

Electronic Supplementary Information (ESI)

Production of epoxydammaranes by the enzymatic reactions of (3*R*)- and (3*S*)-2,3-squalene diols and 2,3:22,23-dioxidosqualenes with recombinant squalene cyclase. Mechanistic insight into the polycyclization reactions and evidence for the intermediacy of the 17-*epi*-dammarenyl cation

Tsutomu Hoshino*, Yukie Yonemura, Takamasa Abe and Yumi Sugino

Department of Applied Biological Chemistry, Faculty of Agriculture, and Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan.

Fax: +81-25-262-6854; E-mail: hoshitsu@agr.niigata-u.ac.jp

	Page
1. Analytical methods	----- S2
2. Incubation conditions, GC and HPLC analyses	----- S2
3. Syntheses of (3 <i>R</i>)- 18 and (3 <i>S</i>)-2,3-oxidosqualene 19	----- S3
4. Preparation of 2,3:22,23-dioxidosqualene 20-22	----- S3
5. Purification methods of the enzymic products 31-42	----- S4
6. Spectroscopic data of all the isolated products	----- S5-S20
5. Major Fragment ions of Enzymatic Products in EI-MS of Products 33,34 and 37-42	----- S21
6. GCMS of acetate mixtures obtained by incubating diastereomeric mixture of dioxidosqualene 20-22 (Minor Peaks)	----- S22-S23
7. References	----- S23

1. Analytical methods

NMR spectra were recorded in C₆D₆ on a Bruker DMX 600 or DPX 400 spectrometer, the chemical shifts being relative to the solvent peak δ_{H} 7.280 and δ_{C} 128.0 ppm as the internal reference for ¹H- and ¹³C NMR spectra, respectively. NMR data of some compounds are measured in acetone-*d*₆ or in CDCl₃. The chemical shifts were given relative to the solvent peaks: δ_{H} 2.040 and δ_{C} 29.8 ppm for acetone *d*₆. In the case of the CDCl₃ solutions, the chemical shifts given to TMS peak (0.00 ppm). The coupling constants *J* are given in Hz. GC analyses were done on a Shimadzu GC-8A chromatograph equipped with a flame ionization detector (DB-1 capillary column (0.53 mm × 30 m)). GC-MS spectra were on a JEOL SX 100 spectrometer under electronic impact at 70 eV with a DB-1 capillary column (0.32 mm x 30 m). Isolation of some products was performed by a Hitachi LC system equipped with L-7100 pump and L-7405 UV detector, the product elution being monitored at 210 nm. HR-EIMS was performed by direct inlet system. Specific rotation values were measured at 25°C with a Horiba SEPA-300 polarimeter.

2. Incubation conditions, GC and HPLC analyses

Standard culture of *E. coli* and incubation conditions were performed according to our published protocols.¹ The cell-free extract was prepared as follows. One liter culture of *E. coli* encoding the native SHC was harvested by centrifugation and to the collected pellets was added 50 cm³ of citrate buffer solution (pH 6.0, 50 mM), and then subjected to ultrasonication to disrupt the cells. The supernatant was used for the incubations after removing the cell debris by centrifugation. One cm³ of the supernatant contains *ca.* 200 µg of the pure SHC. One mg of the substrate analogs and 20 mg of Triton X-100 were emulsified with 1.0 ml of distilled water and 3.0 ml of Na-citrate buffer solution (pH 6.0, 0.5 M). To the solution was added 2.0 ml of the cell-free extract and then incubated at 60°C for 12 h. To terminate the enzyme reaction, 6 ml of 15% KOH/MeOH was added and heated at 80°C for 30 min. The lipophilic enzymic products and the substrate analogs, which remained unreacted, were extracted four times with hexane (5 ml) from the incubation mixtures, and the quantities of the products and the starting materials were estimated by GC analyses with a DB-1 capillary column (30 m in length, J & W Scientific, USA). GC conditions: injection temp. 280°C, column temp., 280°C and carrier pressure, 1.0 Kg/cm². In the case of diepoxides **20-22**, the product distribution was estimated after acetylation with Ac₂O/Py at room temperature. The GC condition was the same as that of

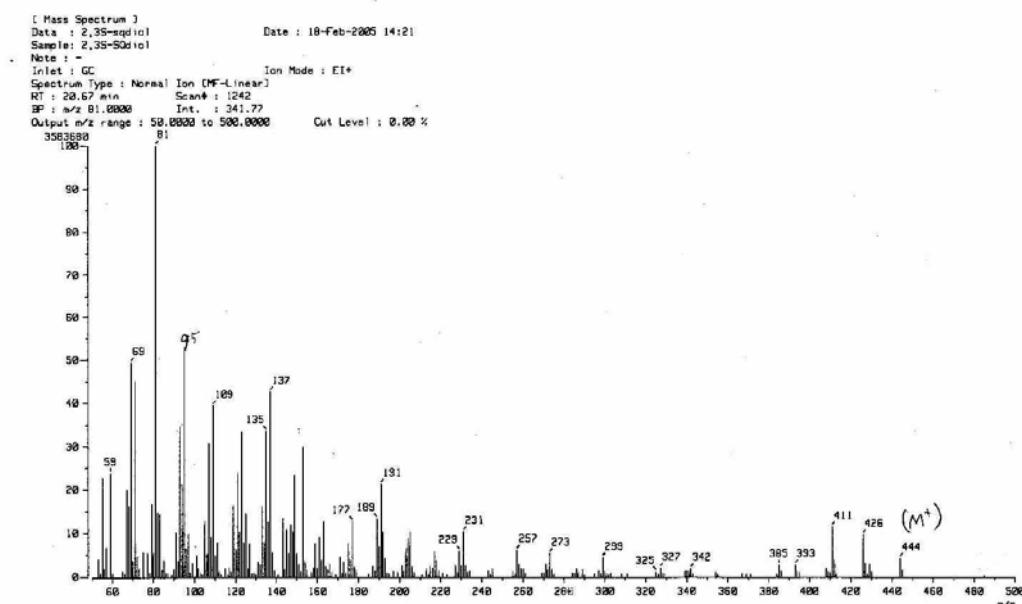
the diol. HPLC conditions: a Mightysil Si 60 (5 μ m) column and detection at 210 nm.

