Supporting Information:

General:

All reactions were carried out in dried glassware under an atmosphere of argon. Solvents were destilled or dried using standard methods prior to use where appropriate. All chemicals were purchased from commercial suppliers and used without further purification. Flash chromatography was performed using silica gel 60 (230-400 mesh provided by Macherey-Nagel). TLC was performed using precoated aluminium foil sheets silica gel 60 F₂₅₄ provided by Merck. ¹H and ¹³C NMR spectra were recorded on Bruker AM 400 or DRX 500, using the residual signals of the solvent as standard. Multiplicities are described as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants J are reported in Hz. Numbers of attached protons in the ${}^{13}C$ spectra were elucidated using DEPT90 and 135 and are given in the form: p = primary (RCH₃), s = secondary (R_2CH_2), t = tertiary (R_3CH), q = quartenary (R_4C). Mass spectrometry (MS) as well as high resultion MS (HRMS) was performed on a Finnigan MAT 90 using electron impact (EI) at 70 eV. Ion mass/charge ratios (m/z) are reported as values in atomic mass units followed by the intensities relative to the base peak in parathenses. Infrared spectra (IR) were obtained on a Bruker IFS 88 as film on KBr and are reported as values in cm^{-1} using the following abbreviations for absorption strength: s = strong, m =medium, w = weak. Elemental analysis was performed on a Heraeus CHN-O-Rapid and are given as percentage values with the abbreviation calc. = calculated.

Experimental procedures:

1-Benzyloxy-4-hydroxymethyl-2-methyl-hexan-3-one (2):

Chlorodicyclohexylborane (1.71 mL, 1.71 mmole, 1.5 equiv., 1 M
OH in hexanes) was dissolved in Et₂O (3 mL) and cooled to -78 °C.
Triethylamine (0.29 mL, 0.21 g, 2.05 mmole, 1.8 equiv.) and

1-benzyloxy-2-methyl-hexan-3-one (**4**, 251 mg, 1.14 mmole) in Et₂O (5 mL) were slowly added. The mixture was warmed to 0°C and stirred for 2 h. After recooling to -78 °C, gaseous formaldehyde (produced from dried *para*-formaldehyde by heating, 137 mg, 4.56 mmole, 4.0 equiv.) was transferred into the reaction vessel. Stirring was continued for 2 h at -78 °C and for 14 h at -26 °C. The reaction mixture was then warmed to 0 °C, quenched by addition of MeOH/pH7 buffer (10 mL, 1:1) and H₂O₂ (5 mL, 30%) and stirred for 1 h. After adding H₂O (60 mL) the phases were separated and the aqueous phase was

extracted with CH_2Cl_2 (3 × 60 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/Et₂O 3:1) yielding the *anti* diastereomer as a pale yellow oil (243 mg, 0.97 mmole, 85%). The diastereomeric ratio was determined from the ¹H NMR spectrum of the crude product (dr = 19:1).

[α]²⁰_D = +11.9° (CHCl₃, 1.34 g/100 mL). – ¹H NMR (CDCl₃, 500 MHz): δ = 0.89 (t, *J* = 7.5 Hz, 3 H, CH₂CH₃), 1.04 (d, *J* = 7.0 Hz, 3 H, CHCH₃), 1.44–1.53 (m, 1 H, CH_AH_BCH₃), 1.61–1.69 (m, 1H, CH_AH_BCH₃), 2.41 (br. s, 1 H, OH), 2.69–2.74 (m, 1 H, C(O)CHCH₂CH₃), 3.05–3.12 (m, 1 H, CHCH₃), 3.42 (dd, *J* = 8.9 Hz, *J* = 5.0 Hz, 1 H, BnOCH_AH_B), 3.64–3.72 (m, 2 H, CH_AH_BOH und BnOCH_AH_B), 3.81 (dd, *J* = 11.4 Hz, *J* = 7.9 Hz, 1 H, CH_AH_BOH), 4.43 (d, J = 11.9 Hz, 1 H, Ar-CH_AH_B), 4.48 (d, J = 1.9 Hz, 1 H, Ar-CH_aH_b), 7.24–7.35 (m, 5 H, Ar-H). – ¹³C NMR (CDCl₃, 125 MHz): δ = 11.9 (p), 13.8 (p), 20.7 (s), 44.7 (t), 55.7 (t), 62.5 (s), 72.3 (s), 73.4 (s), 127.6 (t, C-Ar), 127.7 (2×, t, C-Ar), 128.4 (2×, t, C-Ar), 138.6 (q, C-Ar), 217.0 (q, C=O). – IR (film on KBr): 3447 (s), 3088 (w), 3063 (m), 3031 (m), 2967 (s), 2934 (s), 2876 (s), 1707 (s), 1496 (m), 1455 (s), 1375 (m), 1249 (m), 1206 (m), 1159 (m), 1101 (s), 1101 (s), 1029 (s), 990 (m), 909 (w), 738 (m), 698 (m). – MS (EI, 70 eV): *m/z* (%): 255 ([M⁺], 0.6), 144 (30), 108 (12), 91 (100), 71 (12), 55 (22). – HRMS (C₁₅H₂₂O₃): calcd. 250.1569, found 250.1566. – EA (C₁₅H₂₂O₃): calcd. C 71.97, H 8.86, found C 71.94, H 8.69.

