Selective manipulation of steroid hydroxyl groups with boronate esters: efficient access to antigenic C-3 linked steroid-protein conjugates and steroid sulfate standards for drug detection

Natasha L. Hungerford, ${ }^{a}$ Andrew R. McKinney, ${ }^{b}$ Allen M. Stenhouse ${ }^{b}$ and Malcolm D. McLeod** ${ }^{a}$
${ }^{a}$ School of Chemistry, F11, The University of Sydney, NSW 2006, Australia. Fax: +61-2-9351-6650; Tel: +61-2-9351-5877; E-mail: m.mcleod@chem.usyd.edu.au
${ }^{b}$ Australian Racing Forensic Laboratory, P.O. Box 528, Kensington, NSW 1465, Australia.

Experimental

${ }_{10}$ General experimental

Optical rotations were measured using a PolAAR 2001 polarimeter set at the 589.3 nm sodium D line, in a 0.25 dm cell, in the solvent indicated, and at the concentration ($\mathrm{g} / 100 \mathrm{~mL}$) and temperature indicated. Optical rotations are quoted in $10^{-1} . \mathrm{deg} . \mathrm{cm}^{2} . \mathrm{g}^{-}$ ${ }^{1}$. Infrared spectra were recorded on a Shimadzu FTIR-8400S Fourier transform infrared spectrometer. Compounds were prepared as thin films on a 0.5 cm NaCl plate, or as KBr disks, seated on a custom-made perch in the apparatus. Absorption maxima are 15 expressed as wavenumbers $\left(\mathrm{cm}^{-1}\right)$.
${ }^{1} \mathrm{H}$ Nuclear magnetic resonance spectra were recorded using a Bruker Avance $200(200.13 \mathrm{MHz})$, a Bruker Avance $300(300.13$ MHz) or a Bruker DRX $400(400.13 \mathrm{MHz})$ spectrometer. Spectra were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ and chemical shifts were recorded as δ values in parts per million (ppm). Signals arising from residual protio-forms of the solvent were used as internal standard ($\delta 7.26$, or $\delta 3.30$, respectively). Data are reported as chemical shift (δ), relative integral, multiplicity ($\mathrm{s}=$ singlet, br $=$ ${ }_{20}$ broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet $)$, coupling constant $(J \mathrm{in} \mathrm{Hz})$ and assignment. All coupling constants and multiplicities reported are apparent values.
${ }^{13} \mathrm{C}$ Nuclear magnetic resonance spectra were recorded using a Bruker Avance $200(50.3 \mathrm{MHz})$, a Bruker Avance $300(75.5$ $\mathrm{MHz})$ or a Bruker DRX $400(100.62 \mathrm{MHz})$ spectrometer at ambient temperature, with complete proton decoupling. Spectra were recorded in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or in D_{6} - DMSO and chemical shifts were recorded as δ values in parts per million (ppm). Signals ${ }_{25}$ arising from the solvent were used as internal standard ($\delta 77.0, \delta 49.0$ or $\delta 39.5$ respectively).

Low resolution mass spectra were recorded by the Mass Spectrometry Unit, School of Chemistry, The University of Sydney. Major fragments are quoted as mass to charge ratio (assignment, percentage of base peak). Low resolution mass spectra were recorded on a Finnigan Polaris Q ion trap mass spectrometer, using electron impact (+EI) ionisation mode at 70 eV , or on a Finnigan LCQ ion trap mass spectrometer, using positive electrospray ionisation (+ESI), or negative electrospray ionisation (-
${ }_{30}$ ESI). High resolution mass spectra were recorded on a Kratos MS25 RFA mass spectrometer, using electron impact (+EI) ionisation, operating at 70 eV , in magnetic scan, with PFK as standard (The University of Queensland), or on a Spectrospin 7T FTICR, using positive or negative electrospray ionisation (The University of New South Wales).

Analytical thin layer chromatography (TLC) was performed using 0.2 mm thick, aluminium-backed, pre-coated silica gel plates (Merck Silica gel $60 \mathrm{~F}_{254}$). Compounds were visualised by staining with Goofy's Dip (15 g phosphomolybdic acid, 15 mL conc. ${ }_{35}$ sulfuric acid, 485 mL water, 2.5 g cerium sulfate) or an anisaldehyde solution (7.4 mL anisaldehyde, 383 mL ethanol $95 \%, 10 \mathrm{~mL}$ sulfuric acid, 3 mL acetic acid). Flash chromatography was performed using Merck Silica gel 60 ($230-400$ mesh ASTM), under a positive pressure of nitrogen, with the solvents indicated. Solvent compositions were mixed v / v as specified.

All solvents and reagents were purified according to standard procedures. Moisture sensitive reactions were carried out in oven-dried glassware under a dry, inert nitrogen atmosphere. Reaction temperatures were controlled using dry ice : acetone (-78
$\left.4^{\circ}{ }^{\circ} \mathrm{C}\right)$ or ice : water $\left(0-5^{\circ} \mathrm{C}\right)$ cooling baths. Concentration under reduced pressure refers to evaporation of solvent using a rotary evaporator connected to a water aspirator. Removal of residual solvent where desired, was achieved by evacuation ($0.1-0.01$ mmHg) with a high-stage, oil-sealed vacuum pump.

Epiandrosterone (3β-hydroxy- 5α-androstan-17-one) was obtained from Steraloids (Newport, RI, U.S.A.). 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC), carboxymethoxylamine hemihydrochloride, N ${ }_{45}$ hydroxysuccinimide and lithium acetylide-ethylenediamine complex, were purchased from Sigma-Aldrich (Castle Hill, NSW, Australia).

