm{AcOEt}\left(50 \mathrm{~cm}^{3}\right)$, washed with $\mathrm{H}_{2} \mathrm{O}\left(2 \times 30 \mathrm{~cm}^{3}\right)$ and saturated aqueous $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and dried under high vacuum to give crude acetate 13. To a solution of $\mathbf{1 3}$ in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ was added a 0.2 M solution of NaOMe in $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right.$, freshly prepared from Na and MeOH$)$. The solution was kept at rt for 1 h, then neutralized with acetic acid, and concentrated. A solution of the residue in AcOEt ($50 \mathrm{~cm}^{3}$) was washed with $\mathrm{H}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ and saturated aqueous $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was eluted from a column of silica gel with $3: 1$ cyclohexane-AcOEt to afford alcohol $\mathbf{1}(420 \mathrm{mg}, 87 \%)$ as an amorphous solid; $[\alpha]_{\mathrm{D}}=+27.7\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: δ 7.45-7.23 ($15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}$), 5.02-4.62 ($7 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}$ and $3-\mathrm{H}$), $4.11\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=2.5, J_{5,6}=9.0\right.$ $\mathrm{Hz}, 5-\mathrm{H}), 4.01\left(1 \mathrm{H}, \mathrm{t}, J_{6,7}=10.5 \mathrm{~Hz}, 6-\mathrm{H}\right), 3.96-3.78(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}), 2.58(2 \mathrm{H}, \mathrm{d}$, $\left.J_{1,3}=2.5 \mathrm{~Hz}, 1-\mathrm{H}\right), 2.12(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR: $\delta 138.1(\mathrm{C}), 137.8(\mathrm{C}), 128.4(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 80.1\left(\mathrm{CH}_{2}\right), 78.4(\mathrm{C}), 77.5(\mathrm{CH}), 76.4(\mathrm{CH}), 75.3(\mathrm{CH}), 75.0\left(\mathrm{CH}_{2}\right)$, $74.6\left(\mathrm{CH}_{2}\right), 72.2(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right), 62.3(\mathrm{CH})$. MALDI-TOF MS: $481.3\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{5}$: C, 75.96; H, 6.59. Found: C, 75.76; H, 6.30.

3,7-Anhydro-4,5,6-tri-O-benzyl-8-O-tert-butyldimethylsilyl-1,2-dideoxy-D-glycero-D-talo-oct-

1-ynitol (14). To a stirred solution of alcohol $\mathbf{1}$ ($310 \mathrm{mg}, 0.68 \mathrm{mmol}$) in anhydrous DMF ($5 \mathrm{~cm}^{3}$) was added imidazole ($460 \mathrm{mg}, 6.80 \mathrm{mmol}$), followed by tert-butyldimethylsilyl chloride (510 mg , $3.38 \mathrm{mmol})$. The resulting solution was kept at rt for 3 h , then diluted with $\mathrm{AcOEt}\left(50 \mathrm{~cm}^{3}\right)$, washed with $\mathrm{H}_{2} \mathrm{O}\left(2 \times 30 \mathrm{~cm}^{3}\right)$ and brine $\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was eluted from a column of silica gel with 9:1 cyclohexane-AcOEt to afford $\mathbf{1 4}$ ($387 \mathrm{mg}, 100 \%$) as a syrup; $[\alpha]_{\mathrm{D}}=+13.7\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta 7.45-7.23(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}), 5.02-4.62(6 \mathrm{H}, \mathrm{m}, 3$ $\left.\mathrm{PhCH}_{2}\right), 4.80\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=2.5 \mathrm{~Hz}, 3-\mathrm{H}\right), 4.07(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.01\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=4.0 \mathrm{~Hz}, J_{5,6}=\right.$ $11.5 \mathrm{~Hz}, 5-\mathrm{H})$, $3.95\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7}=1.7 \mathrm{~Hz}, 6-\mathrm{H}\right), 3.84(1 \mathrm{H}, \mathrm{dd}, 4-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{ddd}, J=1.7,5.0$, $5.0 \mathrm{~Hz}, 7-\mathrm{H}), 2.53\left(1 \mathrm{H}, \mathrm{d}, J_{1,3}=2.5 \mathrm{~Hz}, 1-\mathrm{H}\right), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13$ and $0.16(6 \mathrm{H}, 2 \mathrm{~s}, 2$ CH_{3}). MALDI-TOF MS: $595.6\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, $609.6\left(\mathrm{M}^{+}+\mathrm{K}\right)$. Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}$, 73.39; H, 7.74. Found: C, 73.16; H, 7.50.