2-Benzyloxymethyl-4-hydroxymethyl-hexan-3-ol (5):

Sodium triacetoxyborohydride (5.65 g, 26.7 mmole, 4.0 equiv.) BnO $\stackrel{i}{OH}$ Was dissolved in THF (75 mL) and cooled to 0 °C. 1-Benzyloxy-4hydroxymethyl-2-methyl-hexan-3-one (**2**, 1.67 g, 6.67 mmole) in THF (35 mL) and acetic acid (5 mL) were added. The reaction mixture was stirred at 0 °C for 30 min. and 16 h at rt. The reaction was quenched by addition of sat. aqueous Rochelle's salt solution (100 mL) and stirred for 10 h. Sat. aqueous NaHCO₃ solution (100 mL) and CH₂Cl₂ (100 mL) were added, phases separated and the aqueous phase extracted with CH₂Cl₂ (3 × 75 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate 3:1) yielding the monoprotected triol as a colorless oil (1.51 g, 6.00 mmole, 90%). The diastereomeric ratio was determined from the ¹H NMR spectrum of the crude product (dr = 9:1).

¹H NMR (CDCl₃, 400 MHz): $\delta = 0.77$ (d, J = 6.9 Hz, 3 H, CHCH₃), 0.97 (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.33–1.47 (m, 2 H, CHCH_AH_BCH₃, CHCH₃), 1.55–1.72 (m, 1 H, CHCH_AH_BCH₃), 1.98–2.13 (m, 1 H, CHCH₂CH₃), 3.44 (br. s, OH), 3.39–3.53 (m, 2 H, CH₂OH), 3.60–3.65 (m, 1 H, CHOH), 3.81–3.95 (m, 2 H, BnOCH₂), 4.53 (br. s, 2 H, PhCH₂O), 7.27–7.40 (m, 5 H, Ar-H). – ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.1$ (p), 13.3 (p), 18.4 (s), 36.8 (t), 41.0 (t), 64.7 (s), 70.1 (s), 73.3 (s), 75.2 (s), 127.3 (2×, t, C-Ar), 127.6 (t, C-Ar), 128.3 (2x, t, C-Ar), 138.3 (q, C-Ar). – EA (C₂₅H₄₂SiO₃): calcd. C 71.39, H 9.59, found C 71.20, H 9.43.

1-Benzyloxy-2-methyl-4-triisopropylsilanyloxymethyl-hexan-3-one (6):

Imidazole (4.68 g, 68.7 mmole, 2.0 equiv.) was dissolved in DMF (85 mL). 1-Benzyloxy-4-hydroxymethyl-2-methylhexan-3-one (**2**, 8.60 g, 34.4 mmole) and TIPSC1 (7.92 g, 41.2 mmole, 1.2 equiv.) were added and was stirred for 50 h at

rt. The reaction was quenched by addition of H_2O (250 mL) and the mixture was extracted with Et₂O (4 × 125 mL). The combined organic phases were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate 9:1) yielding the diprotected compound as a pale yellow oil (13.8 g, 33.9 mmole, 99%).