Synthesis

$\mathbf{5 \alpha , 1 7 \alpha} \boldsymbol{\alpha}$ pregn-20-yne-3 $\mathbf{\beta}, \mathbf{1 6 \beta}, \mathbf{1 7 \beta}$-triol (19). $3 \beta, 16 \beta$-Diacetoxy- 5α-androstane-17-one $\mathbf{2 2}^{2,3}$ ($0.973 \mathrm{~g}, 2.49 \mathrm{mmol}$) in THF (100 mL) was added drop-wise to a stirred suspension of lithium acetylide-ethylenediamine complex ($2.76 \mathrm{~g}, 29.9 \mathrm{mmol}$) in THF (40 ${ }_{50} \mathrm{~mL}$). After stirring for 20 hours, TLC (ethyl acetate/hexane, 1/1) analysis suggested an absence of diacetate $22\left(R_{\mathrm{f}} 0.8\right)$ and complete conversion to product. The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (600 mL) and extracted into ethyl acetate ($4 \times 100 \mathrm{~mL}$). The combined ethyl acetate extracts were washed with pH 7 buffer (80 mL) and saturated NaCl solution (80 mL), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting residue was pre-adsorbed onto silica from $\mathrm{DCM} / \mathrm{MeOH}$ and subjected to flash chromatography (ethyl acetate/hexane, $1 / 3$ then $1 / 2$ then $1 / 1.2$), which gave 17α-ethynyl triol $19(0.592 \mathrm{~g}, 71 \%)$, as a
${ }_{55}$ colourless, amorphous solid. $\boldsymbol{R}_{\mathrm{f}} 0.3$ (ethyl acetate/hexane, $1 / 1$); $\mathbf{m p} 205-208{ }^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}-26.4(c 0.50, \mathrm{MeOH}) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}(\mathrm{KBr}$ disk) 3650-3000 (OH), $3275(\mathrm{C} \equiv \mathrm{CH}), 2920,2851,2110(\mathrm{C} \equiv \mathrm{C}), 1385,1366,1049 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}, \mathrm{MeOD}) 4.10(1 \mathrm{H}, \mathrm{dd}, J 7.9,4.6$, $\mathrm{H} 16), 3.57-3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 21), 2.25-2.15(1 \mathrm{H}, \mathrm{m}), 1.82-0.80(21 \mathrm{H}, \mathrm{m}), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ $0.74-0.62(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}, \mathrm{MeOD}) 87.7,79.7,78.4,71.8,75.6,55.8,48.3,47.3,46.2,38.9,38.3,37.0,36.7,35.7,35.0$,

${ }_{6} 6$
5a,17 $\boldsymbol{\alpha}$-pregnane-3 $\boldsymbol{\beta}, \mathbf{1 6 \beta}, \mathbf{1 7 \beta}$-triol (20). $17 \boldsymbol{\alpha}$-Ethynyl triol 19 ($0.570 \mathrm{~g}, 1.72 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL}) .10 \% \mathrm{Pd} / \mathrm{C}$ $(0.080 \mathrm{~g})$ was added and the reaction mixture was stirred under an atmosphere of H_{2} (balloon pressure) for 16 hours. The reaction mixture was diluted with ethyl acetate $/ \mathrm{MeOH}(1 / 1)$ and filtered through celite, to afford 17α-ethyl triol 20 ($0.552 \mathrm{~g}, 96 \%$), as a colourless, amorphous solid. $\boldsymbol{R}_{\mathbf{f}} 0.33$ (ethyl acetate/hexane, $1 / 1$); mp $218-221^{\circ} \mathrm{C} ;[\alpha]_{\mathbf{D}}{ }^{22}-13.0(c 0.43, \mathrm{MeOH}) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}(\mathrm{KBr}$ ${ }_{65}$ disk) $3650-3100(\mathrm{OH}), 2932,2854,1450,1381,1038 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, MeOD) $3.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1,6.2, \mathrm{H} 16), 3.56-3.43(1 \mathrm{H}, \mathrm{m}$, H3), $2.12(1 \mathrm{H}$, ddd, $J 12.6,8.1,6.2), 1.80-0.80(20 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{H} 21), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) 0.68-0.57$ $(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}, \mathrm{MeOD}) 81.2,73.4,71.8,55.9,48.0,47.1,46.2,38.9,38.2,37.1,36.7,36.3,33.8,33.3,32.1,29.9,28.2$, $21.9,15.0,12.7,7.5 ; \mathbf{m} / \mathbf{z}(\mathrm{ESI}+) 336\left(\mathrm{MH}^{+}, 30 \%\right), 271(25), 243$ (30), 231 (70), 216 (55), 135 (55), 107 (57), $91(100), 79$ (84); \mathbf{m} / \mathbf{z} (ESI-) $335.2600\left(\mathrm{M}-\mathrm{H}^{-}, \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{3}\right.$ requires 335.2592$)$.
70
$\left[(S)-16 \beta, 17 \beta\right.$-benzylidenedioxy]-17 α-methyl- $\mathbf{5 \alpha}$-androstane- $\mathbf{3 \beta - o l}$. 17α-Methyl triol $\mathbf{1 8}^{1}(0.50 \mathrm{~g}, 1.55 \mathrm{mmol})$ was stirred (the triol was partially insoluble) in a mixture of DMF/DCM ($1 / 1,12 \mathrm{~mL}$). Benzaldehyde dimethyl acetal ($0.35 \mathrm{~mL}, 0.354 \mathrm{~g}, 2.33$ mmol) was added, followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (10 drops). After 2 hours, a homogenous solution resulted. After 4 hours, TLC (ethyl acetate / hexane, $1 / 2$) showed an absence of starting material ($R_{\mathrm{f}} 0.1$) and complete conversion to product. The reaction mixture
75 was poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with ethyl acetate (5 x 80 mL). The organic extracts were washed with saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue obtained was pre-adsorbed onto silica from DCM and subjected to flash chromatography (ethyl acetate/hexane, $1 / 5,1 / 4$ then $1 / 3$), which gave $[(S)$ - $16 \beta, 17 \beta$-benzylidenedioxy]-17 α -methyl- 5α-androstane- 3β-ol ($0.607 \mathrm{~g}, 95 \%$). $\boldsymbol{R}_{\mathrm{f}} 0.2$ (ethyl acetate / hexane, $1 / 2$); $\mathbf{m p} 66-68^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-23.5$ (c $0.46, \mathrm{DCM}$); $v_{\max } /$ $\mathbf{c m}^{-1}$ (film) $3600-3100(\mathrm{OH}), 2927,1445,1406,1067,1045$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.40-7.33(3 \mathrm{H}, \mathrm{m}$, $\left.{ }_{80} \mathrm{ArH}\right), 5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}-\mathrm{O}), 4.14(1 \mathrm{H}, \mathrm{dd}, J 7.6,5.5, \mathrm{H} 16), 3.65-3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.08(1 \mathrm{H}, \mathrm{dd}, J 13.0,7.6,6.2), 1.85-0.78$ $(19 \mathrm{H}, \mathrm{m}), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.68-0.55(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.6,129.3,128.3$, $126.9,105.6,90.7,88.5,71.3,54.2,53.3,44.9,44.7,38.2,37.0,35.7,35.6,33.4,32.0,31.5,31.0,28.5,21.0,20.3,15.8,12.3$; $\mathbf{m} / \mathbf{z}(\mathrm{EI}+) 410.2828\left(\mathrm{M}^{+}, \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3}\right.$ requires 410.2821, 10%), 409 (15), 367 (90), 349 (55), 331 (76), 323 (85), 305 (55), 105 (100), 91 (96), 77 (68).

