Selective manipulation of steroid hydroxyl groups with boronate esters: efficient access to antigenic C-3 linked steroid-protein conjugates and steroid sulfate standards for drug detection

Natasha L. Hungerford,^a Andrew R. McKinney,^b Allen M. Stenhouse^b and Malcolm D. McLeod*^a

^a School of Chemistry, F11, The University of Sydney, NSW 2006, Australia. Fax: +61-2-9351-6650; Tel: +61-2-9351-5877; E-mail: m.mcleod@chem.usyd.edu.au

^b Australian Racing Forensic Laboratory, P.O. Box 528, Kensington, NSW 1465, Australia.

Experimental

10 General experimental

Optical rotations were measured using a PolAAR 2001 polarimeter set at the 589.3 nm sodium D line, in a 0.25 dm cell, in the solvent indicated, and at the concentration (g / 100 mL) and temperature indicated. Optical rotations are quoted in 10^{-1} .deg.cm².g⁻¹. Infrared spectra were recorded on a Shimadzu FTIR-8400S Fourier transform infrared spectrometer. Compounds were prepared as thin films on a 0.5 cm NaCl plate, or as KBr disks, seated on a custom-made perch in the apparatus. Absorption maxima are 15 expressed as wavenumbers (cm⁻¹).

¹H Nuclear magnetic resonance spectra were recorded using a Bruker Avance 200 (200.13 MHz), a Bruker Avance 300 (300.13 MHz) or a Bruker DRX 400 (400.13 MHz) spectrometer. Spectra were recorded in CDCl₃ or CD₃OD and chemical shifts were recorded as δ values in parts per million (ppm). Signals arising from residual protio-forms of the solvent were used as internal standard (δ 7.26, or δ 3.30, respectively). Data are reported as chemical shift (δ), relative integral, multiplicity (s = singlet, br =

 $_{20}$ broad, d = doublet, t = triplet, m = multiplet), coupling constant (J in Hz) and assignment. All coupling constants and multiplicities reported are apparent values.

¹³C Nuclear magnetic resonance spectra were recorded using a Bruker Avance 200 (50.3 MHz), a Bruker Avance 300 (75.5 MHz) or a Bruker DRX 400 (100.62 MHz) spectrometer at ambient temperature, with complete proton decoupling. Spectra were recorded in CDCl₃, CD₃OD or in D₆-DMSO and chemical shifts were recorded as δ values in parts per million (ppm). Signals ²⁵ arising from the solvent were used as internal standard (δ77.0, δ49.0 or δ39.5 respectively).

- Low resolution mass spectra were recorded by the Mass Spectrometry Unit, School of Chemistry, The University of Sydney. Major fragments are quoted as mass to charge ratio (assignment, percentage of base peak). Low resolution mass spectra were recorded on a Finnigan Polaris Q ion trap mass spectrometer, using electron impact (+EI) ionisation mode at 70 eV, or on a Finnigan LCQ ion trap mass spectrometer, using positive electrospray ionisation (+ESI), or negative electrospray ionisation (-
- ³⁰ ESI). High resolution mass spectra were recorded on a Kratos MS25 RFA mass spectrometer, using electron impact (+EI) ionisation, operating at 70 eV, in magnetic scan, with PFK as standard (The University of Queensland), or on a Spectrospin 7T FTICR, using positive or negative electrospray ionisation (The University of New South Wales).

Analytical thin layer chromatography (TLC) was performed using 0.2 mm thick, aluminium-backed, pre-coated silica gel plates (Merck Silica gel 60 F_{254}). Compounds were visualised by staining with Goofy's Dip (15 g phosphomolybdic acid, 15 mL conc. ³⁵ sulfuric acid, 485 mL water, 2.5 g cerium sulfate) or an anisaldehyde solution (7.4 mL anisaldehyde, 383 mL ethanol 95%, 10 mL sulfuric acid, 3 mL acetic acid). Flash chromatography was performed using Merck Silica gel 60 (230 – 400 mesh ASTM), under a positive pressure of nitrogen, with the solvents indicated. Solvent compositions were mixed v/v as specified.

All solvents and reagents were purified according to standard procedures. Moisture sensitive reactions were carried out in oven-dried glassware under a dry, inert nitrogen atmosphere. Reaction temperatures were controlled using dry ice : acetone (-78

 $_{40}$ °C) or ice : water (0 – 5 °C) cooling baths. Concentration under reduced pressure refers to evaporation of solvent using a rotary evaporator connected to a water aspirator. Removal of residual solvent where desired, was achieved by evacuation (0.1 – 0.01 mmHg) with a high-stage, oil-sealed vacuum pump.

Epiandrosterone (3β-hydroxy-5α-androstan-17-one) was obtained from Steraloids (Newport, RI, U.S.A.). 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC), carboxymethoxylamine hemihydrochloride, *N*-⁴⁵ hydroxysuccinimide and lithium acetylide-ethylenediamine complex, were purchased from Sigma-Aldrich (Castle Hill, NSW, Australia).