[α]_D²⁰ = - 31.8 ° (CHCl₃, 0.78 g/100 mL). - ¹H NMR (CDCl₃, 400 MHz): δ = 0.86 (t, *J* = 7.5 Hz, 3 H, CH₂CH₃), 1.00–1.06 (m, 21 H, TIPS), 1.08 (d, *J* = 7.0 Hz, 3 H, CHCH₃), 1.32–1.45 (m, 1 H, CH_AH_BCH₃), 1.57–1.68 (m, 1 H, CH_AH_BCH₃), 2.82–2.90 (m, 1 H, CHCH₂CH₃), 2.99–3.07 (m, 1 H, CHCH₃), 3.42 (dd, *J* = 9.1 Hz, *J* = 5.7 Hz, 1 H, BnOCH_AH_B), 3.67 (dd, *J* = 9.1 Hz, *J* = 7.3 Hz, 1 H, BnOCH_AH_B), 3.71 (dd, *J* = 9.5 Hz, *J* = 5.0Hz, 1 H, TIPSOCH_AH_B), 3.85 (dd, *J* = 9.5 Hz, *J* = 8.4 Hz, 1 H, TIPSOCH_AH_B), 4.46 (d, *J* = 12.0 Hz, 1 H, Ar-CH_aH_b), 4.51 (d, *J* = 12.0 Hz, 1 H, Ar- CH_aH_b), 7.24–7.35 (m, 5 H, Ar-H). – ¹³C NMR (CDCl₃, 100 MHz): δ = 12.0 (3×, t, TIPS), 12.1 (p), 13.0 (p), 18.0 (6×, p, TIPS), 21.3 (s), 47.3 (t), 55.6 (t), 64.7 (s), 72.1 (s), 73.3 (s), 127.5 (2×, t, C-Ar), 127.6 (t, C-Ar), 128.3 (2×, t, C-Ar), 138.3 (q, C-Ar), 215.6 (q, C=O). – IR (film on KBr): 3030 (w), 2942 (s), 2865 (s), 1713 (m), 1462 (m), 1382 (m), 1250 (w), 1101 (s), 1069 (m), 1029 (m), 996 (m), 883 (m), 790 (m), 734 (m), 682 (m), 659 (m). – MS (EI, 70 eV): *m*/*z* (%): 406 ([M⁺], 0.04), 363 (50), 257 (36), 255 (17), 91 (100). – HRMS (C₂₅H₄₂SiO₃): calcd. 406.2903, found 406.2906. – EA (C₂₅H₄₂SiO₃): calcd. C 70.88, H 10.41, found C 70.92, H 9.96.

1-Hydroxy-2-methyl-4-triisopropylsilanyloxymethyl-hexan-3-one (7):

stirred for 4 h under H₂ atmosphere. The reaction mixture was filtered over Celite®, washing with Et_2O (100 mL). The organic phase was concentrated, taken up in Et_2O (100 mL) and filtered to remove traces of palladium. The deprotected product was received as a pale yellow oil (3.86 g, 12.2 mmole, 99%).

[α]_D²⁰ = - 10.7 ° (CHCl₃, 0.98 g/100 mL). - ¹H NMR (CDCl₃, 400 MHz): δ =0.91 (t, *J* = 7.5 Hz, 3 H, CH₂CH₃), 0.99–1.10 (m, 21 H, TIPS), 1.13 (d, *J* = 7.2 Hz, 3 H, CHCH₃), 1.37–1.46 (m, 1 H, CH_AH_BCH₃), 1.52–1.61 (m, 1 H, CH_AH_BCH₃), 2.39 (br. s, 1 H, OH), 2.82–2.87 (m, 1 H, CHCH₃), 2.87–2.92 (m, 1 H, CHCH₂CH₃), 3.64–3.71 (m, 2 H, HOCH_AH_B and TIPSOCH_AH_B), 3.78 (dd, *J* = 11.3 Hz, *J* = 7.4 Hz, 1 H, HOCH_AH_B), 3.89–3.93 (m, 1 H, TIPSOCH_AH_B). - ¹³C NMR (CDCl₃, 100 MHz): δ = 12.0 (3×, t, TIPS), 12.1 (p), 12.7 (p), 18.1 (6×, p, TIPS), 22.2 (s), 49.0 (t), 54.9 (t), 64.5 (s), 64.6 (s), 216.2 (q). – IR (film on KBr): 3448 (w), 2942 (s), 2867 (s), 1709 (m), 1463 (m), 1383 (m), 1254 (w), 1101 (m), 1068 (m), 1016 (m), 997 (m), 883 (m), 790 (m), 682 (m), 659 (m). – MS (EI, 70 eV): *m/z* (%): 317 ([M⁺+H], 0.1), 273 (100), 243 (54), 131 (55), 119 (36), 103 (35), 95 (28), 75 (34), 43 (47). – HRMS (C₁₇H₃₆SiO₃+H): calcd. 317.2512, found 317.2507. – EA (C₁₇H₃₆SiO₃): calcd. C 64.50, H 11.46, found C 64.73, H 10.95.

