Synthesis of Supramolecular Fullerene-Porphyrin-Cu(phen)₂-Ferrocene Architectures. A Heteroleptic Approach Towards Tetrads

Michael Schmittel,*^a Ravuri S. K. Kishore,^a and Jan W. Bats^b

Supporting Material

- 1. NMR
- 2. ESI MS
- 3. CV and DPV
- 4. UV
- 5. Crystal Packing of 5
- 6. PM3 structure

1. NMR

Table S 1 ¹H NMR shifts of ligands 1-4 measured in CD₂Cl₂

	Por-H _B	4-H	7-H	Ar-Hb,	5-H, 6-H	8-H	Ar-	3'''-, 5'''-
	F			Hb'			Ha,Ha')	Н
1	8.84 (d,2H, -H _{β1}),	8.66 (s)	8.36 (d)	8.16(d)	7.97 (br s)	7.61(d)	7.51(d)	6.98 (s)
	8.75 (d, 2H, $H_{\beta 2}$),							
	$8.70 (s, 4H, H_{\beta 3}, H_{\beta 4})$							
2	8.93 (s, 2H, $H_{\beta 1}$),	8.66 (s)	8.33 (d)	8.17(d)	7.92 (br. s)	7.59 (d)	7.55 (d)	7.00(s)
	8.88 (d, 2H, $H_{\beta 2}$),							
	$8.80 (d, 2H, H_{\beta 3}),$							
	8.75 (s, 2H, H _{$\beta4$}),							
3	8.77 (d, 4H, H _{β1}), 8.67	8.65 (s)	8.36 (d)	8.13(d)	7.96(br s)	7.58(d)	7.47(d)	6.96(s)
	$(d, 4H, H_{\beta 2}),$							
4	8.93 (s, 8H, H_{β})	8.63 (s)	8.32 (d)	8.13(d)	7.89 (br s)	7.60 (d)	7.53(d)	6.98 (s)

Figure S 1 Aromatic region (¹H NMR) of ligands 1-4 displaying the various shifts for the porphyrin and phenanthroline protons in CD_2Cl_2 .

Table S 2 NMR shifts (1 H NMR) of 6-14 measured in CD₂Cl₂ (6-9) or in 1:1 CD₂Cl₂/CS₂ (11-14)

8.59 (d),

8.56 (s)

8.65 (d),

8.59 (d)

8.67

8.98

8.99

8.83

8.79

13

14

	Por-H _β	4-H	7-H	3'''-, 5'''-Н	Fc	Ру 3''-, 5''-Н	Pyr-H5a, -H5b, -H2
6	8.74(d), 8.69(d), 8.65(s)	8.99	8.78	6.15	4.58, 4.35, 4.26		
7	8.77(s), 8.74(d), 8.71(d), 8.68	9.00	8.79	6.15	4.66, 4.43, 4.34		
8	8.76 (d), 8.70 (d)	8.98	8.77	6.14	4.72, 4.46, 4.41		
9	8.76	8.99	8.77	6.14	4.66, 4.43, 4.34		
11	8.64(d), 8.58(d), 8.55(s)	8.97	8.83(d)	6.21	4.58, 4.36, 4.27	6.45 (br s)	4.66(d), 4.56 (s), 3.93(d)
12	8.66(d), 8.65 (s),	8.97	8.83	6.21	4.58, 4.35,	6.26 (br s)	4.36 (s), 4.22(d)

6.20

6.18

4.26

4.60,

4.39, 4.29

4.62, 4.39,

4.30

6.22(br, s)

6.23 (br, s)

4.57(d), 4.45 (s),

4.77(d), 4.46 (s),

3.83(d)

3.95(d)

Figure S 2 Comparison of the aromatic region in the ¹H NMR of 7 and 12. The shifts are marked by dotted lines.

Figure S 3 Comparison of the aromatic region in the ¹H NMR of **8** and **13**. The shifts are marked by dotted lines. The black dots represent the upfield shifted signals of the pyridyl group at C_{60}

Figure S 4 Comparison of the aromatic region in the ¹H NMR of 9 and 14. The shifts are marked by dotted lines.

