Discovery of G-quadruplex stabilizing ligands through direct ELISA of a one-beadone-compound library

James E. Redman, Sylvain Ladame, Anthony P. Reszka, Stephen Neidle, Shankar Balasubramanian

**Supporting Information** 

#### **Oligonucleotide sequences**

Htelo 5' Biotin-GTT AGG GTT AGG GTT AGG GTT AGG GTT AGG 3'

Bck 5' Biotin-AGT TAG AGT TAG AGT TAG AGT TAG AGT TAG 3'

Dup 5' Biotin-GGC ATA GTG CGT GGG CGT TAG C 3'

5' GCT AAC GCC CAC GCA CTA TGC C 3'

F21T 5' FAM-GGG TTA GGG TTA GGG TTA GGG-TAMRA 3'

#### Polyamide structures and sequences, structures of amino acids

 $\begin{array}{ll} H-X^{1}X^{2}X^{3}X^{4}GGG & \qquad & \textbf{B} \text{ series} \\ H-X^{1}X^{2}X^{3}X^{4}GGG - \textbf{K} - GGGE(PEG-biotin) - NH_{2} \\ H-X^{1}X^{2}X^{3}X^{4}GGG - \textbf{K} - GGGE - NH_{2} \\ H-X^{1}X^{2}X^{3}X^{4}GGG - \textbf{K} - GGG - NH_{2} \\ H-X^{1}X^{2}X^{3}X^{4} - NH_{2} & \textbf{L} \text{ series} \end{array}$ 

| Number | Tetrapeptide sequence XXXX |
|--------|----------------------------|
| 1      | YRHY                       |
| 2      | WR-Py-Y                    |
| 3      | FRKV                       |
| 4      | Y-Im-Py-R                  |
| 5      | Y-Im-KV                    |
| 6      | Y-Im-HR                    |
| 7      | WK-Py-Y                    |
| 8      | WKKR                       |







H-GGG H-GGG-K-GGGE(PEG-biotin)-NH<sub>2</sub> **B0** 

NH 0′′ `ОН Acr

Amino acid analysis of peptides B0 - B8, P1 - P8 and L1 - L8.

| Compound  | Observed $m/z$             | r.t. $(\min)^a$ | Amino acid analysis                          |
|-----------|----------------------------|-----------------|----------------------------------------------|
| <b>B0</b> | 1217 [M+H] <sup>+</sup>    | 12.8            | E 1.03(0.03), G 8.97(0.02), K 1.00(0.01)     |
| B1        | 2455 [M+H] <sup>+</sup>    | 13.1            | E 1.09(0.01), G 9.56(0.01), Y 3.65(0.01), H  |
|           |                            |                 | 1.88(0.01), K 1.08(0.01), R 1.73(0.01)       |
| B2        | 2471 [M+H] <sup>+</sup>    | 14.9            | E 1.14(0.04), G 9.39(0.01), Y 1.86(0.01), K  |
|           |                            |                 | 1.04(0.00), R 1.56(0.02)                     |
| B3        | 1139.7                     | 13.4            | E 1.13(0.01), G 8.85(0.00), V 1.98, F        |
|           | $[M+2H]^{2+}$              |                 | 1.98(0.01), K 3.07(0.01), R 1.99 (0.00)      |
| B4        | 1173.6                     | 14.0            | E 1.06(0.02), G 9.21(0.04), Y 1.76 (0.00), K |
|           | [M+2H] <sup>2+</sup>       |                 | 1.03(0.00), R 1.94(0.02)                     |
| B5        | 1122.6                     | 13.9            | E 1.09(0.00), G 9.09(0.00), V 1.97, Y        |
|           | $[M+2H]^{2+}$              |                 | 1.84(0.01), K 3.01(0.00)                     |
| <b>B6</b> | 2375 [M+H] <sup>+</sup>    | 13.2            | E 1.17(0.01), G 9.57(0.07), Y 1.55(0.03), H  |
|           |                            |                 | 1.85(0.01), K 1.05(0.01), R 1.80(0.01)       |
| B7        | 2415 [M+H] <sup>+</sup>    | 14.7            | E 1.08(0.01), G 9.34(0.01), Y 1.97(0.00), K  |
|           |                            |                 | 2.61 (0.00)                                  |
| B8        | 2413 [M+H] <sup>+</sup>    | 13.1            | E 1.10(0.01), G 9.14(0.01), K 4.89(0.00), R  |
|           |                            |                 | 1.88(0.00)                                   |
| P1        | 949.5 [M+2H] <sup>2+</sup> | 12.4            | G 9.03(0.00), Y 4.07 (0.00), H 1.99(0.00),   |
|           |                            |                 | K 0.94(0.00), R 1.96(0.00)                   |
| P2        | 958.0 [M+2H] <sup>2+</sup> | 15.4            | G 9.10(0.03), Y 1.98(0.02), K 0.95(0.00), R  |
|           |                            |                 | 1.96(0.01),                                  |