3. Syntheses of (3*R*)- 18 and (3*S*)-2,3-oxidosqualene 19

These compounds were synthesized the according published methods.² Treatment of the chiral ligand of (DHQ)₂PHAL with **1** gave **14**, **16** and **18**, while that of (DHQD)₂PHAL afforded **15**, **17** and **19**. Separation of **18** and **19** from other diols was easily done by a SiO₂ column chromatography eluting with hexane: EtOAc (100: 15), because the *R*_f value of **18** or **19** was relatively lower than those of **14-17**. ¹H NMR (C₆D₆, 400 MHz); δ _H 5.41 (m, 5H), 3.33 (bd, *J* 10.4, 1H), 2.43 (m, 1H), 2.3-2.1 (m, 17H), 1.98 (bs, 1H, OH), 1.81 (s, 3H), 1.74 (s, 3H), 1.73 (s, 6H), 1.71 (s, 3H), 1.69 (s, 3H), 1.62-1.45 (m, 2H), 1.152 (s, 3H), 1.145 (s, 3H). ¹³C NMR (C₆D₆, 100.6 MHz); δ _H 135.25 (s), 135.19 (s), 135.06 (s), 134.96 (s), 131.09 (s), 125.09 (d), 124.97 (d), 124.93 (d), 124.82 (d), 124.79 (d), 78.26 (d), 72.53 (s), 40.20 (2C, t), 40.16 (t), 37.22 (t), 30.12 (t), 28.73 (2C, t), 27.21 (t), 27.09 (t), 27.00 (t), 26.38 (q), 25.84 (q), 23.55 (q), 17.72 (q), 16.16 (q), 16.10 (2C, q), 16.03 (q). The NMR data of **18** was superimposable on that of **19**, because of enantiomeric relationship between them. EIMS of **18** and **19** (%); *m/z* 69 (46), 81 (100), 95 (43), 109 (37), 135 (37), 153 (42), 411 (3); 426 (4), 444 (M⁺, 2). The specific rotations, $[\alpha]_D^{25}$, **18** and **19** were +10.9° (c 2.1, CHCl₃, lit.^{3,4} +10.7 or + 11.4) and -10.7 (c 2.2, CHCl₃ lit.^{3,4} -10.7 or -11.8), respectively, indicating that the enantiomeric excess of **18** and **19** was close to 100%.

4. Preparation of 2,3:22,23-dioxidosqualene 20-22

The three-necked flask containing **1** (1.0 g) dissolved in 50 cm³ of THF was cooled at 0°C, and water was added under N₂ atmosphere until the solution became slightly cloudy. To the flask was added NBS (*N*-Bromosuccinimide, 1 g) in a portion and stirred for 3 h. The reaction mixture was poured into ice water. The product and unreacted **1** were extracted with hexane (50 ml x 3) and then dried over anhydrous Na₂SO₄. The desired dibromohydrin of **1** was purified with SiO₂ column chromatography eluting with hexane:EtOAc (100:2~100:10), affording 270 mg (18% yield). The stirred solution of K₂CO₃ (204 mg) in MeOH (30 cm³) was added in a portion to the dibromohydrin for 2 h, and then poured into ice water. The desired oxidosqualene was extracted with hexane and subjected to a SiO₂ column chromatography with hexane:EtOAc (100:1~100:3) to give diastereomers **20-22** in a yield of 180 mg (90 %). ¹H NMR (C₆D₆, 600 MHz); δ _H 5.39 (br s, 2H), 5.34 (br t, *J* 6.6, 2H), 2.77 (t, *J* 6.1, 2H), 2.30-2.15 (m, 8H), 1.75-1.6 (m, 2H), 1.71 (s, 6H), 1.65 (s, 6H), 1.26 (s, 6H), 1.22 (s, 6H). ¹³C NMR (C₆D₆, 150.9 MHz); δ _H 135.0 (s,


2C), 134.3(s, 2C), 125.1 (d, 2C), 124.9 (d, 2C), 63.45 (d, 2c), 57.29 (s, 2C), 40.11 (t, 2C), 36.8 (t, 2C), 28.71 (t, 2C), 28.00 (t, 2C), 27.04 (t, 2C), 24.98 (q, 2C), 18.90 (q, 2C), 16.15 (q, 2C), 16.06 (q, 2C). EIMS (%): *m/z* 69 (45), 81 (95), 93 (92), 107 (68), 135 (100), 203 (32), 406 (15), 424 (20), 442 (M⁺, 2).