Synthesis

5α,17α-pregn-20-yne-3β,16β,17β-triol (19). 3β,16β-Diacetoxy-5α-androstane-17-one **22**^{2,3} (0.973 g, 2.49 mmol) in THF (100 mL) was added drop-wise to a stirred suspension of lithium acetylide-ethylenediamine complex (2.76 g, 29.9 mmol) in THF (40 $_{50}$ mL). After stirring for 20 hours, TLC (ethyl acetate/hexane, 1/1) analysis suggested an absence of diacetate **22** (R_f 0.8) and complete conversion to product. The reaction mixture was poured into saturated NH₄Cl solution (600 mL) and extracted into ethyl acetate (4 x 100 mL). The combined ethyl acetate extracts were washed with pH 7 buffer (80 mL) and saturated NaCl solution (80 mL), then dried (Na₂SO₄) and concentrated. The resulting residue was pre-adsorbed onto silica from DCM/MeOH and subjected to flash chromatography (ethyl acetate/hexane, 1/3 then 1/2 then 1/1.2), which gave 17α-ethynyl triol **19** (0.592 g, 71%), as a

⁵⁵ colourless, amorphous solid. R_f 0.3 (ethyl acetate/hexane, 1/1); mp 205-208 °C; $[\alpha]_D^{22}$ -26.4 (*c* 0.50, MeOH); v_{max} / cm⁻¹ (KBr disk) 3650-3000 (OH), 3275 (C=CH), 2920, 2851, 2110 (C=C), 1385, 1366, 1049; δ_H (300 MHz, MeOD) 4.10 (1H, dd, *J* 7.9, 4.6, H16), 3.57-3.44 (1H, m, H3), 2.87 (1H, s, H21), 2.25-2.15 (1H, m), 1.82-0.80 (21H, m), 0.84 (3H, s, CH₃), 0.82 (3H, s, CH₃) 0.74-0.62 (1H, m); δ_C (75 MHz, MeOD) 87.7, 79.7, 78.4, 71.8, 75.6, 55.8, 48.3, 47.3, 46.2, 38.9, 38.3, 37.0, 36.7, 35.7, 35.0, 33.1, 32.1, 29.8, 21.8, 13.5, 12.8; m/z (ESI-) 331.2281 (M-H⁻, C₂₁H₃₁O₃ requires 331.2273, 100%), 306 (M-C=CH⁻, 70%).

5α,17α-pregnane-3β,16β,17β-triol (20). 17α-Ethynyl triol **19** (0.570 g, 1.72 mmol) was dissolved in MeOH (20 mL). 10% Pd/C (0.080 g) was added and the reaction mixture was stirred under an atmosphere of H₂ (balloon pressure) for 16 hours. The reaction mixture was diluted with ethyl acetate/MeOH (1/1) and filtered through celite, to afford 17α-ethyl triol **20** (0.552 g, 96%), as a colourless, amorphous solid. *R*_f 0.33 (ethyl acetate/hexane, 1/1); **mp** 218-221°C; $[\alpha]_D^{22}$ -13.0 (*c* 0.43, MeOH); **v**_{max}/ **cm**⁻¹ (KBr disk) 3650-3100 (OH), 2932, 2854, 1450, 1381, 1038; **δ**_H (300 MHz, MeOD) 3.77 (1H, dd, *J* 8.1, 6.2, H16), 3.56-3.43 (1H, m, H3), 2.12 (1H, ddd, *J* 12.6, 8.1, 6.2), 1.80-0.80 (20H, m), 0.90 (3H, t, *J* 7.2, H21), 0.84 (3H, s, CH₃), 0.81 (3H, s, CH₃) 0.68-0.57 (1H, m); **δ**_C (75 MHz, MeOD) 81.2, 73.4, 71.8, 55.9, 48.0, 47.1, 46.2, 38.9, 38.2, 37.1, 36.7, 36.3, 33.8, 33.3, 32.1, 29.9, 28.2, 21.9, 15.0, 12.7, 7.5; **m**/z (ESI+) 336 (MH⁺, 30%), 271(25), 243 (30), 231 (70), 216 (55), 135 (55), 107 (57), 91(100), 79 (84); **m**/z (ESI-) 335.2600 (M-H⁺, C₂₁H₃₅O₃ requires 335.2592).

70

85

[(*S*)-16β,17β-benzylidenedioxy]-17α-methyl-5α-androstane-3β-ol. 17α-Methyl triol 18¹ (0.50 g, 1.55 mmol) was stirred (the triol was partially insoluble) in a mixture of DMF/DCM (1/1, 12 mL). Benzaldehyde dimethyl acetal (0.35 mL, 0.354 g, 2.33 mmol) was added, followed by conc. H₂SO₄ (10 drops). After 2 hours, a homogenous solution resulted. After 4 hours, TLC (ethyl acetate / hexane, 1/2) showed an absence of starting material (R_f 0.1) and complete conversion to product. The reaction mixture ⁷⁵ was poured into H₂O (150 mL) and extracted with ethyl acetate (5 x 80 mL). The organic extracts were washed with saturated NaCl solution, dried (Na₂SO₄) and concentrated *in vacuo*. The residue obtained was pre-adsorbed onto silica from DCM and subjected to flash chromatography (ethyl acetate/hexane, 1/5, 1/4 then 1/3), which gave [(*S*)-16β,17β-benzylidenedioxy]-17α-methyl-5α-androstane-3β-ol (0.607 g, 95%). R_f 0.2 (ethyl acetate / hexane, 1/2); **mp** 66-68°C; $[\alpha]_D^{22}$ -23.5 (*c* 0.46, DCM); **v**_{max}/ cm⁻¹ (film) 3600-3100 (OH), 2927, 1445, 1406, 1067, 1045; **δ**_H (300 MHz, CDCl₃) 7.58-7.52 (2H, m, ArH), 7.40-7.33 (3H, m, 80 ArH), 5.94 (1H, s, O-CH-O), 4.14 (1H, dd, *J* 7.6, 5.5, H16), 3.65-3.52 (1H, m, H3), 2.08 (1H, dd, *J* 13.0, 7.6, 6.2), 1.85-0.78 (19H, m), 1.34 (3H, s, CH₃), 1.02 (3H, s, CH₃), 0.83 (3H, s, CH₃), 0.68-0.55 (1H, m); **δ**_C (75 MHz, CDCl₃) 136.6, 129.3, 128.3, 126.9, 105.6, 90.7, 88.5, 71.3, 54.2, 53.3, 44.9, 44.7, 38.2, 37.0, 35.7, 35.6, 33.4, 32.0, 31.5, 31.0, 28.5, 21.0, 20.3, 15.8, 12.3; **m/z** (EI+) 410.2828 (M⁺, C₂₇H₃₈O₃ requires 410.2821, 10%), 409 (15), 367 (90), 349 (55), 331 (76), 323 (85), 305 (55), 105 (100), 91 (96), 77 (68).