| P3 | 860.5 [M+2H] <sup>2+</sup> | 12.7 | G 8.81(0.01), V 2.02, F 2.01(0.00), K       |
|----|----------------------------|------|---------------------------------------------|
|    |                            |      | 3.10(0.01), R 2.05(0.00)                    |
| P4 | 894.4 [M+2H] <sup>2+</sup> | 14.1 | G 9.39(0.01), Y 1.77(0.01), K 0.95(0.01), R |
|    |                            |      | 1.88(0.01)                                  |
| P5 | 843.5 [M+2H] <sup>2+</sup> | 14.0 | G 8.94(0.02), V 2.00, Y 1.97(0.00), K       |
|    |                            |      | 3.08(0.00)                                  |
| P6 | 909.4 [M+2H] <sup>2+</sup> | 12.3 | G 9.26(0.03), Y 1.85(0.01), H 1.92(0.00), K |
|    |                            |      | 1.00(0.01), R 1.96(0.02)                    |
| P7 | 929.5 [M+2H] <sup>2+</sup> | 15.4 | G 9.10(0.01), Y 1.93(0.01), K 2.97(0.00)    |
| P8 | 929.0 [M+2H] <sup>2+</sup> | 12.5 | G 8.98(0.00), K 5.05(0.00), R 1.97(0.00)    |
| L1 | 637.3 [M+H] <sup>+</sup>   | 12.6 | Y 2.02(0.00), H 0.99(0.00), R 0.99(0.00)    |
| L2 | 645.4 [M+H] <sup>+</sup>   | 17.0 | Y 0.99(0.01), R 1.01(0.01)                  |
| L3 | 548.4 [M+H] <sup>+</sup>   | 12.8 | V 1.00, K 1.00(0.00), R 1.01(0.00)          |
| L4 | 582.3 [M+H] <sup>+</sup>   | 15.5 | Y 0.99(0.01), R 1.01(0.01)                  |
| L5 | 531.3 [M+H] <sup>+</sup>   | 15.2 | V 1.00(0.01), Y 0.99(0.00), K 1.01(0.00)    |
| L6 | 597.3 [M+H] <sup>+</sup>   | 12.3 | Y 0.97(0.00), H 1.01(0.00), R 1.02(0.00)    |
| L7 | 617.3 [M+H] <sup>+</sup>   | 16.7 | Y 0.98(0.00), K 1.02(0.00)                  |
| L8 | 616.4 [M+H] <sup>+</sup>   | 11.9 | K 2.04(0.00), R 0.96 (0.00)                 |

<sup>*a*</sup>HPLC methods: **B** series, 0 - 2.5 min 5% B, 20.0 min 60% B; **P** series, 0 - 2.5 min 5%B, 20.0 min 50% B; **L** series, 0 - 2.5 min 5% B, 20 min 40% B. For all methods: Phenomenex C18 Luna 5  $\mu$ M, 250 × 4.6 mm column, flow rate 1 cm<sup>3</sup> min<sup>-1</sup>, detection by absorbance at 220 nm. Solvent A = H<sub>2</sub>O, 0.1% TFA, solvent B = MeCN, 0.1% TFA.