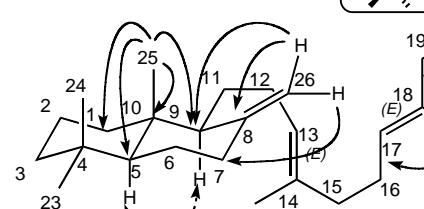
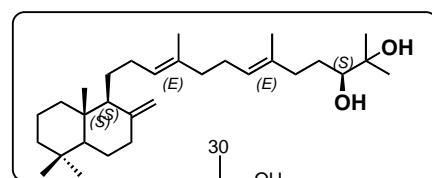
5. Purification methods of the enzymic products 31-42

The reaction mixture of **18**, obtained by the large scale incubation, was subjected to a SiO₂ column chromatography eluting with hexane: EtOAc (100:3~100:20) to afford three fractions with low, medium and high polarity, the *R*_f values on SiO₂ TLC being 0.65, 0.42 and 0.18 [hexane: EtOAc (100:20)], respectively. To obtain pure **33**, the low polar fraction containing **33** was subjected to HPLC (hexane: 2-PrOH=100:0.15). A repetitive SiO₂ column chromatography (hexane: EtOAc=100:1) of the medium polar fraction afforded **34** in a pure state. Separation of high polar products **31** and **32** was done by 5% AgNO₃-impregnated SiO₂ column chromatography (hexane: EtOAc= 100:10~100:15), **31** being followed by **32**, then each fraction was subjected to normal phase HPLC with *n*-hexane:2-PrOH (100:0.8) gave pure **31** and **32**. Isolation of products **35-38** from diol **19** was carried out in a similar way as that of the products from **18**. The reaction mixture of **19** was divided into two fractions (low and high polar products) by a SiO₂ column chromatography [hexane: EtOAc (100:3~100:20)]. **37** and **38** included in the low polar fraction were separated by the repetitive SiO₂ column chromatography [hexane: EtOAc=100:2], the *R*_f values of **37** and **38** being 0.70 and 0.58 on a SiO₂ TLC, respectively. Separation of **35** and **36** included in a high polar fraction was achieved by 5% AgNO₃-SiO₂ column chromatography in a similar way as that of **31** and **32**. Products **39-42** from diastereomeric mixture **20-22** were isolated as follows. After removing an excess of Triton X-100 by passing a short SiO₂ column, the residues were chromatographed over SiO₂ eluting with hexane-EtOAc (100:2). The purified fraction was nearly homogeneous on SiO₂ TLC. However, normal phase HPLC analysis of the acetylated products [hexane: 2-PrOH (100:0.4)], prepared with Ac₂O/Py, revealed that four products **39-42** were mixed. Each of the products was isolated by HPLC as shown in Fig. 4B.

6. Spectroscopic data of all the isolated products.

Product 31

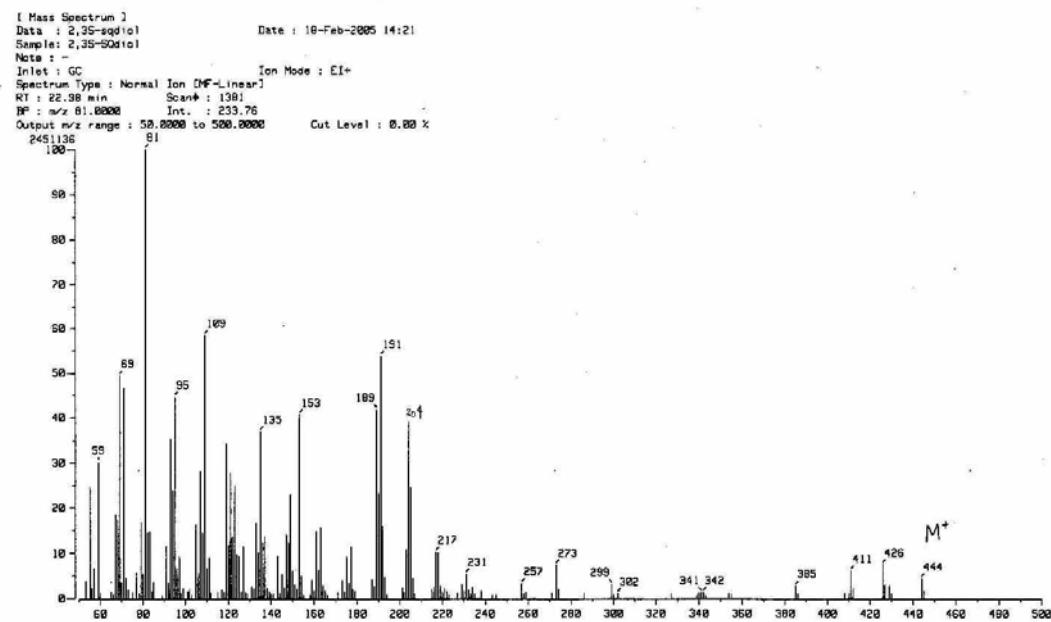
Product 31 (oil) from diol 18



$[\alpha]_D^{25} = +79.6$ (EtOH)
 $\infty = 0.40$ HREIMS: m/z
 (M^+) , calcd. for
 $C_{30}H_{52}O_2$,
 444.3967; found,
 444.3972.

