CIAT with simultaneous epimerization at two stereocenters. Synthesis of substituted β-methyl- α-homophenylalanines.

Dušan Berkeš,* ${ }^{a}$ Pavol Jakubec, ${ }^{a}$ Dagmar Winklerová ${ }^{a}$, František Považanec ${ }^{a}$ and Adam Daich* ${ }^{*}$
${ }^{a}$ Department of organic chemistry, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia. Fax: + 4212 52968560; Tel:+421 2 52968560; E-mail: dusan.berkes@stuba.sk
${ }^{\text {b }}$ Laboratoire de Chimie, URCOM, UFR des Techniques de l'Université du Havre, 25, rue Philippe Lebon, B.P. : 540, F-76058, Le Havre Cedex, France.
Fax: +33 02-32-74-43-91; Tel:+33 02-32-74-44-03; E-mail:adam.daich@univ-lehavre.fr

Experimental part

Remarks

Melting points are uncorrected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on Varian VXR-300 spectrometer (300 and 75.4 MHz , respectively) with TMS as internal standard. Elemental analyses were performed on analyzer NA 1500, Series 2, Carlo Erba Instruments. Optical rotations were measured on JASCO P-1020 or POLAR L- μ P (IBZ Messtechnik) polarimeter, $[\mathrm{a}]_{\mathrm{D}}$ values are given in 10^{-1} deg. $\mathrm{cm}^{2} . \mathrm{g}^{-1}$. HPLC was carried out using a PU-4015/PU-4021 PYE UNICAM HPLC system, using C18 $5 \mu \mathrm{~m}$ reverse phase column and a mixture acetonitrile/water/TEA 600:400:15 or $250: 750: 15$, the pH was adjusted to 2.9-3.5 by $\mathrm{H}_{3} \mathrm{PO}_{4}$. Detector PU-4021 was set in SUM ABS mode, $\lambda=210-310 \mathrm{~nm}$.

Diastereomer distribution in the CIAT process (Fig.1) was checked on Phenomenex Luna 5 $\mu \mathrm{m}$, C18 250x4.6 mm ID column, eluent acetonitrile/water/TEA 250:750:15, the pH was adjusted to 3.5 by $\mathrm{H}_{3} \mathrm{PO}_{4}$, flow $0,7 \mathrm{~mL} / \mathrm{min}$, inject $20 \mu \mathrm{~L}, \mathrm{t}_{\mathrm{R}}(\mathrm{min}) 16.54 \mathbf{b}, 18.3,25.8$ and 26.4 the others diastereomers.

Enantiomeric purity of the final anti-2-amino-4-aryl-3-methylbutanoic acids 9a,b was meassured using a chromatography system Pye Unicam with PU4225 UV detector and CROWNPAK CR (+) column (DAICEL). Detection was carried out at 210 nm . The mobile phase was a solution of $\mathrm{HClO}_{4}, \mathrm{pH}=2.0$, which was pumped through the system at $1.5 \mathrm{~mL} / \mathrm{min}$ at room temperature. The amount injected was $20 \mu \mathrm{~L} . \mathrm{t}_{\mathrm{R}}(\mathrm{min}) 26.29 \mathrm{a}, 20.7(2 R, 3 S)$ enantiomer and $38.5 \mathbf{9 b}, 33.4(2 R, 3 S)$-enantiomer. All HPLC data were collected and analysed using CSW 1.7 software (DATAAPEX).

1-(3-Iodo-4-methoxyphenyl)propan-1-one (1c)

Propionic anhydride (1.1 equiv., $47.0 \mathrm{mmol}, 6.06 \mathrm{~mL}$) was added to dried LiClO_{4} (1.1 equiv., $47.0 \mathrm{mmol}, 5.00 \mathrm{~g}$) and the mixture was heated at $60^{\circ} \mathrm{C}$ until LiClO_{4} was dissolved. Then 1-iodo-2-methoxybenzene ($42.7 \mathrm{mmol}, 10.0 \mathrm{~g}$) was added dropwise during 15 minutes. After stirring at $100^{\circ} \mathrm{C}$ for 30 hours, the mixture was cooled to room temperature and dissolved in AcOEt (100 mL). The organic layer was treated with $5 \% \mathrm{NaHCO}_{3}$ (3-times 50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude solid product was crystallised from n-hexane to give the ketone 1c ($7.50 \mathrm{~g}, 61 \%$) as a white solid, $\mathrm{mp} 91-92{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (lit., ${ }^{1} 95$ ${ }^{\circ} \mathrm{C}$ from EtOH); (Found: C, 40.82; H, 3.83. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{2}$ requires: C, $41.40 ; \mathrm{H}, 3.82 \%$); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-H), 7.95(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}-H), 6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{Ar}-\mathrm{H})$, $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 2.93(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{H}-2), 1.21(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{H}-1)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$;
$\left.\mathrm{Me}_{4} \mathrm{Si}\right): 198.1$ (C-1), 161.4, 139.7, 131.5, 130.0, 110.0, $85.8(\mathrm{C}-\mathrm{Ar}), 56.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 31.4(\mathrm{C}-2)$, 8.2 (C-3).

(2E)-3-Methyl-4-oxo-4-phenylbut-2-enoic acid (2a)

To propiophenone 1a ($149 \mathrm{mmol}, 20.00 \mathrm{~g}$) and glyoxylic acid monohydrate (1.5 equiv., 224 $\mathrm{mmol}, 20.60 \mathrm{~g}$) dissolved in dioxane (200 mL), $96 \%-\mathrm{H}_{2} \mathrm{SO}_{4}(30 \mathrm{~mL})$ was added dropwise with stirring. The resulting solution was stirred under reflux for 1.5 hour, cooled to room temperature and poured into water $(500 \mathrm{~mL})$. Mixture was extracted with AcOEt $(3 \times 100 \mathrm{~mL})$, organic layer was repeatly extracted with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(3 \times 70 \mathrm{~mL}) . \mathrm{pH}$ of water extract was adjusted to 2 and extracted with $\operatorname{AcOEt}(3 \times 70 \mathrm{~mL})$, the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. Crude product (31.30 g) was crystallised from toluene-hexane to give acid $2 \mathbf{a}(20.64 \mathrm{~g}, 73 \%,(E: Z) 96: 4)$ as yellow solid, mp $104-106{ }^{\circ} \mathrm{C}$ (from toluene-hexane, (E:Z) $98: 2$ (lit., ${ }^{2} 99-100{ }^{\circ} \mathrm{C}$ from benzene-light petroleum) (lit., ${ }^{3} 102-103^{\circ} \mathrm{C}$ from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$); δ_{H} (300 MHz; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.46-7.83(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H), 6.16(1 \mathrm{H}, \mathrm{q}, J 1.5, \mathrm{H}-2), 2.45(3 \mathrm{H}, \mathrm{d}, J$ $\left.1.5, \mathrm{H}-1{ }^{\prime}\right) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 197.6$ (C-4), 171.1 (C-1), 154.7, 133.4, 129.7, 128.6, 123.8 (C-Ph, C-2, C-3), 15.9 (C-1').