#### Surface plasmon resonance data and regression

| Slope ( $K_a$ ) | $-3.3 \times 10^{3}$  | Intercept   | $3.3 \times 10^{-2}$ |
|-----------------|-----------------------|-------------|----------------------|
| Std error       | $2.3 \times 10^{3}$   | Std error   | $9.4 \times 10^{-3}$ |
| $R^2$           | 0.065                 | F statistic | 2.1                  |
| DoF             | 30                    |             |                      |
| Htelo           |                       |             |                      |
| Slope (Ka)      | $4.742 \times 10^{4}$ | Intercept   | $3.9 \times 10^{-3}$ |
| Std error       | $8.3 \times 10^2$     | Std error   | $3.4 \times 10^{-3}$ |
| $\mathbb{R}^2$  | 0.99                  | F statistic | $3.2 \times 10^{3}$  |
| DoF             | 30                    |             |                      |



| Slope (Ka) | $-3.0 \times 10^{4}$  | Intercept   | $3.0 \times 10^{-2}$  |
|------------|-----------------------|-------------|-----------------------|
| Std error  | $1.0 \times 10^{4}$   | Std error   | $2.3 \times 10^{-2}$  |
| $R^2$      | 0.24                  | F statistic | 8.4                   |
| DoF        | 26                    |             |                       |
| Htelo      |                       |             |                       |
| Slope (Ka) | $1.932 \times 10^{5}$ | Intercept   | $-2.6 \times 10^{-2}$ |
| Std error  | $5.8 \times 10^{3}$   | Std error   | $1.3 \times 10^{-2}$  |
| $R^2$      | 0.98                  | F statistic | $1.1 \times 10^{3}$   |
| DoF        | 26                    |             |                       |



| Slope (Ka) | $-7 \times 10^{2}$   | Intercept   | $1.51 \times 10^{-2}$ |
|------------|----------------------|-------------|-----------------------|
| Std error  | $1.7 \times 10^{3}$  | Std error   | $7.6 \times 10^{-3}$  |
| $R^2$      | $6.2 \times 10^{-3}$ | F statistic | $1.6 \times 10^{-1}$  |
| DoF        | 26                   |             |                       |
| Htelo      |                      |             |                       |
| Slope (Ka) | $2.352 \times 10^4$  | Intercept   | $2.01\times10^{-2}$   |
| Std error  | $8.1 \times 10^{2}$  | Std error   | $3.5 \times 10^{-3}$  |
| $R^2$      | 0.97                 | F statistic | $8.4 \times 10^2$     |
| DoF        | 26                   |             |                       |



| Slope (Ka) | $6.53 \times 10^{4}$  | Intercept   | $-8 \times 10^{-3}$   |
|------------|-----------------------|-------------|-----------------------|
| Std error  | $5.5 \times 10^{3}$   | Std error   | $1.2 \times 10^{-2}$  |
| $R^2$      | 0.84                  | F statistic | $1.4 \times 10^{2}$   |
| DoF        | 26                    |             |                       |
| Htelo      |                       |             |                       |
| Slope (Ka) | $2.443 \times 10^{5}$ | Intercept   | $-6.5 \times 10^{-2}$ |
| Std error  | $7.6 \times 10^{3}$   | Std error   | $1.7 \times 10^{-2}$  |
| $R^2$      | 0.98                  | F statistic | $1.0 \times 10^{3}$   |
| DoF        | 26                    |             |                       |



| Slope (Ka) | $-3 \times 10^{1}$    | Intercept   | $9.6 \times 10^{-3}$ |
|------------|-----------------------|-------------|----------------------|
| Std error  | $1.5 \times 10^{3}$   | Std error   | $6.6 \times 10^{-3}$ |
| $R^2$      | $1.6 \times 10^{-5}$  | F statistic | $4.3 \times 10^{-4}$ |
| DoF        | 26                    |             |                      |
| Htelo      |                       |             |                      |
| Slope (Ka) | $1.927 \times 10^{4}$ | Intercept   | $1.1 \times 10^{-3}$ |
| Std error  | $9.7 \times 10^{2}$   | Std error   | $4.2 \times 10^{-3}$ |
| $R^2$      | 0.94                  | F statistic | $3.92 \times 10^2$   |
| DoF        | 26                    |             |                      |