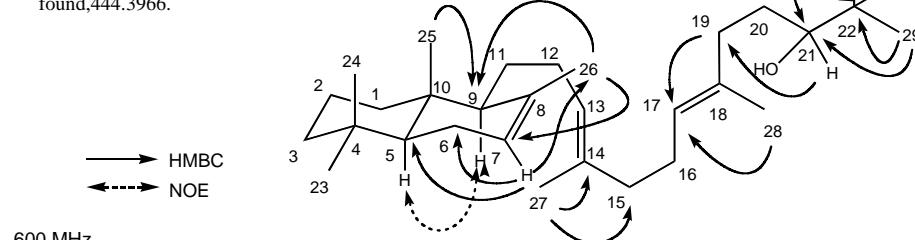
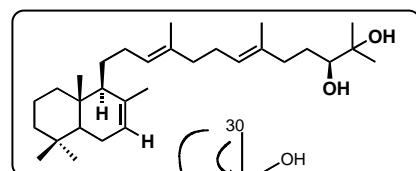
→ HMBC
 ← NOE

600 MHz

NMR data, δ ppm, in C_6D_6


relative to C_6D_6 : 1H ; 7.28 ppm, ^{13}C ; 128.0 ppm

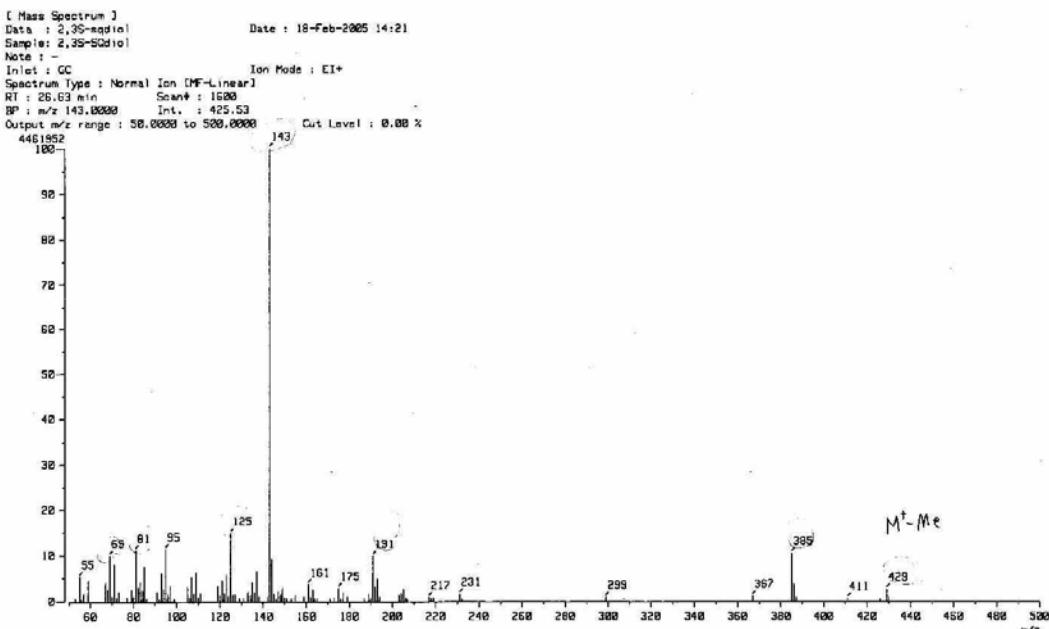
NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C
1	1.08 (m); 1.83(m)	39.31	9	1.78 (m)	56.52	17	5.46 (br s)	125.13	25	0.868 (3H, s)	14.75
2	1.55 (m); 1.66(m)	19.76	10	—	39.84	18	—	135.29	26	4.84 (br s); 5.10(br s)	106.66
3	1.27 (m); 1.49(m)	42.43	11	1.62(m) ; 1.69(m)	24.24	19	2.21(m) ; 2.44(m)	37.24	27	1.770 (3H, s)	16.16
4	—	33.66	12	2.15(m) ; 2.45(m)	27.43	20	1.50(m) ; 1.61(m)	30.13	28	1.725 (3H, s)	16.06
5	1.14(m)	55.65	13	5.46 (br s)	125.80	21	3.35 (dd, 10.4, 1.8Hz)	78.28	29	1.148 (3H, s)	26.40
6	1.41(m) ; 1.75(m)	24.76	14	—	134.95	22	—	72.56	30	1.154 (3H, s)	23.58
7	2.11(m); 2.52(m)	38.73	15	2.26 (2H, t, 7.8Hz)	40.21	23	0.965 (3H,s)	33.72			
8	—	148.87	16	2.34 (2H, dt, 7.6, 7.6Hz)	27.13	24	0.921 (3H, s)	21.89			



The assignments of H-29, H-30, C-29 and C-30 are exchangeable.

Product 32

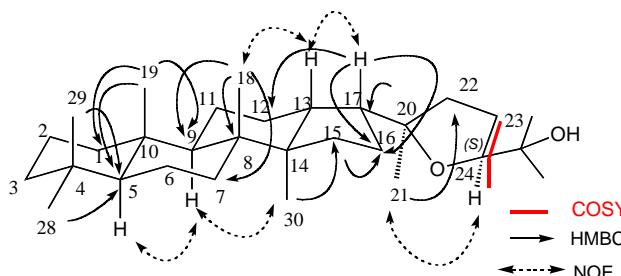
Product 32 (oil) from diol 18

$[\alpha]_D^{25} = -33.3$ (EtOH), $c=0.41$
 HRMS M^+ , calcd. for
 $C_{30}H_{52}O_2$, 444.3967;
 found, 444.3966.