85
$[(S)$-16 $\beta, 17 \beta$-benzylidenedioxy $]$-17 α-methyl-5 α-androstan-3-one (26). $\quad[(S)-16 \beta, 17 \beta$-Benzylidenedioxy $]-17 \alpha$-methyl-5 -androstane- $3 \beta-\mathrm{ol}(0.50 \mathrm{~g}, 1.22 \mathrm{mmol})$ in DMSO $(2 \mathrm{~mL})$ was stirred for 16 hours with $4 \AA$ molecular sieves. $\mathrm{Et}_{3} \mathrm{~N}(2.55 \mathrm{~mL}, 1.85 \mathrm{~g}$, 18.3 mmol) was added via syringe. Sulfur trioxide-pyridine complex ($1.75 \mathrm{~g}, 11.0 \mathrm{mmol}$) in DMSO (6 mL) was added by cannula, and the reaction stirred for 2.5 hours. The mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (450 mL) and extracted into ethyl
90 acetate ($5 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with saturated NaCl solution (200 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude product was pre-adsorbed onto silica from DCM and subjected to flash chromatography (ethyl acetate / hexane, 1/5), which gave ketone 26 ($0.386 \mathrm{~g}, 78 \%$). $\boldsymbol{R}_{\mathrm{f}} 0.60$ (ethyl acetate / hexane, 1/2); mp 179$181^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-12.4(c 0.55, \mathrm{DCM}) ; \boldsymbol{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2943, $1709(\mathrm{C}=\mathrm{O}), 1458,1402,1059,1001,989 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.60-7.51(2 H, m, A r H), 7.41-7.33(3 H, m, A r H), 5.94(1 H, s, O-C H-O), 4.15(1 H, d d, J 7.7,5.4, \mathrm{H} 16), 2.50-1.95(6 \mathrm{H}, \mathrm{m}), 1.76-$ ${ }_{95} 0.65(14 \mathrm{H}, \mathrm{m}), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 211.7,136.5,129.3,128.3,126.9$, $105.6,90.6,88.3,53.6,53.0,46.6,44.6,38.5,38.1,35.7,35.5,33.3,31.6,31.0,28.7,21.1,20.2,15.7,11.5 ; \mathbf{m} / \mathbf{z}(\mathrm{EI}+) 408.2663$ $\left(\mathrm{M}^{+}, \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{3}\right.$ requires $\left.408.2664,5 \%\right), 407$ (10), 365 (100), 347 (45), 321 (75), 285 (35), 217 (45), 105 (65), 91 (57), 77 (46).
$16 \beta, 17 \beta$-Dihydroxy- 17α-methyl-5 α-androstan-3-one (β-hydroxymestanolone) (15). Method 2 . Ketone 26 ($0.170 \mathrm{~g}, 0.42$ $100 \mathrm{mmol})$ was dissolved in THF $(3 \mathrm{~mL}) .20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.030 \mathrm{~g})$ was added and the reaction mixture was stirred under an atmosphere of H_{2} (balloon pressure) for 8 hours. TLC (ethyl acetate / hexane, 1/1) suggested mostly starting material 26. The reaction mixture was filtered through celite, which was washed with ethyl acetate. After concentration in vacuo, the residue was re-dissolved in THF $(3 \mathrm{~mL})$ and stirred with $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.030 \mathrm{~g})$ under an H_{2} atmosphere for 16 hours. Additional $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ $(0.050 \mathrm{~g})$ was added and stirring was continued under an H_{2} atmosphere for 4 hours. TLC (ethyl acetate / hexane, $1 / 1$) then
105 showed complete conversion to a lower R_{f} product. Filtration through celite (ethyl acetate elution) and concentration yielded crude product. This was dissolved in DCM and pre-adsorbed onto silica for flash chromatography (ethyl acetate / hexane, $1 / 2$ then $1 / 1$), which gave β-hydroxymestanolone (15) ($0.124 \mathrm{~g}, 93 \%$).
$\mathbf{5 a}, \mathbf{1 7 \alpha} \boldsymbol{\alpha}$-pregn-20-yne-3 $\boldsymbol{\beta}, \mathbf{1 7 \beta}$-diol (32). ${ }^{4}$ Epiandrosterone (21) ($1.627 \mathrm{~g}, 5.61 \mathrm{mmol}$) in THF (100 mL) was added drop-wise to a ${ }_{110}$ stirred suspension of lithium acetylide-ethylenediamine complex ($2.066 \mathrm{~g}, 22.4 \mathrm{mmol}$) in THF (50 mL). After stirring for 20 hours, TLC (ethyl acetate/hexane, 1/2) showed a spot of the same R_{f} as $21\left(R_{\mathrm{f}} 0.2\right)$. The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (500 mL) and extracted into ethyl acetate ($4 \times 100 \mathrm{~mL}$). The combined ethyl acetate extracts were washed with pH 7 buffer (80 mL) and saturated NaCl solution (80 mL), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting
residue was pre-adsorbed onto silica from $\mathrm{DCM} / \mathrm{MeOH}$ and subjected to flash chromatography (ethyl acetate/hexane, $1 / 2$ then ${ }_{115} 1 / 1$), which gave diol $32\left(1.659 \mathrm{~g}, 94 \%\right.$), as a colourless solid. $\boldsymbol{R}_{\mathbf{f}} 0.4$ (ethyl acetate / hexane, $1 / 1$); mp $265-267^{\circ} \mathrm{C}$ (lit., ${ }^{4} 260-$ $\left.261^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 0}}-42.8\left(c 0.43, \mathrm{CHCl}_{3} / \mathrm{MeOH}, 5 / 1\right) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}(\mathrm{film}) 3500-3300(\mathrm{OH}), 3263(\equiv \mathrm{C}-\mathrm{H}), 2930,2100(\mathrm{C} \equiv \mathrm{C}), 1383$, 1053,$1026 ; \delta_{\mathbf{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 5 / 1\right) 3.43-3.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.42(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH}), 2.06(1 \mathrm{H}$, ddd, J 13.9, 9.6, 5.6), 1.81$0.60(20 \mathrm{H}, \mathrm{m}), 0.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.56-0.42(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 5 / 1\right) 87.5,79.0,73.0,70.5$, $53.7,50.1,46.5,44.6,38.4,37.3,36.7,35.8,35.2,32.3,31.3,30.6,28.3,22.7,20.6,12.3,11.8 ; \mathbf{m} / \mathbf{z}(\mathrm{EI}+) 316.2406\left(\mathrm{M}^{+}\right.$,