2. ESI- MS

Figure S 5 ESI-MS of **1** showing a $[M+H]^+$ signal at about m/z = 1337. Top left: isotopic splitting pattern recorded for **1**. Top right: Simulated isotopic splitting pattern.

Figure S 6 ESI-MS of **6** showing the M^+ signal at about m/z = 1995. Top left: isotopic splitting pattern recorded for **6**. Top right: Simulated isotopic splitting pattern.

5porAgFc_060914111856#31-33 RT: 1.09-1.17 AV: 3 NL: 8.54E6 T: + c Full ms [150.00-3000.00]

Figure S 7 ESI-MS of 6a showing the M^+ signal at about m/z = 2040.

Figure S 8 ESI-MS of **2** showing the $[M+H]^+$ and $[M+2H]^{2+}$ signals. Top left: isotopic splitting pattern recorded for $[M+H]^{2+}$ of **2**. Top right: Simulated isotopic splitting pattern for $[M+H]^{2+}$.

Figure S 9 ESI-MS of **7** showing a M^{2+} signal at about m/z = 1573. Top left: isotopic splitting pattern recorded for M^{2+} of **7**. Top right: Simulated isotopic splitting pattern for M^{2+} .

Figure S 10 ESI-MS of **3** showing the $[M+H]^+$ and $[M+2H]^{2+}$ signals. Top left: isotopic splitting pattern recorded for $[M+2H]^{2+}$ of **3**. Top right: Simulated isotopic splitting pattern for $[M+2H]^{2+}$.

Figure S 11: ESI-MS of **8** showing the M^{2+} signal at about m/z = 1573. Top left: isotopic splitting pattern recorded for M^{2+} of **8**. Top right: Simulated isotopic splitting pattern for M^{2+} .

kk15#77-90 RT: 1.68-1.91 AV: 9 NL: 2.81E6 T: + c Full ms [50.00-2000.00]

Figure S 12: ESI-MS of **4** showing the $[M+4H]^{4+}$, $[M+3H]^{3+}$ and $[M+2H]^{2+}$ signals.

Figure S 13 ESI-MS of **9** showing the M^{4+} and M^{3+} signals. Inset top: isotopic splitting pattern recorded for M^{4+} of **8**. Inset bottom: Simulated isotopic splitting pattern for M^{4+} .

3. Cyclic voltammetry and DPV

Cyclic voltammetry was measured on a Parstat 2273 in dry dichloromethane or dichloroethane in 0.1 M nBu_4NPF_6 electrolyte solution against a Ag wire as a quasi-reference electrode and dimethyl ferrocene as internal standard at 100 mVs⁻¹ scan rate. Differential pulse voltammetry was measured in dichloroethane with 0.1 M nBu_4NPF_6 as supporting electrolyte. Experimens were performed with a scan rate of 10 mV s⁻¹ and a pulse height of 2 mV for a duration of 50 ms. The concentration of the complexes **11-14** were maintained at~0.5 mM for the measurements.

Table S 3 Redox potentials of compounds **1-4**, **6-9**, and **11-14** measured by DPV in dichloroethane *vs*. dimethylferrocene (DMFc). To obtain values against the more common ferrocene redox couple, please subtract 0.09 V from the values against DMFc.

	$E_{1/2}$ vs. DMFc ^c						HOMO-	
	P ^{+/2+}	P ^{0/+} Cu ^{+/2+}	Fc ^{0/+}	$C_{60}^{0/-}$	$C_{60}^{-/2-}$	P ^{0/-}	LUMO (eV) ^e	
1 ^a	0.79	0.43				-1.85		
2 ^a	0.85	0.49				-1.76		
3 ^a	0.86	0.48				-1.74		
4 ^a	0.82	0.55				-1.66		
6 ^b	0.83	0.50, 050	0.30			-1.82		
6a	0.83	0.50	0.30					
7 ^b	0.86	0.50, 050	0.29			-1.77		
8 ^b	0.83	0.50, 050	0.30			-1.77		
9 ^b	0.86	0.50, 050	0.29			-1.75		
11 ^b	0.94	$0.46, 0.39^{d}$	0.30 ^d	-0.97	-1.38	-1.89	1.27	
12 ^b	0.92	0.51, 0.45 ^d	0.30	-0.95	-1.35	-1.79	1.25	
13 ^b	0.86	$0.48, 0.42^{d}$	0.29	-0.99	-1.41	-1.79	1.28	
14 ^b	0.90	$0.49, 0.37^{d}$	0.28	-0.95	-1.35	-1.76	1.23	