3,7-Anhydro-4,5,6-tri-O-benzyl-8-O-tert-butyldimethylsylil-2-deoxy-D-glycero-D-talo-octitol

(15). To a stirred solution of 14 ($118 \mathrm{mg}, 0.21 \mathrm{mmol}$) in anhydrous THF ($2 \mathrm{~cm}^{3}$) was added dropwise 9-BBN ($1.0 \mathrm{mmol}, 2 \mathrm{~cm}^{3}$ of a 0.5 M solution in THF). Stirring was continued at rt for 18 h, then to the reaction mixture was added an alkaline solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ (freshly prepared from 1 cm^{3} of 6 M aqueous solution of NaOH and $400 \mathrm{~mm}^{3}$ of a ca. 35% solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water). The
reaction mixture was stirred at rt for 2 h , then cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{NaBH}_{4}(100 \mathrm{mg}, 2.6$ mmol). The mixture was stirred for an additional 30 min at rt , then diluted with acetic acid (0.5 $\left.\mathrm{cm}^{3}\right)$ and $\mathrm{AcOEt}\left(30 \mathrm{~cm}^{3}\right)$, washed with $\mathrm{H}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ and saturated $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was eluted from a column of silica gel with $3: 1$ cyclohexane-AcOEt to give $15(100 \mathrm{mg}, 82 \%)$ as a syrup; $[\alpha]_{\mathrm{D}}=+19.2\left(c 1.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.48-7.25(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph})$, 4.68-4.50 ($6 \mathrm{H}, \mathrm{m}, 3 \mathrm{PhCH}_{2}$), $4.18(1 \mathrm{H}$, ddd, $J=3.5$, $6.0,10.0 \mathrm{~Hz}, 3-\mathrm{H}), 2.82(1 \mathrm{H}, \mathrm{br}$ t, OH), 1.98-1.70 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.12$ and $0.14\left(6 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{CH}_{3}\right)$. MALDI-TOF MS: $615.9\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 70.91$; H, 8.16. Found: C, 70.77; H, 8.10.

3,7-Anhydro-4,5,6-tri-O-benzyl-2-deoxy-1-O-methoxymethyl-D-glycero-d-talo-octitol (16). To a stirred, cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol $15(90 \mathrm{mg}, 0.15 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added N, N-diisopropylethylamine ($150 \mathrm{~mm}^{3}, 0.86 \mathrm{mmol}$) and chloromethyl metyl ether (35 $\mathrm{mm}^{3}, 0.46 \mathrm{mmol}$). The mixture was stirred at rt for 3 h , then diluted with $\mathrm{MeOH}\left(0.5 \mathrm{~cm}^{3}\right)$ and concentrated. To a solution of the residue in THF $\left(3 \mathrm{~cm}^{3}\right)$ was added tetrabutylammonium fluoride trihydrate ($80 \mathrm{mg}, 0.3 \mathrm{mmol}$). The reaction mixture was stirred at rt for 15 h , then concentrated. The residue was eluted from a column of silica gel with 1:1 cyclohexane-AcOEt to afford syrupy $\mathbf{1 6}$ (58 $\mathrm{mg}, 73 \%) ;[\alpha]_{\mathrm{D}}=+9.8\left(c 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta 7.45-7.23(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}), 4.90-4.55(8 \mathrm{H}, \mathrm{m}$, PhCH_{2} and $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 4.21\left(1 \mathrm{H}, \operatorname{ddd}, J_{3,4}=4.0 \mathrm{~Hz}, J_{2,3}=9.5 \mathrm{~Hz}, 3-\mathrm{H}\right)$, 3.98-3.56 ($8 \mathrm{H}, \mathrm{m}$, $1,4,5,6,7,8-\mathrm{H}), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.96-1.75(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 138.4$ (C), $128.7(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 96.7\left(\mathrm{CH}_{2}\right), 78.0(\mathrm{CH}), 76.5(\mathrm{CH}), 75.4(\mathrm{CH}), 74.5(\mathrm{CH})$ and $\left(\mathrm{CH}_{2}\right)$, $72.6\left(\mathrm{CH}_{2}\right)$, $72.1\left(\mathrm{CH}_{2}\right)$, $70.6(\mathrm{CH}), 64.3\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{2}\right)$. MALDI-TOF MS: $545.6\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{7}$: C, 71.24; H, 7.33. Found: C, 70.96; H, 7.40.