600 MHz
 NMR data, δ ppm in C_6D_6 relative to C_6D_6 : 1H ; 7.28ppm , ^{13}C ; 128.0ppm

NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C
1	1.08(m) ; 1.98(m)	39.49	9	1.79(m)	54.57	17	5.46 (bt, 6.8Hz)	125.07	25	0.955 (3H, s)	13.77
2	1.55(m) ; 1.65(m)	19.21	10	—	37.02	18	—	135.34^a	26	1.916 (3H, s)	22.46
3	1.27(dd, 14.1, 13.9, 3.9Hz) ; 1.51(m)	42.64	11	1.44(m) ; 1.65(m)	27.74	19	2.21(m) ; 2.45(m)	37.23	27	1.773 (3H, s)	16.24
4	—	33.08	12	2.21(m) ; 2.42(m)	30.76	20	1.50(m) ; 1.61(m)	30.14	28	1.731 (3H, s)	16.06
5	1.32(dd, 11.9, 4.9Hz)	50.37	13	5.45 (bt, 6.8Hz)	125.52	21	3.34 (bd, 9.5Hz)	78.28	29	1.145 (3H, s) ^b	26.39^c
6	1.99(m) ; 2.06(m)	24.20	14	—	134.89	22	—	72.54	30	1.150 (3H, s) ^b	23.58^c
7	5.58(bs)	122.54	15	2.25 (2H, t, 7.4 Hz)	40.17	23	0.980 (3H, s)	33.35			
8	—	135.39^a	16	2.34 (2H,m)	27.09	24	1.000 (3H, s)	22.03			


The signals of a-c are exchangeable in respect to the same latters.

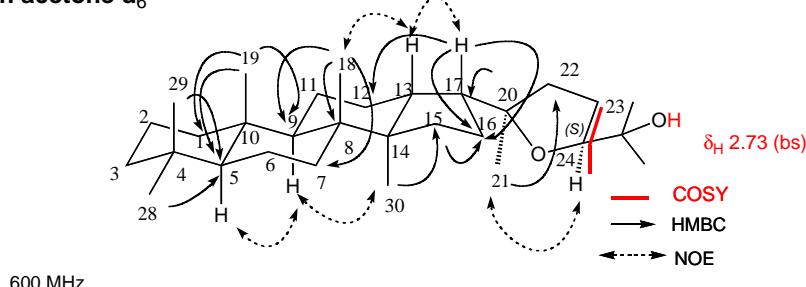
Product 33

NMR data of 33 in C₆D₆.

Product 33 from 2,3S-diol 18 in C₆D₆

$[\alpha]_D^{25} = -72.5$ (EtOH)
 c = 0.090

HREIMS: m/z (M⁺-Me), calcd. for C₂₉H₄₉O₂, 429.3733; found, 429.3730.

