Insights into the Mechanism of the Site-Selective Sequential Palladium-Catalyzed Cross-Coupling Reactions of Dibromothiophenes/Dibromothiazoles and Arylboronic Acids. Synthesis of PPARβ/δ Agonists

Raquel Pereira,^a Audrey Furst,^b Beatriz Iglesias,^a Pierre Germain,^b Hinrich Gronemeyer,^b and Angel R. de Lera^{a,*}

^a Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, SPAIN

^b Department of Cell Biology and Signal Transduction, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / CNRS / INSERM / ULP, BP 163, 67404 Illkirch Cedex, C. U. de Strasbourg, France

Electronic Supplementary Information

³¹ P NMR Monitoring of the Oxidative Addition of 5b	page S3
³¹ P NMR Monitoring of the Oxidative Addition of 7b	page S3
³¹ P NMR Monitoring of the Cross-Coupling Reaction of 7b	page S4
¹⁹ F NMR Monitoring of the Cross-Coupling Reaction of 5b	page S4
³¹ P NMR Monitoring of the Cross-Coupling Reaction of Complex 18	page S5
³¹ P NMR Monitoring of the Cross-Coupling Reaction of 5a	page S5
³¹ P NMR Monitoring of the Cross-Coupling Reaction of 12	page S6
³¹ P NMR Monitoring of the Cross-Coupling Reaction of Complex 19	page S6
³¹ P NMR Monitoring of the Cross-Coupling Reaction of 14	page S7
³¹ P NMR Monitoring of the Cross-Coupling Reaction of Complex 21	page S7
Preparation of 5a	page S8
Preparation of 5b	page S8
Preparation of 7b by Stille coupling	page S8
Preparation of 7b by Suzuki coupling	page S9
Preparation of 10b	page S9
Preparation of 11b	page S10
Preparation of 2,4-Dibromothiazole-5-carboxylic acid	page S10
Preparation of 14	page S10
Table 2	page S11
Preparation of 16	page S12
Preparation of 17	page S12
Preparation of 18	page S12
Preparation of 19	page S12

Preparation of 20	page S12
Preparation of 21	page S13
Preparation of 22	page S13
Table 3	page S13
Preparation of 26b	page S14
Preparation of 29b	page S14
Preparation of 4-Hydroxyphenyl Disulfide	page S14
Preparation of Methyl [4-(4-[Methoxycarbonylmethoxy]phenyldithio)phenoxy]acetate	page S15
Preparation of 28	page S15
Preparation of 30a	page S15
Preparation of 30b	page S16
Preparation of 3b	page S16
Preparation of 4a	page S16
Preparation of 4b	page S17
Preparation of 4-Bromo-2-(4-trifluoromethylphenyl)thiophene	page S17
Preparation of [3-Bromo-5-(4-trifluoromethylphenyl)thien-2-yl]methanol	page S18
Preparation of Methyl 4-Bromo-2-(4-trifluoromethylphenyl)thiazole-5-carboxylate	page S18
Preparation of [4-Bromo-2-(4-trifluoromethylphenyl)thiazol-5-yl]methanol	page S19
NMR Spectra of Synthesized Compounds	pages S20-S51

 $^{31}\mathrm{P}$ NMR Monitoring of the Oxidative Addition of 5b. The experiment was performed at 25 °C.

³¹P NMR Monitoring of the Oxidative Addition of 7b. The experiment was performed at 90 °C.

³¹P NMR Monitoring of the Cross-Coupling Reaction of 7b. The experiment was performed at 90 °C.

 $^{19}\mathrm{F}$ NMR Monitoring of the Cross-Coupling Reaction of 5b. The experiment was performed at 90 °C.

³¹P NMR Monitoring of the Cross-Coupling Reaction of Complex 18. The experiment was performed at 90 °C.

 ^{31}P NMR Monitoring of the Cross-Coupling Reaction of 5a. The experiment was performed at 90 °C.

³¹P NMR Monitoring of the Cross-Coupling Reaction of 12. The experiment was performed at 90 °C.

³¹P NMR Monitoring of the Cross-Coupling Reaction of Complex 19. The experiment was performed at 90 °C. There is no evidence of reaction at position C3.

³¹P NMR Monitoring of the Cross-Coupling Reaction of 14. The experiment was performed at 90 $^{\circ}$ C.

³¹P NMR Monitoring of the Cross-Coupling Reaction of Complex 21. The experiment was performed at 120 °C in order to facilitate reaction at position C4, although no evidence of reaction at this position could be observed.

Preparation of Methyl 4,5-Dibromothiophene-2-carboxylate (**5a**).¹ Addition of $H_2SO_4(c)$ (0.01 mL) to a solution of 4,5-dibromothiophene-2-carboxylic acid (0.2 g, 0.70 mmol) in anhydrous MeOH (1 mL), followed by heating the mixture to reflux for 6 h, quenching to neutral pH with 3 M K₂CO₃, extraction with AcOEt (2x), drying over sodium sulphate and solvent evaporation furnished methyl 4,5-dibromothiophene-2-carboxylate **5a** (0.19 g, 92%).

Preparation of Ethyl 3,5-Dibromothiophene-2-carboxylate (5b).² The carboxylic acid was prepared following the reported procedure (Meth-Cohn, O.; van Vuuren, G. *J. Chem. Soc. Perkin Trans. I* **1986**, 233-243): *n*-BuLi (3.9 mL, 1.6 M in hexane, 6.5 mmol) was added dropwise to a solution of 2,3,5-tribromothiophene (2.0 g, 6.2 mmol) in anhydrous diethyl ether (20 mL) under argon at -78 °C. The resulting solution was added to excess CO₂. Water was then added, followed by the dropwise addition of HCl(c). The solid was filtered off and recrystallized from aqueous ethanol to afford 3,5-dibromothiophene-2-carboxylic acid (1.2 g, 66%). Addition of H₂SO₄(c) (0.1 mL) to a solution of 3,5-dibromothiophene-2-carboxylic acid (1.2 g, 1.76 mmol) in anhydrous EtOH (5 mL) followed by heating the mixture to reflux for 6 h, quenching to neutral pH with 3 M K₂CO₃, extraction with AcOEt (2x), drying over sodium sulphate and solvent evaporation furnished ethyl 3,5-dibromothiophene-2-carboxylate **5b** (1.19 g, 90%).

Preparation of Ethyl 3-Bromo-5-(4-trifluoromethylphenyl)thiophene-2-carboxylate (7b). According to the general procedure for Stille reactions, ethyl 3,5-dibromothiophene-2carboxylate **5b** (0.05 g, 0.16 mmol) in NMP (2 mL) was treated with Pd₂(dba)₃ (0.002 g, 0.002 mmol), AsPh₃ (0.01 g, 0.03 mmol) and tributyl(4-trifluoromethylphenyl)stannane 6 (0.09 g, 0.21 mmol) during 4 h at 60 °C, to provide, after purification by chromatography (SiO₂, 98:2 hexane/AcOEt), 0.02 g (40%) of a mixture of thiophenes **7b** and **8b** in a 57:43 ratio. Partial separation of this mixture for characterization purposes was accomplished by chromatography (SiO₂, 75:25 hexane/CH₂Cl₂). Spectroscopic data for 7b: ¹H NMR (400 MHz, CDCl₃) δ 1.41 (t, J = 7.2 Hz, 3H, CO₂CH₂CH₃), 4.39 (q, J = 7.2 Hz, 2H, $CO_2CH_2CH_3$), 7.35 (s, 1H, H4), 7.68 (d, $J_{AB} = 9.2$ Hz, 2H, ArH), 7.70 (d, $J_{AB} = 9.2$ Hz, 2H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 14.2 (q, CO₂CH₂CH₃), 61.6 (t, CO₂CH₂CH₃), 117.5 (s), 123.7 (s, CF_3 , ${}^1J_{C-F}$ = 272.1 Hz), 126.2 (d, 2x, C2' + C6'), 126.2 (d, 2x, C3' + C5', ${}^{3}J_{C-F} = 3.8$ Hz), 127.5 (s), 129.7 (d, C4), 131.1 (s, C4', ${}^{2}J_{C-F} = 33.2$ Hz), 135.6 (s), 147.0 (s), 160.5 (s, CO₂Et) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.95 ppm. IR (NaCl) v 3090 (w, C-H), 2994 (w, C-H), 1685 (s, C=O), 1612 (w), 1445 (w), 1327 (m), 1295 (m), 1158 (m), 1120 (s), 841 (m) cm⁻¹. MS m/z (%) 381 ([M+1]⁺ [⁸¹Br], 5), 380 (M⁺ [⁸¹Br], 44), 379 ([M+1]⁺ ^{[79}Br], 6), 378 (M⁺ [⁷⁹Br], 45), 352 (24), 350 (24), 335 ([M-OC₂H₅]⁺ [⁸¹Br], 97), 333 ([M-OC₂H₅]⁺ [⁷⁹Br], 100), 308 (22), 306 (23), 226 (42). HRMS (EI⁺) calcd for C₁₄H₁₀⁸¹BrF₃O₂S 379.9517 and C₁₄H₁₀⁷⁹BrF₃O₂S 377.9537, found 379.9509 and 377.9523. Anal. Calcd for C₁₄H₁₀BrF₃O₂S: C, 44.34; H, 2.66; S, 8.46. Found: C, 44.47; H, 2.70; S, 8.47. Spectroscopic data for ethyl 3,5-bis(4-trifluromethylphenyl)thiophene-2-carboxylate (8b): ¹H NMR (400

¹ Elbe, H.-L.; Assmann, L.; Tiemann, R.; Schulz, U.; Haenssler, H.; Dehne, H.-W. European Patent No. EP 0755185, 1995; *Chem. Abstr.* **1995**, *124*, 55787.

² Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S. *Heterocycles* **1983**, *20*, 2035-2037.

MHz, CDCl₃) δ 1.27 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃), 4.27 (q, J = 7.1 Hz, 2H, CO₂CH₂CH₃), 7.34 (s, 1H, H4), 7.61 (d, J = 8.1 Hz, 2H, ArH), 7.69 (d, J = 8.4 Hz, 4H, H3' + H5' + H3'' + H5''), 7.77 (d, J = 8.1 Hz, 2H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (q, CO₂CH₂CH₃), 61.4 (t, CO₂CH₂CH₃), 123.8 (s, CF₃, ¹J_{C-F} = 272.1 Hz), 124.1 (s, CF₃, ¹J_{C-F} = 272.0 Hz), 124.8 (d, 2x, ArCH, ³J_{C-F} = 3.7 Hz), 126.2 (d, 2x, ArCH, ³J_{C-F} = 3.7 Hz), 126.3 (d, 2x, ArCH), 128.0 (d, C4), 128.2 (s), 129.6 (d, 2x, ArCH), 130.2 (s, C4' or C4'', ²J_{C-F} = 32.7 Hz), 130.8 (s, C4'' or C4', ²J_{C-F} = 32.7 Hz), 136.3 (s), 139.1 (s), 146.7 (s), 147.6 (s), 161.5 (s, CO₂Et) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.85, -62.69 ppm. IR (NaCl) v 2956 (w, C-H), 2928 (w, C-H), 1718 (s, C=O), 1617 (m), 1451 (m), 1325 (s), 1292 (s), 1251 (s), 1167 (s), 1124 (s), 1068 (s), 1018 (m), 839 (m) cm⁻¹. MS *m*/z (%) 446 ([M+2]⁺, 6), 445 ([M+1]⁺, 18), 444 (M⁺, 70), 416 (30), 415 ([M-C₂H₅]⁺, 24), 400 (23), 399 ([M-OC₂H₅]⁺, 100), 372 (39), 327 (16), 302 (21). HRMS (EI⁺) calcd for C₂₁H₁₄F₆O₂S 444.0619, found 444.0635. Anal. Calcd for C₂₁H₁₄F₆O₂S: C, 56.76; H, 3.18; S, 7.22. Found: C, 56.69; H, 3.24; S, 7.36.

Preparation of 7b. According to the general procedure for Suzuki reactions, 4bromotrifluoromethylbenzene (0.05 g, 0.19 mmol) in THF (1 mL) was treated with *n*-BuLi (0.12 mL, 1.75 M in hexane, 0.21 mmol) and B(OMe)₃ (0.02 mL, 0.21 mmol) to afford the boronate, which was reacted with ethyl 3,5-dibromothiophene-2-carboxylate **5b** (0.05 g, 0.16 mmol), Pd(PPh₃)₄ (0.009 g, 0.009 mmol) and K₂CO₃ (0.11 mL, 3 M in H₂O, 0.33 mmol) in toluene (1.5 mL), at 70 °C for 24 h, providing, after purification by chromatography (SiO₂, 98:2 hexane/AcOEt), 0.05 g (90%) of thiophene **7b** as a slightly yellow solid (mp 121 °C, hexane/AcOEt).

Preparation of Ethyl 3-Methyl-5-(4-trifluoromethylphenyl)thiophene-2-carboxylate (10b). In accordance to the general procedure for the second Stille coupling, ethyl 3-bromo-5-(4-trifluoromethylphenyl)thiophene-2-carboxylate (7b) (0.27 g, 0.70 mmol) was reacted with PdCl₂(PPh₃)₂ (0.02 g, 0.01 mmol) and SnMe₄ (0.25 g, 0.53 mmol) in DMA (5 mL), for 15 h at 90 °C, to yield, after purification by chromatography (SiO₂, 95:5 hexane/AcOEt), 0.18 g (83%) of ethyl 3-methyl-5-(4-trifluoromethylphenyl)thiophene-2-carboxylate (10b) as a white solid (mp 81 °C, hexane/TBME). ¹H NMR (400 MHz, CDCl₃) δ 1.39 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃), 2.57 (s, 3H, C3-CH₃), 4.35 (q, *J* = 7.1 Hz, 2H, CO₂CH₂CH₃), 7.19 (s, 1H, H4), 7.64 (d, J = 8.3 Hz, 2H, H3' + H5'), 7.71 (d, J = 8.3 Hz, 2H, H2' + H6') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 14.3 (q, CO₂CH₂CH₃), 16.1 (q, C3-CH₃), 60.9 (t, CO₂CH₂CH₃), 123.9 (s, CF_3 , ${}^{1}J_{C-F} = 272.0 \text{ Hz}$), 126.0 (d, 2x, C3' + C5', ${}^{3}J_{C-F} = 3.7 \text{ Hz}$), 126.1 (d, 2x, C2' + C6'), 127.2 (s), 128.8 (d, C4), 130.3 (s, C4', ${}^{2}J_{C-F}$ = 32.7 Hz), 136.8 (s), 145.8 (s), 146.9 (s), 162.6 (s, CO₂Et) ppm. IR (NaCl) v 2985 (w, C-H), 1708 (s, C=O), 1615 (w), 1446 (w), 1412 (w), 1378 (w), 1326 (s), 1256 (s), 1168 (m), 1123 (s), 1091 (s), 1069 (s), 831 (m) cm⁻¹. MS m/z(%) 316 ($[M+2]^+$, 6), 315 ($[M+1]^+$, 12), 314 (M^+ , 89), 286 (41), 285 ($[M-C_2H_5]^+$, 41), 270 (23), 269 ([M-OC₂H₅]⁺, 100), 242 (21), 197 (25), 171 (11). HRMS (EI⁺) calcd for C₁₅H₁₃F₃O₂S 314.0588, found 314.0586. Anal. Calcd for C₁₅H₁₃F₃O₂S: C, 57.32; H, 4.17; S, 10.20. Found: C, 57.56; H, 4.17; S, 10.21.

Preparation of [3-Methyl-5-(4-trifluoromethylphenyl)thien-2-yl]methanol (11b). According to the general procedure for the reduction of esters to alcohols, ethyl ester **10b** (0.12 g, 0.40 mmol) was treated with a suspension of LiAlH_4 (0.02 g, 0.49 mmol) in THF (1 mL) at 0 °C for 2 h, to afford, after purification by chromatography (SiO₂, 75:25 hexane/AcOEt), 0.09 g (79%) of a white solid (mp 122 °C, hexane/TBME) identified as alcohol **11b**.³

Preparation of 2,4-Dibromothiazole-5-carboxylic acid. A solution of NaClO₂ (0.30 g, 3.33 mmol) and NaH₂PO₄ (0.36 g, 2.53 mmol) in H₂O (3.3 mL) was added to the mixture of 2,4-dibromothiazole-5-carbaldehyde (0.18 g, 0.67 mmol) and 2-methylbut-2-ene (3.5 mL, 33.3 mmol) in *t*-BuOH (13 mL) by means of a syringe pump programmed at a rate of 0.01 mL/min. The resulting mixture was stirred at 25 °C for 15 min, after which time 2 M NaOH was added until pH 10. *t*-BuOH was evaporated, water was added and the mixture was extracted with TBME. The aqueous layer was treated with 10% HCl until pH 3 and it was extracted with AcOEt (3x). The combined organic extracts were dried (Na₂SO₄) and evaporated. Crystallization from MeOH/CHCl₃ afforded 0.18 g (94%) of the carboxylic acid as a white solid (mp 165 °C). MS m/z (%) 289 (M⁺ [2 x ⁸¹Br], 54), 288 ([M+1]⁺ [⁸¹Br + ⁷⁹Br], 6), 287 (M⁺ [⁸¹Br + ⁷⁹Br], 100), 285 (M⁺ [2 x ⁷⁹Br], 48), 210 (10), 243 (14), 208 (30), 206 (31), 180 (18), 178 (16), 138 (10), 137 (15), 135 (15). HRMS calcd. for C₄H⁸¹Br₂NO₂S 288.8054, C₄H⁸¹Br⁷⁹BrNO₂S 286.8074 and C₄H⁷⁹Br₂NO₂S 284.8095; found 288.8050, 286.8068 and 284.8087.