3,7-Anhydro-8-azido-4,5,6-tri-O-benzyl-1,2,8-trideoxy-1-O-methoxymethyl-D-glycero-D-talooctitol (2). A mixture of alcohol 16 ($218 \mathrm{mg}, 0.42 \mathrm{mmol}$), diphenyl phosphoryl azide ($270 \mathrm{~mm}^{3}$, 1.25 mmol), 1,8-diazabicyclo[5.4.0.]undec-7-ene ($125 \mathrm{~mm}^{3}$, 0.84 mmol), and anhydrous DMF (2.5 cm^{3}) was stirred at $120^{\circ} \mathrm{C}$ for 20 h , then cooled to room temperature, diluted with $\mathrm{AcOEt}\left(50 \mathrm{~cm}^{3}\right)$, washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was eluted from a column of silica gel with $3: 1$ cyclohexane-AcOEt to afford 2 ($197 \mathrm{mg}, 86 \%$) as a syrup; $[\alpha]_{\mathrm{D}}=+6.0\left(c 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta 7.45-7.21(15 \mathrm{H}, \mathrm{m}, 3 \mathrm{Ph}), 4.90-4.55(8 \mathrm{H}, \mathrm{m}, 3$ PhCH_{2} and $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 4.21\left(1 \mathrm{H}, \mathrm{ddd}, J_{3,4}=4.0 \mathrm{~Hz}, J_{2,3}=8.5 \mathrm{~Hz}, 3-\mathrm{H}\right), 3.77(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.70$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3.1,7.0 \mathrm{~Hz}, 7-\mathrm{H}$), $3.64\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=2.2 \mathrm{~Hz}, 4-\mathrm{H}\right), 3.59(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{t}$, $\left.J_{6,7}=7.0 \mathrm{~Hz}, 6-\mathrm{H}\right), 3.51$ and $3.38(2 \mathrm{H}, 2 \mathrm{~m}, 8-\mathrm{H}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3), 1.97-1.70(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 138.0(\mathrm{C}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 96.5\left(\mathrm{CH}_{2}\right), 77.6(\mathrm{CH}), 75.8$ $(\mathrm{CH}), 75.6(\mathrm{CH}), 74.3\left(\mathrm{CH}_{2}\right), 73.3(\mathrm{CH}), 72.1\left(\mathrm{CH}_{2}\right), 71.7\left(\mathrm{CH}_{2}\right), 70.6(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right), 55.2$ $\left(\mathrm{CH}_{3}\right)$, $51.3\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right)$. MALDI-TOF MS: $585.5\left(\mathrm{M}^{+}+\mathrm{K}\right)$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 67.99; H, 6.81; N, 7.67. Found: C, 68.30; H, 6.93; N, 7.52.

8-[1-(2,3,4-tri-O-benzyl- α-D-mannopyranosyl)-1H-1,2,3-triazol-4-yl]-3,7-anhydro-4,5,6-tri-O-benzyl-1,2,8-trideoxy-1-O-methoxymethyl-D-glycero-D-talo-octitol (3).

A mixture of sugar acetylene 1 ($120 \mathrm{mg}, 0.26 \mathrm{mmol}$), sugar azide 2 ($129 \mathrm{mg}, 0.24 \mathrm{mmol}$), N, N diisopropylethylamine ($170 \mathrm{~mm}^{3}, 1.00 \mathrm{mmol}$), CuI ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$), and toluene ($3 \mathrm{~cm}^{3}$) was stirred in the dark at rt for 18 h , then diluted with $\operatorname{AcOEt}\left(50 \mathrm{~cm}^{3}\right)$, washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was eluted from a column of silica gel with cyclohexane-AcOEt (from 2:1 to 1:1) to give first unreacted acetylene $\mathbf{1}$ (15 mg , 12%). Eluted second was 3 ($190 \mathrm{mg}, 80 \%$) as an amorphous solid; $[\alpha]_{\mathrm{D}}=+22.4$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.68\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole 4-H), $5.24\left(1 \mathrm{H}, \mathrm{d}, J_{1}{ }^{\prime}, 2^{\prime}=1.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.20(1 \mathrm{H}, \mathrm{ddd}$, $J=4.0,4.0,6.5 \mathrm{~Hz}, 3-\mathrm{H}), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.97-1.70(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR selected data: $\delta 144.6(\mathrm{C}$, triazole $4-\mathrm{C}), 123.9\left(\mathrm{CH}\right.$, triazole 5-C), $96.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.1(\mathrm{CH}$, 1'-C), $70.3(\mathrm{CH}, 3-\mathrm{C})$, $55.3\left(\mathrm{CH}_{3}\right)$, $29.7\left(\mathrm{CH}_{2}, 2-\mathrm{C}\right)$. MALDI-TOF MS: $1027.8\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{60} \mathrm{H}_{67} \mathrm{~N}_{3} \mathrm{O}_{11}$: C, 71.62; H, 6.71; N, 4.18. Found: C, 71.83; H, 6.66; N, 3.89.