[(*S*)-16β,17β-benzylidenedioxy]-17α-methyl-5α-androstan-3-one (26). [(*S*)-16β,17β-Benzylidenedioxy]-17α-methyl-5α-androstane-3β-ol (0.50g, 1.22 mmol) in DMSO (2 mL) was stirred for 16 hours with 4Å molecular sieves. Et₃N (2.55 mL, 1.85 g, 18.3 mmol) was added *via* syringe. Sulfur trioxide-pyridine complex (1.75 g, 11.0 mmol) in DMSO (6 mL) was added by cannula, and the reaction stirred for 2.5 hours. The mixture was poured into saturated NH₄Cl solution (450 mL) and extracted into ethyl ⁹⁰ acetate (5 x 100 mL). The combined organic extracts were washed with saturated NaCl solution (200 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was pre-adsorbed onto silica from DCM and subjected to flash chromatography (ethyl acetate / hexane, 1/5), which gave ketone **26** (0.386 g, 78%). **R**_f 0.60 (ethyl acetate / hexane, 1/2); **mp** 179-181°C; $[\alpha]_D^{22}$ -12.4 (*c* 0.55, DCM); **v**_{max}/ **cm**⁻¹ (film) 2943, 1709 (C=O), 1458, 1402, 1059, 1001, 989; **δ**_H (200 MHz, CDCl₃) 7.60-7.51 (2H, m, ArH), 7.41-7.33 (3H, m, ArH), 5.94 (1H, s, O-CH-O), 4.15 (1H, dd, *J* 7.7, 5.4, H16), 2.50-1.95 (6H, m), 1.76-95 0.65 (14H, m), 1.34 (3H, s, CH₃), 1.04 (3H, s, CH₃), 1.03 (3H, s, CH₃); **δ**_C (50 MHz, CDCl₃) 211.7, 136.5, 129.3, 128.3, 126.9, 105.6, 90.6, 88.3, 53.6, 53.0, 46.6, 44.6, 38.5, 38.1, 35.7, 35.5, 33.3, 31.6, 31.0, 28.7, 21.1, 20.2, 15.7, 11.5; **m/z** (EI+) 408.2663 (M⁺, C₂₇H₃₆O₃ requires 408.2664, 5%), 407 (10), 365 (100), 347 (45), 321 (75), 285 (35), 217 (45), 105 (65), 91 (57), 77 (46).

16β,17β-Dihydroxy-17α-methyl-5α-androstan-3-one (β-hydroxymestanolone) (15). Method 2. Ketone 26 (0.170 g, 0.42 ¹⁰⁰ mmol) was dissolved in THF (3 mL). 20 % Pd(OH)₂/C (0.030 g) was added and the reaction mixture was stirred under an atmosphere of H₂ (balloon pressure) for 8 hours. TLC (ethyl acetate / hexane, 1/1) suggested mostly starting material 26. The reaction mixture was filtered through celite, which was washed with ethyl acetate. After concentration *in vacuo*, the residue was re-dissolved in THF (3 mL) and stirred with Pd(OH)₂/C (0.030 g) under an H₂ atmosphere for 16 hours. Additional Pd(OH)₂/C (0.050 g) was added and stirring was continued under an H₂ atmosphere for 4 hours. TLC (ethyl acetate / hexane, 1/1) then ¹⁰⁵ showed complete conversion to a lower R_f product. Filtration through celite (ethyl acetate elution) and concentration yielded crude product. This was dissolved in DCM and pre-adsorbed onto silica for flash chromatography (ethyl acetate / hexane, 1/2 then 1/1), which gave β-hydroxymestanolone (15) (0.124 g, 93%).

5a,17a-pregn-20-yne-3 β ,17 β -diol (32).⁴ Epiandrosterone (21) (1.627 g, 5.61 mmol) in THF (100 mL) was added drop-wise to a ¹¹⁰ stirred suspension of lithium acetylide-ethylenediamine complex (2.066 g, 22.4 mmol) in THF (50 mL). After stirring for 20 hours, TLC (ethyl acetate/hexane, 1/2) showed a spot of the same R_f as 21 (R_f 0.2). The reaction mixture was poured into saturated NH₄Cl solution (500 mL) and extracted into ethyl acetate (4 x 100 mL). The combined ethyl acetate extracts were washed with pH 7 buffer (80 mL) and saturated NaCl solution (80 mL), then dried (Na₂SO₄) and concentrated. The resulting residue was pre-adsorbed onto silica from DCM/MeOH and subjected to flash chromatography (ethyl acetate/hexane, 1/2 then ¹¹⁵ 1/1), which gave diol **32** (1.659 g, 94%), as a colourless solid. R_f 0.4 (ethyl acetate / hexane, 1/1); **mp** 265-267°C (lit.,⁴ 260-261°C); $[\alpha]_D^{20}$ -42.8 (*c* 0.43, CHCl₃ / MeOH, 5/1); v_{max} / **cm**⁻¹ (film) 3500-3300 (OH), 3263 (\equiv C-H), 2930, 2100 (C \equiv C), 1383, 1053, 1026; δ_H (300 MHz, CDCl₃ / MeOD, 5/1) 3.43-3.29 (1H, m, H3), 2.42 (1H, s, \equiv CH), 2.06 (1H, ddd, *J* 13.9, 9.6, 5.6), 1.81-0.60 (20H, m), 0.65 (3H, s, CH₃), 0.64 (3H, s, CH₃), 0.56-0.42 (1H, m); δ_C (75 MHz, CDCl₃ / MeOD, 5/1) 87.5, 79.0, 73.0, 70.5, 53.7, 50.1, 46.5, 44.6, 38.4, 37.3, 36.7, 35.8, 35.2, 32.3, 31.3, 30.6, 28.3, 22.7, 20.6, 12.3, 11.8; **m/z** (EI+) 316.2406 (M⁺, 1²⁰ C₂₁H₃₂O₂ requires 316.2402, 8%), 283 (30), 265 (45), 215 (90), 147 (60), 124 (90), 91 (100), 79 (70), 77 (70).

