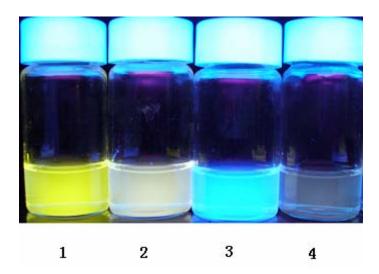
A Ratiometric Fluorescent Sensor for Phosphates:

Zn²⁺-enhanced ICT and Ligand Competition

Xiaojun Peng*, Yongqian Xu, Shiguo Sun, Yunkou Wu, Jiangli Fan

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road Dalian 116012, PR China. E-mail: <u>pengxj@dlut.edu.cn</u>; Fax: +86-411-88993699; Tel.: +86-411-88993899


Electronic Supplementary Information

Materials and Methods

Deionized water (distilled) were used throughout the experiment. All the materials for synthesis were purchased from commercial suppliers and used without further purification. All anions used were Cl⁻, Br⁻, Γ , HSO₄⁻ and CH₃CO₂⁻ in the form of their tetrabutylammonium salts, except for Na₄P₂O₇ and Na₂HPO₄. HEPES buffer solutions (pH = 7.4) were prepared using 0.02 M HEPES, 0.02 M NaNO₃ and proper amount of NaOH under adjustment by a pH meter. Melting points were measured on a X-6 melting point apparatus and listed without correlation. IR spectra were recorded on a Nicolet-20DXM spectrometer at room temperature. ¹H NMR spectrum was recorded on a Varian INOVA 400 MHz spectrometer, using TMS as internal standard. The electro-spray ionization mass spectrometry (ESI-MS) was performed on a HP 1100LC/MSD with acetronitrile as solvent. The emission measurements was performed at room temperature in air saturated solvent of spectroscopic grade. The pH of the solution was carried out on a digital pH meter. The emission spectra were recorded by a PTI-C-700 fluorometer.

Procedures of anions sensing by 1-Zn

A 1.0×10^{-3} M stock solution of **1**-Zn was prepared in absolute CH₃CN. To 5 mL glass tubes with 5.0 mL solvent (1:9 (v/v) buffer/CH₃CN) containing different amount of anions, 0.5 mL of the stock solution was added to each tube by a pippet to obtain solutions of 100 μ M **1**-Zn. Then the tubes were shaken for 2 min and followed by standing at room temperature for 5 min. 3.0 mL of the solutions in the tubes was later transferred out for the fluorescence measurement. If the concentration of **1**-Zn needs to be 10 μ M, then a 1.0×10^{-4} M stock solution in CH₃CN of **1**-Zn was prepared following a similar way.

Fig. S1 The fluorescent change of **1** (50 mM) and **1**-Zn (50 mM) upon addition of different equivalent PPi in CH₃CN-HEPES (9:1,v/v). (excitation at 365 nm). (1: **1**-Zn; 2: **1**-Zn + 0.5 eq PPi; 3: **1**-Zn + 1 eq PPi; 4: **1**).

Synthesis and Characteristics of Compounds 1 and 1-Zn.

1: Compound 1 was synthesized according to the modification of published procedures.^{S1} 2-Acetylpyridine (0.43 mL, 3.86 mmol) was slowly added in dropwise under nitrogen flowing at room temperature to a suspension of NaOH (0.238 g, 5.95 mmol) in anhydrous EtOH (20 mL), and the mixture was stirred at room temperature for 2 h. A solution of 1-pyrenylaldehyde (0.40 g, 1.75 mmol) in anhydrous EtOH (6 mL) was thus added. After stirring overnight, 95% aq. EtOH (30 mL) and solid AcONH₄ (4.7 g, 61.25 mmol) were added and the mixture refluxed for 4 h. The solvent was removed in vacuum and 10% aq. HCl (10 mL) was added, affording a red powder, which was filtered, dissolved in CH₂Cl₂ (50 mL) and washed with 10% aq NaOH, until pH was alkaline. The organic phase was dried over Na₂SO₄ and evaporated. The brown thick residue thus obtained was stirred with CH₃OH (10 mL), affording a yellow powder, which was purified by column chromatography on silica gel (CH₂Cl₂), leading to a bright yellow solid (44%). mp 212.2-213.5 °C. v_{max}(film)/cm⁻¹ 3242, 3047, 1646, 1344, 1320, 1284, 848, 840, 791, 761, 737, 722. ¹H NMR(δ ppm, CDCl₃): 7.34 (dd, 2H, *J* = 5.6 Hz, *J* = 6.0 Hz), 7.90 (dd, 2H, *J* = 7.6 Hz, *J* = 7.6 Hz), 7.99-8.25 (m, 9H), 8.69 (d, *J* = 4.0 Hz), 8.74 (d, *J* = 8.0 Hz, 2H), 8.78 (s, 2H). ESI-MS Positive: [M+H]⁺ (m/z 434.1).