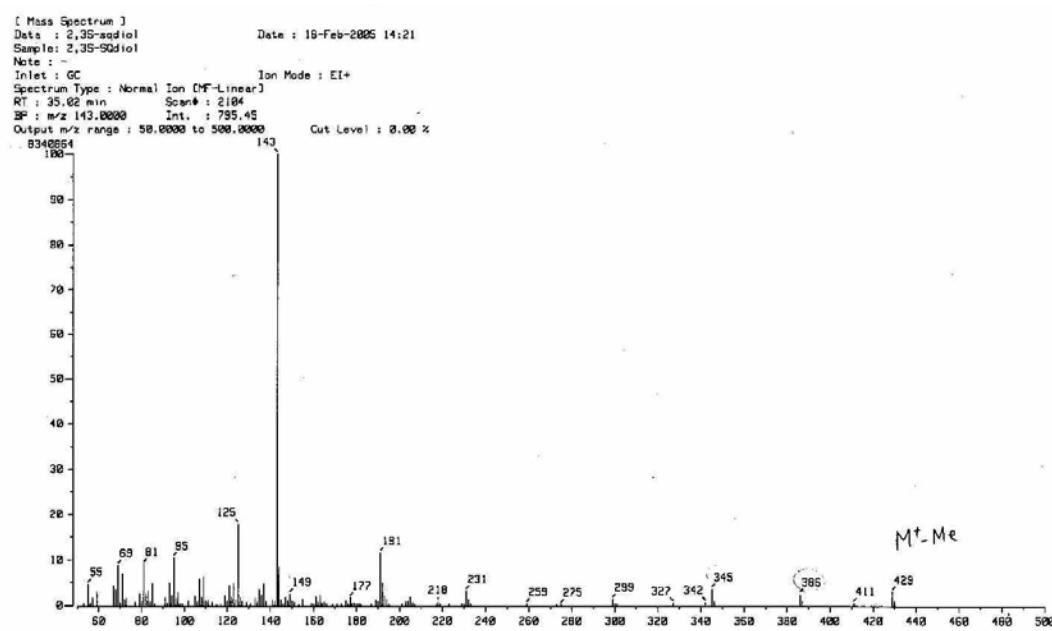

600 MHz NMR data in C₆D₆ (the solvent peak; δ_H 7.28, δ_C 128.0 ppm)

NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	0.87 (m); 1.75(m)	40.81 ^b	9	1.47 (m)	51.15	17	2.16(m)	48.66	25	—	71.28
2	1.38(m); 1.50(m) ^c	19.12 ^b	10	—	37.69	18	1.15 (3H,s)	16.13	26	1.276(3H,s) ^d	25.29 ^a
3	1.30 (m); 1.52(m)	43.81	11	1.20(m); 1.66(m)	22.65	19	1.01 (3H,s)	16.47	27	1.448 (3H,s) ^d	27.78 ^a
4	—	33.54	12	1.549(m); 1.93(m)	26.21	20	—	85.31	28	1.039 (3H, s)	33.63
5	0.919 (bd, 12.5Hz)	57.29 ^b	13	2.07 (m)	43.81	21	1.273 (3H,s)	25.23 ^a	29	0.998 (3H,s)	21.76
6	1.50 (m); 1.66(m) ^c	19.08 ^b	14	—	49.43	22	1.48 (m); 1.74 (m)	38.22	30	1.151(3H,s)	17.20
7	1.38 (m); 1.68 (m)	35.63	15	1.22(m); 1.58 (m)	32.72	23	1.74(m); 1.91(m)	25.79			
8	—	41.17	16	1.61(m); 1.82(m)	27.08	24	3.74(t, 7.3, 7.3)	83.98			

The signals of a-d are exchangeable in respect to the same letters.

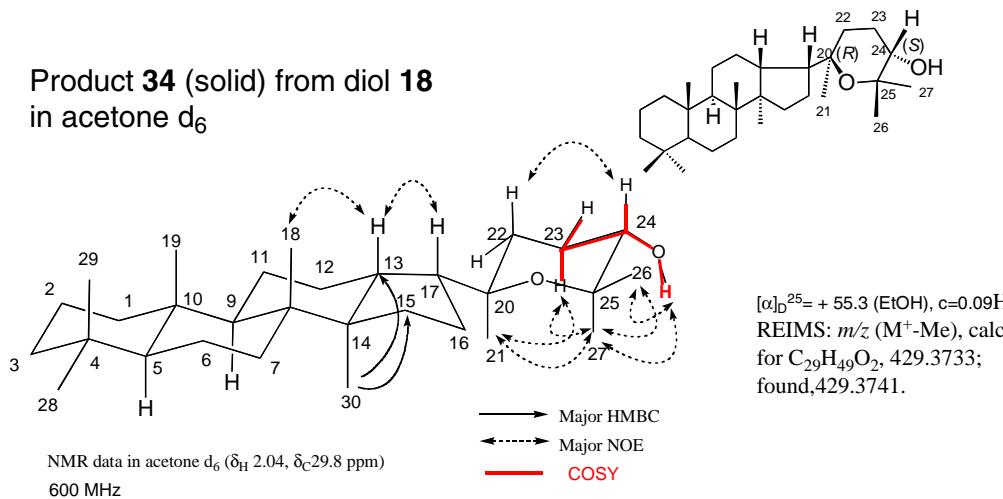
NMR data of 33 in Acetone d_6

**Product 33 from 2,3S-diol 18
 in acetone d_6**



NMR data in C_6D_6 (the solvent peak; δ_H 2.04, δ_C 29.80 ppm)

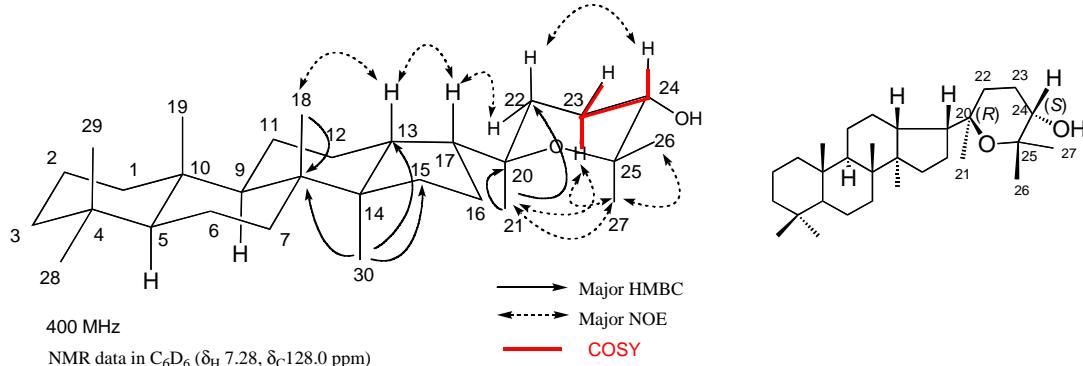
NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C
1	0.87(m); 1.66(m)	41.32	9	1.43(dd,12.8, 3.0)	51.70	17	2.25 (m)	49.20	25	—	71.62
2	1.36(m); 1.50(m) ^a	19.44 ^b	10	—	38.17	18	0.967(3H,s)	16.29	26	1.098(3H,s) ^c	26.66 ^d
3	1.16(m);1.35(m)	42.87	11	1.20(m);1.58(m)	23.09	19	0.859(3H, s)	16.62	27	1.128(3H,s) ^c	26.33 ^d
4	—	33.94	12	1.45(m);1.90(m)	26.66	20	—	85.75	28	0.848(3H, s)	33.75
5	0.82(m)	57.75	13	2.10(m)	44.36	21	1.183(3H,s)	25.21	29	0.815(3H,s)	21.83
6	1.42(m);1.63(m) ^a	19.34 ^b	14	—	49.95	22	1.56(m); 1.72(m)	38.45	30	1.023(3H,s)	17.42
7	1.26(m);1.59(m)	36.04	15	1.06(m); 1.45(m)	33.13	23	1.82(m);1.90(m)	26.20	24	3.715(t, 7.3,7.3)	84.60
8	—	41.63	16	1.62(m);1.72(m)	27.28	—	—	—	—	—	—


The signals of a-d are exchangeable in respect to the same letters.