| Slope (Ka)     | $2.5 \times 10^{3}$ | Intercept   | $7.3 \times 10^{-3}$  |
|----------------|---------------------|-------------|-----------------------|
| Std error      | $1.1 \times 10^{3}$ | Std error   | $4.5 \times 10^{-3}$  |
| $R^2$          | 0.15                | F statistic | 5.3                   |
| DoF            | 30                  |             |                       |
| Htelo          |                     |             |                       |
| Slope (Ka)     | $6.25 \times 10^4$  | Intercept   | $-1.3 \times 10^{-3}$ |
| Std error      | $1.1 \times 10^{3}$ | Std error   | $4.3 \times 10^{-3}$  |
| $\mathbb{R}^2$ | 0.99                | F statistic | $3.4 \times 10^{3}$   |
| DoF            | 30                  |             |                       |



| Slope (Ka) | $-3.7 \times 10^{3}$  | Intercept   | $6 \times 10^{-3}$   |
|------------|-----------------------|-------------|----------------------|
| Std error  | $3.7 \times 10^{3}$   | Std error   | $1.5 \times 10^{-2}$ |
| $R^2$      | $3.2 \times 10^{-2}$  | F statistic | $9.8 \times 10^{-1}$ |
| DoF        | 30                    |             |                      |
| Htelo      |                       |             |                      |
| Slope (Ka) | $1.098 \times 10^{5}$ | Intercept   | $1.1 \times 10^{-2}$ |
| Std error  | $2.8 \times 10^{3}$   | Std error   | $1.1 \times 10^{-2}$ |
| $R^2$      | 0.98                  | F statistic | $1.6 \times 10^{3}$  |
| DoF        | 30                    |             |                      |



| Slope (Ka)     | $3.5 \times 10^{4}$  | Intercept   | $-7 \times 10^{-4}$  |
|----------------|----------------------|-------------|----------------------|
| Std error      | $1.8 \times 10^{4}$  | Std error   | $1.2 \times 10^{-2}$ |
| $\mathbb{R}^2$ | 0.17                 | F statistic | 3.7                  |
| DoF            | 18                   |             |                      |
| Htelo          |                      |             |                      |
| Slope (Ka)     | $4.74 \times 10^{5}$ | Intercept   | $2 \times 10^{-3}$   |
| Std error      | $1.7 \times 10^4$    | Std error   | $1.1 \times 10^{-2}$ |
| R <sup>2</sup> | 0.98                 | F statistic | $7.6 \times 10^{2}$  |
| DoF            | 18                   |             |                      |



| Slope (Ka) | $1.346 \times 10^{3}$ | Intercept   | $-4.56 \times 10^{-2}$ |
|------------|-----------------------|-------------|------------------------|
| Std error  | $6.6 \times 10^{1}$   | Std error   | $2.7 \times 10^{-3}$   |
| $R^2$      | 0.97                  | F statistic | $4.2 \times 10^{2}$    |
| DoF        | 14                    |             |                        |
| Htelo      |                       |             |                        |
| Slope (Ka) | $4.215 \times 10^{3}$ | Intercept   | $-2.71 \times 10^{-2}$ |
| Std error  | $8.7 \times 10^1$     | Std error   | $3.6 \times 10^{-3}$   |
| $R^2$      | 0.99                  | F statistic | $2.3 \times 10^3$      |
| DoF        | 14                    |             |                        |



| Slope (Ka) | $4.16 \times 10^{3}$ | Intercept   | $-3.36 \times 10^{-2}$ |
|------------|----------------------|-------------|------------------------|
| Std error  | $1.3 \times 10^{2}$  | Std error   | $5.3 \times 10^{-3}$   |
| $R^2$      | 0.99                 | F statistic | $1.0 \times 10^{3}$    |
| DoF        | 14                   |             |                        |
| Htelo      |                      |             |                        |
| Slope (Ka) | $1.489 \times 10^4$  | Intercept   | $2.0 \times 10^{-2}$   |
| Std error  | $4.2 \times 10^{2}$  | Std error   | $1.7 \times 10^{-2}$   |
| $R^2$      | 0.99                 | F statistic | $1.2 \times 10^{3}$    |
| DoF        | 14                   |             |                        |