1-Zn: A solution of **1** (1.0 mmol) in CH₂Cl₂ (8 mL) was added to a solution of ZnCl₂×2H₂O (0.136 g, 1.0 mmol) in dry ethanol (25 ml). The reaction mixture was refluxed for 3 h, then cooled to room temperature. The crude yellowed precipitate was filtered and washed with ethanol and dietheylether. The product was recrystallized from warm nitrobenzene, giving yellow powder (85%). mp > 300 °C. v_{max} (film)/cm⁻¹ 1594, 1519, 1470, 1410, 1384, 1344, 886, 852, 840, 790, 759, 731, 716, 702. ¹H NMR(δ ppm, CDCl₃): 7.52 (dd, 2H, J = 8.0 Hz, J = 6.4 Hz, 7.87 (dd, 2H, J = 6.4 Hz, J = 7.2 Hz), 8.01 (d, J = 8.4 Hz), 8.14-8.26 (m, 9H), 8.31 (d, J = 6.4 Hz, 2H), 8.45 (s, 2H). HRMS (EI) calcd for C₃₁H₁₉ClN₃Zn [M+] 532.0247, found 531.9500.

Fig. S2 The fluorescence spectra of ligand $1 (1 \mu M)$ in different solvents.

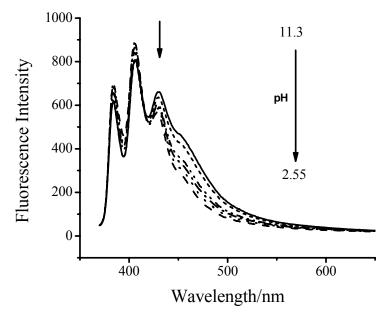
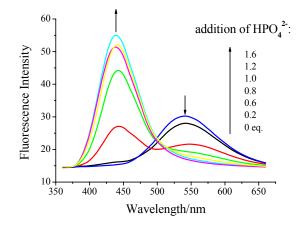
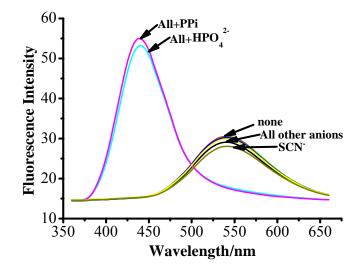




Fig. S3 Effect of pH on the fluorescence spectra of ligand 1 (1 μ M) in CH₃CN-H₂O (9:1, v/v). (excitation at 346 nm)

Fig. S4 Change of fluorescence emission for sensor 1-Zn (100 μ M) upon addition of 0-1.6 eq. of HPO₄²⁻. The spectra were measured excitation at 346 nm in CH₃CN-HEPES (9:1, v/v; pH=7.4).

Fig. S5 Fluorescence emission for sensor 1-Zn (100 μ M) upon addition of 50 equiv. of HPO₄²⁻, PPi, Cl⁻, Br⁻, l⁻, CH₃CO₂⁻, HSO₄⁻ and SCN⁻. The spectra were measured upon excitation 346 nm in CH₃CN-HEPES (9:1, v/v. pH=7.4).

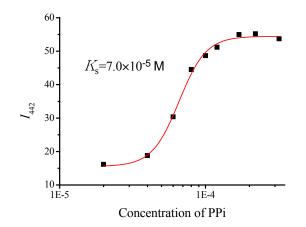


Fig. S6 Fit plot of the fluorescence intensity of I₄₄₂ with log concentration of anion for sensor 1-Zn (100 μM) upon addition of PPi. The spectra were measured excitation at 346 nm in CH₃CN-HEPES (9:1, v/v; pH=7.4).

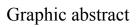
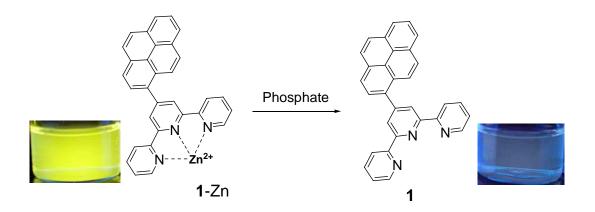




Fig S7 Change of fluorescence emission for sensor 1-Zn (10 μM) upon addition of 0-3 eq. of EDTA (upper) and 0-1.4 eq. of TPEN (*N*,*N*,*N*',*N*'-Tetrakis(2-pyridylmethyl)ethylenediamine)
(bottom). The spectra were measured excitation at 346 nm in CH₃CN-HEPES (9:1, v/v; pH=7.4).

Reference:

S1. A. Gulyania, R. G. Srinivasa, G. U. Kulkarnib and S. Bhattacharyaa, J. Mol. Struct., 2002, 616, 103.

