ELECTRONIC SUPPLEMENTARY INFORMATION

Mixed sequence pyrrolidine-amide oligonucleotide mimics: $\operatorname{Boc}(\mathbf{Z})$ synthesis and DNA/RNA binding properties.

Roberta J. Worthington, Adam O’ Rourke, Jordi Morral, T. H. Samuel Tan and Jason Micklefield*

School of Chemistry and Manchester Interdisciplinary Biocentre,

The University of Manchester, 131 Princess Street, Manchester, M1 7DN

Figure 1. X-ray crystal structure of C-monomer 20.
Figure 2. Analytical HPLC of crude product Lys-TTTTT-LysNH H_{2} 26. (A) from Fmoc and (B) from Boc synthesis.

Figure 3. (A) Structure of POM LysTCACAACTT- NH_{2}. (B) Structure of POM-PNA chimera LysTC*AC*AAC*TT-NH ${ }_{2}$.

Figure 4. HPLC and MALDI-MS of POM LysTCACAACTT-NH ${ }_{2}$.
Figure 5. HPLC and MALDI-MS of POM-PNA chimera LysTC*AC*AAC*TT-NH ${ }_{2}$.
Figure 6. The effects of changing rates of heating and cooling on the UV thermal denaturation curves for POM LysTCACAACTT- NH_{2} vs antiparallel RNA.

Figure 7. UV thermal denaturation curves and first derivatives for POM LysTCACAACTTNH_{2} vs parrallel RNA.

Figure 8. UV thermal denaturation curves and first derivatives for POM LysTCACAACTT$\mathrm{NH}_{2} v s$ anti parrallel DNA.

Figure 9. UV thermal denaturation curves and first derivatives for POM LysTCACAACTTNH_{2} vs parrallel DNA.

Additional Experimental: Including general experimental methods, procedures and characterisation of compounds which were not described in the main experimental section and thermal denaturation experiments.

Figure 1. X-ray crystal structure of C-monomer 20.

Figure 2. Analytical HPLC chromatographs of crude product Lys-TTTTT-LysNH2 26, following the conditions described in the preceding paper ${ }^{1}(\mathrm{~A})$ Fmoc-synthesis total product peak area was 70%, which corresponds to an average coupling efficiency of 94%. (B) Boc-synthesis total product peak area was 91%, which equates to an average coupling efficiency of $>98 \%$.

Figure 3. (A) Structure of POM LysTCACAACTT-NH ${ }_{2}$. (B) Structure of POM-PNA chimera LysTC*AC*AAC*TT-NH 2

Figure 4. (A) Analytical HPLC chromatograph of the crude POM LysTCACAACTT-NH2. (B) Analytical HPLC chromatograph of the POM LysTCACAACTT- NH_{2} after purification by semipreparative HPLC. (C) MALDI-MS of the same crude POM LysTCACAACTT-NH2 with expansion of $m / z \quad 2505\left([\mathrm{M}+\mathrm{H}]^{+} \quad 100 \%, \quad \mathrm{C}_{111} \mathrm{H}_{154} \mathrm{~N}_{51} \mathrm{O}_{19}\right.$ requires $\left.m / z \quad 2505.3\right), 2527\left([\mathrm{M}+\mathrm{Na}]^{+} \quad 90 \%\right.$, $\mathrm{C}_{111} \mathrm{H}_{153} \mathrm{~N}_{51} \mathrm{O}_{19} \mathrm{Na}$ requires m / z 2527.2).

Figure 5. HPLC and MS of POM-PNA chimera (A) Analytical HPLC chromatographs of the crude POM-PNA chimera LysTC*AC*AAC*TT-NH 2 . (B) Maldi-MS of the same crude POMPNA chimera LysTC*AC*AAC*TT-NH ${ }_{2}$ with expansion of $m / z 2512\left([\mathrm{M}+\mathrm{H}]^{+} 100 \%\right.$, $\mathrm{C}_{108} \mathrm{H}_{148} \mathrm{~N}_{51} \mathrm{O}_{22}$ requires $m / z 2512.2$).

Figure 6. The effects of changing rates of heating and cooling on the UV thermal denaturation curves for POM LysTCACAACTT- NH_{2} vs antiparallel RNA. (A) UV A_{260} vs temperature curves obtained following fast heating at $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ from $23{ }^{\circ} \mathrm{C}$ to $93{ }^{\circ} \mathrm{C}$ followed by cooling (down arrows) from $93{ }^{\circ} \mathrm{C}$ to $15{ }^{\circ} \mathrm{C}$ and then heating (up arrows) from $15{ }^{\circ} \mathrm{C}$ to $93{ }^{\circ} \mathrm{C}$ at 1.0 (black), 0.5 (green), 0.2 (red) or 0.1 (blue) ${ }^{\circ} \mathrm{C} / \mathrm{min}$. (A) The first derivatives obtained from slow cooling and slow heating curves with heating/cooling rates of 1.0 (black), 0.5 (green), 0.2 (red) or 0.1 (blue) ${ }^{\circ} \mathrm{C} / \mathrm{min}$.