Product 34

NMR data of 34 in acetone d₆

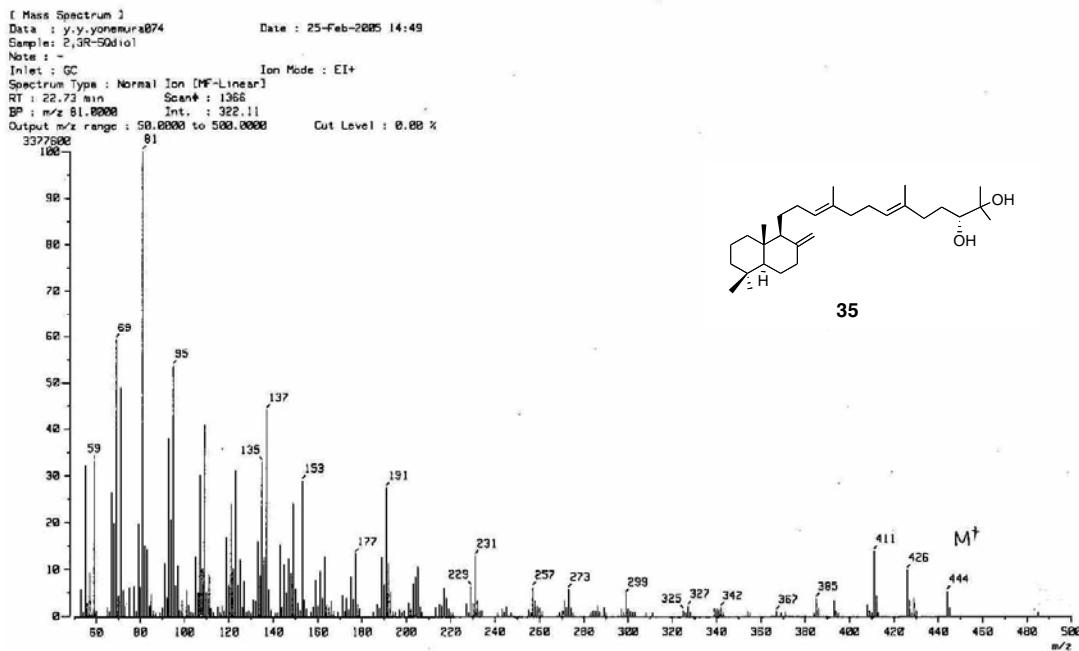
**Product 34 (solid) from diol 18
 in acetone d₆**


$[\alpha]_D^{25} = +55.3$ (EtOH), c=0.09H.
 REIMS: m/z (M⁺-Me), calcd. for C₂₉H₄₉O₂, 429.3733; found, 429.3741.

NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	0.87(m); 1.64(m)	41.33	9	1.44(m)	51.62	17	1.93 (ddd, 9.3, 8.5, 7.8)	51.41	25	—	75.83
2	1.41(m); 1.62(m)	19.21 ^a	10	—	38.14	18	0.946(3H, s)	16.28	26	1.151 (3H, s)	22.49
3	1.15(m); 1.35(m)	42.89	11	1.17(m); 1.56(m)	23.22	19	0.853(3H, s)	16.61	27	1.179 (3H, s)	30.49
4	—	33.93	12	1.56(m); 2.02(m)	26.95	20	—	75.83	28	0.845 (3H, s)	33.75
5	0.82(m)	57.80 ^a	13	2.04(m)	44.83	21	1.284 (3H, s)	27.53	29	0.813(3H, s)	21.83
6	1.39(m); 1.51(m)	19.12	14	—	49.74	22	1.68(m, ax); 1.32(m, eq)	35.05	30	1.034(3H, s)	17.29
7	1.23(m); 1.59(m)	36.07	15	1.03(m); 1.38(m)	33.11	23	1.60(m, ax); 1.78(m, eq)	25.89			
8	—	41.61	16	1.40(m); 1.59(m)	27.71	24	3.28(dd, 11.5, 4.4, 4.4Hz)	75.36			
											OH 3.78 (very broad; d, 4.4Hz)