${ }_{120} \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $316.2402,8 \%$, $283(30), 265(45), 215(90), 147(60), 124(90), 91(100), 79(70), 77(70)$.
17ß-hydroxy-5a,17 $\boldsymbol{\alpha}$-pregn-20-yn-3-one (30) $)^{4}$ Diol $32(0.676 \mathrm{~g}, 2.14 \mathrm{mmol})$, dissolved in a mixture of $\mathrm{DCM}(9 \mathrm{~mL})$ and DMSO $(9 \mathrm{~mL})$ was stirred for 16 hours with $4 \AA$ molecular sieves. $\mathrm{Et}_{3} \mathrm{~N}(5.97 \mathrm{~mL}, 4.33 \mathrm{~g}, 42.8 \mathrm{mmol})$ was added via syringe. Sulfur trioxide-pyridine complex $(4.09 \mathrm{~g}, 25.7 \mathrm{mmol})$ in DMSO $(15 \mathrm{~mL})$ was added by cannula, and the reaction stirred for 16 hours.
125 The mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (300 mL) and ethyl acetate (100 mL) was added, followed by $\mathrm{CHCl}_{3} / \mathrm{PrOH}(3 / 1,200 \mathrm{~mL})$. The mixture was filtered through celite and the layers separated. The aqueous phase was further extracted with $\mathrm{CHCl}_{3} i^{i} \operatorname{PrOH}(3 / 1,3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was triturated with $\mathrm{Et}_{2} \mathrm{O}(4 \times 80 \mathrm{~mL})$ and then $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ which afforded ketone $\mathbf{3 0}(0.503 \mathrm{~g}, 75 \%) . \boldsymbol{R}_{\boldsymbol{f}}$ 0.6 (ethyl acetate / hexane, $1 / 1$); $\mathbf{m p} 294-296^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{4} 296-297^{\circ} \mathrm{C}$); $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 4}}-44.7\left(c 0.17, \mathrm{CHCl}_{3} / \mathrm{MeOH}, 4 / 1\right) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-}$ ${ }_{130}{ }^{1}$ (KBr disk) $3700-3100(\mathrm{OH}), 3271(\equiv \mathrm{C}-\mathrm{H}), 2924,2106(\mathrm{C} \equiv \mathrm{C}), 1693(\mathrm{C}=\mathrm{O}), 1381,1053 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 3.44(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{C}-$ H), 2.58-0.62 ($22 \mathrm{H}, \mathrm{m}$), $1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 209.9,88.9,78.8,73.8,53.3,50.3,47.1,46.4$, $44.5,39.6,38.3,37.9,35.9,35.5,33.1,31.2,28.6,23.2,21.1,13.1,10.9 ; \mathbf{m} / \mathbf{z}(E I+) 314.2250\left(\mathrm{M}^{+}, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}\right.$ requires 314.2246 , $5 \%), 285$ (15), 229 (30), 173 (25), 145 (26), 124 (100).
${ }_{135} \mathbf{1 7} \boldsymbol{\beta}$-hydroxy-5 $\boldsymbol{\alpha}, \mathbf{1 7 \alpha} \boldsymbol{\alpha}$-pregnan-3-one (31). 17α-Ethynyl ketone $\mathbf{3 0}(0.145 \mathrm{~g}, 0.46 \mathrm{mmol})$ was dissolved in $\mathrm{DCM} / \mathrm{MeOH}(3 / 1,30$ mL) and stirred with decolourising charcoal for 2 hours. The mixture was filtered through celite and concentrated. The residue was stirred in a mixture of $\mathrm{MeOH}(3.5 \mathrm{~mL}), 1,4$-dioxane $(2.5 \mathrm{~mL}), \mathrm{H}_{2} 0(1.5 \mathrm{~mL})$ and THF $(5 \mathrm{~mL}) . \mathrm{NaHCO}_{3}(0.150 \mathrm{~g})$ and 10% $\mathrm{Pd} / \mathrm{C}(0.050 \mathrm{~g})$ was added and the reaction mixture was stirred under an atmosphere of H_{2} (balloon pressure) for 16 hours. The reaction mixture was filtered through celite and concentrated. ${ }^{1} \mathrm{H}$ NMR revealed partial reduction. The residue was dissolved in
${ }_{140}$ THF (15 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and stirred with $10 \% \mathrm{Pd} / \mathrm{C}(0.050 \mathrm{~g})$, under an atmosphere of H_{2} (balloon pressure), for 16 hours. Filtration, concentration and repetition of the latter procedure afforded 17α-ethyl ketone $31(0.095 \mathrm{~g}$, 65%), as a colourless, amorphous solid. $\boldsymbol{R}_{\mathbf{f}} 0.65$ (ethyl acetate / hexane, $1 / 1$); mp $145-148^{\circ} \mathrm{C} ;[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+12.6\left(c 0.70, \mathrm{CHCl}_{3}\right) ; \boldsymbol{v}_{\boldsymbol{\operatorname { m a x }}} / \mathbf{c m}^{\mathbf{- 1}}$ (film) $3700-3100$ $(\mathrm{OH}), 2935,1713(\mathrm{C}=\mathrm{O}), 1447,1000,980 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.45-2.16(3 \mathrm{H}, \mathrm{m}), 2.12-1.88(3 \mathrm{H}, \mathrm{m}), 1.76-0.78(18 \mathrm{H}, \mathrm{m}), 1.02$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{C}_{21}-\mathrm{H}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.75-0.64(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 211.9,83.5,53.8,50.3,46.8$,
$14546.4,44.7,38.6,38.1,36.3,35.7,33.6,31.5,28.9,28.8,23.6,21.1,14.5,11.5,7.8(1 \mathrm{C}$ overlapping $) ; \mathbf{m} / \mathbf{z}(\mathrm{EI}+) 318.2554\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2}$ requires $\left.318.2559,5 \%\right)$, $289\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right)$, 271 (40), 229 (30), 213 (25).