Preparation of Methyl 2,4-Dibromothiazole-5-carboxylate (14). To a solution of 2,4dibromothiazole-5-carboxylic acid (0.07 g, 0.25 mmol) in MeOH (2 mL) H₂SO₄ (0.03 mL) was added and the mixture was stirred at 80 °C for 4 h. It was then neutralized with 2 M NaOH and extracted with AcOEt (4x). The combined organic extracts were dried (Na_2SO_4) and evaporated. The residue was purified by column chromatography (SiO₂, 95:5 hexane/AcOEt) to yield methyl ester 14 (0.06 g, 87 %) as a yellow solid (mp 60 °C, hexane/AcOEt). ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 3H, CO₂CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 52.8 (q, CO₂CH₃), 127.0 (s), 130.4 (s), 141.4 (s, C2), 159.1 (s, COCH₃) ppm. IR (NaCl) v 2956 (m, C-H), 2853 (w, C-H), 1731 (s, C=O), 1710 (s, C=O), 1567 (w), 1489 (s), 1433 (m), 1381 (s), 1300 (s), 1252 (s), 1217 (s), 1083 (s), 1030 (s), 846 (m), 797 (m), 757 (m) cm⁻¹. MS m/z (%) 303 (M⁺ [2 x ⁸¹Br], 10), 301 (M⁺ [⁸¹Br + ⁷⁹Br], 16), 299 (M⁺ [2 x ⁷⁹Br], 10), 272 ($[M-OCH_3]^+$ [2 x ⁸¹Br], 56), 270 ($[M-OCH_3]^+$ [⁸¹Br + ⁷⁹Br], 56), 268 ($[M-OCH_3]^+$ [2 x⁷⁹Br], 28), 242 (11), 147 (28), 137 (26), 135 (41), 110 (12), 82 (100), 78 (12), 73 (88). HRMS calcd. for $C_5H_3^{81}Br_2NO_2S$ 302.8210, $C_5H_3^{81}Br^{79}BrNO_2S$ 300.8231 and $C_5H_3^{79}Br_2NO_2S$ 298.8251; found 302.8229, 300.8236 and 298.8261.

³ Beswick, P. J.; Hamlett, C. C. F.; Patel, V.; Sierra, M. L.; Ramsden, N. G. European Patent No. WO 0292590, 2002; *Chem. Abstr.* **2002**, *137*, 384743.

	16^{a}	17	20^{b}	21	22
Empirical formula	$C_{43}H_{36}Br_2Cl_2O_2P_2PdS$	$C_{40}H_{32}Br_2P_2PdS$	$C_{42}H_{34}Br_2Cl_3NO_2P_2PdS$	C ₄₀ H ₃₃ Br ₂ NOP ₂ PdS	$C_{50}H_{40}BrF_{3}O_{2}P_{2}PdS$
Formula weight	1015.84	872.88	1051.27	903.89	1010.13
Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	P-1	C2/c	P-1	C2/c	P2(1)/n
Unit cell dimensions					
a (Å)	11.5181(9)	25.7511(18)	11.6242(8)	25.775(4)	21.459(3)
p(A)	11.8484(9)	13.0925(9)	11.8469(9)	13.4291(19)	11.2009(16)
c (Å)	18.2094(14)	18.2094(14)	16.6140(13)	11.7221(16)	22.854(3)
α (°)	96.201(2)		90.3990(10)		
β (°)	105.5040(10)	113.7810(10)	105.424(2)	113.582(3)	102.583(4)
γ (°)	113.5420(10)		98.5010(10)		
Volume	2129.4(3) Å ³	3570.8(4) Å ³	2178.7(3) Å ³	$3718.6(9) \text{ Å}^3$	$5361.4(13) \text{ Å}^3$
Ζ	2	4	2	4	4
Calculated density	1.584 mg/m^3	1.624 mg/m^3	1.602 mg/m^3	1.615 mg/m^3	1.251 mg/m^3
Goodness-of-fit on F ²	0.843	1.157	0.909	1.142	0.986
Final R indices	R1 = 0.0470	R1 = 0.0709	R1 = 0.0548	R1 = 0.0794	R1 = 0.0940
[I>2sigma(I)]	wR2 = 0.0900	wR2 = 0.2024	wR2 = 0.1358	wR2 = 0.2022	wR2 = 0.2117
D indiana (all data)	R1 = 0.0953	R1 = 0.1024	R1 = 0.0916	R1 = 0.1219	R1 = 0.1949
R IIIUICES (all uala)	wR2 = 0.0998	wR2 = 0.2102	wR2 = 0.1539	wR2 = 0.2156	wR2 = 0.2483
	acconnetallized with 16				

21 and 22
20,
17,
16,
of
Structures
ay
ζ-R
or Y
s f(
Parametei
Refinement
and
Collection
Data
Table 2.

 a A molecule of CH₂Cl₂ cocrystallized with 16. b A molecule of CHCl₃ cocrystallized with 20.

Preparationof*trans*-Bromo[3-bromo-5-(methoxycarbonyl)thien-2-yl]bis(triphenylphosphine)palladium(II)(16). Pd(PPh_3)_4(0.19 g, 0.17 mmol), methyl 4,5-dibromothiophene-2-carboxylate**5a**(0.05 g, 0.17 mmol), toluene(2 mL). Yield: 0.12 g(76%).¹H NMR(400 MHz, CDCl_3) δ 3.69 (s, 3H, CO₂CH₃), 6.80 (s, 1H, H4), 7.2-7.3 (m,12H, PPh_3), 7.3-7.4 (m, 6H, PPh_3), 7.6-7.7 (m, 12H, PPh_3) ppm.³¹P NMR (162 MHz, CDCl_3)δ 24.03 ppm. Anal. Calcd. for C₄₂H₃₄Br₂O₂P₂PdS: C, 54.19; H, 3.68; S, 3.44. Found: C,54.29; H, 3.77; S, 3.06. Selected bond distances and angles for **16** are given in Table 3.

Preparation of *trans*-Bromo(4-bromothien-2-yl)bis(triphenylphosphine)palladium(II) (17). Pd(PPh₃)₄ (0.05 g, 0.04 mmol), 2,4-dibromothiophene 12 (0.01 g, 0.04 mmol), toluene (0.8 mL). Yield: 0.03 g (85%). ¹H NMR (400 MHz, CDCl₃) δ 5.66 (d, *J* = 0.9 Hz, 1H, ArH), 6.61 (s, 1H, ArH), 7.2-7.4 (m, 18H, PPh₃), 7.5-7.6 (m, 12H, PPh₃) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 23.60 ppm. Selected bond distances and angles for 17 are given in Table 3.⁴

Preparationof*trans*-Bromo[4-bromo-5-(ethoxycarbonyl)thien-2-yl]bis(triphenylphosphine)palladium(II)(18). Pd(PPh_3)_4(0.18 g, 0.16 mmol), ethyl 3,5-dibromothiophene-2-carboxylate**5b**(0.05 g, 0.16 mmol), toluene(2 mL). Yield: 0.12 g(80%). ¹H NMR (400 MHz, CDCl_3) δ 1.24 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃), 4.14 (q, J = 7.1Hz, 2H, CO₂CH₂CH₃), 5.85 (s, 1H, H3), 7.3-7.4 (m, 18H, PPh_3), 7.5-7.6 (m, 12H, PPh_3) ppm.³¹P NMR (162 MHz, CDCl_3) δ 23.90 ppm. Anal. Calcd. for C43H36Br2O2P2PdS: C, 54.65; H, 3.84; S, 3.39. Found: C, 54.31; H, 3.66; S, 3.46.

Preparationof*trans*-Bromo[4-bromo-5-(hydroxymethyl)thien-2-yl]bis(triphenylphosphine)palladium(II)(19).Pd(PPh_3)_4(0.33 g, 0.28 mmol), (3,5-dibromothien-2-yl)methanol13 (0.08 g, 0.28 mmol), toluene (3 mL).Yield: 0.16 g (62%).¹HNMR (400 MHz, CDCl_3) δ 4.18 (s, 2H, CH_2OH), 5.71 (s, 1H, H3), 7.2-7.3 (m, 12H, PPh_3),7.3-7.4 (m, 6H, PPh_3), 7.5-7.6 (m, 12H, PPh_3) ppm.³¹P NMR (162 MHz, CDCl_3) δ 23.82ppm. Anal. Calcd. for C₄₁H₃₄Br₂OP₂PdS: C, 54.54; H, 3.80; S, 3.55.Found: C, 54.57; H,4.05; S, 3.22.