(2E)-4-(4-Methoxyphenyl)-3-methyl-4-oxobut-2-enoic acid (2b)

According to the procedure described above (for $154 \mathrm{mmol}, 25.20 \mathrm{~g}$ of $\mathbf{1 b}$ used 21.20 g of glyoxylic acid monohydrate, 38 mL of $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 220 \mathrm{~mL}$ of dioxane), $\mathbf{2 b}(21.58 \mathrm{~g}, 64 \%$, ($E: Z$) $85: 15$) has been obtained as a yellow solid, $\mathrm{mp} 132-134{ }^{\circ} \mathrm{C}$ (from toluene-heptane ($E: Z$) 98:2) (lit., ${ }^{2} 133-134{ }^{\circ} \mathrm{C}$ from benzene);. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-DMSO; $\mathrm{Me}_{4} \mathrm{Si}^{2}$): 7.85 ($2 \mathrm{H}, \mathrm{d}, J 8.8$, Ar-H), $7.04(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar}-H), 6.07(1 \mathrm{H}, \mathrm{q}, J 1.5, \mathrm{H}-2), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 2.37(3 \mathrm{H}, \mathrm{d}, J$ $\left.1.5, \mathrm{H}-1^{\prime}\right) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 197.5$ (C-4), 167.8 (C-1), 165.5, 154.0, 133.6, 129.8, 125.0, 115.4 ($\mathrm{C}-\mathrm{Ar}, \mathrm{C}-2, \mathrm{C}-3$), $56.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 16.7\left(\mathrm{C}-1^{\prime}\right)$.

(2E)-4-(3-Iodo-4-methoxyphenyl)-3-methyl-4-oxobut-2-enoic acid (2c)

An identical procedure to that described above was applied to the transformation of 1c (for 4.5 $\mathrm{mmol}, 1.30 \mathrm{~g}$ of 1 c used 0.62 g glyoxylic acid monohydrate, 1.6 mL of $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 15 \mathrm{~mL}$ of dioxane) to 2c. Yellowish solid was obtained ($0.79 \mathrm{~g}, 51 \%$, (E:Z) 81:19), $\mathrm{mp} 173-178{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{H}_{2} \mathrm{O}(E: Z) 86: 14\right)$ (Found: C, $41.70 ; \mathrm{H}, 3.26 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IO}$ requires C. 41.64, H 3.25%); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{d}_{6}$-DMSO; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 12.85(1 \mathrm{H}, \mathrm{br}$ s, COOH$), 8.15(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{Ar}-\mathrm{H}), 7.84(1 \mathrm{H}, \mathrm{dd}, J$ 8.6, J 1.8, Ar-H), $7.12\left(1 \mathrm{H}, \mathrm{d}, J\right.$ 8.6, Ar-H), $6.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.26$ (br s, $\left.3 \mathrm{H}, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 195.0(\mathrm{C}-4), 166.7$ (C-1), 161.6, 149.9, 140.1, 132.3, 129.6, 125.3, 111.0, 86.5 (C-Ar, C-2, C-3), $56.9\left(\mathrm{CH}_{3} \mathrm{O}\right), 15.2$ (C-1').

General procedure for the aza-Michael addition of amines to unsaturated acids 2

In the following typical procedure, to the suspension of acid 2a ($5.3 \mathrm{mmol}, 1.00 \mathrm{~g}$) in $\mathrm{H}_{2} \mathrm{O}(25$ mL), benzylamine ($5.8 \mathrm{mmol}, 1.1 \mathrm{eq}, 0.63 \mathrm{~mL}$) was added. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 7 days. After this time, the solid was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to give amino acid 3a ($1.11 \mathrm{~g}, 70 \%$, d.r. 97:3). The same procedure was used for the addition of benzylamine and (S)-PEA to the acids 2a-c with only the slight modification of the solvent/substrate ratio.
rac-(2S,3R)-2-(Benzylamino)-3-methyl-4-oxo-4-phenyl-butanoic acid (3a)

Off-white solid; mp $189-190^{\circ} \mathrm{C}$ (from water, d.r. 97:3); (Found: C, 72.38; H, 6.53; N, 4.78. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 72.71 ; \mathrm{H}, 6.44 ; \mathrm{N}, 4.71 \%$. ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-acetone/ $\left.\mathrm{DCl} ; \mathrm{Me}_{4} \mathrm{Si}\right)$: 7.38-7.71 (10H, m, Ar-H), 4.59-4.65 (1H, m, H-3), $4.56\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{H}-1^{\prime \prime} \mathrm{B}\right), 4.38(1 \mathrm{H}, \mathrm{d}, J$ $\left.13.2, \mathrm{H}-1^{\prime \prime} \mathrm{A}\right), 4.24(1 \mathrm{H}, \mathrm{d}, J 3.7, \mathrm{H}-2), 1.32\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-acetone/DCl; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 200.6$ (C-4), 169.1 (C-1), 136.8, 135.0, 132.5, 131.6, 131.3, 130.7, 130.5, 130.1 (CAr), 61.0 (C-2), 52.4 (C-1''), 43.5 (C-3), 13.3 (C-1').

rac-(2S,3R)-2-(Benzylamino)-4-(4-methoxyphenyl)-3-methyl-4-oxobutanoic acid (3b)

According to the general procedure described above from $4.5 \mathrm{mmol}(1.00 \mathrm{~g}$ of $\mathbf{2 b}$ used 5.0 mmol) and 0.56 mL of benzylamine in 20 mL of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$ for 7 days, $\mathbf{3 b}(0.84 \mathrm{~g}, 57 \%$, d.r. $90: 10$) was obtained as a white solid, $\mathrm{mp} 196-197^{\circ} \mathrm{C}$ (from water, d.r. 90:10); (Found: C, 69.60; $\mathrm{H}, 6.53 ; \mathrm{N}, 4.20 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $\left.\mathrm{C}, 69.71 ; \mathrm{H}, 6.47 ; \mathrm{N}, 4.28 \%.\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{d}_{6}{ }^{-}\right.$ acetone $\left./ \mathrm{DCl} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.94(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}-H), 7.67-7.71(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-H), 7.40-7.42(3 \mathrm{H}, \mathrm{m}$, Ph-H), $6.96(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}-H), 4.59-4.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{H}-1^{\prime} \mathrm{B}\right), 4.38$ (1H, d, J 13.2, H-1'A), $4.24(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{H}-2), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 1.31\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-1^{\prime}\right)$. $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-acetone/DCl; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 199.2$ (C-4), 169.3 (C-1), 165.6, 132.7, 132.6, 131.9, $131.3,130.7,129.4,115.8(\mathrm{C}-\mathrm{Ar}), 61.4(\mathrm{C}-2), 57.0\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.5(\mathrm{C}-1$) , $43.1(\mathrm{C}-3), 14.0(\mathrm{C}-$ $\left.1^{\prime}\right)$.