8-[1-(6-azido-2,3,4-tri-O-benzyl-6-deoxy- α-D-mannopyranosyl)-1H-1,2,3-triazol-4-yl]-3,7-anhydro-4,5,6-tri-O-benzyl-1,2,8-trideoxy-1-O-methoxymethyl-D-glycero-D-talo-octitol (4).

The replacement of the hydroxy group of 3 ($180 \mathrm{mg}, 0.18 \mathrm{mmol}$) with an azido group was performed as described for the synthesis of 2 to give, after column chromatography on silica gel ($2: 1$ cyclohexane-AcOEt) azide 4 as an amophous solid ($150 \mathrm{mg}, 81 \%$); $[\alpha]_{\mathrm{D}}=+13.4$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.73(1 \mathrm{H}, \mathrm{s}$, triazole $4-\mathrm{H}), 5.23\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=1.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$, 4.22 (1 H , ddd, $J=4.0,4.0,6.0 \mathrm{~Hz}, 3-\mathrm{H})$, $3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 1.97-1.70 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR selected data: $\delta 144.5$ (C , triazole 4-C), $124.1\left(\mathrm{CH}\right.$, triazole $5-\mathrm{C}$), $96.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 70.9(\mathrm{CH}, 1 \mathrm{l}-\mathrm{C})$, $70.8(\mathrm{CH}, 3-\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right)$, $29.6\left(\mathrm{CH}_{2}, 2-\mathrm{C}\right)$. MALDI-TOF MS: $1070.2\left(\mathrm{M}^{+}+\mathrm{H}+\mathrm{K}\right)$. Anal. Calcd. for $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{~N}_{6} \mathrm{O}_{10}$: C, 69.88; H, 6.45; N, 8.15. Found: C, 70.11; H, 6.77; N, 8.43.

Trimannoside (5).

The coupling of azide $\mathbf{4}(120 \mathrm{mg}, 0.12 \mathrm{mmol})$ with sugar acetylene $\mathbf{1}(60 \mathrm{mg}, 0.13 \mathrm{mmol})$ was performed as described for the synthesis of 3 to give, after column chromatography on silica gel (from 3:2 to $1: 1$ cyclohexane-AcOEt), 5 as an amophous solid ($150 \mathrm{mg}, 87 \%$); $[\alpha]_{\mathrm{D}}=+18.5$ (c 1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.83$ and 7.52 ($2 \mathrm{H}, 2 \mathrm{~s}$, triazole 4-H), 5.29 and $5.22(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}$ $\left.=1.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 4.24(1 \mathrm{H}, \mathrm{ddd}, J=4.0,4.0,6.5 \mathrm{~Hz}, 3-\mathrm{H}), 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.33(1 \mathrm{H}$, br t, OH), 1.83-1.70 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR selected data: $\delta 144.6$ and 143.9 (C, triazole 4-C), 124.2 and $124.0\left(\mathrm{CH}\right.$, triazole 5-C), $96.4\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, 71.4 and $70.6(\mathrm{CH}, 1 '-\mathrm{C}, 1$ "-C and $3-\mathrm{C}), 55.2\left(\mathrm{CH}_{3}\right)$, $29.7\left(\mathrm{CH}_{2}, 2-\mathrm{C}\right)$. MALDI-TOF MS: $1513.1\left(\mathrm{M}^{+}+\mathrm{H}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{89} \mathrm{H}_{96} \mathrm{~N}_{6} \mathrm{O}_{15}$: C, 71.75; H, 6.50; N, 5.64. Found: C, 71.90; H, 6.27; N, 5.37.