2-Methyl-4-triisopropylsilanyloxymethyl-hexane-1,3-diol (8):

Sodium triacetoxyborohydride (1.59 g, 7.50 mmole, 3.0 equiv.) was dissolved in THF (30 mL) and cooled to 0 °C. 1-Hydroxy-2-methyl-4-triisopropylsilanyloxymethyl-hexan-3-one (**7**, 791 mg, 2.50 mmole) in THF (30 mL) and acetic acid (2 mL) were

added. The reaction mixture was stirred at 0 °C for 30 min and 16 h at rt. The reaction was quenched by addition of sat. aqueous Rochelle's salt solution (25 mL) and stirred for 10 h. Sat. aqueous NaHCO₃ solution (25 mL) and CH₂Cl₂ (50 mL) were added, phases separated and the aqueous phase extracted with CH₂Cl₂ (3×50 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate 3:1) yielding the monoprotected triol as a

colorless oil (573 mg, 1.80 mmole, 90%). The diastereomeric ratio was determined from the ¹H NMR spectrum of the crude product (dr = 9:1).

¹H NMR (CDCl₃, 400 MHz): $\delta = 0.87$ (t, J = 7.4 Hz, 3 H, CH₂CH₃), 0.99 (d, J = 7.0 Hz, 3 H, CHCH₃), 1.00–1.06 (m, 21 H, TIPS), 1.25–1.46 (m, 2 H, CHCH_AH_BCH₃, CHCH₂CH₃), 1.55–1.70 (m, 1 H, CHCH_AH_BCH₃), 1.70–1.84 (m, 1 H, CHCH₃), 3.27 (br. s, OH), 3.58–3.81 (m, 3 H, CH₂OH, CHOH), 3.85 (dd, J = 9.5 Hz, J = 5.0 Hz, 1 H, TIPSOCH_AH_B), 3.99 (dd, J = 9.5 Hz, J = 8.4 Hz, 1 H, TIPSOCH_AH_B). – ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.0$ (3×, t, TIPS), 12.1 (p), 13.0 (p), 18.0 (6×, p, TIPS), 21.3 (s), 38.3 (t), 42.9 (t), 64.7 (s), 69.1 (s), 73.3 (t). – EA (C₁₇H₃₈SiO₃): calcd. C 64.09, H 12.02, found C 64.26, H 12.11.

3-(4-Methoxy-benzyloxy)-2-methyl-4-triisopropylsilanyloxymethyl-hexan-1-ol (9):

2-Methyl-4-triisopropylsilanyloxymethyl-hexane-1,3-diol (8,
OTIPS 1.36 g, 4.30 mmole) was dissolved in CHCl₃ (50 mL) containing 4 Å molecular sieves. *P*-Anisaldehyde dimethyl acetal (3.92 g, 21.5 mmole, 5.0 equiv.) and *p*-toluenesulfonic acid monohydrate

(80 mg) were added and the mixture was stirred for 5 h at rt. The reaction was quenched with sat. aqueous NaHCO₃ solution (35 mL). The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 75 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate 9:1) yielding the acetal as a pale yellow oil (1.78 g, 4.08 mmole, 95%) which was used without further purification.