17β-hydroxy-5α,17α-pregn-20-yn-3-one (30)⁴ Diol 32 (0.676 g, 2.14 mmol), dissolved in a mixture of DCM (9 mL) and DMSO (9 mL) was stirred for 16 hours with 4Å molecular sieves. Et₃N (5.97 mL, 4.33 g, 42.8 mmol) was added *via* syringe. Sulfur trioxide-pyridine complex (4.09 g, 25.7 mmol) in DMSO (15 mL) was added by cannula, and the reaction stirred for 16 hours. ¹²⁵ The mixture was poured into saturated NH₄Cl solution (300 mL) and ethyl acetate (100 mL) was added, followed by CHCl₃/ⁱPrOH (3/1, 200 mL). The mixture was filtered through celite and the layers separated. The aqueous phase was further extracted with CHCl₃/ⁱPrOH (3/1, 3 x 100 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. The crude product was triturated with Et₂O (4 x 80 mL) and then H₂O (2 x 50 mL) which afforded ketone **30** (0.503 g, 75%). **R**_f 0.6 (ethyl acetate / hexane, 1/1); **mp** 294-296°C (decomp.) (lit.,⁴ 296-297°C); $[\alpha]_D^{24}$ -44.7 (*c* 0.17, CHCl₃ / MeOH, 4/1); v_{max}/ cm⁻¹ (KBr disk) 3700-3100 (OH), 3271 (≡C-H), 2924, 2106 (C≡C), 1693 (C=O), 1381, 1053; **δ**_H (300 MHz, C₅D₅N) 3.44 (1H, s, ≡C-H), 2.58-0.62 (22H, m), 1.10 (3H, s, CH₃), 0.92 (3H, s, CH₃); **δ**_C (50 MHz, C₅D₅N) 209.9, 88.9, 78.8, 73.8, 53.3, 50.3, 47.1, 46.4, 44.5, 39.6, 38.3, 37.9, 35.9, 35.5, 33.1, 31.2, 28.6, 23.2, 21.1, 13.1, 10.9; **m/z** (EI+) 314.2250 (M⁺, C₂₁H₃₀O₂ requires 314.2246, 5%), 285 (15), 229 (30), 173 (25), 145 (26), 124 (100).

135 17β-hydroxy-5α,17α-pregnan-3-one (31). 17α-Ethynyl ketone 30 (0.145 g, 0.46 mmol) was dissolved in DCM/MeOH (3/1, 30 mL) and stirred with decolourising charcoal for 2 hours. The mixture was filtered through celite and concentrated. The residue was stirred in a mixture of MeOH (3.5 mL), 1,4-dioxane (2.5 mL), H₂0 (1.5 mL) and THF (5 mL). NaHCO₃ (0.150 g) and 10% Pd/C (0.050 g) was added and the reaction mixture was stirred under an atmosphere of H₂ (balloon pressure) for 16 hours. The reaction mixture was filtered through celite and concentrated. ¹H NMR revealed partial reduction. The residue was dissolved in 140 THF (15 mL) and H₂O (2 mL) and stirred with 10% Pd/C (0.050 g), under an atmosphere of H₂ (balloon pressure), for 16 hours.

Filtration, concentration and repetition of the latter procedure afforded 17 α -ethyl ketone **31** (0.095 g, 65%), as a colourless, amorphous solid. **R**_f 0.65 (ethyl acetate / hexane, 1/1); **mp** 145-148°C; $[\alpha]_D^{25}$ +12.6 (*c* 0.70, CHCl₃); **v**_{max}/ cm⁻¹ (film) 3700-3100 (OH), 2935, 1713 (C=O), 1447, 1000, 980; **\delta_{H}** (300 MHz, CDCl₃) 2.45-2.16 (3H, m), 2.12-1.88 (3H, m), 1.76-0.78 (18H, m), 1.02 (3H, s, CH₃), 0.97 (3H, t, *J* 7.2, C₂₁-H₃), 0.89 (3H, s, CH₃), 0.75-0.64 (1H, m); **\delta_{C}** (75 MHz, CDCl₃) 211.9, 83.5, 53.8, 50.3, 46.8, 145 46.4, 44.7, 38.6, 38.1, 36.3, 35.7, 33.6, 31.5, 28.9, 28.8, 23.6, 21.1, 14.5, 11.5, 7.8 (1C overlapping); **m**/z (EI+) 318.2554 (M⁺, C₂₁H₃₄O₂ requires 318.2559, 5%), 289 (M⁺-Et, 100), 271 (40), 229 (30), 213 (25).