^{*a*} Determined by cyclic voltammetry in CH₂Cl₂ with ferrocene as internal standard, referenced to the dimethylferrocene couple (DMFc). ^{*b*} Determined by DPV in dichloroethane with NBu₄PF₆ as electrolyte with DMFc as internal standard. ^c Measured at 100 mV s⁻¹. All potentials are referenced against dimethylferrocene redox couple. ^d Obtained by deconvolution. ^{*e*} Determined from the redox potentials Fc^{0/+} – C₆₀^{-0/-}.

Figure S 14 CV and DPV of 6 measured in DCE with dimethyl ferrocene as the standard and nBu_4NPF_6 as the electrolyte

Figure S 15: CV and DPV of 6a measured in DCE with dimethyl ferrocene as the standard and nBu_4NPF_6 as the electrolyte

Figure S 16 CV and DPV of 7 measured in DCE with dimethyl ferrocene as the standard and nBu_4NPF_6 as the electrolyte

Figure S 17 CV and DPV of 8 measured in DCE with dimethyl ferrocene as the standard and nBu_4NPF_6 as the electrolyte

Figure S 18 CV and DPV of 9 measured in DCE with dimethyl ferrocene as the standard and nBu_4NPF_6 as the electrolyte.

Figure S 19 DPV plots (vs SCE) of 11-14 measured in dichloroethane with dimethyl ferrocene as the standard and nBu_4NPF_6 as the electrolyte.

Figure S 20 Peaks corresponding to ferrocene and $Cu(I)/P^{0/+}$ oxidation from the DPV plots of **11-14** (vs SCE). Inset: Deconvolution of the peak of **11** performed by PEAKFIT.

Figure S 21 Selected parts from the DPV curves (vs SCE) from 11-14 representing the peaks corresponding to the reduction of the porphyrins and C_{60} .

4. UV Titrations

UV titrations were carried out by adding 10 μ L aliquots of a 1 mM solution of **10** in DCE to a 0.001 mM solution of the aggregates **6-9** in a quartz cuvette at 25 °C. The spectra were recorded on a Cary 300 double beam spectrophotometer. The data obtained from the UV/Vis titrations were analysed by fitting the whole series of spectra at 0.5-nm intervals using the software SPECFIT¹ version 3.0.22 (Spectrum Software Associates, P.O. Box 4494, Chapel Hill, NC 27515-4494, USA), which uses a global analysis system with expanded factor analysis and a Marquardt least-squares minimization to obtain globally optimized parameters.

¹ (a) M. Maeder, and A. D. Zuberbühler, *Anal. Chem.* 1990, **62**, 2220; (b) H. Gampp, M. C. J. Maeder, and A. D. Zuberbühler, *Talanta* 1986, **33**, 943.

Figure S 22 UV-vis spectral changes observed during the titration of 6 (4.18 μ M) with 10 (30 aliquots of 10 μ L each of a 0.11mM solution) in DCE at 298K.

Figure S 23 UV-vis spectral changes observed during the titration of 7 (3.43μ M) with 10 (26 aliquots of 10 μ L each of a 0.11mM solution) in DCE at 298K.

Figure S 24 UV-vis spectral changes observed during the titration of 8 (3.08μ M) with 10 (20 aliquots of 10μ L each of a 0.11mM solution) in DCE at 298K.

Figure S 25 UV-vis spectral changes observed during the titration of 9 (1.55 μ M) with 10 (12 aliquots of 10 μ L each of a 0.11mM solution) in DCE at 298K.

5. Crystal packing of 5

Figure S 26: Crystal packing of **5** displaying phenanthroline stacks along the b direction and partially overlapping π systems.

6. PM3 model of 11

Figure S 27 PM3 minimized structure (SPARTAN) of 11 showing the fullerene and ferrocenyl unit in almost van der Waals contact.