The above acetal (574 mg, 1.55 mmole) was dissolved in CH_2Cl_2 and cooled to 0 °C. DIBAL (7.75 mL, 7.75 mmole, 5.2 equiv., 1 M in toluene) was added dropwise and the mixture stirred for 4 h at 0 °C. The reaction was quenched by careful addition of MeOH (2.5 mL) and was diluted with sat. aqueous Rochelle's salt solution (100 mL) and ethyl acetate (50 mL). The phases were separated and the aqueous phase was extracted with ethyl acetate (2 × 50 mL). The combined organic phases were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate 3:1) yielding the diprotected alcohol as a pale yellow oil (391 g, 1.05 mmole, 68%) along with some completely deprotected compound (40 mg, 0.15 mmole, 10%).

¹H NMR (CDCl₃, 400 MHz): $\delta = 0.88-0.95$ (m, 6 H, CH₂CH₃, CHCH₃), 1.00–1.08 (m, 21 H, TIPS), 1.13–1.24 (m, 1 H, CHCH_AH_BCH₃), 1.32–1.39 (m, 1 H, CHCH₃), 1.52–1.64 (m, 1 H, CHCH_AH_BCH₃), 1.93–2.05 (m, 1 H, CHCH₂CH₃), 2.20 (br. s, 1 H, OH), 3.53–3.73 (m, 4 H,

CHOPMB, TIPSOCH_AH_B, HOCH₂), 3.80 (br. s, 3 H, OCH₃), 3.81–3.88 (m, 1 H, TIPSOCH_AH_B), 4.43–4.67 (m, 2 H, OCH₂Ar), 6.87 (d, 2 H, J = 8.6 Hz, Ar-H), 7.20–7.28 (m, 2 H, Ar-H). – ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.0$ (p), 15.1 (s), 18.0 (t), 18.8 (s), 20.5 (s), 37.5 (t), 45.0 (t), 55.2 (p), 62.3 (s), 66.8 (s), 73.4 (p), 80.1 (t), 113.7 (t, C-Ar), 129.1 (t, C-Ar), 131.1 (q, C-Ar), 159.1 (q, C-Ar). – IR (film on KBr): 2960 (m), 2941 (m), 2866 (m), 1514 (m), 1463 (w), 1248 (m), 1094 (m), 1038 (m), 684 (w). – MS (EI, 70 eV): m/z (%): 439 ([M⁺], 1.1), 341 (8), 302 (46), 257 (11), 128 (28), 121 (100), 97 (32). – HRMS (C₂₅H₄₆SiO₄): calcd. 439.3244, found 439.3249. – EA (C₂₅H₄₆SiO₄): calcd. C 68.44, H 10.57, found C 68.40, H 10.20.

[3-(4-Methoxy-benzyloxy)-2-methyl-4-triisopropylsilanyloxymethyl-hexyl]-triphenyl-phosphonium iodide (**10**):

Imidazole (180mg, 2.64 mmole, 2.2 equiv.), triphenylphosphine (629 mg, 2.40 mmole, 2.0 equiv.) and 3-(4-Methoxy-benzyloxy)-2-methyl-4-tri-*iso*-propylsilanyloxymethyl-hexan-1-ol (526 mg, 1.20 mmol) were dissolved in

CH₂Cl₂. Iodine (609 mg, 2.40 mmol, 2.0 equiv.) was added in one portion. The mixture was stirred at rt for 1 h before being quenched by addition of sat. aqueous Na₂S₂O₃ solution (2.5 mL). After addition of CH₂Cl₂ (15 mL), the phases were separated, the aqueous phase was washed with H₂O (10 mL) and brine (10 mL), dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate 9:1) to yield the corresponding iodide as a pale yellow oil (658 mg, 100%).