General procedure for preparation of (carboxymethyl)oximes 33-36. Carboxymethoxylamine hemihydrochloride (2 mmol) was added to a solution of 16, 17, 30 or 31 (1 mmol) in pyridine (10 mL). The reaction mixture was heated to 80 °C and stirred ¹⁵⁰ under a nitrogen atmosphere for 4-5 hours. The reaction mixture was partially concentrated *in vacuo*, and then poured into distilled water (100 mL) and extracted into ethyl acetate (3 x 60 mL). The combined organic layers were washed with pH 7 buffer (1 x 60 mL) and saturated sodium chloride solution (1 x 60 mL), and then dried (Na₂SO₄) and concentrated to give the product 33, 34, 35 or 36.

¹⁵⁵ **3-(Carboxymethoxyimino)-5a,17α-pregn-20-yne-16β,17β-diol (33).** 17α-Ethynyl ketone **16** (0.063 g, 0.19 mmol) was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from DCM/MeOH and subjected to flash chromatography (ethyl acetate / MeOH / H₂O, 50/2/1 then 10/2/1) which afforded a mixture of *E* and *Z* isomers of **33** (0.058 g, 75%), as colourless crystals. *R*_f 0.3 (ethyl acetate/MeOH/H₂O, 50/2/1); **mp** 138-140°C; **[α]_D**²³ -29.1 (*c* 0.22, MeOH); **v**_{max}/ **cm**⁻¹ (KBr disk) 3700-2300 (COOH, OH), 3279 (≡C-H), 2922, 1728 (C=O), 1630, 1452, 1385, 1248, 1148, 1092, 1049; **δ**_H (400 MHz, MeOD) 4.47 (4H, s, OCH₂CO₂), 4.10 (2H, dd, *J* 5.0, H16), 3.26-3.18 (1H, m), 3.04-2.97 (1H, m), 2.88 (2H, s, ≡C-H), 2.27-0.85 (36H, m), 0.95 (6H, s, CH₃), 0.84 (6H, s, CH₃), 0.76-0.67 (2H, m); **δ**_C (100 MHz, MeOD) 174.7, 163.1, 87.6, 79.7, 78.4, 75.7, 70.9, 55.4, 55.3, 48.2, 47.9, 47.32, 47.30, 46.7, 39.7, 38.5, 37.3 37.28, 36.9, 35.7, 35.1, 35.0, 32.9, 32.8, 29.8, 29.6, 29.1, 28.4, 22.4, 21.8, 13.5, 11.8, 11.7 (13C overlapping); **m/z** (ESI+) 845 (2M+K⁺, 35%), 829 (2M+Na⁺, 45), 426 (M+Na⁺, 80), 404.2421 (M+H⁺, C₂₃H₃₄NO₅ requires 404.2432, 100%).

165

3-(Carboxymethoxyimino)- 5α,17α-pregnane-16β,17β-diol (34). 17α-Ethyl diol 17 (0.110 g, 0.33 mmol) was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from DCM/MeOH and subjected to flash chromatography (ethyl acetate / MeOH / H₂O, 50/2/1 then 20/2/1 then 10/2/1) which afforded a mixture of *E* and *Z* isomers of 34 (0.112 g, 84%), as colourless crystals. *R*_f 0.3 (ethyl acetate/MeOH/H₂O, 50/2/1); mp 158-160°C; $[\alpha]_D^{23}$ -25.3 (*c* 0.19, MeOH); v_{max} / cm⁻¹ (KBr disk) 3700-2300 (COOH, OH), 2937, 2856, 1736 (C=O), 1452, 1383, 1217, 1097; δ_H (400 MHz, MeOD) 4.48, 4.47 (4H, 2 x s, OCH₂CO₂), 3.81-3.75 (2H, m, H16), 3.26-3.18 (1H, m), 3.03-2.96 (1H, m), 2.27-0.85 (40H, m), 0.95 (3H, s, CH₃), 0.94 (3H, s, CH₃), 0.91 (3H, t, *J* 7.2, C₂₁-H₃), 0.90 (3H, t, *J* 7.2, C₂₁-H₃) 0.83 (3H, s, CH₃), 0.828 (3H, s, CH₃), 0.74-0.64 (2H, m); δ_C (50

MHz, MeOD) 174.3, 163.2, 81.2, 73.3, 70.7, 55.5, 55.4, 48.0, 47.9, 47.1, 46.7, 39.7, 38.5, 37.3, 37.0, 36.2, 35.1, 33.7, 33.0, 29.9, 29.7, 29.1, 28.4, 28.2, 22.4, 21.9, 15.0, 11.8, 11.7, 7.6 (16C overlapping); m/z (ESI+) 837 (2M+Na⁺, 45%), 430.2572 (M+Na⁺, 175 C₂₃H₃₇NO₅Na requires 430.2564, 90%), 408 (M+H⁺, 100).