| Slope (Ka) | $1.44 \times 10^{3}$ | Intercept   | $-4.57 \times 10^{-2}$ |
|------------|----------------------|-------------|------------------------|
| Std error  | $1.2 \times 10^{2}$  | Std error   | $4.8 \times 10^{-3}$   |
| $R^2$      | 0.92                 | F statistic | $1.5 \times 10^{2}$    |
| DoF        | 14                   |             |                        |
| Htelo      |                      |             |                        |
| Slope (Ka) | $2.20 \times 10^{3}$ | Intercept   | $-2.46 \times 10^{-2}$ |
| Std error  | $7.0 \times 10^{1}$  | Std error   | $2.8 \times 10^{-3}$   |
| $R^2$      | 0.99                 | F statistic | $1.0 \times 10^{3}$    |
| DoF        | 14                   |             |                        |



| Slope (Ka) | $1.823 \times 10^{4}$ | Intercept   | $-6.73 \times 10^{-2}$ |
|------------|-----------------------|-------------|------------------------|
| Std error  | $6.6 \times 10^{2}$   | Std error   | $7.8 \times 10^{-3}$   |
| $R^2$      | 0.99                  | F statistic | $7.7 \times 10^2$      |
| DoF        | 10                    |             |                        |
| Htelo      |                       |             |                        |
| Slope (Ka) | $3.61 \times 10^{4}$  | Intercept   | $4 \times 10^{-3}$     |
| Std error  | $1.0 \times 10^{3}$   | Std error   | $1.2 \times 10^{-2}$   |
| $R^2$      | 0.99                  | F statistic | $1.3 \times 10^{3}$    |
| DoF        | 10                    |             |                        |



| Slope (Ka) | $6.49 \times 10^{2}$  | Intercept   | $-3.55 \times 10^{-2}$ |
|------------|-----------------------|-------------|------------------------|
| Std error  | $5.8 \times 10^{1}$   | Std error   | $3.3 \times 10^{-3}$   |
| $R^2$      | 0.95                  | F statistic | $1.3 \times 10^{2}$    |
| DoF        | 6                     |             |                        |
| Htelo      |                       |             |                        |
| Slope (Ka) | $2.256 \times 10^{3}$ | Intercept   | $-2.17 \times 10^{-2}$ |
| Std error  | $4.9 \times 10^{1}$   | Std error   | $2.8 \times 10^{-3}$   |
| $R^2$      | 0.997                 | F statistic | $2.1 \times 10^{3}$    |
| DoF        | 6                     |             |                        |



| Slope (Ka) | $1.838 \times 10^{3}$ | Intercept   | $-4.28 \times 10^{-2}$ |
|------------|-----------------------|-------------|------------------------|
| Std error  | $8.2 \times 10^{1}$   | Std error   | $4.2 \times 10^{-3}$   |
| R2         | 0.98                  | F statistic | $5.1 \times 10^2$      |
| DoF        | 8                     |             |                        |
| Htelo      |                       |             |                        |
| Slope (Ka) | $5.74 \times 10^{3}$  | Intercept   | $2.16 \times 10^{-2}$  |
| Std error  | $1.8 \times 10^{2}$   | Std error   | $9.2 \times 10^{-3}$   |
| R2         | 0.99                  | F statistic | $1.0 \times 10^{3}$    |
| DoF        | 8                     |             |                        |



| Slope (Ka) | $2.538 \times 10^{3}$ | Intercept   | $-4.02 \times 10^{-2}$ |
|------------|-----------------------|-------------|------------------------|
| Std error  | $9.2 \times 10^{1}$   | Std error   | $3.8 \times 10^{-3}$   |
| $R^2$      | 0.98                  | F statistic | $7.6 \times 10^{2}$    |
| DoF        | 14                    |             |                        |
| Htelo      |                       |             |                        |
| Slope (Ka) | $9.02 \times 10^{3}$  | Intercept   | $-4.0 \times 10^{-3}$  |
| Std error  | $1.7 \times 10^{2}$   | Std error   | $7.0 \times 10^{-3}$   |
| $R^2$      | 0.99                  | F statistic | $2.7 \times 10^{3}$    |
| DoF        | 14                    |             |                        |