Figure 7. UV thermal denaturation curves and first derivatives for POM LysTCACAACTT-NH2 $v s$ parrallel RNA 5^{\prime}-AGUGUUGAA- 3^{\prime}. (A) shows the slow cooling (renaturation) curve in blue (0.2 ${ }^{\circ} \mathrm{C} / \mathrm{min}$), the slow heating (denaturation) curve in red $\left(0.2{ }^{\circ} \mathrm{C} / \mathrm{min}\right)$ and the slow heating (denaturation) curve ($0.2{ }^{\circ} \mathrm{C} / \mathrm{min}$) obtained immediately after the POM and parrallel RNA were incubated at room temperature for 12 h is shown in green. (B) The corrsponding first derivatives obtained from slow cooling under standard conditions shown in blue, slow heating under standard conditions shown in red and slow heating following incubation for 12 h at room temperature shown in green.

Figure 8. UV thermal denaturation curves and first derivatives for POM LysTCACAACTT-NH ${ }_{2}$ vs antiparrallel DNA 5^{\prime}-AAGTTGTGA- 3^{\prime}. (A) shows the slow cooling (renaturation) curve in blue (0.2 ${ }^{\circ} \mathrm{C} / \mathrm{min}$), the slow heating (denaturation) curve in red $\left(0.2{ }^{\circ} \mathrm{C} / \mathrm{min}\right)$ and the slow heating (denaturation) curve ($0.2{ }^{\circ} \mathrm{C} / \mathrm{min}$) obtained immediately after the POM and antiparrallel DNA where incubated at room temperature for 12 h is shown in green. (B) The corrsponding first derivatives obtained from slow cooling under standard conditions shown in blue, slow heating under standard conditions shown in red and slow heating following incubation for 12 h at room temperature shown in green.

Figure 9. UV thermal denaturation curves and first derivatives for POM LysTCACAACTT-NH ${ }_{2}$ vs parrallel DNA 5'-AGTGTTGAA-3. (A) shows the slow cooling (renaturation) curve in blue (0.2 ${ }^{\circ} \mathrm{C} / \mathrm{min}$), the slow heating (denaturation) curve in red $\left(0.2{ }^{\circ} \mathrm{C} / \mathrm{min}\right)$ and the slow heating (denaturation) curve $\left(0.2{ }^{\circ} \mathrm{C} / \mathrm{min}\right)$ obtained immediately after the POM and parrallel DNA were incubated at room temperature for 12 h is shown in green. (B) The corrsponding first derivatives obtained from slow cooling under standard conditions shown in blue, slow heating under standard conditions shown in red and slow heating following incubation for 12 h at room temperature shown in green.

General experimental methods

MALDI mass spectra were obtained on a Micromass Tof Spec 2 e using alpha-cyano-4hydroxycinnamic acid as matrix. All other general experiment methods were as described in the preceding paper. ${ }^{1}$

(2R,4S)-2-Azidomethyl-4-formyloxy- N-methoxycarbonyl methyl)-pyrrolidine (4).

To a solution of alcohol $3(5.90 \mathrm{~g}, 22.9 \mathrm{mmol})$ in anhydrous THF (57 mL) under Ar at $-20{ }^{\circ} \mathrm{C}$ was added anhydrous $\mathrm{HCO}_{2} \mathrm{H}(1.05 \mathrm{~mL}, 27.6 \mathrm{mmol})$ followed by $\mathrm{PPh}_{3}(7.24 \mathrm{~g}, 27.5 \mathrm{mmol})$. To the resulting solution was immediately added diisopropylazodicarboxylate (DIAD) ($5.46 \mathrm{~mL}, 27.5$ mmol) dropwise at $-20^{\circ} \mathrm{C}$ and the reaction mixture stirred for 1 h . The reaction mixture was allowed to warm to room temperature and stirred under Ar for 18 h . Solvent was removed under reduced pressure, and purification by column chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{Ph}$) gave formyl ester $\mathbf{4}$ (4.74 $\mathrm{g}, 71 \%)$ as a clear oil. $R_{\mathrm{f}} 0.16\left(5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{Ph}\right) ; \boldsymbol{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2937$ and $2868(\mathrm{CH}), 2102\left(\mathrm{~N}_{3}\right)$, 1720 and $1175(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99-2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 3\right.$ and $\left.\mathrm{H}_{\mathrm{b}} 3\right), 2.75(1 \mathrm{H}, \mathrm{dd}, J$ $\left.10.9,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 5\right), 3.18-3.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 6\right.$ and H 2$)$, 3.36-3.46 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 7\right.$ and $\left.\mathrm{H}_{\mathrm{b}} 6\right)$, 3.57-3.66 (2H, $\mathrm{m}, \mathrm{H}_{\mathrm{b}} 7$ and $\left.\mathrm{H}_{\mathrm{b}} 5\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.23-5.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ;{ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.9(\mathrm{C} 3), 51.6\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.5(\mathrm{C} 6), 53.6(\mathrm{C} 7), 59.1(\mathrm{C} 5), 60.3(\mathrm{C} 2), 72.4(\mathrm{C} 4)$, 160.4 (OCHO), $170.9\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (ES) $243.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; H R M S ~ m / z$ (ES) 243.1093 $\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$ requires m / z, 243.1093).