Trimannoside azide (6).

The replacement of the hydroxy group of 5 ($110 \mathrm{mg}, 0.074 \mathrm{mmol}$) with an azido group was performed as described for the synthesis of 2 to give, after column chromatography on silica gel ($3: 1$ cyclohexane-AcOEt), azide 6 as an amophous solid ($95 \mathrm{mg}, 85 \%$); $[\alpha]_{\mathrm{D}}=+12.7$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.91$ and $7.56(2 \mathrm{H}, 2 \mathrm{~s}$, triazole 4-H), 5.28 and $5.24(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}$ $=1.7 \mathrm{~Hz}, 1$ '-H, 1"-H), 4.23 ($1 \mathrm{H}, \mathrm{ddd}, J=6.0,6.0,7.5 \mathrm{~Hz}, 3-\mathrm{H}$), 3.29 (3 H, s, CH3), 1.80-1.70 (2 H, m, 2-H). ${ }^{13} \mathrm{C}$ NMR selected data: $\delta 144.5$ and 143.9 (C , triazole 4-C), 124.5 and 124.2 (CH , triazole $5-\mathrm{C}), 96.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.0,70.7$ and $70.5\left(\mathrm{CH}, 1{ }^{\prime}-\mathrm{C}, 1\right.$ "-C and $\left.3-\mathrm{C}\right)$, $55.2\left(\mathrm{CH}_{3}\right)$, $29.7\left(\mathrm{CH}_{2}, 2-\mathrm{C}\right)$. MALDI-TOF MS: $1537.9\left(\mathrm{M}^{+}+\mathrm{H}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{89} \mathrm{H}_{95} \mathrm{~N}_{9} \mathrm{O}_{14}$: C, 70.57; H, 6.32; N, 8.32. Found: C, 70.73; H, 6.11; N, 8.54.

Tetramannoside (7).

The coupling of azide 6 ($80 \mathrm{mg}, 0.053 \mathrm{mmol}$) with sugar acetylene $\mathbf{1}(27 \mathrm{mg}, 0.058 \mathrm{mmol})$ was performed as described for the synthesis of 3 to give, after column chromatography on silica gel (2:1 cyclohexane-AcOEt), 7 as an amophous solid ($94 \mathrm{mg}, 90 \%$); $[\alpha]_{\mathrm{D}}=+17.8\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.82$, 7.71 and 7.46 ($3 \mathrm{H}, 3$ s, triazole 4-H), 5.31, 5.28 and 5.24 ($3 \mathrm{H}, 3 \mathrm{~d}, \mathrm{~J}=$ $1.7 \mathrm{~Hz}, 1$ '-H, 1"-H, 1'"-H), 4.23 ($1 \mathrm{H}, \mathrm{ddd}, J=4.5,4.5,7.5 \mathrm{~Hz}, 3-\mathrm{H}$), 3.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 2.33 (1 H , br t, OH), 1.80-1.67 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$). MALDI-TOF MS: 1996.5 ($\mathrm{M}^{+}+\mathrm{Na}$). Anal. Calcd. for $\mathrm{C}_{118} \mathrm{H}_{125} \mathrm{~N}_{9} \mathrm{O}_{19}$: C, 71.82; H, 6.38; N, 6.39. Found: C, 71.54; H, 6.61; N, 6.73.

Tetramannoside azide (8).

The replacement of the hydroxy group of 7 ($50 \mathrm{mg}, 0.025 \mathrm{mmol}$) with an azido group was performed as described for the synthesis of 2 to give, after column chromatography on silica gel ($3: 1$ cyclohexane-AcOEt), azide 8 as an amophous solid ($40 \mathrm{mg}, 79 \%$); $[\alpha]_{\mathrm{D}}=+12.3$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.90,7.73$ and $7.45(3 \mathrm{H}, 3 \mathrm{~s}$, triazole $4-\mathrm{H}), 5.31$ and $5.27(3 \mathrm{H}, 3$ d, $J=1.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}, 1$ "-H, 1 '"-H), $4.23(1 \mathrm{H}, \mathrm{ddd}, J=4.5,4.5,7.5 \mathrm{~Hz}, 3-\mathrm{H}), 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80-$ 1.67 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR selected data: $\delta 144.5$ and 143.9 (C , triazole 4-C), 124.5 and 123.9 $\left(\mathrm{CH}\right.$, triazole 5-C), $96.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 55.2\left(\mathrm{CH}_{3}\right)$, $29.6\left(\mathrm{CH}_{2}, 2-\mathrm{C}\right)$. MALDI-TOF MS: $2021.4\left(\mathrm{M}^{+}+\right.$ Na). Anal. Calcd. for $\mathrm{C}_{118} \mathrm{H}_{124} \mathrm{~N}_{12} \mathrm{O}_{18}$: C, 70.92; H, 6.25; N, 8.41. Found: C, 70.67; H, 6.19; N , 8.33.