rac-(2S,3R)-2-(Benzylamino)-4-(3-iodo-4-methoxyphenyl)-3-methyl-4-oxobutanoic acid (3c)

According to the above described general procedure (for $0.6 \mathrm{mmol}, 0.20 \mathrm{~g}$ of $\mathbf{2 c}$ used 0.6 mmol , 0.07 mL of benzylamine, 4 mL of $\mathrm{H}_{2} \mathrm{O}$ at $40{ }^{\circ} \mathrm{C}$, 7 days) $3 \mathrm{c}(0.13 \mathrm{~g}, 50 \%$, d.r. $>99: 1)$ was obtained as a white solid, mp $172-174{ }^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{H}_{2} \mathrm{O}$, d.r. $>99: 1$); (Found C, $50.23 ; \mathrm{H}, 4.60$; N, $3.22 ; \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{INO}_{4}$ requires $\mathrm{C}, 50.35 ; \mathrm{H}, 4.45 ; \mathrm{N}, 3.09 \%$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-acetone/ DCl ; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 8.32(1 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{Ar}-H), 8.13(\mathrm{dd}, 1 \mathrm{H}, J 8.5, J 1.7, \mathrm{Ar}-H), 7.67-7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 7.41-7.68 (3H, m, Ph-H), 7.06 (d, 1H, J 8.5, Ar-H), 4.64-4.68 (m, 1H, H-3), $4.54(\mathrm{~d}, 1 \mathrm{H}, J 13.2$, $\left.\mathrm{H}-1^{\prime \prime} \mathrm{B}\right), 4.40\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{H}-1^{\prime \prime} \mathrm{A}\right), 4.25(1 \mathrm{H}, \mathrm{d}, J 3.8, \mathrm{H}-2), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 1.31(3 \mathrm{H}$, d, J 6.8, H-1'). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-acetone/DCl; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 198.0$, 169.2 (C-1), 163.8, 141.5, 133.1, $132.7,132.0,131.3,130.8,112.6,87.6(\mathrm{C}-\mathrm{Ar}), 61.4(\mathrm{C}-2), 58.3\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.5\left(\mathrm{C}-1^{\prime \prime}\right), 43.2(\mathrm{C}-$ $3), 13.7\left(\mathrm{C}-1^{\prime}\right)$.

(2S,3R,1"S)-3-Methyl-4-oxo-4-phenyl-2-[(1'"-phenylethyl)- amino]butanoic acid (4a)

According to general procedure from $5.3 \mathrm{mmol}(1.00 \mathrm{~g}$ of 2 a used 5.8 mmol$)$ and 0.74 mL of (S)-1-phenylethylamine in 20 mL of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$ for 7 days, $4 \mathrm{a}(1.14 \mathrm{~g}, 70 \%$, d.r. $>99: 0:<1: 0)$ was obtained as an off-white solid ; mp 197-198 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{H}_{2} \mathrm{O}$, d.r. $>99: 0:<1: 0$); (Found: C, $73.19 ; \mathrm{H}, 6.75 ; \mathrm{N}, 4.58 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires: $\mathrm{C}, 73.29 ; \mathrm{H}, 6.80 ; \mathrm{N}, 4.50 \%$.) ; $[\alpha]_{\mathrm{D}}{ }^{25}+17.4$ (c 1.0 , $\mathrm{MeOH}: 1 \mathrm{M} \mathrm{HCl} \mathrm{3:1)}. \delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; d_{6}-acetone/DCl; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 7.78-7.88$ (4H, m, Ph-H), 7.33$7.54(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-H), 4.81-4.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.60\left(1 \mathrm{H}, \mathrm{q}, ~ J 6.8, \mathrm{H}-1^{\prime \prime}\right), 3.96(1 \mathrm{H}, \mathrm{d}, ~ J 3.4, \mathrm{H}-2)$, $1.97\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}^{\prime \prime}\right)$, $1.32\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}-1^{\prime}\right) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-acetone/DCl; Me $\left.{ }_{4} \mathrm{Si}\right): 199.6$ (C-4), $168.7(\mathrm{C}-1), 137.5,137.2,134.6,131.3,131.1,130.5,130.4,130.1(\mathrm{C}-\mathrm{Ph}), 61.2,61.1$ (C-2, C-1''), 43.6 (C-3), 21.9 (C-2''), 12.2 (C-1').
(2S,3R,1"S)-4-(4-Methoxyphenyl)-3-methyl-4-oxo-2-[(1"-phenylethyl)amino]butanoic acid (4b)
According to general procedure from $13.6 \mathrm{mmol}(3.00 \mathrm{~g}$ of $\mathbf{2 b}$ used 15.0 mmol$)$ and 1.9 mL of (S)-1-phenylethylamine in 21 mL of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$ for 7 days, $\mathbf{4 b}(2.80 \mathrm{~g}, 61 \%$; d.r. $>99: 0:<1: 0)$ was obtained as a white solid, $\mathrm{mp} 197-198{ }^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{H}_{2} \mathrm{O}$, d.r. $>99: 0:<1: 0$); (Found: $\mathrm{C}, 70.13$;
$\mathrm{H}, 6.80 ; \mathrm{N}, 4.15 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires: $\mathrm{C}, 70.36 ; \mathrm{H}, 6.65 ; \mathrm{N}, 4.20 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}+43.2$ (c 1.0, $\mathrm{MeOH}: 1 \mathrm{M} \mathrm{HCl} \mathrm{3:1)}. \delta_{\mathrm{H}}$ (300 MHz ; d_{6}-acetone/DCl; $\mathrm{Me}_{4} \mathrm{Si}$): 7.91 (2H, d, J 8.1, Ar-H), 7.817.84 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-H$), 7.38-7.49 (3H, m, Ph-H), 6.93 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$, Ar-H), 4.81-4.91 (1H, m, H3), $4.61\left(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{H}-1^{\prime \prime}\right), 3.97(1 \mathrm{H}, \mathrm{d}, J 3.0, \mathrm{H}-2), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 1.95(3 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.\mathrm{H}-2^{\prime \prime}\right), 1.29$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{H}-1^{\prime}$). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-acetone/DCl; Me ${ }_{4} \mathrm{Si}$): 198.0 (C-4), 168.7 (C1), 165.2, 137.3, 132.4, 131.3, 131.1, 130.3, 129.5, 115.7 (C-Ar), 61.4, 61.0 (C-2, C-1'), 57.1 $\left(\mathrm{CH}_{3} \mathrm{O}\right), 43.0(\mathrm{C}-3), 21.8\left(\mathrm{C}-2^{\prime \prime}\right), 12.7\left(\mathrm{C}-1^{\prime}\right)$.