(2R,4S)-2-Azidomethyl-4-hydroxy- N-(methoxycarbonylmethyl)-pyrrolidine (5).

To a stirred solution of formyl ester $4(7.30 \mathrm{~g}, 30.1 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{OH}(36.5 \mathrm{~mL})$ was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(8.77 \mathrm{~g}, 63.5 \mathrm{mmol})$ and the solution was stirred under N_{2} at room temperature. After 2 h , the solvent was evaporated under reduced pressure and the residue was
purified by column chromatography ($2: 1 \mathrm{EtOAc} /$ hexane) to give alcohol $5(336 \mathrm{mg}, 92 \%$) as a colourless oil. $R_{\mathrm{f}} 0.18$ (2:1 EtOAc/hexane); $\boldsymbol{v}_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3408(\mathrm{OH}), 2953$ and $2863(\mathrm{CH}), 2101$ $\left(\mathrm{N}_{3}\right), 1739$ and $1206(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.74-1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 3\right), 1.92-2.02(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{b}} 3\right)$, $2.68\left(1 \mathrm{H}, \mathrm{d}, J 11.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 5\right), 3.13\left(1 \mathrm{H}, \mathrm{dd}, J 11.7,3.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 6\right), 3.28-3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2\right.$ and $\left.\mathrm{H}_{\mathrm{b}} 6\right)$, $3.48\left(1 \mathrm{H}, \mathrm{dd}, J 11.1,4.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 5\right), 3.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}} 7\right.$ and $\left.\mathrm{H}_{\mathrm{b}} 7\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.20-4.28(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 4) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.7(\mathrm{C} 3), 51.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 52.3(\mathrm{C} 7), 54.1(\mathrm{C} 6), 59.5(\mathrm{C} 2), 61.6$ (C5), $70.9(\mathrm{C} 4), 173.1\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 215.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; \mathrm{HRMS} m / z$ (ES) 215.1136 $\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}\right.$ requires m / z, 215.1144).

($2^{\prime} R, 4^{\prime} R$)- 2^{\prime}-Azidomethyl-4'-(N^{3}-benzoylthymin-1-yl)- $N 1^{\prime}$-(methoxycarbonylmethyl)-

pyrrolidine (6). To a stirred solution of alcohol $5(3.68 \mathrm{~g}, 17.2 \mathrm{mmol})$ and DIAD, ($8.58 \mathrm{~mL}, 43.6$ mmol) in anhydrous THF (350 mL) under Ar at room temperature was added N^{3}-benzoylthymine $(7.89 \mathrm{~g}, 34.3 \mathrm{mmol})$ portionwise over $15 \mathrm{~min} . \mathrm{PPh}_{3}(11.3 \mathrm{~g}, 42.9 \mathrm{mmol})$ was added portionwise and the reaction mixture was stirred for 5 min . Sodium benzoate ($4.92 \mathrm{~g}, 34.2 \mathrm{mmol}$) was added portionwise and the suspension was stirred at room temperature under Ar for 4 h . The solvent was then evaporated under reduced pressure. $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc (3 x 500 mL). The combined organic extracts were dried with MgSO_{4} and evaporated under reduced pressure to give a yellow foam which was purified by column chromatography (3:7 hexane/EtOAc) to give thyminyl derivative 6 as a colourless waxy solid ($5.48 \mathrm{~g}, 75 \%$). $\mathrm{mp} 47-48{ }^{\circ} \mathrm{C}$ (hexane/EtOAc); $[\alpha]_{\mathrm{D}}-172.0^{\circ}\left(c=0.5, \mathrm{CH}_{3} \mathrm{OH}\right) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2952(\mathrm{CH}), 2101\left(\mathrm{~N}_{3}\right), 1744$, 1696 and $1653(\mathrm{CO}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) / \mathrm{nm} 253 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.70(1 \mathrm{H}$ ddd, $J 14.5,8.0$, $\left.3.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 3^{\prime}\right), 1.93\left(3 \mathrm{H}, \mathrm{s}\right.$, thymine $\left.\mathrm{CH}_{3}\right), 2.49\left(1 \mathrm{H}, \mathrm{ddd}, J 14.5,8.0,8.0, \mathrm{H}_{\mathrm{b}} 3^{\prime}\right), 2.77(1 \mathrm{H}, \mathrm{dd}, J 11.0$, $\left.7.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 5^{\prime}\right), 2.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right), 3.14\left(1 \mathrm{H}, \mathrm{d}, J 17.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 7^{\prime}\right), 3.26\left(1 \mathrm{H}, \mathrm{dd}, J 13.0,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 6^{\prime}\right)$,
$3.32\left(2 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 5^{\prime}\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J 13.0,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 6^{\prime}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69(1 \mathrm{H}, \mathrm{d}, J$ $\left.17.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 7^{\prime}\right), 4.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4{ }^{\prime}\right), 7.41(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{BzCH}), 7.56(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{Bz} \mathrm{CH}), 7.84$ $(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{Bz} \mathrm{CH}), 8.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.0$ (thymine CH_{3}), $36.6\left(\mathrm{C}^{\prime}\right), 52.3\left(\mathrm{C}^{\prime}\right), 52.3\left(\mathrm{OCH}_{3}\right), 52.7\left(\mathrm{C} 4{ }^{\prime}\right), 52.9\left(\mathrm{C}^{\prime}\right), 58.7\left(\mathrm{C}^{\prime}\right), 61.6\left(\mathrm{C}^{\prime}\right), 111.4(\mathrm{C} 5), 129.5$ (Bz CH), 130.8 (Bz CH), 132.1 (Bz C), 135.3 (Bz CH), 138.4 (C6), 150.5 (C2), 163.3 (C4), 169.7 (Bz CO), $170.9\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 427.0\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; \mathrm{HRMS} m / \mathrm{z}(\mathrm{ES}) 427.1728\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}_{5}$ requires $m / z, 427.1730$).
$\left(2^{\prime} R, 4^{\prime} R\right)-2^{\prime}-[($ tert - Butoxycarbonyl $)$ aminomethyl $]-4^{\prime}-\left(N^{3}\right.$-benzoylthymin-1-yl)- $N 1^{\prime}-$ (methoxycarbonylmethyl)-pyrrolidine (8). Method B: Azide 6 ($1.15 \mathrm{~g}, 2.697 \mathrm{mmol}$) was dissolved in THF (18.4 mL) at room temperature and a 1 M solution of PMe_{3} in $\mathrm{THF}(3.51 \mathrm{~mL}, 3.51 \mathrm{mmol})$ was added. For ten minutes, N_{2} effervescence was observed. When this had ceased, Boc-ON (864 $\mathrm{mg}, 3.51 \mathrm{mmol}$) was added in small portions and the reaction mixture stirred for 20 minutes. The solvent was removed under reduced pressure, and the crude product adsorbed onto silica (9 g) and purified by column chromatography (gradient elution: 10% n-hexane in EtOAc to $100 \% \mathrm{EtOAc}$). Carbamate 8 ($796 \mathrm{mg}, 81 \%$) was obtained as a white foam.