Pentamannoside (9).

The coupling of azide $\mathbf{8}$ ($28 \mathrm{mg}, 0.014 \mathrm{mmol}$) with sugar acetylene $\mathbf{1}(7 \mathrm{mg}, 0.015 \mathrm{mmol})$ was performed as described for the synthesis of $\mathbf{3}$ to give, after column chromatography on silica gel (from 2:1 to $1: 1$ cyclohexane-AcOEt), 9 as an amophous solid ($29 \mathrm{mg}, 84 \%$); $[\alpha]_{\mathrm{D}}=+17.0$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR selected data: $\delta 7.84,7.63,7.60$ and $7.44(4 \mathrm{H}, 4 \mathrm{~s}$, triazole 4-H), 5.41, 5.39, 5.30 and $5.27\left(4 \mathrm{H}, 4 \mathrm{~d}, J=1.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}, 1 "-\mathrm{H}, 1^{\prime \prime} \mathrm{H}-\mathrm{H}, 1^{\prime \prime} \mathrm{"}-\mathrm{H}\right), 4.24(1 \mathrm{H}, \mathrm{ddd}, J=4.5,4.5,7.5 \mathrm{~Hz}, 3-\mathrm{H})$, $3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.80-1.67(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR selected data: $\delta 144.7$ and $143.7(\mathrm{C}$, triazole $4-\mathrm{C}), 124.5,124.3$ and $123.9(\mathrm{CH}$, triazole $5-\mathrm{C}), 96.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 71.5,71.4$, 71.2, 71.0 and $70.6(\mathrm{CH}, 1$ '-C, 1 "-C, 1 "'-C, 1 "'"-C and $3-\mathrm{C})$, $55.1\left(\mathrm{CH}_{3}\right)$, $29.7\left(\mathrm{CH}_{2}, 2-\mathrm{C}\right)$. MALDITOF MS: $1027.8\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{147} \mathrm{H}_{154} \mathrm{~N}_{12} \mathrm{O}_{23}$: C, $71.86 ; \mathrm{H}, 6.32 ; \mathrm{N}, 6.84$;. Found: C, 71.61; H, 6.27; N, 7.07.

Peracetylated pentamannoside (10).

To a solution of $9(15 \mathrm{mg}, 6 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added trifluoroacetic acid $\left(100 \mathrm{~mm}^{3}\right)$. The solution was kept at rt for 3 h , then concentrated and dried under high vacuum. The ${ }^{1} \mathrm{H}$ NMR analysis of the crude product proved the absence of the methoxymethyl protecting group. To a stirred, cooled $\left(-60^{\circ} \mathrm{C}\right)$ solution of the residue in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added a 1 M solution of BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(480 \mathrm{~mm}^{3}, 0.48 \mathrm{mmol}\right)$. The solution was stirred at $-60^{\circ} \mathrm{C}$ for 1 h and, after an additional 1 h stirring at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{MeOH}\left(0.5 \mathrm{~cm}^{3}\right)$, stirred at $0^{\circ} \mathrm{C}$ for 15 min , diluted with triethylamine $\left(0.5 \mathrm{~cm}^{3}\right)$, concentrated, and dried under high vacuum to give a white solid. A suspension of the residue in pyridine $\left(2 \mathrm{~cm}^{3}\right)$ and acetic anhydride $\left(0.5 \mathrm{~cm}^{3}\right)$ was stirred at rt for 18 h , then diluted with $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ and concentrated. The residue was eluted from a column of silica gel ($3: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}$, then AcOEt) to give $10(9 \mathrm{mg}, 83 \%) ;[\alpha]_{\mathrm{D}}=+3.3(c 0.8$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR selected data: $\delta 8.05,7.81,7.79$, and $7.69(4 \mathrm{H}, 4 \mathrm{~s}$, triazole $4-\mathrm{H}), 5.86,5.85$, 5.78 and $5.77\left(4 \mathrm{H}, 4 \mathrm{~d}, J=1.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}, 1 "-\mathrm{H}, 1^{\prime \prime \prime}-\mathrm{H}\right), 4.24(1 \mathrm{H}, \mathrm{ddd}, J=4.5,7.5 \mathrm{~Hz}, 3-\mathrm{H})$, 1.64-1.58 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR selected data: $\delta 142.6,142.1$ and 141.7 (C, triazole 4-C), 124.4 and 124.3 (CH, triazole 5-C), 68.4, 68.0, 67.7, 66.6 and 64.9 (CH, 1'-C, 1"-C, 1'"-C, 1 ""-C and 3-C), $29.7\left(\mathrm{CH}_{2}\right.$, 2-C). MALDI-TOF MS: $1798.9\left(\mathrm{M}^{+}+\mathrm{H}+\mathrm{Na}\right)$. Anal. Calcd. for $\mathrm{C}_{74} \mathrm{H}_{94} \mathrm{~N}_{12} \mathrm{O}_{39}$: C, 50.06; H, 5.34; N, 9.47. Found: C, 49.93; H, 5.41; N, 9.66.