General procedure for preparation of (carboxymethyl)oximes 33-36. Carboxymethoxylamine hemihydrochloride (2 mmol) was added to a solution of $\mathbf{1 6}, \mathbf{1 7 , 3 0}$ or $\mathbf{3 1}(1 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$. The reaction mixture was heated to $80{ }^{\circ} \mathrm{C}$ and stirred
150 under a nitrogen atmosphere for $4-5$ hours. The reaction mixture was partially concentrated in vacuo, and then poured into distilled water $(100 \mathrm{~mL})$ and extracted into ethyl acetate $(3 \times 60 \mathrm{~mL})$. The combined organic layers were washed with pH 7 buffer $(1 \times 60 \mathrm{~mL})$ and saturated sodium chloride solution $(1 \times 60 \mathrm{~mL})$, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the product 33 , 34, 35 or 36.

155 3-(Carboxymethoxyimino)-5 $\boldsymbol{\alpha}, \mathbf{1 7 \alpha}$-pregn-20-yne-16 $\boldsymbol{\beta}, \mathbf{1 7 \beta}$-diol (33). 17α-Ethynyl ketone $\mathbf{1 6}$ ($0.063 \mathrm{~g}, 0.19$ mmol) was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from $\mathrm{DCM} / \mathrm{MeOH}$ and subjected to flash chromatography (ethyl acetate $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 50 / 2 / 1$ then $10 / 2 / 1$) which afforded a mixture of E and Z isomers of 33 (0.058 g , 75%), as colourless crystals. $\boldsymbol{R}_{\mathbf{f}} 0.3$ (ethyl acetate $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 50 / 2 / 1$); mp $138-140^{\circ} \mathrm{C}$; $[\boldsymbol{\alpha}]_{\mathbf{d}}{ }^{\mathbf{2 3}}-29.1(c 0.22, \mathrm{MeOH}) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}$ $\left(\mathrm{KBr}\right.$ disk) $3700-2300(\mathrm{COOH}, \mathrm{OH}), 3279(\equiv \mathrm{C}-\mathrm{H}), 2922,1728(\mathrm{C}=\mathrm{O}), 1630,1452,1385,1248,1148,1092,1049 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$,
$\left.{ }_{160} \mathrm{MeOD}\right) 4.47\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 4.10(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0, \mathrm{H} 16), 3.26-3.18(1 \mathrm{H}, \mathrm{m}), 3.04-2.97(1 \mathrm{H}, \mathrm{m}), 2.88(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{C}-\mathrm{H}), 2.27-0.85$ $(36 \mathrm{H}, \mathrm{m}), 0.95\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.76-0.67(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}, \mathrm{MeOD}) 174.7,163.1,87.6,79.7,78.4,75.7$, $70.9,55.4,55.3,48.2,47.9,47.32,47.30,46.7,39.7,38.5,37.337 .28,36.9,35.7,35.1,35.0,32.9,32.8,29.8,29.6,29.1,28.4$, $22.4,21.8,13.5,11.8,11.7$ (13C overlapping); $\mathbf{m} / \mathbf{z}(\mathrm{ESI}+) 845\left(2 \mathrm{M}+\mathrm{K}^{+}, 35 \%\right), 829\left(2 \mathrm{M}+\mathrm{Na}^{+}, 45\right), 426\left(\mathrm{M}+\mathrm{Na}^{+}, 80\right), 404.2421$ $\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{5}\right.$ requires $\left.404.2432,100 \%\right)$.
165
3-(Carboxymethoxyimino)- $\mathbf{5} \alpha, 17 \alpha$-pregnane-16 $\boldsymbol{\beta}, \mathbf{1 7} \beta$-diol (34). 17α-Ethyl diol $\mathbf{1 7}$ ($0.110 \mathrm{~g}, 0.33 \mathrm{mmol}$) was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from $\mathrm{DCM} / \mathrm{MeOH}$ and subjected to flash chromatography (ethyl acetate $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 50 / 2 / 1$ then $20 / 2 / 1$ then $10 / 2 / 1$) which afforded a mixture of E and Z isomers of 34 ($0.112 \mathrm{~g}, 84 \%$), as colourless crystals. $\boldsymbol{R}_{\mathbf{f}} 0.3$ (ethyl acetate $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 50 / 2 / 1$); mp $158-160^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 3}}-25.3(c 0.19, \mathrm{MeOH}) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{\mathbf{- 1}}(\mathrm{KBr}$
170 disk) $3700-2300(\mathrm{COOH}, \mathrm{OH}), 2937,2856,1736(\mathrm{C}=\mathrm{O}), 1452,1383,1217,1097 ; \delta_{\mathbf{H}}(400 \mathrm{MHz}, \mathrm{MeOD}) 4.48,4.47(4 \mathrm{H}, 2 \times \mathrm{x} \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 3.81-3.75(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 16), 3.26-3.18(1 \mathrm{H}, \mathrm{m}), 3.03-2.96(1 \mathrm{H}, \mathrm{m}), 2.27-0.85(40 \mathrm{H}, \mathrm{m}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3), 0.94(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{C}_{21}-\mathrm{H}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{C}_{21}-\mathrm{H}_{3}\right) 0.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.828\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.74-0.64(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(50$

MHz , MeOD) 174.3, 163.2, 81.2, 73.3, 70.7, 55.5, 55.4, 48.0, 47.9, 47.1, 46.7, 39.7, 38.5, 37.3, 37.0, 36.2, 35.1, 33.7, 33.0, 29.9, 29.7, 29.1, 28.4, 28.2, 22.4, 21.9, 15.0, 11.8, 11.7, 7.6 (16 C overlapping); $\mathbf{m} / \mathbf{z}\left(\right.$ ESI +) $837\left(2 \mathrm{M}+\mathrm{Na}^{+}, 45 \%\right), 430.2572\left(\mathrm{M}+\mathrm{Na}^{+}\right.$, ${ }_{175} \mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Na}$ requires $\left.430.2564,90 \%\right)$, $408\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$.