$\left(2 S, 3 R, 1^{\prime \prime} R\right)-2-\left[\left(2^{\prime \prime}-H y d r o x y-1^{\prime \prime}\right.\right.$-phenylethyl)amino]-3-methyl-4-oxo-4-phenylbutanoic acid (4a')

To the suspension of acid $\mathbf{2 a}(5.3 \mathrm{mmol}, 1.00 \mathrm{~g})$ in dichloromethane $(10 \mathrm{~mL}),(R)$-2-amino-2phenylethanol ($5.8 \mathrm{mmol}, 1.1 \mathrm{eq}, 0.79 \mathrm{~g}$) was added. The resulting mixture was stirred at r.t for 14 days. After this time, the solid was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to give aminoacid $4^{\prime} \mathbf{a}\left(0.31 \mathrm{~g}, 18 \%\right.$, d.r. $1: 99: 0: 0$) as a white solid; $\mathrm{mp} 171-172{ }^{\circ} \mathrm{C}$ (from dichloromethane, d.r. 1:99:0:0); (Found : $\mathrm{C}, 69.98$; H, 6.54 ; N, 4.33. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires: C, $69.71 ; \mathrm{H}, 6.47 ; \mathrm{N}, 4.28 \%) ;[\alpha]_{\mathrm{D}}{ }^{25}+7.6$ (c $0.1, \mathrm{MeOH}: 1 \mathrm{M} \mathrm{HCl} 3: 1$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{d}_{6}-\right.$ acetone/DCl; $\mathrm{Me}_{4} \mathrm{Si}$): 7.40-7.83 (10H, m, Ph-H), 4.55-4.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-1^{\prime \prime}$), 4.36 (1 H , dd, J $\left.9.0, J 11.5, \mathrm{H}-2^{\prime \prime} \mathrm{B}\right), 4.08(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{H}-2), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J 4.7, J 11.5, \mathrm{H}-2^{\prime \prime} \mathrm{A}\right), 1.26$ (3H, d, J 6.8, H-1'); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-acetone/DCl; Me $\left.{ }_{4} \mathrm{Si}\right): 200.6$ (C-4), 169.3 (C-1), 136.8, 135.0, $132.9,131.8,131.2,131.1,130.5,130.1$ (C-Ph), 67.5, 63.8 (C-1'", C-2'), 61.0 (C-2), 43.8 (C3), 13.9 ($\mathrm{C}-1^{\prime}$).

(2S,3R,4S,1'S)-4-Hydroxy-3-methyl-4-phenyl-2-[(1"'phenylethyl)amino]butanoic acid (5a)

The suspension of acid $\mathbf{4 a}(32.1 \mathrm{mmol}, 10.00 \mathrm{~g})$ in $\mathrm{MeOH}(500 \mathrm{~mL})$ at $0-5{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(96.3$ mmol, 3 equiv., 3.64 g) was slowly added (2 h). The resulting mixture was stirred for additional $30 \mathrm{~min} ., \mathrm{MeOH}$ removed under reduced pressure and $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ added. The pH of solution was adjusted to $6-6.5$. A precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to give hydroxy acid $5 \mathbf{5 a}(9.10 \mathrm{~g}, 90 \%, \mathbf{5 a} / \mathbf{6 a} 92: 8)$ as a white solid; $\mathrm{mp} 199-202{ }^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{H}_{2} \mathrm{O}$ 5a/6a 92:8); (Found C 72.68, H 7.45, N, 4.50. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires: C, 72.82; H, 7.40; N, 4.47 $\%$); $[\alpha]_{\mathrm{D}}{ }^{25}-39.4$ (c $\left.1.0,0.1 \mathrm{M} \mathrm{NaOH}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 6.89-7.46(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}-H), 4.76(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{H}-4), 3.59\left(1 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{H}-1^{\prime \prime}\right), 2.78(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-2), 2.04-2.16$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $1.40\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}-2^{\prime \prime}\right), 0.72\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 183.3$ (C-1), 146.6, 144.5, 131.7, 130.9, 130.6, 130.4, 130.2, 129.8 (C-Ar), 79.8 (C-4), 66.2, 59.6 (C-2, C-1' $), 44.3$ (C-3), 25.8 (C-2' $), 14.9$ (C-1').

(2S,3R,4S,1'S)-4-Hydroxy-4-(4-methoxyphenyl)-3-methyl-2-[(1"'-phenyletyl)amino]butanoic acid (5b)

According to the procedure above from $8.8 \mathrm{mmol}(3.00 \mathrm{~g})$ of $\mathbf{4 b}$ and 3.5 equiv. (1.16 g) of NaBH_{4} in 150 mL of MeOH for $3 \mathrm{~h}, \mathbf{5 b}(1.88 \mathrm{~g}, \mathbf{6 2 \%} \mathbf{5} \mathbf{5 b} / \mathbf{6 b} 95: 5)$ has been obtained as a white solid, mp 225-230 ${ }^{\circ} \mathrm{C}$ (from EtOH-H2O, 5b/6b $>99: 1$); (Found: C, 69.44; H, 7.40; N, 4.20. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires: C, $69.95 ; \mathrm{H}, 7.34 ; \mathrm{N}, 4.13 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}-27.1$ (c $1.0,0.1 \mathrm{M} \mathrm{NaOH}$); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}$): 7.24-7.38 (m, 5H, Ph-H), 6.89 (2H, d, J 8.5, Ar-H), 6.75 (2H, d, J 8.5, Ar-H), $4.64(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-4), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.56\left(1 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{H}-1^{\prime \prime}\right), 2.67(1 \mathrm{H}, \mathrm{d}$, $J 6.4, \mathrm{H}-2), 1.99-2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.37\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}-2^{\prime \prime}\right), 0.79\left(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 183.1$ (C-1), 160.6, 146.5, 137.3, 131.6, 131.1, 130.3, 116.3 (C-Ar), 79.4 (C-4), 65.6, 59.6, $58.2\left(\mathrm{CH}_{3} \mathrm{O}, \mathrm{C}-2, \mathrm{C}-1^{\prime \prime}\right), 44.9(\mathrm{C}-3), 25.8\left(\mathrm{C}-2^{\prime \prime}\right), 15.0\left(\mathrm{C}-1^{\prime}\right)$.