Free hydroxy pentamannoside (11).

To a solution of $\mathbf{1 0}(9 \mathrm{mg}, 0.005 \mathrm{mmol})$ in $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ was added a ca. 0.2 M solution of NaOMe in $\mathrm{MeOH}\left(0.2 \mathrm{~cm}^{3}\right.$, prepared from Na and MeOH immediately before the use) and, after 1 $\mathrm{h}, \mathrm{H}_{2} \mathrm{O}\left(0.3 \mathrm{~cm}^{3}\right)$. The solution was kept at rt for an additional 1 h , then neutralized with Dowex 50X2-400 resin (H^{+}form, activated and washed with $\mathrm{H}_{2} \mathrm{O}$ and MeOH immediately before the use). The resin was washed with $\mathrm{H}_{2} \mathrm{O}$ and MeOH , the solution was concentrated and dried under high vacuum to give $11(5 \mathrm{mg}, 93 \%)$ as an amorphous solid; $[\alpha]_{\mathrm{D}}=+0.6\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$
selected data: $\delta 8.00,7.52,7.32$, and $7.20(4 \mathrm{H}, 4$ s, triazole $4-\mathrm{H}), 5.13,5.11,5.1$ and $5.08(4 \mathrm{H}, 4 \mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1$ '-H, 1"-H, 1 "'-H, 1 "'"-H).
Typical procedure for microwave assisted coupling for the synthesis of compounds $\mathbf{3 , 5 , 7 , 9} \mathbf{9}$ A mixture of sugar acetylene (0.1 mmol), sugar azide (0.1 mmol), N, N-diisopropylethylamine (0.2 mmol), CuI ($5 \mathrm{mg}, 0.026 \mathrm{mmol}$) and DMF $\left(0.6 \mathrm{~cm}^{3}\right)$ in a vial sealed with a Teflon septum and aluminium crimp was subjected to microwave irradiation for 5 min at $100^{\circ} \mathrm{C}$. The work-up and purification were identical to the ones used in the conventional coupling procedure.

Typical procedure for microwave assisted alcohol-to-azide conversion for the synthesis of compounds $4,6,8$. A mixture of sugar alcohol (0.1 mmol), diphenyl phosphoryl azide (0.3 mmol), 1,8-diazabicyclo[5.4.0.]undec-7-ene (0.2 mmol) and anhydrous DMF $\left(0.6 \mathrm{~cm}^{3}\right)$ in a vial sealed with a Teflon septum and aluminium crimp was subjected to microwave irradiation for 2 h at $120{ }^{\circ} \mathrm{C}$. The work-up and purification were identical to the ones used in the conventional alcohol-to-azide conversion procedure.

References

19 W. L. F Armarego, D. D. Perrin, Purification of Laboratory Chemicals, 4th ed., ButterworthHeinemann: Oxford, 1996.

20 W. C. Still, M. Kahn, A. Mitra, J. Org. Chem., 1978, 43, 2923-2925.
21 The compound 13 was already reported in the literature; however only its ${ }^{1} \mathrm{H}$ NMR data were described (T. Nishikawa, M. Ishikawa and M. Isobe, Synlett, 1999, 123-125.