3-(Carboxymethoxyimino)-5 $\mathbf{\alpha}$, 17 α-pregn-20-yn-17 $\boldsymbol{\beta}$-ol (35). 17α-Ethynyl ketone $\mathbf{3 0}(0.092 \mathrm{~g}, 0.29 \mathrm{mmol})$ was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from $\mathrm{DCM} / \mathrm{MeOH}$ and subjected to flash chromatography (ethyl acetate / MeOH / $\mathrm{H}_{2} \mathrm{O}, 100 / 2 / 1$ then $80 / 2 / 1$ then $60 / 2 / 1$) which afforded a mixture of E and Z isomers of $35(0.061 \mathrm{~g}, 54 \%)$, 180 as colourless crystals. $\boldsymbol{R}_{\mathbf{f}} 0.25$ (ethyl acetate $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 100 / 2 / 1$); $\mathbf{m p} 198-200^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathbf{D}}{ }^{24}-32.0$ (c $0.20, \mathrm{MeOH}$); $\boldsymbol{v}_{\text {max }} /$ $\mathbf{c m}^{-1}\left(\mathrm{KBr}\right.$ disk) $3700-2600(\mathrm{COOH}, \mathrm{OH}), 3290(\equiv \mathrm{C}-\mathrm{H}), 2932,2851,1713(\mathrm{C}=\mathrm{O}), 1383,1356,1088 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} /\right.$ $\mathrm{MeOD}, 1 / 1) 4.48\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 3.27-3.15(1 \mathrm{H}, \mathrm{m}), 3.03-2.94(1 \mathrm{H}, \mathrm{m}), 2.67(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{C}-\mathrm{H}), 2.26-0.64(42 \mathrm{H}, \mathrm{m}), 0.91(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 1 / 2\right) 173.6,163.1,163.07,88.4,79.9,74.1,74.0,70.3,54.6,54.5,51.1$, $47.5,47.4,46.2,39.3,39.2,38.1,36.8,34.7,33.4,32.1,30.3,29.4,29.2,28.8,28.1,23.7,22.1,21.6,13.2,11.8,11.7$ (14C 185 overlapping); \mathbf{m} / \mathbf{z} (ESI-) $773\left(2 \mathrm{M}^{-H^{-}}, 55 \%\right), 386\left(\mathrm{M}-\mathrm{H}^{-}, 100\right) ; \mathbf{m} / \mathbf{z}(\mathrm{ESI}+) 388.2480\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{4}\right.$ requires 388.2483$)$.

3-(Carboxymethoxyimino)-5 $\boldsymbol{\alpha}, \mathbf{1 7} \boldsymbol{\alpha}$-pregnan-17 $\boldsymbol{-}$-ol (36). 17α-Ethyl ketone $\mathbf{3 1}(0.099 \mathrm{~g}, 0.31 \mathrm{mmol})$ was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from $\mathrm{DCM} / \mathrm{MeOH}$ and subjected to flash chromatography (ethyl acetate / MeOH / $\mathrm{H}_{2} \mathrm{O}, 80 / 2 / 1$) which afforded a mixture of E and Z isomers of $\mathbf{3 6}(0.105 \mathrm{~g}, 86 \%)$, as colourless crystals. $\boldsymbol{R}_{\mathrm{f}}$
1900.3 (ethyl acetate $/ \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 80 / 2 / 1$); mp $154-156^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{23}-8.0(c 0.2, \mathrm{MeOH}) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}$ (KBr disk) 3700-2300 (COOH , $\mathrm{OH}), 2932,2854,1751(\mathrm{C}=\mathrm{O}), 1408,1095,970,874 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 2 / 1\right) 4.23\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 3.05-2.94(1 \mathrm{H}$, $\mathrm{m}), 2.82-2.72(1 \mathrm{H}, \mathrm{m}), 2.04-1.97(2 \mathrm{H}, \mathrm{m}), 1.83-0.80(42 \mathrm{H}, \mathrm{m}), 0.72\left(6 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{C}_{21}-\mathrm{H}_{3}\right), 0.69\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.62\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.48-0.37(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 2 / 1\right) 172.4,162.1,83.0,69.3,53.6,53.5,50.1,46.2,46.1,45.0,38.0,36.9,35.9$, $35.7,33.6,32.1,31.2,31.1,28.3,28.2,27.8,27.0,23.1,21.0,20.5,14.0,10.9,10.7,7.0$ (17C overlapping); \mathbf{m} / \mathbf{z} (ESI-) 781 (2M$\left.{ }_{195} \mathrm{H}^{-}, 90 \%\right), 390\left(\mathrm{M}-\mathrm{H}^{-}, 100\right) ; \mathbf{m} / \mathbf{z}(\mathrm{ESI}+) 392.2730\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}_{4}\right.$ requires 392.2717).

General procedure for synthesis of N-hydroxysuccinimide derivatives $\mathbf{3 7 - 4 0}$. N-hydroxysuccinimide (1.1 mmol) was added to a solution of $\mathbf{3 3}, \mathbf{3 4}, \mathbf{3 5}$ or $\mathbf{3 6}(1 \mathrm{mmol})$ in dioxane (12 mL) and dichloromethane (12 mL). EDC (1.1 molar eq .) was added and the reaction mixture was stirred at room temperature under nitrogen, for $16-24 \mathrm{~h}$. The reaction mixture was concentrated under
200 reduced pressure. The residue obtained was partitioned between water (250 mL) and ethyl acetate (150 mL). The aqueous layer was further extracted with ethyl acetate ($2 \times 150 \mathrm{~mL}$). The combined organic phases were washed with pH 7 buffer (80 mL) and saturated sodium chloride solution (80 mL), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give product $\mathbf{3 7}, \mathbf{3 8}, \mathbf{3 9}$ or $\mathbf{4 0}$.