$\left(2^{\prime} R, 4^{\prime} R\right)-2^{\prime}-\left[(\right.$ tert-Butoxycarbonyl)aminomethyl $]-4^{\prime}$-thymin-1-yl-N1'-

(methoxycarbonylmethyl)-pyrrolidine (9). A degassed solution of azide 6 ($660 \mathrm{mg}, 1.55 \mathrm{mmol}$), di-tert-butyldicarbonate (Boc anhydride) ($1.69 \mathrm{~g}, 7.74 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(660 \mathrm{mg})$ in EtOAc (22 mL) was hydrogenated at room temperature overnight. The suspension was filtered, evaporated under reduced pressure, and purified by column chromatography ($3: 2$ hexane/EtOAc) to give benzyolated thyminyl derivative $\mathbf{8}$ ($292 \mathrm{mg}, 38 \%$) as a colourless waxy solid. Upon further elution with
hexane/EtOAc (1:1) debenzyolated thyminyl derivative 9 (205 mg, 27\%) was also isolated as a colourless waxy solid.

Debenzyolated thyminyl derivative (9): mp 48.5-49 ${ }^{\circ} \mathrm{C}$ (Hexane/EtOAc); $[\alpha]_{\mathrm{D}}-9.7$ (c = 1.0, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ; \boldsymbol{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3358$ and $3187(\mathrm{NH}), 3054$ and $2976(\mathrm{CH}), 1743(\mathrm{CO}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) / \mathrm{nm}$: 272.0; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 3^{\prime}\right), 1.91(3 \mathrm{H}, \mathrm{s}$, thymine $\left.\mathrm{CH}_{3}\right), 2.46\left(1 \mathrm{H}\right.$, ddd, $\left.J 14.5,8.5,8.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 3^{\prime}\right), 2.65-2.73\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{a}} \mathrm{H}^{5}\right.$ and $\left.\mathrm{H} 2^{\prime}\right), 3.00(1 \mathrm{H}, \mathrm{d}, J 14.5$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{a}} 6^{\prime}\right), 3.12\left(1 \mathrm{H}, \mathrm{d}, J 17.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 7^{\prime}\right), 3.19\left(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 5^{\prime}\right), 3.37(1 \mathrm{H}, \mathrm{dd}, J 14.0,8.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{b}} 6^{\prime}\right), 3.56\left(1 \mathrm{H} \mathrm{d}, J 17.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 7^{\prime}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 5.13(1 \mathrm{H}$ broad s, NH$)$, $7.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 6) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.1$ (thymine $\left.\mathrm{CH}_{3}\right), 28.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.3\left(\mathrm{C} 3^{\prime}\right)$, $40.3\left(\mathrm{C}^{\prime}\right), 52.1\left(\mathrm{OCH}_{3}\right), 52.3\left(\mathrm{C}^{\prime}\right), 53.3\left(\mathrm{C}^{\prime}\right), 59.4\left(\mathrm{C}^{\prime}\right), 63.1\left(\mathrm{C}^{\prime}\right), 79.9\left(\mathrm{C}^{\prime}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.4(\mathrm{C} 5)$, $138.3(\mathrm{C} 6), 151.6(\mathrm{C} 2), 156.7\left(\mathrm{CO}_{2}{ }^{\mathrm{H}} \mathrm{Bu}\right), 164.4(\mathrm{C} 4), 171.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 397\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS $m / z(E S) 397.2091\left([M+H]^{+}, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{6}\right.$ requires m / z, 397.2087).