Preparationof*trans*-Bromo[4-bromo-5-(methoxycarbonyl)thiazol-2-yl]bis(triphenylphosphine)palladium(II)(20). Pd(PPh_3)_4(0.11 g, 0.10 mmol), methyl 2,4-dibromothiazole-5-carboxylate14 (0.03 g, 0.10 mmol), toluene (1 mL). Yield: 0.07 g (80%).¹H NMR (400 MHz, CDCl_3) δ 3.49 (s, 3H, CO₂CH₃), 7.3-7.4 (m, 18H, PPh_3), 7.6-7.7 (m,12H, PPh_3) ppm.³¹P NMR (162 MHz, CDCl_3) δ 22.28 ppm. Anal. Calcd. for

⁴ **17** and **21** crystallize in the monoclinic system. Systematic absences in the intensity data indicated space groups C2/c or Cc. The space group C2/c was eventually confirmed by the successful data solution and refinement. The asymmetric unit contains half of the molecule located on a two-fold rotational axis (e position in the Wyckoff notation). Pd and Br are on the two-fold axis. The molecule is consequently disordered about the two-fold axis such that ring atoms are interchanged [S, C(2), C(3) and C(4) for **17**; S, N, C(2) and C(3) for **21**]. Occupancies for these atoms were initially refined and yielded values near the expected 0.5. Subsequently these occupancies were fixed at 0.5 for the final refinement cycles. Refinement in Cc with the two-fold axis removed resulted in the same ring disorder with one complete molecule per asymmetric unit, therefore the higher space group C2/c was retained. Careful examination of the intensity data showed no evidence of a larger unit cell which might resolve the disorder.

C₄₁H₃₃Br₂NO₂P₂PdS: C, 52.84; H, 3.57; N, 1.50; S, 3.44. Found: C, 52.89; H, 3.50; N, 1.52; S, 3.25. Selected bond distances and angles for **20** are given in Table 3.

Preparationof*trans*-Bromo[4-bromo-5-(hydroxymethyl)thiazol-2-yl]bis(triphenylphosphine)palladium(II)(21).Pd(PPh_3)_4(0.21 g, 0.18 mmol), (2,4-dibromothiazol-5-yl)methanol15 (0.05 g, 0.18 mmol), toluene (2 mL).Yield: 0.15 g (91%).¹H NMR (400 MHz, CDCl₃) δ 4.15 (d, J = 5.7 Hz, 2H, CH₂OH), 5.30 (s, 1H, OH), 7.3-7.4(m, 18H, PPh_3), 7.6-7.7 (m, 12H, PPh_3) ppm.³¹P NMR (162 MHz, CDCl₃) δ 21.80 ppm.Anal. Calcd. for C₄₀H₃₃Br₂NOP₂PdS: C, 53.15; H, 3.68; N, 1.55; S, 3.55. Found: C, 53.17; H, 3.60; N, 1.62; S, 3.46. Selected bond distances and angles for 21 are given in Table 3.4

Preparation of *trans*-**Bromo**[5-(4-trifluoromethylphenyl)-2-(ethoxycarbonyl)thien-3yl]bis(triphenylphosphine)palladium(II) (22). Pd(PPh₃)₄ (0.09 g, 0.08 mmol), ethyl 3bromo-5-(4-trifluoromethylphenyl)thiophene-2-carboxylate **7b** (0.03 g, 0.08 mmol), toluene (1 mL). Yield: 0.07 g (88%). ¹H NMR (400 MHz, CDCl₃) δ 1.19 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃), 4.07 (q, J = 7.1 Hz, 2H, CO₂CH₂CH₃), 6.70 (s, 1H, H4), 7.2-7.4 (m, 18H, ArH), 7.50 (d, J = 8.4 Hz, 2H, ArH), 7.6-7.7 (m, 14H, ArH) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 23.80 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.76 ppm. Anal. Calcd. for C₅₀H₄₀BrF₃O₂P₂PdS: C, 59.45; H, 3.99; S, 3.17. Found: C, 59.59; H, 3.95; S, 2.96. Selected bond distances and angles for **22** are given in Table 3. **22** presents disorder in the CF₃ group which was modelled by refinement of the fluorine atoms in two alternative positions. Final refinement cycles showed occupancy factors of 46 and 54%.

	16	17	20	21	22
Pd-C1	2.029(5)	2.03(2)	1.979(6)	1.979(12)	1.960(9)
Pd-P1	2.3341(12)	2.323(2)	2.3321(15)	2.347(2)	2.315(3)
Pd-P2	2.3430(12)		2.3341(15)		2.337(3)
Pd-Br2	2.4867(7)	2.5068(18)	2.4886(8)	2.5123(18)	2.5084(14)
S-C1	1.709(5)	1.54(2)	1.737(7)	1.770(7)	
C1-C2	1.351(7)	1.490(19)			1.463(14)
C1-C4					1.378(14)
N-C1			1.328(7)	1.288(19)	
Br1-C2	1.919(5)		1.882(6)	1.87(2)	
Br1-C3		1.90(2)			
C1-Pd-P1	89.34(12)	88.1(5)	89.65(17)	89.74(7)	89.7(3)
C1-Pd-P2/P1 ⁱ	89.05(13)	91.5(5)	88.25(17)	89.74(7)	88.6(3)
P1-Pd-P2/P1 ⁱ	177.97(5)	179.6(13)	176.55(6)	179.48(13)	176.73(12)
C1-Pd-Br2	173.89(13)	166.8(4)	172.06(19)	180.000(1)	170.5(3)
P1-Pd-Br2	91.06(4)	90.21(7)	89.85(4)	90.26(7)	91.02(8)
P2/P1 ⁱ -Pd-Br2	90.68(4)	90.21(7)	92.60(5)	90.26(7)	91.08(8)

Table 3. Selected Intramolecular Bond Distances (Å) and Angles (°) for 16, 17, 20, 21 and 22

Symmetry code, i: -x+1, y, -z+1/2 in **17** and -x, y, -z+3/2 in **21**

Preparation of 2-Chloromethyl-3-methyl-5-(4-trifluoromethylphenyl)thiophene (26b). According to the general procedure for the preparation of chlorides from alcohols, a solution of [3-methyl-5-(4-trifluoromethylphenyl)thiophen-2-yl]methanol 11b (0.20 g, 0.76 mmol) and Et₃N (0.40 mL, 3.00 mmol) in CH₂Cl₂ (7.5 mL) was treated with methanesulfonyl chloride (0.20 mL, 3.00 mmol) for 2 h at 0 °C, followed by 16 h at 25 °C, to afford 0.19 g (90%) of chloride 26b as a yellow oil, which was used in the next step without further purification, due to its instability. A small sample was purified by column chromatography (SiO₂, 95:3:2 hexane/AcOEt/Et₃N) for characterization purposes. ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H, C3-CH₃), 4.76 (s, 2H, CH₂Cl), 7.11 (s, 1H, H4), 7.61 (d, J = 8.6 Hz, 2H, ArH), 7.63 (d, J = 8.6 Hz, 2H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (q, C3-<u>C</u>H₃), 38.7 (t, CH₂Cl), 124.1 (s, CF₃, ${}^{1}J_{C-F}$ = 272.0 Hz), 125.6 (d, 2x, C2' + C6'), 125.9 (d, 2x, C3' + C5', ${}^{3}J_{C-F}$ = 4.0 Hz), 127.5 (d, C4), 129.4 (s, C4', ${}^{2}J_{C-F}$ = 32.6 Hz), 133.8 (s), 137.2 (s), 138.5 (s), 141.5 (s) ppm. IR (NaCl) v 3020 (w, C-H), 2926 (w, C-H), 2861 (w, C-H), 1614 (m), 1411 (w), 1325 (s), 1167 (s), 1123 (s), 1067 (m), 1015 (w), 831 (m), 761 (m) cm⁻¹. MS m/z (%) 292 (M⁺ [³⁷Cl], 2), 290 (M⁺ [³⁵Cl], 5), 270 (36), 269 (64), 256 (17), 255 ([M-Cl]⁺, 100), 254 (62), 197 (17), 184 (17), 128 (12). HRMS (EI⁺) calcd for $C_{13}H_{10}{}^{35}ClF_3S$ 290.0144 and $C_{13}H_{10}{}^{37}ClF_3S$ 292.0114, found 290.0156 and 292.0111.