3-(Carboxymethoxyimino)-5α,17α-pregn-20-yn-17β-ol (35). 17α-Ethynyl ketone 30 (0.092 g, 0.29 mmol) was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from DCM/MeOH and subjected to flash chromatography (ethyl acetate / MeOH / H₂O, 100/2/1 then 80/2/1 then 60/2/1) which afforded a mixture of *E* and *Z* isomers of 35 (0.061 g, 54%), as colourless crystals. *R*_f 0.25 (ethyl acetate/MeOH/H₂O, 100/2/1); mp 198-200°C (decomp.); [α]_D²⁴ -32.0 (*c* 0.20, MeOH); v_{max}/cm⁻¹ (KBr disk) 3700-2600 (COOH, OH), 3290 (≡C-H), 2932, 2851, 1713 (C=O), 1383, 1356, 1088; δ_H (300 MHz, CDCl₃ / MeOD, 1/1) 4.48 (4H, s, OCH₂CO₂), 3.27-3.15 (1H, m), 3.03-2.94 (1H, m), 2.67 (2H, s, ≡C-H), 2.26-0.64 (42H, m), 0.91 (6H, s, CH₃), 0.80 (6H, s, CH₃); δ_C (75 MHz, CDCl₃ / MeOD, 1/2) 173.6, 163.1, 163.07, 88.4, 79.9, 74.1, 74.0, 70.3, 54.6, 54.5, 51.1, 47.5, 47.4, 46.2, 39.3, 39.2, 38.1, 36.8, 34.7, 33.4, 32.1, 30.3, 29.4, 29.2, 28.8, 28.1, 23.7, 22.1, 21.6, 13.2, 11.8, 11.7 (14C 185 overlapping); m/z (ESI-) 773 (2M-H⁻, 55%), 386 (M-H⁻, 100); m/z (ESI+) 388.2480 (M+H⁺, C₂₃H₃₄NO₄ requires 388.2483).

3-(Carboxymethoxyimino)-5α,17α-pregnan-17β-ol (36). 17α-Ethyl ketone 31 (0.099 g, 0.31 mmol) was treated as per the general procedure. The residue obtained was pre-adsorbed onto silica from DCM/MeOH and subjected to flash chromatography (ethyl acetate / MeOH / H₂O, 80/2/1) which afforded a mixture of *E* and *Z* isomers of 36 (0.105 g, 86%), as colourless crystals. *R*_f ¹⁹⁰ 0.3 (ethyl acetate/MeOH/H₂O, 80/2/1); mp 154-156°C; [α]_D²³ -8.0 (*c* 0.2, MeOH); v_{max}/ cm⁻¹ (KBr disk) 3700-2300 (COOH, OH), 2932, 2854, 1751 (C=O), 1408, 1095, 970, 874; δ_H (300 MHz, CDCl₃ / MeOD, 2/1) 4.23 (4H, s, OCH₂CO₂), 3.05-2.94 (1H, m), 2.82-2.72 (1H, m), 2.04-1.97 (2H, m), 1.83-0.80 (42H, m), 0.72 (6H, t, *J* 7.2, C₂₁-H₃), 0.69 (6H, s, CH₃), 0.62 (6H, s, CH₃), 0.48-0.37 (2H, m); δ_C (75 MHz, CDCl₃ / MeOD, 2/1) 172.4, 162.1, 83.0, 69.3, 53.6, 53.5, 50.1, 46.2, 46.1, 45.0, 38.0, 36.9, 35.9, 35.7, 33.6, 32.1, 31.2, 31.1, 28.3, 28.2, 27.8, 27.0, 23.1, 21.0, 20.5, 14.0, 10.9, 10.7, 7.0 (17C overlapping); m/z (ESI-) 781 (2M-195 H⁻, 90%), 390 (M-H⁻, 100); m/z (ESI+) 392.2730 (M+H⁺, C₂₃H₃₈NO₄ requires 392.2717).

General procedure for synthesis of *N*-hydroxysuccinimide derivatives **37-40**. *N*-hydroxysuccinimide (1.1 mmol) was added to a solution of **33**, **34**, **35** or **36** (1 mmol) in dioxane (12 mL) and dichloromethane (12 mL). EDC (1.1 molar eq.) was added and the reaction mixture was stirred at room temperature under nitrogen, for 16-24 h. The reaction mixture was concentrated under ²⁰⁰ reduced pressure. The residue obtained was partitioned between water (250 mL) and ethyl acetate (150 mL). The aqueous layer was further extracted with ethyl acetate (2 x 150 mL). The combined organic phases were washed with pH 7 buffer (80 mL) and saturated sodium chloride solution (80 mL), then dried (Na₂SO₄) and concentrated to give product **37**, **38**, **39** or **40**.

3-(Carboxymethoxyimino)-5α,17α-pregn-20-yne-16β,17β-diol *N*-hydroxysuccinimide ester (37). Compound 33 (0.056 g, 0.14
²⁰⁵ mmol) was treated as per the general procedure. Precipitation of the resulting solid from ethyl acetate/hexane gave 37 (0.058 g, 84%) as a 1:1 mixture of isomers. *R*_f 0.8 (ethyl acetate); mp 119-121°C; [α]_D²⁷ -10.0 (*c* 0.20, CH₂Cl₂); v_{max}/ cm⁻¹ (film) 3600-3200 (OH), 3302 (≡C-H), 2937, 1824, 1786, 1740 (C=O), 1207, 1076; δ_H (300 MHz, CDCl₃) 4.88 (4H, s, OCH₂CO₂), 4.20 (2H, dd, *J* 8.0, 4.1, H16), 3.27-3.15 (1H, m), 3.02-2.94 (1H, m), 2.84 (8H, s, COCH₂CH₂CO), 2.56 (2H, s, ≡C-H), 2.36-0.83 (40H, m), 0.90 (6H, s, CH₃), 0.86 (6H, s, CH₃), 0.81-0.68 (2H, m); δ_C (50 MHz, CDCl₃) 168.7, 165.8, 163.1, 162.8, 85.8, 78.8, 77.4, 74.8, 210 67.8, 53.6, 53.5, 46.8, 46.4, 46.2, 45.2, 38.2, 37.3, 36.2, 35.4, 34.6, 33.9, 33.6, 31.4, 28.5, 28.4, 28.2, 27.4, 25.6, 21.5, 20.6, 12.7, 11.5, 11.3 (21C overlapping); m/z (ESI+) 559 (55%), 523.2410 (M+Na⁺, C₂₇H₃₆N₂O₇Na requires 523.2415, 32%), 501 (M+H⁺, 30%), 488 (100).