The bicyclic lactam 7 was a side product in the reduction of 6 to 8 . This lactam 7 is indeed the major product when reduction was carried out without in situ Boc-protection. Characterisation for bicycliclactam (7) is as follows: $R_{\mathrm{f}} 0.20\left(9: 1 \mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{OH}\right)$; mp 214-214.5 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\right)$; $[\alpha]_{\mathrm{D}}-98.7^{\circ}$ $\left(c=0.9, \mathrm{CH}_{3} \mathrm{OH}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3393(\mathrm{NH}), 1745,1697$ and $1652(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 3^{\prime}\right), 1.97\left(3 \mathrm{H}, \mathrm{d}, J 0.75 \mathrm{~Hz}, \mathrm{C}^{2}-\mathrm{CH}_{3}\right), 2.48-2.56\left(1 \mathrm{H}, \mathrm{m} \mathrm{H} 2^{\prime}\right), 2.60(1 \mathrm{H}, \mathrm{dd}$, $\left.J 8.5,6.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 5^{\prime}\right), 2.66-2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}} 3^{\prime}\right), 2.90\left(1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 7^{\prime}\right), 3.14(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{b}} 5^{\prime}\right), 3.27\left(1 \mathrm{H}, \mathrm{dd}, J 8.5,8.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 6^{\prime}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 6^{\prime}\right), 3.68(1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}$, $\mathrm{H}_{\mathrm{b}} 7^{\prime}$), $5.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 6.78(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, \mathrm{NH}), 7.47(2 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{Bz} \mathrm{H}), 7.61-7.65(2 \mathrm{H}, \mathrm{m}$, Bz H and H6), $7.88(2 \mathrm{H}, \mathrm{dd}, J 6.0,1.0 \mathrm{~Hz}, \mathrm{Bz} \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.2\left(\mathrm{C} 5-\mathrm{CH}_{3}\right)$,
36.9 (C^{\prime}), 46.4 (C^{\prime}), 52.8 (C^{\prime}), 56.0 (C^{\prime}), 58.8 (C^{\prime}), 60.1 (C^{\prime}), 112.7 (C5), 129.4 (Bz CH), 130.7 (Bz CH), 131.6 (Bz C), $135.4(\mathrm{Bz} \mathrm{CH}), 136.9(\mathrm{C} 6), 150.1(\mathrm{C} 2), 163.0(\mathrm{C} 4), 169.3(\mathrm{Bz} \mathrm{CO})$, $169.4(\mathrm{CONH}) ; m / z(\mathrm{ES}) 369.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right), 391.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 5\right) ;$ HRMS m / z (ES) 369.1557 $\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$ requires $\left.m / z, 369.1555\right)$.
$\left(2^{\prime} R, 4^{\prime} R\right)-2^{\prime}-($ tert-Butoxycarbonylamino-methyl)-4'-(thymin-1-yl)-pyrrolidine-1'-yl-acetic acid (10). Method B: A solution of debenzoylated thymine derivative $9(106 \mathrm{mg}, 0.204 \mathrm{mmol})$ in THF (1 mL) was treated with 1 M aqueous $\mathrm{NaOH}(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$ and then left stirring for 2 h . More 1 M aqueous NaOH was added $(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$ and the solution was left stirring for a further 30 min . The reaction mixture was worked up and purified as described above to give acid $\mathbf{1 0}$ ($72 \mathrm{mg}, 87 \%$) as a white solid.

(2R,4S)-2-Azidomethyl-4-(p-toluenesulphonyl)oxy- N-(methoxycarbonylmethyl)-pyrrolidine

(18). Method A: To a solution of trans-alcohol $5(1.90 \mathrm{~g}, 8.87 \mathrm{mmol}$, $)$ in anhydrous pyridine (23 mL) at $0{ }^{\circ} \mathrm{C}$ was added para-toluenesulphonyl chloride ($3.42 \mathrm{~g}, 17.8 \mathrm{mmol}$). The solution was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$, warmed to room temperature and stirred for $18 \mathrm{~h} . \mathrm{CH}_{3} \mathrm{OH}(14 \mathrm{~mL})$ was added and solvents were removed under reduced pressure. Brine (200 mL) was added to the brown paste, which was extracted with EtOAc ($4 \times 200 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and evaporated under reduced pressure. Purification by column chromatography (2:1 EtOAc/hexane, R_{f} $0.76)$ afforded para-toluenesulphonate $18(1.05 \mathrm{~g}, 61 \%)$ as a pale yellow oil.