To a presonicated (1 min) stirred suspension of acid $\mathbf{4 a}\left(3.2 \mathrm{mmol}, 1.00 \mathrm{~g}\right.$) and $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$ $(0.6 \mathrm{mmol}, 0.2 \mathrm{eq}, 0.13 \mathrm{~g})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ at $0-5^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(6.4 \mathrm{mmol}, 2$ equiv., 0.24 g$)$ was slowly added (20 min). The resulting mixture was stirred additionaly for 30 min . MeOH was removed under reduced pressure, 3% solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(70 \mathrm{~mL})$ was added. After 30 min of stirring brown solid was filtered off and discarded. The pH of filtrate was adjusted to $6-6.5$. The precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to give a hydroxyacid $\mathbf{6 a}(0.68 \mathrm{~g}$, 68%, 6a/5a 94:6) as a white solid, mp 221-225 ${ }^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{H}_{2} \mathrm{O} \mathbf{6 a} / 5 \mathbf{a}>99: 1$); (Found C $72.45, \mathrm{H} 7.44, \mathrm{~N}, 4.50 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires: C, $72.82 ; \mathrm{H}, 7.40 ; \mathrm{N}, 4.47 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}-50.7$ (c 1.0, 0.1 M NaOH); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.18-7.46(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-H), 4.30(1 \mathrm{H}, \mathrm{d}, J$ 8.5, H-4), $3.68\left(1 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{H}^{\prime \prime} \mathrm{l}^{\prime}\right), 2.87(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-2), 1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.40(3 \mathrm{H}, \mathrm{d}, J$ 6.4, H-2'), 0.52 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-1^{\prime}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right.$): 183.3 (C-1), 146.3, 145.0, 131.7, 131.3, 130.7, 130.5, 130.2, 130.1 (C-Ar), 83.0 (C-4), 59.5, 69.4 (C-2, C-1''), 43.9 (C-3), 26.2 (C-2'), 15.8 ($\mathrm{C}-1^{\prime}$).

(2S,3R,4R,1"S)-4-Hydroxy-4-(4-methoxyphenyl)-3-methyl-2-[(1"-phenylethyl)amino]butanoic acid (6b)

According to procedure above (for $2.9 \mathrm{mmol}, 1.00 \mathrm{~g}$ of $\mathbf{4 b}$ used $0.6 \mathrm{mmol}, 0.13 \mathrm{~g}$ of $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}, 5.9 \mathrm{mmol}, 0.22 \mathrm{~g}$ of $\mathrm{NaBH}_{4}, 50 \mathrm{~mL}$ of MeOH$) \mathbf{6 b}(0.71 \mathrm{~g}, 71 \%, \mathbf{6 b} / \mathbf{5 b} 85: 15)$ was obtained as a white solid; mp 213-214 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ d.r. 70:30); (Found C 69.56, H 7.37, $\mathrm{N} 4.13 ; \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires: C, $69.95 ; \mathrm{H}, 7.34 ; \mathrm{N}, 4.08 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}-18.4$ (c $1.0,0.1 \mathrm{M}$ $\mathrm{NaOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.32-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-H), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{Ar}-\mathrm{H})$, $6.91(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}-H), 4.29(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{H}-4), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.67(1 \mathrm{H}, \mathrm{q}, J 6.4$, H$\left.1^{\prime \prime}\right), 2.84(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{H}-2), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.38\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}-2^{\prime \prime}\right), 0.56(3 \mathrm{H}, \mathrm{d}, J 6.8$, $\mathrm{H}-1$ '); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 183.4$ (C-1), 161.0, 146.4, 137.9, 131.6, 131.1, 130.3, 130.1, 116.6 (C-Ar), 82.1 (C-4), 69.4, 59.5, 58.1, (C-2, C-1" $\mathrm{CH}_{3} \mathrm{O}$), 44.2 (C-3), 26.2 (C-2'), 15.8 (C-1').

(2S,3R,4S)-2-amino-4-hydroxy-4-(4-methoxyphenyl)-3-methylbutanoic acid (7b)

According to the procedure above from $6.9 \mathrm{mmol}(2.37 \mathrm{~g})$ of $5 \mathbf{b}$ in 125 mL of MeOH and 25 mL of $\mathrm{H}_{2} \mathrm{O}$ and 0.35 g of Pd / C at r.t for $7 \mathrm{~h}, 7 \mathbf{b}(1.39 \mathrm{~g}, 84 \%, 7 \mathbf{b} / \mathbf{8 b}>95: 5)$ was obtained as a white solid; mp 222-223 ${ }^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{H}_{2} \mathrm{O}, 7 \mathbf{7} / \mathbf{8 b}$ >98:2); (Found: C $60.33, \mathrm{H} 7.18, \mathrm{~N}, 5.82$. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires: $\mathrm{C}, 60.24 ; \mathrm{H}, 7.16$; N, 5.85%); $[\alpha]_{\mathrm{D}}{ }^{25}-9.6$ (c $1.0,0.1 \mathrm{M} \mathrm{NaOH}$). $\delta_{\mathrm{H}}(300$ MHz; NaOD/D ${ }_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}$): 7.35 ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{H}-\mathrm{Ar}$), 7.03 (d, $2 \mathrm{H}, J 9.0, \mathrm{H}-\mathrm{Ar}$); 4.95 ($1 \mathrm{H}, \mathrm{d}, ~ J$ 4.7, H-4); $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6, \mathrm{H}-2) ; 1.96-2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3) ; 0.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.8, $\mathrm{H}-1$ '). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 184.8$ (C-1), 160.7, 138.6, 130.4, 116.7 (C-Ar), $77.2(\mathrm{C}-4), 62.3(\mathrm{C}-2), 58.3\left(\mathrm{CH}_{3} \mathrm{O}\right), 46.8(\mathrm{C}-3), 12.3\left(\mathrm{C}-1^{\prime}\right)$.