¹H NMR (CDCl₃, 500 MHz): $\delta = 0.81-0.91$ (m, 3 H, CH₂CH₃), 0.95–1.05 (m, 24 H, TIPS, CHCH₃), 1.13–1.24 (m, 1 H, CHCH_AH_BCH₃), 1.32–1.39 (m, 1 H, CHCH₃1.52–1.64(m, 1 H, CHCH_AH_BCH₃), 1.85–1.98 (m, 1 H, CHCH₂CH₃), 3.11–3.26 (m, 1 H, CHOPMB), 3.53 (dd, 1 H, J = 6.7 Hz, J = 4.0 Hz, ICH_AH_B), 3.55–3.63 (m, 1 H, ICH_AH_B), 3.80 (dd, 1 H, J = 9.9 Hz, J = 4.7 Hz, TIPSOCH_AH_B), 3.73 (s, 3 H, OCH₃), 3.80 (dd, 1 H, J = 9.9 Hz, J = 4.7 Hz, TIPSOCH_AH_B), 4.47 (d, 1 H, J = 11.0 Hz, OCH_AH_BAr), 4.53 (d, 1 H, J = 11.0 Hz, OCH_AH_BAr), 6.79 (d, 2 H, J = 8.3 Hz, Ar-H), 7.20 (d, 2 H, J = 8.3 Hz, Ar-H).¹³C NMR (CDCl₃, 125 MHz): $\delta = 12.1$ (6×, p, TIPS), 14.9 (s), 15.5 (p), 18.1 (3×, t, TIPS), 18.5 (s), 20.5 (s), 38.4 (t), 45.5 (t), 55.3 (p), 62.0 (s), 74.5 (s), 81.4 (t), 113.7 (2×, t, C-Ar), 128.9 (2×, t, C-Ar), 131.2 (q, C-Ar), 159.0 (q, C-Ar). – IR (film on KBr): 2959 (m), 2941 (m), 2865 (m), 1613 (w), 1514 (m), 1462 (m), 1382 (w), 1301 (w), 1248 (m), 1172 (m), 1097 (m), 1066 (m),

1040 (m), 995 (w), 882 (w), 821 (w), 681 (w). – MS (EI, 70 eV): m/z (%): 548 ([M⁺], 0.42), 237 (12), 174 (18), 121 (100), 75 (11), 58 (63). – HRMS (C₂₅H₄₅IO₃Si): calcd. 548.2183, found 548.2176. – EA (C₂₅H₄₅IO₃Si): calcd. C 54.73, H 8.27, found C 54.66, H 8.39.

A mixture of the above iodide (373 mg, 0.68 mmole) and triphenylphosphine (1.78 g, 6.80 mmole, 10.0 equiv.) was heated to 95 °C upon melting of the phosphine and was kept at this temperature for 20 h. After cooling, toluene (1 mL) was added and the mixture was directly subjected to column chromatography (silica gel, $CH_2Cl_2 \rightarrow CH_2Cl_2/MeOH$ 19:1 \rightarrow 9:1) providing the product as a yellowish foam (461 mg, 0.57 mmole, 84%).

- No NMR data obtained due to low solubility in common NMR solvents -

IR (film on KBr): 2944 (w), 2887 (w), 1612 (w), 1513 (w), 1463 (w), 1438 (w), 1390 (w), 1250 (w), 1177 (w), 1111 (w), 1066 (w), 996 (w), 919 (w), 882 (w), 747 (w), 721 (w), 690 (w). – MS (EI, 70 eV): m/z (%): 810 ([M⁺], 0.33), 485 (71), 347 (73), 262 (100), 183 (83), 121 (72), 108 (34). – HRMS (C₄₃H₆₀IO₃PSi): calcd. 810.3095, found 810.3091. – EA (C₄₃H₆₀IO₃PSi): calcd. C 63.69, H 7.46, found C 63.56, H 7.14.

7-Benzyloxy-5-(tert-butyl-dimethyl-silanyloxy)-2,4-diethyl-6-methyl-hept-2-enoic acid methyl ester (13):

2-Benzyloxymethyl-4-hydroxymethyl-hexan-3-ol (5, 781 mg, 3.12 mmole) was dissolved in CH₂Cl₂ (5 mL).
Iodobenzene diacetate (1.21 g, 3.74 mmole, 1.2 equiv.) and TEMPO (98 mg, 0.62 mmole, 0.2 equiv.) were added and

the mixture was stirred for 7 h at rt. The reaction was quenched by addition of sat. aqueous NH₄Cl solution (10 mL) and sat. aqueous Na₂S₂O₃ solution (10 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3×20 mL). The combined organic phases were dried over MgSO₄ and dried *in vacuo*. The crude product was used in the following reaction without further purification.