Method B: To a solution of cis-alcohol $\mathbf{3}(500 \mathrm{mg}, 2.34 \mathrm{mmol})$ in anhydrous THF (20 mL) was added triphenylphosphine ($735 \mathrm{mg}, 2.802 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$ under N_{2}. To the suspension was immediately added diethylazodicarboxylate (DEAD) (488 $\mu \mathrm{L}, 2.802 \mathrm{mmol})$. Methyl para-toluenesulphonate
$(0.522 \mathrm{~g}, 2.802 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$ and stirred for 10 min at $0^{\circ} \mathrm{C}$. The suspension was warmed to room temperature and stirred for 18 h under N_{2}. Evaporation of solvent under reduced pressure and purification by column chromatography ($9: 1 \quad \mathrm{CH}_{3} \mathrm{Ph}^{2} / \mathrm{Et}_{2} \mathrm{O}$), gave paratoluenesulphonate $18(602 \mathrm{mg}, 70 \%)$ as a pale yellow oil. $R_{\mathrm{f}} 0.21\left(9: 1 \mathrm{CH}_{3} \mathrm{Ph}^{2} / \mathrm{Et}_{2} \mathrm{O}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2963 and $2863(\mathrm{CH}), 2102\left(\mathrm{~N}_{3}\right), 1743(\mathrm{CO}), 1361$ and $1176\left(\mathrm{SO}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.85-1.95 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 3\right), 2.06-2.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}} 3\right), 2.44\left(3 \mathrm{H}, \mathrm{s}\right.$, tosyl $\left.\mathrm{CH}_{3}\right), 2.82(1 \mathrm{H}, \mathrm{dd}, J 11.2,4.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{a}} 5\right), 3.16-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2\right.$ and $\left.\mathrm{H}_{\mathrm{a}} 6\right), 3.32-3.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}} 6\right.$ and $\left.\mathrm{H}_{\mathrm{a}} 7\right), 3.43-3.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}} 5\right), 3.58$ $\left(1 \mathrm{H}, \mathrm{d}, J 17.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 7\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.87-4.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 7.33(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}$, tosyl aromatic H), $7.76(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}$, tosyl aromatic H$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\right.$ tosyl $\left.\mathrm{CH}_{3}\right)$, $36.0(\mathrm{C} 3), 51.7\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.2(\mathrm{C} 6), 54.0(\mathrm{C} 7), 59.2(\mathrm{C} 5), 60.5(\mathrm{C} 2), 79.2(\mathrm{C} 4), 127.7$ (tosyl orthoCH), 129.9 (tosyl meta-CH), 133.5 (tosyl para-C), 144.9 (tosyl ipso-C), $170.7\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (ES) $369.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ;$ HRMS $m / z(\mathrm{ES}) 369.1245\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\right.$ requires $\left.m / z, 369.1233\right)$.
($2^{\prime} R, 4^{\prime} R$)-2'-Azidomethyl-4́ -[N^{4}-benzyloxycarbonyl pyrimidin-2-yloxy]- N-(methoxycarbonyl methyl)-pyrrolidine (19). A suspension of tosylate 18 (128 $\mathrm{mg}, 0.35 \mathrm{mmol}$), N^{4} benzyloxycarbonylcytosine ($128 \mathrm{mg}, 0.52 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(144 \mathrm{mg}, 1.04 \mathrm{mmol})$ and 18-crown-6 ($72 \mathrm{mg}, 0.27 \mathrm{mmol}$) in anhydrous DMF (1.28 mL) was stirred over $4 \AA$ molecular sieves at $80{ }^{\circ} \mathrm{C}$ under N_{2}. After $4 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{x}$ 100 mL). The combined organic extracts were dried with MgSO_{4} and evaporated under reduced pressure. Purification of the residue by column chromatography (gradient elution $\mathrm{PhMe} \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}$ in $\left.\mathrm{CH}_{3} \mathrm{Ph}\right)$ gave O^{2}-adduct $19(103 \mathrm{mg}, 67 \%)$ as a pale yellow gum. $R_{\mathrm{f}} 0.29\left(1: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{Ph}\right) ; \boldsymbol{v}_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3306(\mathrm{NH}), 2924$ and $2854(\mathrm{CH}), 2100\left(\mathrm{~N}_{3}\right), 1740(\mathrm{CO}), 1586(\mathrm{Ar}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 1.89-1.97 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 3^{\prime}\right), 2.46-2.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}} 3^{\prime}\right), 3.14-3.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right.$ and $\left.\mathrm{H}_{\mathrm{a}} 5^{\prime}\right), 3.29-$ $3.47\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}} 5^{\prime}, \mathrm{H}_{\mathrm{a}} 6^{\prime}\right.$ and $\left.\mathrm{H}_{\mathrm{b}} 6^{\prime}\right), 3.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}} 7^{\prime}\right.$ and $\left.\mathrm{H}_{\mathrm{b}} 7^{\prime}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.22(2 \mathrm{H}, \mathrm{s}$,
benzyl CH_{2}), $5.34-5.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4^{\prime}\right), 7.38(5 \mathrm{H}, \mathrm{s}$, benzyl aromatic), $7.44(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.57(1 \mathrm{H}, \mathrm{d}, J$ $5.7 \mathrm{~Hz}, \mathrm{H} 5), 8.34(1 \mathrm{H}, \mathrm{d}, J 5.7 \mathrm{~Hz}, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.0\left(\mathrm{C} 3\right.$ '), $51.5\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $52.8\left(\mathrm{C}^{\prime}\right), 55.2\left(\mathrm{C} 7^{\prime}\right), 58.7\left(\mathrm{C} 5\right.$) $, 60.5\left(\mathrm{C}^{\prime}\right), 67.8\left(\mathrm{Z}^{\prime}-\mathrm{CH}_{2}\right), 76.3(\mathrm{C} 4$) $), 102.4(\mathrm{C} 5), 128.3$ (orthoand para-benzyl CH), 128.7 (meta- benzyl CH), 135.1 (ipso-Z-C), 152.2 ($\mathrm{CO}_{2} \mathrm{Bn}$), 159.3 (C2), 160.1 (C6), $164.1(\mathrm{C} 4), 171.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 442.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right) ; 464.2\left([\mathrm{M}+\mathrm{Na}]^{+}, 20 \%\right) ;$ HRMS m / z (ES) $442.1858\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}_{5}\right.$ requires $\left.m / z, 442.1839\right)$.