(2S,3R,4R)-2-Amino-4-hydroxy-3-methyl-4-phenylbutanoic acid (8a)

To the solution of acid $\mathbf{6 a}(9.6 \mathrm{mmol}, 3.00 \mathrm{~g})$ and $\mathrm{HBr}(9.6 \mathrm{mmol}, 1$ equiv., 1.61 g of 48% solution) in $\mathrm{MeOH}(150 \mathrm{~mL}) \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(0.60 \mathrm{~g})$ were added. Heterogenous mixture was stirred in atmosphere of $\mathrm{H}_{2}(1.1 \mathrm{~atm}$.) at r.t. After reaction was finished (HPLCmonitoring, typically $6-10 \mathrm{~h}$) the catalyst was filtered off. The pH of the filtrate was adjusted to 6-6.5. The resulting precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to give acid 8a $(1.20 \mathrm{~g}, 60 \%, 8 \mathbf{8} / 7 \mathrm{a} 91: 9)$ as a white solid; mp $213-215{ }^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{H}_{2} \mathrm{O}$); (Found: C, $63.41 ; \mathrm{H}, 7.28 ; \mathrm{N}, 6.72 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires: C 63.14 , H 7.23; $\mathrm{N}, 6.69 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}+21.9$ (c 1.0, $0.1 \mathrm{M} \mathrm{NaOH}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.28-7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-H), 4.68$ ($1 \mathrm{H}, \mathrm{d}, J 8.1$,

H-4), 3.40 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6, \mathrm{H}-2$), $2.04-2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 0.71\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{H}-1^{\prime}\right) . \delta_{\mathrm{C}}(75 \mathrm{MHz} ;$ $\mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}$; $\mathrm{Me}_{4} \mathrm{Si}$): 184.6 (C-1), 145.8, 131.4, 130.6, 129.8 (C-Ar), 80.3 (C-4), 61.0 (C-2), 46.4 (C-3), 15.2 (C-1').

(2S,3R,4R)-2-amino-4-hydroxy-4-(4-methoxyphenyl)-3-methylbutanoic acid (8b)

According to the procedure above from $5.1 \mathrm{mmol}(1.74 \mathrm{~g})$ of $\mathbf{6 b}$ and 0.86 g of 48% water solution of HBr in 80 mL of MeOH and 16 mL of $\mathrm{H}_{2} \mathrm{O}$ at r.t for $7 \mathrm{~h}, \mathbf{8 b}(0.89 \mathrm{~g}, 76 \%, \mathbf{8 b} / 7 \mathbf{b}$ 88:12) was obtained as a white solid; mp 204-206 ${ }^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{H}_{2} \mathrm{O}, \mathbf{8 b} / 7 \mathbf{b} 95: 5$); (Found: C 60.21, H 7.21, N, 5.87; $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires: C, $60.24 ; \mathrm{H}, 7.16 ; \mathrm{N}, 5.85 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}+26.4$ (c $1.0,0.1 \mathrm{M} \mathrm{NaOH}) . \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.34(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{Ar}-\mathrm{H}), 7.00(2 \mathrm{H}, \mathrm{d}, J$ 8.9, Ar-H), $4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{H}-4), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8, \mathrm{H}-2)$, 1.97-2.12 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 0.70\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}-1^{\prime}\right) . \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 184.3$ (C-1), 160.5, 137.9, 130.6, 116.2 (C-Ar), $79.2(\mathrm{C}-4), 60.6(\mathrm{C}-2), 57.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 46.0(\mathrm{C}-3), 14.8\left(\mathrm{C}-1{ }^{\prime}\right)$.

(2S,3R)-2-Amino-3-metyl-4-phenylbutanoic acid (9a)

To the solution of acid $\mathbf{4 a}(3.2 \mathrm{mmol}, 1.00 \mathrm{~g})$ and $\mathrm{HBr}(9.6 \mathrm{mmol}, 3$ equiv., 1.63 g of 48% solution) in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}, 4 \mathrm{~mL}), \mathrm{Pd} / \mathrm{C}(20 \%$ of weight, 0.20 g$)$ was added. The resulting heterogeneous mixture was stirred in the atmosphere of $\mathrm{H}_{2}\left(1.1 \mathrm{~atm}\right.$.) at $40^{\circ} \mathrm{C}$. After reaction was finished (HPLC-monitoring, typically 24 h) the catalyst was filtered off. The pH of the filtrate was adjusted to 6-6.5. The precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to give the carboxylic acid $9 \mathrm{a}\left(0.38 \mathrm{~g}, 61 \%\right.$, d.r. $>95: 5$) as an off-white solid; $\mathrm{mp} 204-206{ }^{\circ} \mathrm{C}$ (EtOH- $\mathrm{H}_{2} \mathrm{O}$, d.r. $>98: 2$, ee 99%) (lit., ${ }^{4} 185-187{ }^{\circ} \mathrm{C}$); (Found: C, $68.26 ; \mathrm{H}, 7.85 ; \mathrm{N}, 7.28$. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires: $\mathrm{C}, 68.37 ; \mathrm{H}, 7.82 ; \mathrm{N}, 7.25 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}+13.1$ (c $0.12, \mathrm{H}_{2} \mathrm{O}$) (lit., ${ }^{4}-13$ (c $0.11, \mathrm{H}_{2} \mathrm{O}$, for $(2 R, 3 S)$-enantiomer). NMR spectral dates are in agreement with published data. ${ }^{4}$

(2S,3R)-2-Amino-4-(4-methoxyphenyl)-3-methylbutanoic acid (9b)

According to the procedure above from $3.5 \mathrm{mmol}(1.20 \mathrm{~g})$ of $\mathbf{4 b}, \mathbf{9 b}(0,39 \mathrm{~g}, 49 \%$, d.r. $>96: 4$, ee 98%) was obtained as a white solid; mp $214-216^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{H}_{2} \mathrm{O}$, d.r. $>95: 5$); (Found: $\mathrm{C}, 64.17 ; \mathrm{H}, 7.73 ; \mathrm{N}, 6.29 ; \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires: $\mathrm{C}, 64.55 ; \mathrm{H}, 7.67 ; \mathrm{N}, 6.27 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}+16.6$ (c $\left.0.12 ; \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.23$ ($\left.2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar}-\mathrm{H}\right), 6.97(2 \mathrm{H}, \mathrm{d}, J 8.5$, $\mathrm{Ar}-\mathrm{H}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.1, \mathrm{H}-2), 2.76(1 \mathrm{H}, \mathrm{dd}, J 13.2, J 3.8, \mathrm{H}-4 \mathrm{~B}), 2.32$ ($1 \mathrm{H}, \mathrm{dd}, J 13.2, J 10.7, \mathrm{H}-4 \mathrm{~A}), 1.94-2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 0.80\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz} ;$ $\left.\mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O} ; \mathrm{Me}_{4} \mathrm{Si}\right): 185.2(\mathrm{C}-1), 159.6,136.7,133.1,116.6(\mathrm{C}-\mathrm{Ar}), 63.9(\mathrm{C}-2), 58.2\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 42.1, 39.5 (C-3, C-4), 18.0 (C-1').

General procedure for the lactonisation of hydroxyacids

Acid $\mathbf{6 a}(1.6 \mathrm{mmol}, 0.50 \mathrm{~g})$ was suspended in water (6 mL), $\mathrm{MeOH}(0.2 \mathrm{~mL})$ and conc. $\mathrm{HCl}(12$ mL) were added. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$. After 24 hours the resulting solid was filtered off and dried to obtain lactone 11a ($0.39 \mathrm{~g}, 74 \%, 11 \mathbf{a} / 10 \mathrm{a} 97: 3$) as a white solid.