3-(Carboxymethoxyimino)- 5α,17α-pregnane-16β,17β-diol *N*-hydroxysuccinimide ester (38). Compound 34 (0.069 g, 0.17 mmol) was treated as per the general procedure. Precipitation of the resulting solid from diethyl ether/hexane gave 38 (0.081 g, 95%) as a 1:1 mixture of isomers. R_f 0.8 (ethyl acetate); mp 88-90°C; $[\alpha]_D^{24}$ -16.0 (*c* 0.20, CH₂Cl₂); v_{max} / cm⁻¹ (film) 3600-3000 (OH), 2936, 1830, 1786, 1740 (C=O), 1205, 1076; δ_H (300 MHz, CDCl₃) 4.88 (4H, s, OCH₂CO₂), 3.81 (2H, dd, *J* 7.8, 6.2, H16), 3.26-3.14 (1H, m), 3.02-2.93 (1H, m), 2.84 (8H, s, COCH₂CH₂CO), 2.55-0.80 (44H, m), 0.92 (6H, t, *J* 7.2, C₂₁-H₃), 0.90 (6H, s, CH₃), 0.86 (6H, s, CH₃) 0.73-0.59 (2H, m); δ_C (75 MHz, CDCl₃) 168.7, 165.8, 163.1, 162.9, 80.5, 73.2, 67.9, 54.0, 53.9, 46.5, 45.8, 45.3, 38.2, 37.3, 36.2, 36.1, 35.5, 35.3, 34.0, 32.4, 31.7, 28.6, 28.4, 28.2, 27.4, 27.3, 25.6, 21.5, 20.7, 14.3, 11.5, 11.4, 7.2 (21C overlapping); m/z (ESI+) 563 (100%), 527.2729 (M+Na⁺, C₂₇H₄₀N₂O₇Na requires 527.2828, 55%), 505 (M+H⁺, 30%), 492 (55).

3-(Carboxymethoxyimino)-5a,17α-pregn-20-yn-17β-ol *N*-hydroxysuccinimide ester (39). Compound 35 (0.036 g, 0.093 mol) was treated as per the general procedure. Precipitation of the resulting solid from ethyl acetate/hexane gave 39 (0.042 g, 95%) as a 1:1 mixture of isomers. *R*_f 0.8 (ethyl acetate); mp 170-172°C (decomp.); [α]_D²³ -42.0 (*c* 0.20, CHCl₃); v_{max}/ cm⁻¹ (film) 3600-3300 (OH), 3296 (≡C-H), 2922, 1828, 1784, 1740 (C=O), 1205, 1078; δ_H (300 MHz, CDCl₃) 4.88 (4H, s, OCH₂CO₂), 3.27-3.16 (1H, m), 3.02-2.93 (1H, m), 2.84 (8H, s, COCH₂CH₂CO), 2.57 (2H, s, ≡C-H), 2.34-0.85 (42H, m), 0.90 (6H, s, CH₃), 0.84 (6H, s, CH₃), 0.79-0.68 (2H, m); δ_C (75 MHz, CDCl₃) 168.7, 165.8, 163.1, 163.0, 87.5, 79.9, 73.94, 73.90, 67.9, 53.5, 53.4, 50.3, 46.8, 46.5, 45.3, 38.9, 38.3, 37.3, 36.1, 36.0, 34.0, 32.6, 31.3, 28.6, 28.4, 28.2, 27.4, 25.6, 23.1, 21.5, 20.8, 12.8, 11.5, 11.4 (20C overlapping); m/z (ESI+) 543 (70%), 507 (M+Na⁺, 55), 485.2657 (M+H⁺, C₂₇H₃₇N₂O₆ requires 485.2646, 100%).

3-(Carboxymethoxyimino)-5α,17α-pregnan-17β-ol *N*-hydroxysuccinimide ester (40). Compound 36 (0.048 g, 0.12 mmol) was treated as per the general procedure. Precipitation of the resulting solid from ethyl acetate/hexane gave 40 (0.058 g, 97%) as a 1:1 ²³⁵ mixture of isomers. R_f 0.7 (ethyl acetate); **mp** 69-72°C; $[\alpha]_D^{23}$ -8.0 (*c* 0.20, CHCl₃); v_{max} / cm⁻¹ (film) 3600-3200 (OH), 2937, 1823, 1784, 1740 (C=O), 1205, 1078; δ_H (300 MHz, CDCl₃) 4.88 (4H, s, OCH₂CO₂), 3.26-3.14 (1H, m), 3.02-2.93 (1H, m), 2.84 (8H, s, COCH₂CH₂CO), 2.35-0.78 (46H, m), 0.97 (6H, t, *J* 7.3, C₂₁-H₃), 0.90 (6H, s, CH₃), 0.87 (6H, s, CH₃), 0.71-0.59 (2H, m); δ_C (75 MHz, CDCl₃) 168.7, 165.8, 163.1, 163.0, 83.5, 67.9, 53.9, 53.8, 50.4, 46.6, 46.4, 45.4, 38.3, 37.4, 36.3, 36.2, 36.1, 34.0, 33.6, 31.5, 28.8, 28.7, 28.5, 28.2, 27.5, 25.6, 23.6, 21.5, 20.8, 14.5, 11.5, 11.4, 7.8 (21C overlapping); **m**/z (ESI+) 547 (100%), ²⁴⁰ 511 (M+Na⁺, 25), 489.2969 (M+H⁺, C₂₇H₄₁N₂O₆ requires 489.2959, 65%).