of Methyl (2-Methyl-4-[3-methyl-5-(4-trifluoromethylphenyl)thien-2-**Preparation** ylmethylthio]phenoxy)acetate (29b). In accordance to the general procedure for the nucleophilic displacement of chlorides by thiols, chloride 26b (0.09 g, 0.32 mmol) was reacted with Cs₂CO₃ (0.23 g, 0.70 mmol) and methyl (4-mercapto-2-methylphenoxy)acetate 27 (0.09 g, 0.42 mmol) in CH₃CN (3 mL) for 2 h at 25 °C to afford, after purification by chromatography (SiO₂, 87:10:3 hexane/AcOEt/Et₃N), 0.12 g (77%) of thiophene 29a as a yellow solid (mp 86 °C, hexane/AcOEt). ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3H, Ar-CH₃), 2.24 (s, 3H, Ar-CH₃), 3.79 (s, 3H, CO₂CH₃), 4.11 (s, 2H, CH₂S), 4.64 (s, 2H, 2H2), 6.60 (d, J = 8.4 Hz, 1H, H6'), 7.04 (s, 1H, H4''), 7.17 (dd, J = 8.4, 2.0 Hz, 1H, H5'), 7.21 (br s, 1H, H3'), 7.58 (d, *J* = 8.6 Hz, 2H, ArH), 7.61 (d, *J* = 8.6 Hz, 2H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (q, Ar-CH₃), 16.1 (q, Ar-CH₃), 33.9 (t, CH₂S), 52.2 (q, CO₂CH₃), 65.5 (t, C2), 111.5 (d, C6'), 124.1 (s, CF₃, ${}^{1}J_{C-F} = 271.7$ Hz), 125.4 (d, 2x, C2''' + C6'''), 125.8 (d, 2x, C3^{***} + C5^{***}, ${}^{3}J_{C-F}$ = 3.7 Hz), 126.2 (s), 127.1 (d, C4^{***}), 128.2 (s), 128.9 (s, C4^{***}), ${}^{2}J_{C-F}$ = 32.6 Hz), 131.7 (d, C5'), 135.6 (s), 135.8 (d, C3'), 136.4 (s), 137.7 (s), 139.5 (s), 156.1 (s), 169.3 (s, C1) ppm. IR (NaCl) v 2954 (w, C-H), 1763 (s, C=O), 1614 (m), 1489 (s), 1438 (w), 1325 (s), 1121 (m), 1166 (m), 1119 (s), 1068 (s), 831 (m) cm⁻¹. MS m/z (%) 466 (M⁺, 1), 256 (84), 255 ([M-C₁₀H₁₁O₃S]⁺, 100), 254 (26), 211 (30), 189 (14), 153 (22), 152 (14), 139 (13), 73 (31). HRMS (EI⁺) calcd for $C_{23}H_{21}F_3O_3S_2$ 466.0884, found 466.0880.

Preparation of 4-Hydroxyphenyl Disulfide. After heating a solution of 4-hydroxybenzenethiol (0.20 g, 1.60 mmol) in DMSO (2.3 mL) to 65 °C for 4 h, the mixture was allowed to cool down to 25 °C and the solvent was distilled using a Kugelrohr (10 mmHg, 65 °C). Purification of the residue by chromatography on silica gel using hexane/AcOEt (70:30) as eluent afforded 4-hydroxyphenyl disulfide (0.19 g, 95%). ¹H NMR (400 MHz, CD₃OD) δ 4.92 (s, 2H), 6.74 (d, *J* = 8.1 Hz, 4H), 7.27 (d, *J* = 8.1 Hz, 4H) ppm. All other analytical data are in agreement whith those reported in the literature: McMorris, T. C.; Yu, J. *Tetrahedron* **1997**, *53*, 14579-14590.

Preparation of Methyl [4-(4-[Methoxycarbonylmethoxy]phenyldithio)phenoxy]acetate.

NaH (0.07 g, 1.70 mmol) was added in small portions to a solution of 4-hydroxyphenyl disulfide (0.19 g, 0.76 mmol) in DMF (4 mL) under argon at 0 °C. The mixture was stirred at 25 °C for 2 h and then cooled down to 0 °C. Methyl bromoacetate (0.16 mL, 1.67 mmol) was added and the solution was stirred at 25 °C for 4 h. After the addition of water, the mixture was extracted with AcOEt (2x). The organic extracts were dried (Na_2SO_4) , and the solvent was evaporated. Purification of the residue by chromatography (SiO₂, 70:30 hexane/AcOEt) vielded 0.25 (82%) of methyl [4-(4g [methoxycarbonylmethoxy]phenyldithio)phenoxy]acetate. ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 6H, 2x, CO_2CH_3), 4.61 (s, 4H, 2x, CH_2CO_2Me), 6.83 (d, J = 8.9 Hz, 4H, ArH), 7.39 (d, J = 8.9 Hz, 4H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 52.2 (q, 2x, CO₂CH₃), 65.2 (t, 2x, <u>CH</u>₂CO₂Me), 115.3 (d, 4x, ArCH), 129.6 (s, 2x, ArC), 131.9 (d, 4x, ArCH), 157.9 (s, 2x, ArC), 168.9 (s, 2x, CO₂Me) ppm. IR (NaCl) v 2953 (w, C-H), 1760 (s, C=O), 1590 (s), 1490 (s), 1437 (m), 1292 (m), 1210 (s), 1175 (s), 1076 (m), 826 (m) cm⁻¹. MS m/z (%) 396 ([M+2]⁺, 11), 395 ([M+1]⁺, 19), 394 (M⁺, 89), 198 (15), 197 (100), 86 (34), 84 (52), 73 (32). HRMS (EI⁺) calcd for C₁₈H₁₈O₆S₂ 394.0545, found 394.0538.

Preparation of Methyl (4-Mercaptophenoxy)acetate (28). 10% HCl (20 mL) was added to a solution of methyl [4-(4-[methoxycarbonylmethoxy]phenyldithio)phenoxy]acetate (0.20 g, 0.51 mmol) and Zn (1.20 g, 18.20 mmol) in CH₂Cl₂ (50 mL). After stirring the solution at 25 °C for 2 h, the layers were separated and the aqueous layer was further extracted with CH₂Cl₂ (2x). The organic extracts were dried (Na₂SO₄) and the solvent was evaporated. Purification of the residue by column chromatography (SiO₂, 75:25 hexane/AcOEt) afforded 0.17 g (85%) of methyl (4-mercaptophenoxy)acetate **28**. ¹H NMR (400 MHz, CDCl₃) δ 3.37 (s, 1H, SH), 3.79 (s, 3H, CO₂CH₃), 4.59 (s, 2H, 2H2), 6.79 (d, *J* = 8.7 Hz, 2H, H2' + H6'), 7.24 (d, *J* = 8.7 Hz, 2H, H3' + H5') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 52.2 (q, CO₂CH₃), 65.3 (t, C2), 115.4 (d, 2x, C2' + C6'), 121.6 (s, C4'), 132.1 (d, 2x, C3' + C5'), 156.5 (s, C1'), 169.1 (s, CO₂Me) ppm. IR (NaCl) v 2953 (w, C-H), 2564 (w, S-H), 1759 (s, C=O), 1594 (m), 1492 (s), 1437 (m), 1293 (m), 1207 (s), 1177 (s), 1080 (s), 821 (m) cm⁻¹. MS *m/z* (%) 200 ([M+2]⁺, 12), 199 ([M+1]⁺, 25), 198 (M⁺, 100), 139 (51), 125 (76), 109 (49), 97 (28), 69 (22), 65 (22). HRMS (EI⁺) calcd for C₉H₁₀O₃S 198.0351, found 198.0347.