(3S,4R,5R,1"S)-4-Methyl-5-phenyl-3-(1"-phenylethylamino)-dihydrofuran-2(3H)-one hydrochloride (11a)

The product melted at mp $199-204{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{HCl}, 11 \mathrm{a} / 10 \mathrm{a}>99: 1$); (Found: $\mathrm{C}, 68.36$; $\mathrm{H}, 6.70 ; \mathrm{N}, 4.24 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{2}$ requires: C, $68.77 ; \mathrm{H}, 6.68 ; \mathrm{N}, 4.22 \%$.); $[\alpha]_{\mathrm{D}}{ }^{25}-99.5$ (c 0.5 , $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; d_{6}-DMSO; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): ~ 7.22-7.72$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$), 5.64 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.1, \mathrm{H}-5$), $4.83\left(1 \mathrm{H}, \mathrm{q}, ~ J 6.6, \mathrm{H}^{\prime \prime}\right), 3.64(\mathrm{~d}, 1 \mathrm{H}, ~ J 8.1, \mathrm{H}-3), 2.72-2.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.74$ (3H, d, J 6.6, $\left.\mathrm{H}-2^{\prime \prime}\right), 1.29$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{H}-1^{\prime}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-DMSO; $\mathrm{Me}_{4} \mathrm{Si}$): 170.6 (C-2), 137.1, 136.0,
129.3, 129.1, 128.9, 128.7, 125.8 (C-Ar), 85.3 (C-5), 57.0, 53.9 (C-3, C-1"), 19.9 (C-2'), 12.8 (C-1'), signal for $\mathrm{C}-4$ overlaped by signal of d_{6}-DMSO.
(3S,4R,5S,1"S)-4-Methyl-5-phenyl-3-(1"-phenylethylamino)-dihydrofuran-2(3H)-one hydrochloride (10a)

According to the general procedure from $6.4 \mathrm{mmol}(2.00 \mathrm{~g})$ of 5 ain 60 mL of 3 M HCl and 0.6 mL of MeOH at r.t for $24 \mathrm{~h}, \mathbf{1 0 a}(1.90 \mathrm{~g}, 90 \%$, 10a/11a $95: 5)$ was obtained as a white solid, mp $186-190{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{HCl}, 10 a / 11 \mathrm{a}>99: 1$); (Found: C 69.10, H 6.81, N, 4.25. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{2}$ requires: $\mathrm{C} 68.77, \mathrm{H} 6.68 ; \mathrm{N}, 4.22 \%$.) ; $[\alpha]_{\mathrm{D}}{ }^{25}-53.3(\mathrm{c} 1.0, \mathrm{MeOH}) ; \delta_{\mathrm{H}}(300$ MHz; d d_{6}-DMSO; $\mathrm{Me}_{4} \mathrm{Si}$): 5.78 ($1 \mathrm{H}, \mathrm{d}, ~ J 4.4, \mathrm{H}-5$); ($10 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ph}$); 4.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime \prime}$); 4.28 (1H, d, J 6.6, H-3); 3.10-3.22 (1H, m, H-4); 1.74 (3H, d, J 6.6, H-2') ; 0.71 (3H, d, J 7.3, H-1'); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-DMSO; $\left.\mathrm{Me}_{4} \mathrm{Si}\right): 170.9(\mathrm{C}-2), 134.8,129.1,129.0,128.5,128.0,125.0$ (C-Ar), 80.5 (C-5); 56.8, 57.1 (C-3, C-1'); 38.0 (C-4); 20.1 (C-2'); 9.3 (C-1').

(3S,4R,5S,1'S)-5-(4-methoxyphenyl)-4-methyl-3-[(1'"-phenylethyl)amino]dihydrofuran$\mathbf{2 (3 H)}$-one hydrochloride (10b)

According to the general procedure (for $2.9 \mathrm{mmol}, 1.00 \mathrm{~g}$ of $\mathbf{5 b}$ used $80 \mathrm{~mL} 3 \mathrm{M} \mathrm{HCl}, 2 \mathrm{~mL}$ of MeOH at r.t, 4 h$) \mathbf{1 0 b}(0.85 \mathrm{~g}, 89 \%, \mathbf{1 0 b} / \mathbf{1 1 b} 95: 5)$ was obtained as a white solid; mp 194-200 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{HCl}, \mathbf{1 0 b} / \mathbf{1 1 b}>99: 1$); (Found: C, 66.22, H, 6.72; N, 3.96. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNO}_{3}$ requires: C 66.38 , H 6.69 , N 3.87%.); $[\alpha]_{\mathrm{D}}^{25}-55.0$ (c $\left.1.0, \mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-DMSO; $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$: 7.42-7.72 (5H, m, PhH), 7.13 (2H, d, J 8.8, ArH), 6.95 (2H, d, J 8.8, ArH), $5.70(1 \mathrm{H}$, d, J 4.4, H-5), 4.88 (1H, q, J 6.6., H-1''), $4.26(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-3), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.05-$ 3.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 1.71 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-2^{\prime \prime}$), 0.69 ($3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-1^{\prime}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$; d_{6}-DMSO; $\mathrm{Me}_{4} \mathrm{Si}$): 171.0 (C-2), 159.1, 136.3, 129.3, 129.2, 128.6, 126.7, 126.6, 114.1 (C-Ar), 80.7 (C-5), 57.2, 56.9, 55.2 (C-3, C-1'", $\mathrm{CH}_{3} \mathrm{O}$), 38.3 (C-4), 20.1 (C-2')), $9.5\left(\mathrm{C}-1^{\prime}\right)$.