Sodium 3β-(*tert*-butyldimethylsilyloxy)-16β,17β-dihydroxy-17α-methyl-5α-androstane 16-sulfate (47). Diol 46 (0.061 g, 0.14 mmol) was dissolved in DMF (4.5 mL). Pyridine (0.225 mL, 0.220 g, 2.78 mmol) and 4Å molecular sieves (20) were added and the mixture was stirred overnight. Sulfur trioxide-pyridine complex (0.156 g, 0.98 mmol) was added and the reaction mixture was stirred for 50 minutes at 45°C. TLC (ethyl acetate / hexane, 1/1) analysis showed an absence of starting material. The molecular sieves were removed and the reaction mixture was poured into saturated NaHCO₃ solution (50 mL), which was extracted with ethyl acetate (5 x 20 mL). The organic extracts were dried (Na₂SO₄) and concentrated to give a residue which was triturated with Et₂O (2 mL) to give silyl protected 16-sulfate 47 (0.046 g, 61%). *R*_f 0.5 (MeOH / DCM, 1/4); mp 200-202°C; [α]_D²² -55.2 (*c* 0.21, CHCl₃ / MeOH, 1/2); v_{max}/ cm⁻¹ (film) 3700-3200 (OH), 2928, 1377, 1252 (O-SO₂), 1090, 1011; δ_H (400 MHz, CDCl₃ / MeOD, 250 1/1) 4.30 (1H, dd, *J* 8.2, 5.8, H16), 3.58-3.48 (1H, m, H3), 2.26-2.16 (1H, m), 1.69-0.78 (18H, m), 1.16 (3H, s, CH₃), 0.85 (9H, s, (CH₃)₃CSi), 0.82 (3H, s, CH₃), 0.79 (3H, s, CH₃), 0.64-0.55 (1H, m), 0.03 (6H, s, (CH₃)₂Si); δ_C (100 MHz, CDCl₃ / MeOD, 1/1) 84.4, 80.2, 73.0, 55.1, 47.8, 45.6, 39.0, 37.7, 36.3, 36.1, 33.7, 32.8, 32.5, 32.3, 29.1, 26.2, 24.4, 21.2, 18.7, 14.1, 12.6 (1C overlapping); m/z (ESI+) 561.2666 (MNa⁺, C₂₆H₄₇Na₂O₆SSi requires 561.2656, 100%).

- Sodium 3β,16β,17β-trihydroxy-17α-methyl-5α-androstane 16-sulfate (44). Silyl protected 16-sulfate 47 (0.020 g, 0.037 mmol) was dissolved in acetic acid / H₂O (4/1, 1.1 mL) and stirred for 1 hour. TLC (MeOH / DCM, 1/4) showed complete conversion to product (*R*_f 0.2). The mixture was poured into saturated NaHCO₃ solution (60 mL) and extracted into ethyl acetate (3 x 20 mL) and then into CHCl₃/ⁱPrOH (3/1, 5 x 15 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was dissolved in DCM/MeOH and pre-adsorbed onto silica for flash chromatography (DCM/MeOH/H₂O, 60/15/1), which ²⁶⁰ afforded 16-sulfate 44 (0.011 g, 69%). *R*_f 0.4 (DCM/MeOH/H₂O, 60/15/1); mp 279-280 °C (decomp.); [α]_D²³ -28.6 (*c* 0.21, MeOH); v_{max}/ cm⁻¹ (film) 3700-3100 (OH), 2922, 1379, 1248 (O-SO₂); δ_H (300 MHz, CDCl₃ / MeOD, 1/1) 4.30 (1H, dd, *J* 8.3,
- MeOH); \mathbf{v}_{max} / cm⁻¹ (film) 3700-3100 (OH), 2922, 1379, 1248 (O-SO₂); $\mathbf{\delta}_{H}$ (300 MHz, CDCl₃ / MeOD, 1/1) 4.30 (1H, dd, *J* 8.3, 5.6, H16), 3.56-3.42 (1H, m, H3), 2.28-2.15 (1H, m), 1.78-0.78 (18H, m), 1.16 (3H, s, CH₃), 0.83 (3H, s, CH₃), 0.80 (3H, s, CH₃), 0.66-0.55 (1H, m); $\mathbf{\delta}_{C}$ (100 MHz, CDCl₃ / MeOD, 1/1) 84.4, 80.2, 71.3, 55.1, 47.9, 45.6, 45.5, 38.2, 37.6, 36.4, 36.2, 33.8, 32.8, 32.5, 31.5, 29.2, 24.5, 21.2, 14.1, 12.6; m/z (ESI-) 401.1987 (C₂₀H₃₃O₆S requires 401.1998, 100%).

265 Notes and references

- N.L. Hungerford, B. Sortais, C.G. Smart, A.R. McKinney, D.D. Ridley, A.M. Stenhouse, C.J. Suann, K.J. Munn, M.N. Sillence, M.D. McLeod, J. Steroid Biochem. Mol. Biol., 2005, 96, 317-34.
- 2 T. Takegoshi, Chem. Pharm. Bull., 1972, 20, 1260-71.
- N.S. Leeds, D.K. Fukushima, T.F. Gallagher, J. Am. Chem. Soc., 1954, 76, 2943-48. (c) M. Numazawa, M. Shelangouski, M. Nakakoshi, Steroids, 2001, 66, 743-48.
- 4 M. Salman, G.C. Chamness, J. Med. Chem., 1991, 34, 1019-24.