3-(Carboxymethoxyimino)-5 $\mathbf{\alpha}$,17 α-pregn-20-yne-16 $\boldsymbol{\beta}, \mathbf{1 7 \beta}$-diol \boldsymbol{N}-hydroxysuccinimide ester (37). Compound 33 ($0.056 \mathrm{~g}, 0.14$ ${ }_{205} \mathrm{mmol}$) was treated as per the general procedure. Precipitation of the resulting solid from ethyl acetate/hexane gave 37 (0.058 g , 84%) as a $1: 1$ mixture of isomers. $\boldsymbol{R}_{\mathbf{f}} 0.8$ (ethyl acetate); mp $119-121^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}-10.0\left(c \quad 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}$ (film) $3600-$ $3200(\mathrm{OH}), 3302(\equiv \mathrm{C}-\mathrm{H}), 2937,1824,1786,1740(\mathrm{C}=\mathrm{O}), 1207,1076 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.88\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 4.20(2 \mathrm{H}$, dd, J 8.0, 4.1, H16), 3.27-3.15 ($1 \mathrm{H}, \mathrm{m}$), 3.02-2.94 ($1 \mathrm{H}, \mathrm{m}$), $2.84\left(8 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.56(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{C}-\mathrm{H}), 2.36-0.83(40 \mathrm{H}, \mathrm{m})$, $0.90\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.86\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.81-0.68(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7,165.8,163.1,162.8,85.8,78.8,77.4,74.8$,
${ }_{210} 67.8,53.6,53.5,46.8,46.4,46.2,45.2,38.2,37.3,36.2,35.4,34.6,33.9,33.6,31.4,28.5,28.4,28.2,27.4,25.6,21.5,20.6,12.7$, $11.5,11.3$ (21 C overlapping); $\mathbf{m} / \mathbf{z}\left(\mathrm{ESI}+\right.$) $559(55 \%), 523.2410\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}\right.$ requires $\left.523.2415,32 \%\right), 501\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 30%), 488 (100).

3-(Carboxymethoxyimino)- $5 \alpha, 17 \alpha$-pregnane-16 $\beta, 17 \beta$-diol N-hydroxysuccinimide ester (38). Compound 34 ($0.069 \mathrm{~g}, 0.17$ $\left.{ }_{215} \mathrm{mmol}\right)$ was treated as per the general procedure. Precipitation of the resulting solid from diethyl ether/hexane gave $\mathbf{3 8}(0.081 \mathrm{~g}$, 95%) as a $1: 1$ mixture of isomers. $\boldsymbol{R}_{\mathbf{f}} 0.8$ (ethyl acetate); $\mathbf{m p} 88-90^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{24}-16.0\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}$ (film) 3600-3000 (OH), 2936, 1830, 1786, $1740(\mathrm{C}=\mathrm{O}), 1205,1076 ; \boldsymbol{\delta}_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.88\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 3.81(2 \mathrm{H}, \mathrm{dd}, J 7.8,6.2, \mathrm{H} 16)$, $3.26-3.14(1 \mathrm{H}, \mathrm{m}), 3.02-2.93(1 \mathrm{H}, \mathrm{m}), 2.84\left(8 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.55-0.80(44 \mathrm{H}, \mathrm{m}), 0.92\left(6 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{C}_{21}-\mathrm{H}_{3}\right), 0.90(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 0.86\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) 0.73-0.59(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7,165.8,163.1,162.9,80.5,73.2,67.9,54.0,53.9,46.5$,
$22045.8,45.3,38.2,37.3,36.2,36.1,35.5,35.3,34.0,32.4,31.7,28.6,28.4,28.2,27.4,27.3,25.6,21.5,20.7,14.3,11.5,11.4,7.2$ (21 C overlapping); $\mathbf{m} / \mathbf{z}(\mathrm{ESI}+) 563(100 \%), 527.2729\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}\right.$ requires $\left.527.2828,55 \%\right), 505\left(\mathrm{M}+\mathrm{H}^{+}, 30 \%\right), 492$ (55).

3-(Carboxymethoxyimino)-5a,17 α-pregn-20-yn-17阝-ol N-hydroxysuccinimide ester (39). Compound 35 ($0.036 \mathrm{~g}, 0.093$ 225 mmol) was treated as per the general procedure. Precipitation of the resulting solid from ethyl acetate/hexane gave 39 (0.042 g , 95%) as a $1: 1$ mixture of isomers. $\boldsymbol{R}_{\mathbf{f}} 0.8$ (ethyl acetate); $\mathbf{m p} 170-172^{\circ} \mathrm{C}$ (decomp.); $\left.\alpha_{\boldsymbol{\alpha}}\right]_{\mathbf{D}}{ }^{23}-42.0\left(c 0.20, \mathrm{CHCl}_{3}\right) ; \boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}$ (film) $3600-3300(\mathrm{OH}), 3296(\equiv \mathrm{C}-\mathrm{H}), 2922,1828,1784,1740(\mathrm{C}=\mathrm{O}), 1205,1078 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.88\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 3.27-$ $3.16(1 \mathrm{H}, \mathrm{m}), 3.02-2.93(1 \mathrm{H}, \mathrm{m}), 2.84\left(8 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.57(2 \mathrm{H}, \mathrm{s}, \equiv \mathrm{C}-\mathrm{H}), 2.34-0.85(42 \mathrm{H}, \mathrm{m}), 0.90\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.84$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.79-0.68(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7,165.8,163.1,163.0,87.5,79.9,73.94,73.90,67.9,53.5,53.4,50.3$, ${ }_{230} 46.8,46.5,45.3,38.9,38.3,37.3,36.1,36.0,34.0,32.6,31.3,28.6,28.4,28.2,27.4,25.6,23.1,21.5,20.8,12.8,11.5,11.4$ (20C overlapping); $\mathbf{m} / \mathbf{z}\left(\right.$ ESI +) $543(70 \%), 507\left(\mathrm{M}+\mathrm{Na}^{+}, 55\right), 485.2657\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires $\left.485.2646,100 \%\right)$.

3-(Carboxymethoxyimino)-5 $\alpha, 17 \alpha$-pregnan-17 β-ol N-hydroxysuccinimide ester (40). Compound 36 ($0.048 \mathrm{~g}, 0.12 \mathrm{mmol}$) was treated as per the general procedure. Precipitation of the resulting solid from ethyl acetate/hexane gave $\mathbf{4 0}(0.058 \mathrm{~g}, 97 \%)$ as a 1:1
${ }^{235}$ mixture of isomers. $\boldsymbol{R}_{\mathbf{f}} 0.7$ (ethyl acetate); $\mathbf{m p} 69-72^{\circ} \mathrm{C}$; $[\alpha]_{\mathbf{D}}{ }^{23}-8.0$ (c $0.20, \mathrm{CHCl}_{3}$); $\boldsymbol{v}_{\text {max }} / \mathbf{c m}^{-1}$ (film) $3600-3200(\mathrm{OH})$, 2937, 1823, 1784, $1740(\mathrm{C}=\mathrm{O}), 1205,1078 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.88\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}\right), 3.26-3.14(1 \mathrm{H}, \mathrm{m}), 3.02-2.93(1 \mathrm{H}, \mathrm{m}), 2.84$ $\left(8 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.35-0.78(46 \mathrm{H}, \mathrm{m}), 0.97\left(6 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{C}_{21}-\mathrm{H}_{3}\right), 0.90\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.87\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.71-0.59(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7,165.8,163.1,163.0,83.5,67.9,53.9,53.8,50.4,46.6,46.4,45.4,38.3,37.4,36.3,36.2,36.1,34.0$, $33.6,31.5,28.8,28.7,28.5,28.2,27.5,25.6,23.6,21.5,20.8,14.5,11.5,11.4,7.8$ (21 C overlapping); \mathbf{m} / \mathbf{z} (ESI+) 547 (100%), ${ }_{240} 511\left(\mathrm{M}+\mathrm{Na}^{+}, 25\right), 489.2969\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires 489.2959, $\left.65 \%\right)$.