(3S,4R,5R,1"S)-5-(4-methoxyphenyl)-4-methyl-3-[(1"-phenylethyl)amino]dihydrofuran-2(3H)-one (11b)

To the suspension of acid $\mathbf{6 b}(5.8 \mathrm{mmol}, 2.00 \mathrm{~g})$ in DCM (30 mL), DCC ($6.4 \mathrm{mmol}, 1.1$ equiv., 1.32 g) was addded. The resulting mixture was stirred at r.t. After 16 h of contact, the unsoluble solid was filtered off and the filtrate evaporated to dryness (yellow solid, 1.85 g). The crude product was then purified by column chromatography (AcOEt:heptane $1: 7$) to give the title compounds 11b $\left(0.98 \mathrm{~g}, 50 \%\right.$, 11b/10b 98:2, $\mathrm{R}_{\mathrm{f}} 0.33$ AcOEt-heptane $\left.1: 3\right)$ and $\mathbf{1 0 b}(0.17 \mathrm{~g}, 9 \%$, 10b/11b 99:1, $\mathrm{R}_{\mathrm{f}} 0.40$ AcOEt-heptane 1:3). White solid, mp 102-103 ${ }^{\circ} \mathrm{C}$ (from AcOEt-heptane 11b/10b >99:1); (Found: C, $73.25 ; \mathrm{H}, 7.15 ; \mathrm{N}, 4.35 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires: $\mathrm{C}, 73.82 ; \mathrm{H}, 7.12 ; \mathrm{N}$, 4.30%.); $[\alpha]_{\mathrm{D}}{ }^{25}-111.7$ (c $1.0, \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 7.22-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph} H)$,
 $\left.\mathrm{H}-1^{\prime \prime}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.36(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{H}-3), 2.19-2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.40(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4$, $\left.\mathrm{H}-2^{\prime \prime}\right), 1.07$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{H}-1^{\prime}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right): 176.9$ (C-2), 159.6, 144.4, 129.9, $128.4,127.3,127.0,126.8,114.0$ (C-Ar), 85.2 (C-5), 57.4, 56.7, 55.3, (C-3, C-1' $\left.{ }^{\prime}, \mathrm{CH}_{3} \mathrm{O}\right), 41.9$ (C-4), 24.3 (C-2'), 12.1 (C-1').
(3S,4R,5S)-tert-Butyl [5-(4-methoxyphenyl)-4-methyl-2-oxotetrahydrofuran-3-yl]carbonate (12b)
Acid 7b ($1.6 \mathrm{mmol}, 0.38 \mathrm{~g}$) was suspended in conc. $\mathrm{HCl}(5 \mathrm{~mL})$ and the resulting mixture was stirred at r.t. After 1 h , the mixture was evaporated in vacuo and dried (0.41 g , d.r. 98:2, $\sim 100 \%$). The crude lactone was suspended in dioxane (10 mL), $\mathrm{Et}_{3} \mathrm{~N}$ ($3.3 \mathrm{mmol}, 2.1$ equiv.,
$0.45 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(2.1 \mathrm{mmol}, 1.3$ equiv., 0.45 g$)$ were added. The resulting mixture was stirred at r.t for 20 h and the solvant was removed in vacuo before addition of $\operatorname{AcOEt}(25 \mathrm{~mL})$. The resulting mixture was extracted with water $(2 \times 10 \mathrm{~mL})$. Organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated in vacuo (pale-yellow oil, 0.56 g). The crude product was crystallised from $\mathrm{Et}_{2} \mathrm{O}$-heptane ($2 \mathrm{~mL}-8 \mathrm{~mL}$) to give the title compound $\mathbf{1 2 b}(0.26 \mathrm{~g}, 50 \%)$ as a white solid, $\mathrm{mp} 111-113{ }^{\circ} \mathrm{C}$ (from AcOEt-heptane) (lit., ${ }^{5} 103-105^{\circ} \mathrm{C}$); (Found: C, $63.48 ; \mathrm{H}, 7.25 ; \mathrm{N}, 4.39$. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires: C, $63.54 ; \mathrm{H}, 7.21 ; \mathrm{N}, 4.36 \%$.) ; $[\alpha]_{\mathrm{D}}{ }^{25}+40.0\left(\mathrm{c} 0.83, \mathrm{CHCl}_{3}\right)\left(\right.$ lit., ${ }^{5}+26.5^{\circ} \mathrm{c}$ $\left.0.82, \mathrm{CHCl}_{3}\right)$. The NMR spectral dates are in agreement with reported data. ${ }^{5}$

(3S,4R,5S)-tert-Butyl [5-(4-methoxyphenyl)-4-methyl-2-oxotetrahydrofuran-3-yl]carbonate (13b)

To the suspension of $\mathbf{6 b}(1.4 \mathrm{mmol}, 0.33 \mathrm{~g})$ in $\mathrm{DCM}(15 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(4.1 \mathrm{mmol}, 3$ equiv., 0.58 mL) and $\mathrm{Boc}_{2} \mathrm{O}(3.4 \mathrm{mmol}, 2.5$ equiv., 0.75 g$)$. The resulting mixture was stirred at $30^{\circ} \mathrm{C}$. After 2 h of the reaction the mixture was extracted with 10% solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \times$ 10 mL). Aqueous phase, adjusted to pH 2.5 , was extracted with $\mathrm{AcOEt}(3 \times 10 \mathrm{~mL})$. Combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated in vacuo (white solid, 0.18 g). The residue was dissolved in DCM (6 mL), DCC was added ($0.5 \mathrm{mmol}, 1$ equiv., 0.11 g). After 5 min of stirring at r.t, the unsoluble solid was filtered off and the filtrate dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated in vacuo to give a colourless oil (0.20 g) as $\mathbf{1 3 b} / \mathbf{1 2 b}$ in 81:19 ratio. The mixture of diastereomers was separated by column chromatography (AcOEt-heptane 1:7). It was obtained 13b $\left(0.12 \mathrm{~g}, \mathbf{2 8 \%}\right.$, 13b/12b 98:2, $\mathrm{R}_{\mathrm{f}} 0.49$ AcOEt-cyclohexane 1:2) and $\mathbf{1 2 b}(0.02$ $\mathrm{g}, 5 \%$, 12b/13b $99: 1, \mathrm{R}_{\mathrm{f}} 0.58$ AcOEt-cyclohexane $1: 2$). White solid, $\mathrm{mp} 146-148{ }^{\circ} \mathrm{C}$ (from AcOEt-heptane, 13b/12b $>99: 1$) (lit., ${ }^{5} 140-142{ }^{\circ} \mathrm{C}$ (from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}{ }^{25}$-49.8 (c 0.06, CHCl_{3}) (lit., ${ }^{5}$ - $22.3\left(\mathrm{c} 0.56, \mathrm{CHCl}_{3}\right)$). The NMR spectral data are in agreement with those reported in the literature. ${ }^{5}$

References

1. N. P. Buu-Hoi, N. D. Xuong, and D. Lavit, J. Org. Chem., 1953, 18, 910-914.
2. K. Bowden and M. P Henry, J. Chem. Soc.; Perkin Trans. 2, 1972, 206-209.
3. R. E. Lutz, P. S. Bailey, C.-K. Dien, and J. W. Rinker, J. Am. Chem. Soc., 1953, 75, 5039-5044.
4. J. Kimura, Y. Takada, T. Inayoshi, Y. Nakao, G. Goetz, W. Y. Yoshida, and P. J. Scheuer, J. Org. Chem., 2002, 67, 1760-1767.
5. J. Barluenga, A. L. Viado, E. Aquilar, S. Fustero, and B. Olano, J. Org. Chem., 1993, 58, 59725975.