$\left(2^{\prime} R, 4^{\prime} R\right)-2^{\prime}$-Azidomethyl-4 ${ }^{\prime}$-(N^{4}-[para-(tert-butyl)benzoyl]cytosin-1-yl)-N1'-

(methoxycarbonylmethyl)-pyrrolidine (20). A suspension of tosylate $\mathbf{1 8}$ ($387 \mathrm{mg}, 1.05 \mathrm{mmol}$), N^{4} -[para-(tert-butyl)benzoyl]-cytosine ($883 \mathrm{mg}, 3.26 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(232 \mathrm{mg}, 1.68 \mathrm{mmol})$ and 18-crown-6 ($91.6 \mathrm{mg}, 0.347 \mathrm{mmol}$) in anhydrous DMF (3.87 mL) was stirred over molecular sieves at $80{ }^{\circ} \mathrm{C}$ under N_{2}. After $4 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100 \mathrm{~mL})$. The organic extracts were dried over MgSO_{4} and evaporated under reduced pressure. Purification by column chromatography (gradient elution $\mathrm{CH}_{3} \mathrm{Ph} \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{Ph}$) gave the N^{1}-cytosinyl derivative $\mathbf{2 0}(103 \mathrm{mg}, 32 \%)$ as white crystals. $R_{\mathrm{f}} 0.29\left(1: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{Ph}\right)$; $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2957(\mathrm{CH}), 2100\left(\mathrm{~N}_{3}\right), 1744$ and1661(CO), $1621(\mathrm{CC}), 1555(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.72-1.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 3^{\prime}\right), 2.71\left(1 \mathrm{H}\right.$, ddd, $\left.J 14.8,8.8,8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 3^{\prime}\right)$, $2.93\left(1 \mathrm{H}, \mathrm{dd}, J 11.3,6.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} 5^{\prime}\right), 2.96-3.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right), 3.22-3.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}} 6^{\prime}\right.$ and $\left.\mathrm{H}_{\mathrm{a}} 7^{\prime}\right), 3.44$ (1 H , br d, $J 11.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 5^{\prime}$), $3.51\left(1 \mathrm{H}, \mathrm{dd}, J 13.0,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} 6^{\prime}\right), 3.72-3.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}\right.$ and $\left.\mathrm{H}_{\mathrm{b}} 7^{\prime}\right)$, 5.17-5.24 (1H, m, H4'), $7.52(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, meta Bz H), 7.61 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 5$), 7.84 ($2 \mathrm{H}, \mathrm{d}, J 7.9 \mathrm{~Hz}$, ortho Bz Ar-H), $8.67(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 30.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.0$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 36.5\left(\mathrm{C}^{\prime}\right), 51.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 52.5\left(\mathrm{C}^{\prime}\right), 52.7\left(\mathrm{C}^{\prime}\right), 54.1\left(\mathrm{C} 4^{\prime}\right), 58.3\left(\mathrm{C}^{\prime}\right), 61.0\left(\mathrm{C} 2^{\prime}\right), 96.8$ (C5), 125.9 (meta Bz-CH), 127.4 (ortho Bz-CH), 129.9 (para Bz-CH), 147.1 (C6), 155.5 (ipso Bz-
C), $156.9(\mathrm{C} 2), 161.6(\mathrm{C} 4), 166.1(\mathrm{Bz} \mathrm{CO}), 170.5\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; m / z(\mathrm{ES}) 468.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS m / z (ES) $468.2348\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{7} \mathrm{O}_{4}\right.$ requires $\left.m / z, 468.2359\right)$.
$\left(2^{\prime} R, 4^{\prime} R\right)-2^{\prime}$-(tert-Butoxycarbonylaminomethyl) $\mathbf{4}^{\prime}$-(N^{4}-[para-(tert-butyl)benzoyl]cytosin-1-yl)$\boldsymbol{N 1} \mathbf{1}^{\prime}$-(methoxycarbonylmethyl)-pyrrolidine (22). Method B: Azide 20 ($1.85 \mathrm{~g}, 3.957 \mathrm{mmol}$) was dissolved in THF (29.6 mL) and $\mathrm{PMe}_{3}(1 \mathrm{M}$ in THF, $5.14 \mathrm{~mL}, 5.14 \mathrm{mmol})$ was added to the stirred solution. After ca. 10 mins stirring, Boc-ON ($1.27 \mathrm{~g}, 5.14 \mathrm{mmol}$) was added to the mixture and the mixture was stirred for 2 h . The solvent was removed under reduced pressure, leaving a pale yellow solid. $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the organic extracts were dried over MgSO_{4}, filtered and evaporated under reduced pressure. Purification by column chromatography (gradient elution: $10 \% \mathrm{EtOAc}$ in hexane $\rightarrow 100 \% \mathrm{EtOAc}$) gave 22 (1.35 $\mathrm{g}, 63 \%$) as a white foam.