of (4-[4-Methyl-5-(4-trifluoromethylphenyl)thien-2-**Preparation** Methyl ylmethylthio]phenoxy)acetate (30a). In accordance to the general procedure for the nucleophilic displacement of chlorides by thiols, chloride 26a (0.02 g, 0.09 mmol) was reacted with Cs₂CO₃ (0.06 g, 0.02 mmol) and methyl (4-mercaptophenoxy) acetate **28** (0.02 g, 0.1 mmol) in CH₃CN (0.5 mL) for 3 h at 25 °C to afford, after purification by chromatography (SiO₂, 80:20 hexane/AcOEt), 0.02 g (67%) of thiophene **30a** as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H, C4''-CH₃), 3.80 (s, 3H, CO₂CH₃), 4.16 (s, 2H, SCH₂), 4.62 (s, 2H, 2H2), 6.65 (s, 1H, H3''), 6.84 (m, 2H, ArH), 7.36 (m, 2H, ArH), 7.52 (d, *J* = 8.2 Hz, 2H, H2''' + H6'''), 7.63 (d, J = 8.2 Hz, 2H, H3''' + H5''') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 15.0 (q, C4''-<u>C</u>H₃), 35.4 (t, CH₂S), 52.2 (q, CO₂<u>C</u>H₃), 65.2 (t, C2), 115.2 (d, 2x, ArCH), 124.1 (s, CF₃, ${}^{1}J_{C-F} = 271.7$ Hz), 125.3 (d, 2x, C3^{'''} + C5^{'''}, ${}^{3}J_{C-F} = 3.7$ Hz), 127.2 (s), 128.7 (d, 2x, C2''' + C6'''), 128.8 (s, C4''', ${}^{2}J_{C-F}$ = 32.4 Hz), 130.6 (d, C3''), 133.8 (d, 2x, ArCH), 133.9 (s), 135.4 (s), 138.2 (s), 140.2 (s), 157.4 (s), 169.0 (s, C1) ppm. IR (NaCl) v

2954 (m, C-H), 2923 (s, C-H), 2853 (m, C-H), 1759 (s, C=O), 1612 (m), 1591 (m), 1491 (s), 1439 (s), 1407 (m), 1379 (w), 1322 (s), 1204 (s), 1166 (s), 1111 (s), 1067 (s), 1014 (m), 825 (s) cm⁻¹. MS m/z (%) 452 (M⁺, 12), 257 (9), 256 (27), 255 ([M-C₉H₉O₃S]⁺, 100). HRMS (EI⁺) calcd for C₂₂H₁₉F₃O₃S₂ 452.0728, found 452.0710.

Preparation of Methyl (4-[3-Methyl-5-(4-trifluoromethylphenyl)thien-2ylmethylthio]phenoxy)acetate (30b). In accordance to the general procedure for the nucleophilic displacement of chlorides by thiols, chloride 26b (0.07 g, 0.28 mmol) was reacted with Cs₂CO₃ (0.18 g, 0.56 mmol) and methyl (4-mercaptophenoxy) acetate 28 (0.06 g, 0.26 mmol) in CH₃CN (3 mL) for 2 h at 25 °C to afford, after purification by chromatography (SiO₂, 87:10:3 hexane/AcOEt/Et₃N), 0.09 g (80%) of thiophene **30b** as a yellow solid (mp 83 °C, hexane/AcOEt). ¹H NMR (400 MHz, CDCl₃) & 2.01 (s, 3H, C3"-CH₃), 3.79 (s, 3H, CO₂CH₃), 4.11 (s, 2H, CH₂S), 4.62 (s, 2H, 2H2), 6.82 (d, *J* = 8.6 Hz, 2H, H2' + H6'), 7.03 (s, 1H, H4''), 7.33 (d, J = 8.6 Hz, 2H, H3' + H5'), 7.58 (d, J = 8.7 Hz, 2H, ArH), 7.60 (d, J = 8.7 Hz, 2H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 13.5 (q, C3^{''}-<u>C</u>H₃), 33.9 (t, CH₂S), 52.2 $(q, CO_2CH_3), 65.2 (t, C2), 115.2 (d, 2x, C2' + C6'), 124.1 (s, CF_3, {}^1J_{C-F} = 271.7 \text{ Hz}), 125.4$ (d, 2x, C2^{'''} + C6^{'''}), 125.8 (d, 2x, C3^{'''} + C5^{'''}, ${}^{3}J_{C-F} = 4.0$ Hz), 126.7 (s), 127.1 (d, C4^{''}), 128.9 (s, C4^{'''}, ${}^{2}J_{C-F}$ = 32.5 Hz), 134.8 (d, 2x, C3['] + C5[']), 135.5 (s), 136.4 (s), 137.6 (s), 139.5 (s), 157.8 (s), 169.0 (s, C1) ppm. IR (NaCl) v 2954 (w, C-H), 1762 (s, C=O), 1614 (m), 1592 (m), 1492 (s), 1326 (s), 1209 (s), 1172 (s), 1114 (s), 1068 (s), 829 (s) cm⁻¹. MS m/z (%) 452 (M⁺, 0.3), 270 (57), 269 (70), 256 (23), 255 ([M-C₉H₉O₃S]⁺, 100), 254 (20), 197 (20). HRMS (EI⁺) calcd for C₂₂H₁₉F₃O₃S₂ 452.0728, found 452.0727. Anal. Calcd for C₂₂H₁₉F₃O₃S₂: C, 58.39; H, 4.23; S, 14.17. Found: C, 58.30; H, 4.30; S, 13.74.

Preparation (2-Methyl-4-[3-methyl-5-(4-trifluoromethylphenyl)thien-2of ylmethylthio]phenoxy)acetic Acid (3b). According to the general procedure for the hydrolysis of esters, a solution of methyl ester 29b (0.05 g, 0.11 mmol) in MeOH (1.0 mL) was treated with 3 M K₂CO₃ (0.40 mL) at 80 °C for 1 h, to afford, after purification by recrystallization (hexane/AcOEt), 0.04 g (88%) of acid 3b as a yellow solid (mp 145 °C, hexane/CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3H, Ar-CH₃), 2.23 (s, 3H, Ar-CH₃), 4.11 (s, 2H, CH₂S), 4.68 (s, 2H, 2H2), 6.63 (d, *J* = 8.4 Hz, 1H, H6'), 7.04 (s, 1H, H4''), 7.18 (dd, J = 8.4, 2.1 Hz, 1H, H5'), 7.21 (br s, 1H, H3'), 7.58 (d, J = 8.8 Hz, 2H, ArH), 7.60 (d, J = 8.8 Hz, 2H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (q, Ar-CH₃), 16.0 (q, Ar-CH₃), 33.8 (t, CH₂S), 65.0 (t, C2), 111.5 (d, C6'), 124.1 (s, CF₃, ${}^{1}J_{C-F} = 271.9$ Hz), 125.4 (d, 2x, C2^{***} + C6^{***}), 125.8 (d, 2x, C3^{***} + C5^{***}), ${}^{3}J_{C-F} = 3.7$ Hz), 126.7 (s), 127.1 (d, C4^{***}), 128.1 (s), 128.9 (s, C4''', ²*J*_{C-F} = 32.4 Hz), 131.6 (d, C5'), 135.6 (s), 135.8 (d, C3'), 136.4 (s), 137.7 (s), 139.5 (s), 155.6 (s), 173.4 (s, C1) ppm. IR (NaCl) v 3500-3000 (br, O-H), 2922 (w, C-H), 1736 (m, C=O), 1614 (m), 1490 (m), 1325 (s), 1229 (m), 1122 (m), 1068 (m), 830 (w) cm⁻¹. MS *m*/*z* (%) 453 ([M+1]⁺, 2), 452 (M⁺, 13), 257 (32), 256 ([M-C₉H₉O₃S]⁺, 100), 241 (13), 139 (19), 95 (11), 83 (11). HRMS (EI⁺) calcd for $C_{22}H_{19}F_3O_3S_2$ 452.0728, found 452.0733.

Preparationof(4-[4-Methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)aceticAcid(4a).According to the general procedure for thehydrolysis of esters, a solution of 30a(0.08 g, 0.18 mmol) in MeOH (2 mL) was treated with3 M K₂CO₃(0.6 mL, 1.8 mmol) at 80 °C for 1.5 h, to afford, after purification by

recrystallization (hexane/TBME), 0.07 g (89%) of acid **4a** as a white solid (mp 131 °C). ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H, C4''-CH₃), 4.17 (s, 2H, SCH₂), 4.65 (br s, 2H, 2H2), 6.66 (s, 1H, H3''), 6.86 (d, J = 8.2 Hz, 2H, ArH), 7.37 (d, J = 8.2 Hz, 2H, ArH), 7.52 (d, J = 8.1 Hz, 2H, H2''' + H6'''), 7.63 (d, J = 8.1 Hz, 2H, H3''' + H5''') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 16.2 (q, C4''-<u>C</u>H₃), 36.2 (t, CH₂S), 66.3 (t, C2), 117.1 (d, 2x, ArCH), 126.3 (s, CF₃, ¹ J_{C-F} = 271.7 Hz), 127.3 (d, 2x, C3''' + C5''', ³ J_{C-F} = 4.0 Hz), 128.4 (s), 130.0 (s, C4''', ² J_{C-F} = 32.2 Hz), 130.7 (d, 2x, C2''' + C6'''), 132.8 (d, C3''), 135.1 (d, 2x, ArCH), 136.0 (s), 136.6 (s), 140.5 (s), 142.9 (s), 159.7 (s), 171.0 (s, C1) ppm. IR (NaCl) v 3200-2600 (br, O-H), 2923 (w, C-H), 1702 (s, C=O), 1611 (w), 1493 (m), 1321 (s), 1234 (s), 1179 (m), 1124 (s), 837 (s), 772 (s) cm⁻¹. MS m/z (%) 438 (M⁺, 2), 257 (5), 256 (17), 255 ([M-C₈H₇O₃S]⁺, 100), 185 (2), 153 (2), 125 (3). HRMS (EI⁺) calcd for C₂₁H₁₇F₃O₃S₂ 438.0571, found 438.0565. Anal. Calcd for C₂₁H₁₇F₃O₃S₂: C, 57.52; H, 3.91; S, 14.63. Found: C, 57.36; H, 3.83; S, 14.20.