Sodium 3 β-(tert-butyldimethylsilyloxy)-16 $\boldsymbol{\beta}, \mathbf{1 7} \boldsymbol{\beta}$-dihydroxy- $\mathbf{1 7 \alpha}$-methyl-5 α-androstane $\mathbf{1 6}$-sulfate (47). Diol 46 ($0.061 \mathrm{~g}, 0.14$ mmol) was dissolved in DMF (4.5 mL). Pyridine ($0.225 \mathrm{~mL}, 0.220 \mathrm{~g}, 2.78 \mathrm{mmol}$) and $4 \AA$ molecular sieves (20) were added and the mixture was stirred overnight. Sulfur trioxide-pyridine complex ($0.156 \mathrm{~g}, 0.98 \mathrm{mmol}$) was added and the reaction mixture was 245 stirred for 50 minutes at $45^{\circ} \mathrm{C}$. TLC (ethyl acetate / hexane, 1/1) analysis showed an absence of starting material. The molecular sieves were removed and the reaction mixture was poured into saturated NaHCO_{3} solution (50 mL), which was extracted with ethyl acetate ($5 \times 20 \mathrm{~mL}$). The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a residue which was triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ to give silyl protected 16 -sulfate $47(0.046 \mathrm{~g}, 61 \%) . \boldsymbol{R}_{\mathrm{f}} 0.5(\mathrm{MeOH} / \mathrm{DCM}, 1 / 4) ; \mathbf{m p} 200-202^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}-55.2$ (c 0.21 , $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}, 1 / 2\right) ; \boldsymbol{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3700-3200(\mathrm{OH}), 2928,1377$, $1252\left(\mathrm{O}-\mathrm{SO}_{2}\right), 1090,1011 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}\right.$, $\left.{ }_{250} 1 / 1\right) 4.30(1 \mathrm{H}, \mathrm{dd}, J 8.2,5.8, \mathrm{H} 16), 3.58-3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.26-2.16(1 \mathrm{H}, \mathrm{m}), 1.69-0.78(18 \mathrm{H}, \mathrm{m}), 1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.85(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 0.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.64-0.55(1 \mathrm{H}, \mathrm{m}), 0.03\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 1 / 1\right)$ $84.4,80.2,73.0,55.1,47.8,45.6,39.0,37.7,36.3,36.1,33.7,32.8,32.5,32.3,29.1,26.2,24.4,21.2,18.7,14.1,12.6$ (1C overlapping); $\mathbf{m} / \mathbf{z}\left(\right.$ ESI +) $561.2666\left(\mathrm{MNa}^{+}, \mathrm{C}_{26} \mathrm{H}_{47} \mathrm{Na}_{2} \mathrm{O}_{6} \mathrm{SSi}\right.$ requires 561.2656, 100\%).
 was dissolved in acetic acid / $\mathrm{H}_{2} \mathrm{O}(4 / 1,1.1 \mathrm{~mL})$ and stirred for 1 hour. TLC ($\mathrm{MeOH} / \mathrm{DCM}, 1 / 4$) showed complete conversion to product ($R_{\mathrm{f}} 0.2$). The mixture was poured into saturated NaHCO_{3} solution (60 mL) and extracted into ethyl acetate ($3 \times 20 \mathrm{~mL}$) and then into $\mathrm{CHCl}_{3} j^{i} \operatorname{PrOH}(3 / 1,5 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in DCM/MeOH and pre-adsorbed onto silica for flash chromatography ($\mathrm{DCM} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 60 / 15 / 1$), which 260 afforded 16 -sulfate $44(0.011 \mathrm{~g}, 69 \%) . \boldsymbol{R}_{\mathrm{f}} 0.4\left(\mathrm{DCM} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 60 / 15 / 1\right) ; \mathbf{m p} 279-280^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathbf{D}}{ }^{23}-28.6$ (c 0.21 , $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1}($ film $) 3700-3100(\mathrm{OH}), 2922,1379,1248\left(\mathrm{O}-\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 1 / 1\right) 4.30(1 \mathrm{H}, \mathrm{dd}, J 8.3$, 5.6, H16), 3.56-3.42 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$), 2.28-2.15 ($1 \mathrm{H}, \mathrm{m}$), 1.78-0.78 ($18 \mathrm{H}, \mathrm{m}$), $1.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.66-0.55(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}, 1 / 1\right) 84.4,80.2,71.3,55.1,47.9,45.6,45.5,38.2,37.6,36.4,36.2,33.8,32.8$, $32.5,31.5,29.2,24.5,21.2,14.1,12.6 ; \mathbf{m} / \mathbf{z}$ (ESI-) $401.1987\left(\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{6}\right.$ S requires $\left.401.1998,100 \%\right)$.

${ }_{65}$ Notes and references

1 N.L. Hungerford, B. Sortais, C.G. Smart, A.R. McKinney, D.D. Ridley, A.M. Stenhouse, C.J. Suann, K.J. Munn, M.N. Sillence, M.D. McLeod, J. Steroid Biochem. Mol. Biol., 2005, 96, 317-34.
2 T. Takegoshi, Chem. Pharm. Bull., 1972, 20, 1260-71.
3 N.S. Leeds, D.K. Fukushima, T.F. Gallagher, J. Am. Chem. Soc., 1954, 76, 2943-48. (c) M. Numazawa, M. Shelangouski, M. Nakakoshi, Steroids, 270 2001, 66, 743-48.
4 M. Salman, G.C. Chamness, J. Med. Chem., 1991, 34, 1019-24.