General materials and methods for Boc-solid phase synthesis.

All experiments were carried out in teflon solid-phase synthesis vessels (Kinesis) fitted with frits (porosity grade 3). The reaction mixture, including the resin supports was agitated by rotation using a mixer, rotator (Fisherbrand) and reagents were removed by suction filtration through a Büchner flask. MBHA resin LL (100-200 mesh) (loading of $0.62 \mathrm{mmol} / \mathrm{g}$), $\mathrm{N}-\alpha-\mathrm{Boc}-\mathrm{N}-\varepsilon-2$-chloro-Z-L-lysine and 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HBTU) were purchased from Novabiochem. Boc protected cytosine PNA monomers were purchased from Applied Biosystems. Fresh bottles of anhydrous solvents from Acros Organics were used for each oligomer synthesised. All other chemicals used in solid-phase work were obtained at the highest purity grade
from Aldrich Chemical Company or Acros Organics and were used without further purification. Reagents used for the Kaiser test were prepared according to literature. ${ }^{43}$

Thermal Denaturation Experiments

UV melting plots of absorbance versus temperature were measured as described in the previous paper ${ }^{1}$ on a Varian Cary 400 Scan UV-visible spectrophotometer. Concentrations of POM oligomers, PNA oligomers and oligonucleotides were measured spectrophotometrically at $80^{\circ} \mathrm{C}$ from molar extinction coefficients of oligonucleotides calculated from the literature. ${ }^{44}$ Buffers were prepared as double concentrated stock solutions and diluted to the appropriate concentrations during sample preparation. Sterile nuclease, protease and DEPC-free deionised water was used and all appropriate equipment was autoclaved before use. All samples were stored at $-20^{\circ} \mathrm{C}$. Oligonucleotides were purchased from Sigma-Genosys, Yorkshire Bioscience or Eurogentec. PNA was purchased from Eurogentec.

Typical melting experiments were carried out as described in the preceding paper ${ }^{1}$ with the exception that heating ramps and incubation times were as stated in the text. In brief the standard melting experiments were carried out with $42 \mu \mathrm{M}$ (conc. in bases) of each strand in $10 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4}$, $0.12 \mathrm{M} \mathrm{K}^{+}, \mathrm{pH} 7.0$ (total volume $1.0 \mathrm{~cm}^{3}$) unless stated otherwise. UV absorbance $\left(A_{260}\right)$ was recorded with heating at $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ from $23{ }^{\circ} \mathrm{C}$ to $93{ }^{\circ} \mathrm{C}$, cooling at $0.2{ }^{\circ} \mathrm{C} / \mathrm{min}$ to $15{ }^{\circ} \mathrm{C}$ and heating at $0.2{ }^{\circ} \mathrm{C}$ $/ \mathrm{min}$ to $93{ }^{\circ} \mathrm{C}$. The T_{m} values were obtained from the maxima of first derivative curves calculated from Varian Thermal software using a filter size of 20 (for renaturation curves) and 97 (for denaturation curves) and smoothed every $0.2^{\circ} \mathrm{C}$.

References

43. E. Kaiser, R. L. Colescott, C. D. Bossinger, and P. I. Cook, Anal. Biochem., 1970, 34, 595.
44. J. D Puglisi, and I. Tinoco, Jr., Methods in Enzymology, 1989, 180, 304.