Preparation (4-[3-Methyl-5-(4-trifluoromethylphenyl)thien-2of ylmethylthio]phenoxy)acetic Acid (4b). According to the general procedure for the hydrolysis of esters, a solution of 30b (0.05 g, 0.11 mmol) in MeOH (1 mL) was treated with 3 M K₂CO₃ (0.40 mL) at 80 °C for 1 h, to afford, after purification by recrystallization (hexane/CHCl₃), 0.04 g (91%) of acid **4b** as a yellow solid (mp 131 °C). ¹H NMR (400 MHz, CD₃COCD₃) δ 2.01 (s, 3H, C3^{''}-CH₃), 4.11 (s, 2H, CH₂S), 4.66 (s, 2H, 2H2), 6.84 (d, *J* = 8.5 Hz, 2H, H2' + H6'), 7.04 (s, 1H, H4''), 7.35 (d, J = 8.5 Hz, 2H, H3' + H5'), 7.58 (d, J = 8.7 Hz, 2H, H3^{'''} + H5^{'''}), 7.60 (d, J = 8.7 Hz, 2H, H2^{'''} + H6^{'''}) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (q, C3''-<u>C</u>H₃), 33.9 (t, CH₂S), 64.7 (t, C2), 115.2 (d, 2x, C2' + C6'), 124.1 (s, CF_3 , ${}^{1}J_{C-F} = 271.4 \text{ Hz}$), 125.4 (d, 2x, C2''' + C6'''), 125.8 (d, 2x, C3''' + C5''', ${}^{3}J_{C-F} = 3.7$ Hz), 127.1 (d, C4''), 127.3 (s), 128.9 (s, C4''', ${}^{2}J_{C-F} = 32.4$ Hz), 134.8 (d, 2x, C3' + C5'), 135.5 (s), 136.4 (s), 137.6 (s), 139.6 (s), 157.3 (s), 172.2 (s, C1) ppm. IR (NaCl) v 3300-2500 (br, O-H), 2922 (m, C-H), 1727 (s, C=O), 1614 (m), 1591 (m), 1491 (s), 1430 (w), 1326 (s), 1240 (s), 1165 (s), 1110 (s), 1068 (s), 1013 (w), 827 (s) cm⁻¹. MS m/z (%) 439 ([M+1]⁺, 3), 438 (M⁺, 11), 257 (35), 256 ([M-C₈H₇O₃S]⁺, 100), 241 (15), 189 (8), 183 (9), 125 (18). HRMS (EI⁺) calcd for C₂₁H₁₇F₃O₃S₂ 438.0571, found 438.0569.

Preparation of 4-Bromo-2-(4-trifluoromethylphenyl)thiophene. In accordance to the procedure for the Suzuki coupling, the reaction of boronate 6 with 2,4-dibromothiophene 12 (0.06 g, 0.25 mmol), in the presence of Pd(PPh₃)₄ (0.01 g, 0.01 mmol) and K₂CO₃ (3 M in H₂O, 0.14 mL, 0.36 mmol) in toluene (2 mL), for 15 h at 100 °C afforded, after purification hexane), chromatography $(SiO_2,$ 0.03 (50%)of 4-bromo-2-(4bv g trifluoromethylphenyl)thiophene as a colourless oil and 0.007 g (7%) of 2,4-bis(4trifluoromethylphenyl)thiophene as a white solid. Spectroscopic data for 4-bromo-2-(4trifluoromethylphenyl)thiophene. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 2.4 Hz, 1H, H3 or H5), 7.29 (d, J = 2.4 Hz, 1H, H5 or H3), 7.65 (ap. s, 4H, H2' + H3' + H5' + H6') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 110.9 (s, C4), 123.2 (d, C3 or C5), 123.8 (s, CF₃, ${}^{1}J_{C-F} = 272.0$ Hz), 125.7 (d, 2x, C2' + C6'), 125.9 (d, 2x, C3' + C5', ${}^{3}J_{C-F} = 3.7$ Hz), 126.9 (d, C5 or C3), 129.9 (s, C4', ${}^{2}J_{C-F}$ = 32.5 Hz), 136.3 (s), 143.4 (s) ppm. IR (NaCl) v 2926 (s, C-H), 2854 (m, C-H), 1616 (m), 1501 (m), 1409 (w), 1324 (s), 1168 (s), 1127 (s), 1068 (s), 1017 (m), 823 (s) cm⁻¹. MS m/z (%) 309 ([M+1]⁺ [⁸¹Br], 13), 308 (M⁺ [⁸¹Br], 90), 307 ([M+1]⁺ [⁷⁹Br], 10), 306 (M⁺ [⁷⁹Br], 84), 228 (13), 189 (27), 184 (10), 183 (100), 182 (11), 158 (16), 133 (13), 129 (12), 128 (11), 74 (10). HRMS calcd. for $C_{11}H_6^{81}BrF_3S$ 307.9305 and $C_{11}H_6^{79}BrF_3S$ 305.9326; found 307.9308 and 305.9334. *Spectroscopic data for 2,4-bis(4-trifluoromethylphenyl)thiophene*. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H, ArH), 7.6-7.8 (m, 9H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 122.4 (d), 123.3 (d), 124.0 (s, CF₃, ¹*J*_{C-F} = 271.9 Hz), 124.1 (s, CF₃, ¹*J*_{C-F} = 271.9 Hz), 125.9 (d, 2x, ³*J*_{C-F} = 3.7 Hz), 125.9 (d, 2x), 126.0 (d, 2x, ³*J*_{C-F} = 4.0 Hz), 126.5 (d, 2x), 129.7 (s, ²*J*_{C-F} = 32.6 Hz), 129.7 (s, ²*J*_{C-F} = 31.6 Hz), 137.3 (s), 138.8 (s), 141.9 (s), 143.9 (s) ppm. IR (NaCl) v 2923 (s, C-H), 2853 (m, C-H), 1613 (w), 1463 (w), 1327 (m), 1167 (m), 1129 (m), 1070 (w), 827 (w) cm⁻¹. MS *m/z* (%) 373 ([M+1]⁺, 15), 372 (M⁺, 100), 353 (8), 327 (8), 302 (6), 234 (8), 207 (16), 191 (7), 189 (20), 186 (7). HRMS calcd. for $C_{18}H_{10}F_6S$ 372.0407; found 372.0419.

Preparation of [3-Bromo-5-(4-trifluoromethylphenyl)thien-2-yl]methanol. In accordance to the procedure for the Suzuki coupling, the reaction of boronate **6** with (3,5-dibromothien-2-yl)methanol **13** (0.05 g, 0.18 mmol), in the presence of Pd(PPh₃)₄ (0.01 g, 0.009 mmol) and K₂CO₃ (3 M in H₂O, 0.12 mL, 0.36 mmol) in toluene (1 mL), for 19 h at 100 °C afforded, after purification by chromatography (SiO₂, 78:20:2 hexane/AcOEt/Et₃N), 0.04 g (68%) of the alcohol as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 2.20 (br. s, 1H, OH), 4.82 (s, 2H, 2H1), 7.22 (s, 1H, H4'), 7.63 (ap. s, 4H, H2'' + H3'' + H5'' + H6'') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 59.3 (t, C1), 109.6 (s, C3'), 123.9 (s, CF₃, ¹*J*_{C-F} = 272.0 Hz), 125.6 (d, 2x, C2'' + C6''), 126.1 (d, 2x, C3'' + C5'', ³*J*_{C-F} = 3.7 Hz), 127.1 (d, C4'), 130.0 (s, C4'', ²*J*_{C-F} = 32.5 Hz), 136.5 (s), 138.9 (s), 142.0 (s) ppm. IR (NaCl) v 3500-3100 (br, O-H), 2923 (m, C-H), 1615 (w), 1325 (s), 1168 (m), 1125 (m), 1069 (m), 823 (m) cm⁻¹. MS *m/z* (%) 339 ([M+1]⁺ [⁸¹Br], 2), 338 (M⁺ [⁸¹Br], 23), 337 ([M+1]⁺ [⁷⁹Br], 4), 336 (M⁺ [⁷⁹Br], 29), 321 (54), 319 (58), 257 (28), 229 (100), 228 (24), 196 (18), 189 (61), 183 (14), 145 (10). HRMS calcd. for C₁₀H₈⁸¹BrF₃OS 337.9411 and C₁₀H₈⁷⁹BrF₃OS 335.9431; found 337.9410 and 335.9433. Anal. Calcd. for C₁₀H₈BrF₃OS: C, 42.75; H, 2.39; S, 9.51. Found: C, 42.68; H, 2.30; S, 9.40.