2-(Triphenyl- λ^5 -phosphanylidene)-butyric acid methyl ester (1.36 g, 3.74 mmole, 1.2 equiv.) was suspended in benzene (10 mL) and the crude aldehyde (781 mg, 3.12 mmol) in benzene (5 mL) was added. The mixture was heated to reflux for 18 h. After cooling to rt, the reaction was quenched by addition of H₂O (20 mL). The phases were separated and the aqueous phase was extracted with ethyl acetate (3 × 25 mL). The combined organic phases were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column

chromatography (silica gel, hexanes/ethyl acetate 3:1) yielding the olefin alcohol as colorless yellow oil (836 mg, 2.50 mmole, 80% over 2 steps).

The olefin (759 mg, 2.27 mmole) was dissolved in CH_2Cl_2 and cooled to 0°C. 2,6-Lutidine (486 mg, 4.54 mmole, 2.0 equiv.) and *tert*-butyldimethylsilyl trifluoromethanesulfonate (665 mg, 2.5 mmole, 1.1 equiv.) were added and the mixture was stirred for 1 h at 0 °C and 20 h at rt. The reaction was quenched by addition of sat. aqueous NaHCO₃ solution (10 mL). The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate 9:1) yielding the protected olefin as colorless oil (815 mg, 1.82 mmole, 80%).

 $\left[\alpha\right]_{D}^{20} = +7.1^{\circ}$ (CHCl₃, 1.94 g/100 mL). $-{}^{1}$ H NMR (CDCl₃, 400 MHz): $\delta = 0.02$ (s, 3 H, SiCH₃), 0.07 (s, 3 H, SiCH₃), 0.78 (t, 3 H, J = 7.5 Hz, C=CCH₂CH₃), 0.86–0.91 (m, 12 H, 3 × SiCCH₃, CHCH₃), 0.99 (t, 3 H, J = 7.5 Hz, CHCH₂CH₃), 1.21–1.32 (m, 1 H, CHCH_AH_BCH₃), 1.68–1.78 (m, 1 H, CHCH_A H_B CH₃), 1.94–2.05 (m, 1 H, BnOCH₂CH), 2.29 (q, 2 H, J = 7.5Hz, C=CCH₂CH₃), 2.47–2.57 (m, 1 H, CHCH₂CH₃), 3.21–3.29 (m, 1 H, BnOCH_AH_B), 3.46– 3.57 (m, 2 H, BnOCH_A H_B and CHOTBS), 3.72 (s, 3 H, OCH₃), 4.46 (d, 2 H, J = 2.0 Hz, CH₂ benzylic), 6.54 (d, 1 H, J = 10.9 Hz, C=CH), 7.28–7.35 (m, 5 H, Ar-H). – ¹³C NMR (CDCl₃, 100 MHz): $\delta = -4.1$ (p), -4.0 (p), 12.0 (p), 13.7 (p), 15.0 (p), 18.4 (q), 20.5 (s), 22.8 (s), 25.7 (q), 26.1 (3×, p, TBS), 38.6 (t), 44.0 (t), 51.5 (t), 72.5 (s), 73.0 (s), 127.4 (t, C-Ar), 127.5 (2×, t, C-Ar), 128.3 (2 ×, t, C-Ar), 133.9 (), 138.7 (q, C-Ar), 144.6 (t), 168.2 (q). - IR (film on KBr): 3030 (w), 2957 (s), 2932 (m), 2877 (m), 2857 (m), 1716 (s), 1643 (w), 1496 (w), 1462 (m), 1435 (w), 1361 (w), 1303 (m), 1253 (m), 1225 (m), 1189 (w), 1092 (m), 1052 (m), 1006 (m), 939 (w), 886 (w), 862 (m), 837 (m), 810 (w), 775 (m), 735 (w), 698 (w). - MS (EI, 70 eV): *m/z* (%):448 ([M⁺], 0.06), 293 (43), 187 (42), 145 (22), 91 (100). – HRMS (C₂₆H₄₅O₄Si): calcd. 449.3087, found 449.3090. - EA (C₂₆H₄₄O₄Si): calcd. C 69.45, H 9.88, found C 69.47, H 9.69.