| Slope (Ka) | $8.23 \times 10^{3}$ | Intercept   | $-2.30 \times 10^{-2}$ |
|------------|----------------------|-------------|------------------------|
| Std error  | $2.37 \times 10^{2}$ | Std error   | $2.8 \times 10^{-3}$   |
| $R^2$      | 0.99                 | F statistic | $1.2 \times 10^{3}$    |
| DoF        | 10                   |             |                        |
| Htelo      |                      |             |                        |
| Slope (Ka) | $2.334 \times 10^4$  | Intercept   | $2.60\times10^{-2}$    |
| Std error  | $8.2 \times 10^2$    | Std error   | $9.7 \times 10^{-3}$   |
| $R^2$      | 0.99                 | F statistic | $8.1 \times 10^{2}$    |
| DoF        | 10                   |             |                        |

# Summary of apparent association constants of linear peptides for quadruplex, and

## duplex DNA.

| Sequence |           | SPR $log(K_a)$ L series |     |
|----------|-----------|-------------------------|-----|
|          |           | Htelo                   | Dup |
| L1       | YRHY      | 3.6                     | 3.1 |
| L2       | WR-Py-Y   | 4.2                     | 3.6 |
| L3       | FRKV      | 3.3                     | 3.2 |
| L4       | Y-Im-Py-R | 4.6                     | 4.3 |
| L5       | Y-Im-KV   | 3.4                     | 2.8 |
| L6       | Y-Im-HR   | 3.8                     | 3.3 |
| L7       | WK-Py-Y   | 4.0                     | 3.4 |
| L8       | WKKR      | 4.4                     | 3.9 |

# Apparent association constants, with standard errors, for branched polyamides determined by ELISA.

| Sequence   |           | ELISA <b>B</b> series             |
|------------|-----------|-----------------------------------|
|            |           | $\log(K_a) \pm \text{std. error}$ |
| <b>B</b> 1 | YRHY      | 5.7 ± 0.1                         |
| B2         | WR-Py-Y   | $6.3 \pm 0.1$                     |
| B3         | FRKV      | 6.8 ± 0.1                         |
| <b>B4</b>  | Y-Im-Py-R | 6.6 ± 0.1                         |
| B5         | Y-Im-KV   | $5.2 \pm 0.3$                     |
| <b>B6</b>  | Y-Im-HR   | 6.3 ± 0.1                         |
| <b>B</b> 7 | WK-Py-Y   | $6.4 \pm 0.1$                     |
| <b>B</b> 8 | WKKR      | $7.4 \pm 0.3$                     |

Scatterplot of single point ELISA screen responses for crude peptides against Htelo versus  $log(K_a)$  determined by ELISA titration using purified compounds B1 - B8.



Kendall  $\tau 0.71$ 

Two sided significance 0.013

Scatterplot of ELISA  $log(K_a)$  and SPR  $log(K_a)$  for ligand binding to Htelo quadruplex



ELISA determinations are for biotinylated compounds (**B** series), whereas SPR relates to the corresponding unbiotinylated compound (**P** series). Regression statistics are given below.

| Slope     | 1.05 | Standard Error               | 0.48 |
|-----------|------|------------------------------|------|
| Intercept | 1.1  | Standard Error               | 2.4  |
| R2        | 0.44 | Pearson R                    | 0.66 |
| F         | 4.7  | Degrees of Freedom           | 6    |
| t         | 2.2  | Significance (2 tailed) 0.07 |      |

Scatterplot of SPR Htelo  $log(K_a)$  for linear peptides (L1 – L8) against branched peptides (P1 – P8)





#### Melting temperature of F21T quadruplex on ligand addition



 $<sup>\</sup>Delta T_{\rm m}$  at 4 µM vs. ELISA log(*K*<sub>a</sub>)

Kendall  $\tau 0.71$ 

Two sided significance 0.013

 $\Delta T_{\rm m}$  at 4 µM vs. SPR log( $K_{\rm a}$ )

Kendall  $\tau 0.79$ 

Two sided significance 0.0065