Preparation of Methyl 4-Bromo-2-(4-trifluoromethylphenyl)thiazole-5-carboxylate. In accordance to the procedure for the Suzuki coupling, the reaction of boronate 6 with methyl 2,4-dibromothiazole-5-carboxylate 14 (0.08 g, 0.27 mmol), in the presence of Pd(PPh₃)₄ (0.015 g, 0.013 mmol) and K₂CO₃ (3 M in H₂O, 0.18 mL, 0.36 mmol) in toluene (1.5 mL), for 17 h at 80 °C afforded, after purification by chromatography (SiO₂, 95:5 hexane/AcOEt), 0.09 g (92%) of the ester as a white solid (mp 144 °C, hexane/AcOEt). ¹H NMR (400 MHz, CDCl₃) δ 3.95 (s, 3H, CO₂CH₃), 7.73 (d, *J* = 7.7 Hz, 2H, H3' + H5'), 8.08 (d, *J* = 7.7 Hz, 2H, H2' + H6') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 52.8 (q, CO₂CH₃), 123.5 (s, CF₃, ¹J_{C-F} = 272.4 Hz), 123.8 (s), 126.2 (d, 2x, C3' + C5', ${}^{3}J_{C-F} = 4.0$ Hz), 127.0 (d, 2x, C2' + C6'), 132.9 (s), 133.3 (s, C4', ${}^{2}J_{C-F} = 32.7$ Hz), 134.8 (s), 160.3 (s, C2), 169.5 (s, CO₂Me) ppm. IR (NaCl) v 1727 (s, C=O), 1615 (w), 1483 (m), 1437 (m), 1318 (s), 1248 (s), 1159 (m), 1113 (s), 1066 (m), 1015 (w), 845 (m), 753 (w), 603 (w) cm⁻¹. MS m/z (%) 368 ([M+1]⁺ [⁸¹Br], 4), 367 (M⁺ $[^{81}Br], 47), 366 ([M+1]^+ [^{79}Br], 4), 365 (M^+ [^{79}Br], 49), 336 ([M-OCH_3]^+ [^{81}Br], 51), 334 ([M-OCH_3]^+ [^{81}Br],$ OCH₃]⁺ [⁷⁹Br], 50), 308 (18), 306 (17), 287 (16), 189 (19), 171 (31), 152 (22), 145 (22), 137 (99), 135 (100), 121 (25). HRMS calcd. for $C_{12}H_7^{81}BrF_3NO_2S$ 366.9313 and $C_{14}H_{10}^{79}BrF_3NO_2S$ 364.9333; found 366.9298 and 364.9315. Anal. Calcd. for $C_{12}H_7BrF_3NO_2S$: C, 39.36; H, 1.93; S, 8.76; N, 3.83. Found: C, 39.52; H, 1.95; S, 8.43; N, 3.77.

Preparation of [4-Bromo-2-(4-trifluoromethylphenyl)thiazol-5-yl]methanol. In accordance to the procedure for the Suzuki coupling, the reaction of boronate 6 with (2,4dibromothiazol-5-yl)methanol 15 (0.05 g, 0.18 mmol), in the presence of Pd(PPh₃)₄ (0.01 g, 0.009 mmol) and K₂CO₃ (3 M in H₂O, 0.12 mL, 0.36 mmol) in toluene (1 mL), for 19 h at 100 °C afforded, after purification by chromatography (SiO₂, 78:20:2 hexane/AcOEt/Et₃N), 0.05 g (87%) of the alcohol as a yellow solid (mp 117 °C, hexane/AcOEt). ¹H NMR (400 MHz, CDCl₃) δ 4.48 (d, J = 6.0 Hz, 2H, 2H1), 7.71 (d, J = 8.2 Hz, 2H, H3'' + H5''), 8.03 (d, J = 8.2 Hz, 2H, H2'' + H6'') ppm. ¹³C NMR (100 MHz, CDCl₃) δ 57.9 (t, C₁), 123.6 (s, CF₃, ${}^{1}J_{C-F} = 272.4 \text{ Hz}$, 124.5 (s), 125.9 (d, 2x, C3'' + C5'', ${}^{3}J_{C-F} = 3.7 \text{ Hz}$), 126.2 (d, 2x, C2'' + C6''), 132.1 (s, C4'', ${}^{2}J_{C-F} = 32.5$ Hz), 134.6 (s), 135.4 (s), 165.8 (s, C2') ppm. IR (NaCl) v 3500-3000 (br, O-H), 1616 (w), 1510 (w), 1440 (w), 1406 (w), 1329 (s), 1197 (m), 1112 (s), 1070 (s), 1047 (m), 994 (w), 835 (m) cm⁻¹. MS m/z (%) 339 (M⁺ [⁸¹Br], 7), 338 ([M+1]⁺ ^{[79}Br], 1), 377 (M⁺ [⁷⁹Br], 8), 189 (100), 172 (9), 145 (12), 137 (11), 135 (9). HRMS calcd. for $C_{14}H_{10}^{81}BrF_3O_2S$ 338.9363 and $C_{14}H_{10}^{79}BrF_3O_2S$ 336.9384; found 338.9379 and 336.9381. Anal. Calcd. for C₁₄H₁₀BrF₃O₂S: C, 39.07; H, 2.09; S, 9.48; N, 4.14. Found: C, 39.15; H, 1.91; S, 9.36; N, 4.11.

Methyl 4-Bromo-5-(4-trifluoromethylphenyl)thiophene-2-carboxylate (7a)

Methyl 4,5-Bis(4-trifluoromethylphenyl)thiophene-2-carboxylate (8a)

Ethyl 3,5-Bis(4-trifluoromethylphenyl)thiophene-2-carboxylate (8b)

Ethyl 3-Methyl-5-(4-trifluoromethylphenyl)thiophene-2-carboxylate (10b)

[4-Methyl-5-(4-trifluoromethylphenyl)thiophen-2-yl]methanol (11a)

Methyl 2,4-Dibromothiazole-5-carboxylate (14)

trans-Bromo[3-bromo-5-(methoxycarbonyl)thien-2-yl]bis(triphenylphosphine)palladium(II) (16)

trans-Bromo[4-bromo-5-(ethoxycarbonyl)thien-2-yl]bis(triphenylphosphine)palladium(II) (18)

65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 ppm (t1)

trans-Bromo[4-bromo-5-(hydroxymethyl)thien-2-yl]bis(triphenylphosphine)palladium(II) (19)

9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 ppm (t1)

80.0 75.0 70.0 65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 (ppm (t))

trans-Bromo[4-bromo-5-(methoxycarbonyl)thiazol-2-yl]bis(triphenylphosphine)palladium(II) (20)

trans-Bromo[4-bromo-5-(hydroxymethyl)thiazol-2-yl]bis(triphenylphosphine)palladium(II) (21)

trans-Bromo[5-(4-trifluoromethylphenyl)-2-(ethoxycarbonyl)thien-3-yl]bis(triphenylphosphine) palladium(II) (22)

2-Chloromethyl-3-methyl-5-(4-trifluoromethylphenyl)thiophene (26b)

Methyl (2-Methyl-4-[4-methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)acetate (29a)

Methyl (2-Methyl-4-[3-methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)acetate (29b)

Methyl [4-(4-[Methoxycarbonylmethoxy]phenyldithio)phenoxy]acetate

Methyl 2-(4-Mercaptophenoxy)acetate (28)

S41

Methyl (4-[3-Methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)acetate (30b)

(2-Methyl-4-[4-methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)acetic Acid (3a)

(2-Methyl-4-[3-methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)acetic Acid (3b)

(4-[4-Methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)acetic Acid (4a)

(4-[3-Methyl-5-(4-trifluoromethylphenyl)thien-2-ylmethylthio]phenoxy)acetic Acid (4b)

2,4-Bis(4-trifluoromethylphenyl)thiophene

[3-Bromo-5-(4-trifluoromethylphenyl)thien-2-yl]methanol

Methyl 4-Bromo-2-(4-trifluoromethylphenyl)thiazole-5-carboxylate

[4-Bromo-2-(4-trifluoromethylphenyl)thiazol-5-yl]methanol

