Supplementary Information For:

Synthesis of Enantiopure Chloroalcohols by Enzymatic Kinetic Resolution

Robert M. Haak, ^a Chiara Tarabiono, ^b Dick B. Janssen, ^b Adriaan J. Minnaard, *^a Johannes G. de Vries* a,c and Ben L. Feringa* a

Table of contents

General procedure for the synthesis of substrates 1-7	2
¹ H and ¹³ C(APT) spectra for substrates 1-7	3
1-Chloro-pent-3-en-2-ol (1)	3
1-chloro-hex-3-en-2-ol (2)	4
1-Chloro-oct-3-en-2-ol (3)	5
1-Chloro-3,5-octadien-2-ol (4)	6
(E)-1-Chloro-4-phenyl-but-3-en-2-ol (5)	7
2-Chloro-1-furan-2-yl-ethanol (6)	8
2-Chloro-1-thiophen-2-yl-ethanol (7)	9
References	10

^a Department of Organic and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.

^b Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 4, 9747 AG Groningen, the Netherlands.

^c DSM Research, LS-ACS&D, P.O. Box 18, 6160 MD Geleen, The Netherlands.

General procedure for the synthesis of substrates 1-7

Substrates 1-7 were synthesized according to a literature procedure¹.

In a flamedried flask, a solution of aldehyde (typically 20 mmol) in freshly distilled THF (50 mL) was cooled down to -78 °C. Chloroiodomethane (30 mmol) was then added, and subsequently *n*-butyllithium (30 mmol, 2.5 M in hexanes, 12 mL) was added dropwise to the solution over a period of 30 min. The reaction mixture was stirred until the starting material was fully converted (TLC), then quenched with NH₄Cl (sat.). After extraction with Et₂O (3x), the combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and solvents evaporated. The crude products thus obtained were further purified by flash chromatography.

¹H and ¹³C(APT) spectra for substrates 1-7

1-Chloro-pent-3-en-2-ol $(1)^2$

Prepared according to the general procedure, starting from 2.06 mL (1.75 g; 25 mmol) of crotonaldehyde. After flash chromatography over silica gel (pentane/Et₂O 4:1) a colorless oil was obtained (2.21 g; 18.3 mmol; 73%).

¹H NMR:

¹³C NMR (APT):

ОН

1-chloro-hex-3-en-2-ol (2)

OH CI

Prepared according to the general procedure, starting from 1.96 mL (1.68 g; 20 mmol) of pent-2-enal. After flash chromatography over silica gel (pentane/Et₂O 6:1, gradient to 4:1) a colorless oil was obtained (1.77 g; 13.2 mmol; 66%).

¹H NMR:

1-Chloro-oct-3-en-2-ol (3)1,3

Prepared according to the general procedure, starting from 1.31 mL (1.12 g; 10 mmol) of hept-2-enal. After flash chromatography over silica gel (pentane/ $\rm Et_2O$ 6:1; $\rm R_f$ = 0.32) a colorless oil was obtained (903 mg; 5.55 mmol; 56%).

¹H NMR:

¹³C NMR (APT):

ŌН

1-Chloro-3,5-octadien-2-ol (4)

Prepared according to the general procedure, starting from 1.25 mL (1.10 g; 10 mmol) of *trans,trans*-hepta-2,4-dienal. After flash chromatography over silica gel (pentane/Et₂O 7:1; R_f = 0.26) a colorless oil was obtained (1.29 g; 8.0 mmol; 79%).

¹H NMR:

¹³C NMR (APT):

ŌН

(E)-1-Chloro-4-phenyl-but-3-en-2-ol $(5)^{1,3,4,5,6}$

Prepared according to the general procedure, starting from 2.52 mL (2.64 g; 20 mmol) of cinnamaldehyde. After flash chromatography over silica gel (pentane/ $\rm Et_2O$ 5:1; $\rm R_f=0.24$) a colorless oil was obtained (2.34 g; 12.8 mmol; 64%), which crystallized upon standing.

¹H NMR:

2-Chloro-1-furan-2-yl-ethanol $(6)^{4,7}$

ОН

Prepared according to the general procedure, starting from 1.66 mL (1.92 $\,$ g; 20 mmol) of freshly distilled furfural. After flash chromatography over silica gel (pentane/Et₂O 4:1, gradient to 3:1; $R_{\rm f, 3:1} = 0.40$) a light yellow oil (1.87 g; 12.7 mmol; 64%) was obtained.

For the resolution on 2.3 g scale, different preparations were combined.

¹H NMR:

$\textbf{2-Chloro-1-thiophen-2-yl-ethanol} \ (\textbf{7})^{4,8}$

Prepared according to the general procedure, starting from 1.87 mL (2.24 g; 20 mmol) of 2-thiophene-carboxaldehyde. After flash chromatography over silica gel (pentane/Et₂O 4:1; $R_f = 0.33$) a colorless oil was obtained (2.86 g; 17.6 mmol; 88%).

ОН

For the 20 g scale resolution, this compound was prepared analogously (64%).

References

- M. Lautens, M. L. Maddess, E. L. O. Sauer and S. G. Ouellet, Org. Lett., 2002, 4, 83.
- This compound has been reported in: Pudowik and Iwanow, *Zh. Obshch. Khim.*, 1956, **26**, 1910, Engl. Ed. 2129; Ponomarew *et al.*, *Zh. Obshch. Khim.*, 1957, **27**, 1226, Engl. Ed. 1309.
- ³ M. Lautens and M. L. Maddess, *Org. Lett.*, 2004, **6**, 1883.
- ⁴ T. Hamada, T. Torii, K. Izawa and T. Ikariya, *Tetrahedron*, 2004, **60**, 7411.
- T. Schubert, W. Hummel and M. Mueller, *Angew. Chem. Int. Ed.*, 2002, **41**, 634.
- O. Grummitt and R. M. Vance, J. Am. Chem. Soc., 1950, 72, 2669; I. E. Muskat and L. B. Grimsley, J. Am. Chem. Soc., 1930, 52, 1574.
- ⁷ Z. Gercek, D. Karakaya and A. S. Demir, *Tetrahedron: Asymmetry*, 2005, **16**, 1743.
- A. Kamal, G. B. R. Khanna, R. Ramu and T. Krishnaji, *Tetrahedron Lett.*, 2003, 44, 4783;
 C. Corral, V. Darias, M. P. Fernández-Tomé, R. Madroñero and J. Del Río, *J. Med. Chem.*, 1973, 16, 882;
 H. Hopff and R. Wandeler, *Helv. Chim. Acta*, 1962, 45, 982.