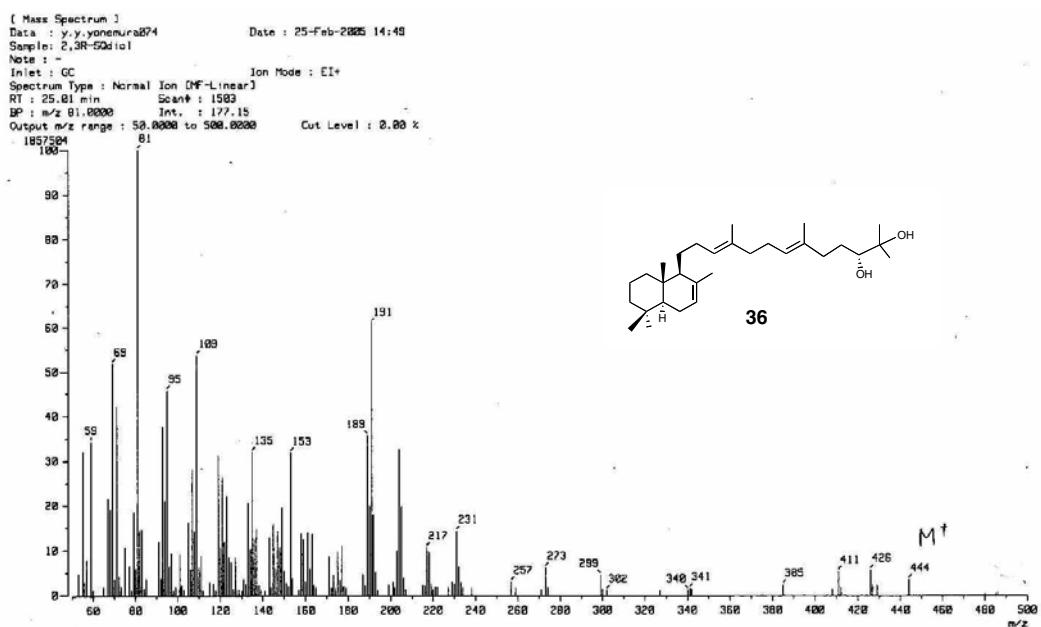
a: Assignments of C2 and C6 are exchangeable.

NMR data of 34 in C₆D₆

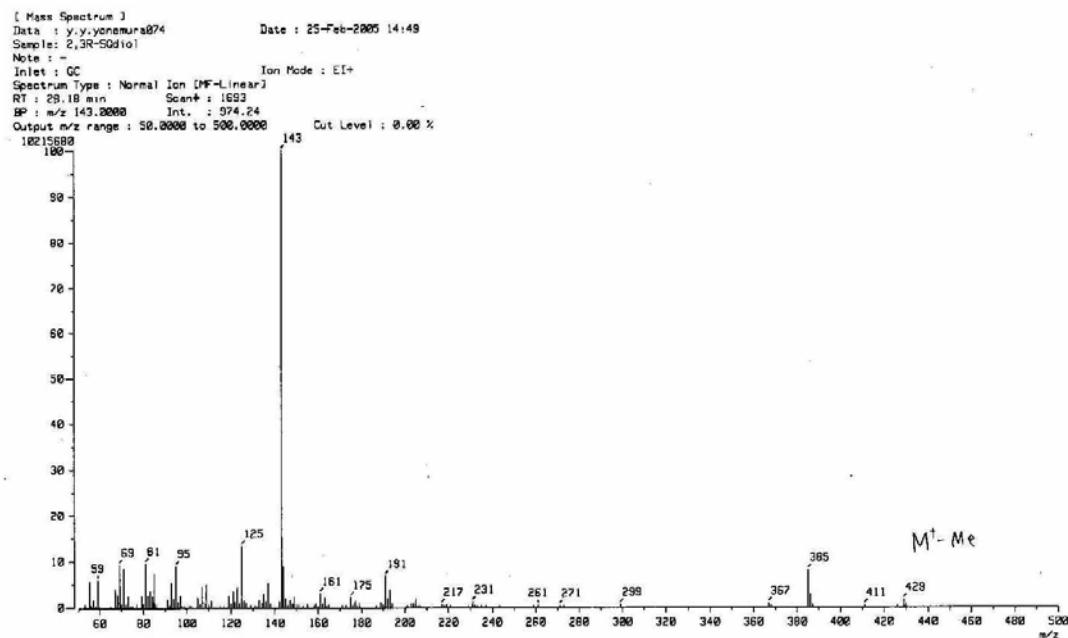

**Product 34 (solid) from diol 18
 in C₆D₆**

NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	0.94(m); 1.78(m)	40.89	9	1.62(m)	51.17	17	1.91 (m)	51.86	25	—	75.07
2	1.50(m); 1.75(m) ^a	19.21 ^b	10	—	37.74	18	1.123(3H, s)	16.19	26	1.32 (3H, s)	22.02
3	1.28(m); 1.52(m)	42.54	11	1.35(m); 1.74(m)	22.88	19	1.03 (3H, s)	16.49	27	1.419(3H, s)	30.11
4	—	33.56	12	1.77(m); 2.18(m)	26.58	20	—	75.32	28	1.03 (3H, s)	33.65
5	0.973(dd, 12.0, 2.4)	57.42	13	2.14(m)	44.33	21	1.336 (3H, s)	27.25	29	1.004(3H, s)	21.78
6	1.55(m); 1.78(m) ^a	19.12 ^b	14	—	49.38	22	1.22(m); 1.68(m)	34.63	30	1.29(3H, s)	17.14
7	1.44(m); 1.78(m)	35.78	15	1.30(m); 1.58(m)	32.84	23	1.46(m, ax); 1.68(m, eq)	25.57			
8	—	41.23	16	1.66(m); 1.74(m)	27.49	24	3.22(dd, 11.5, 4.4, 4.4Hz)	75.32			

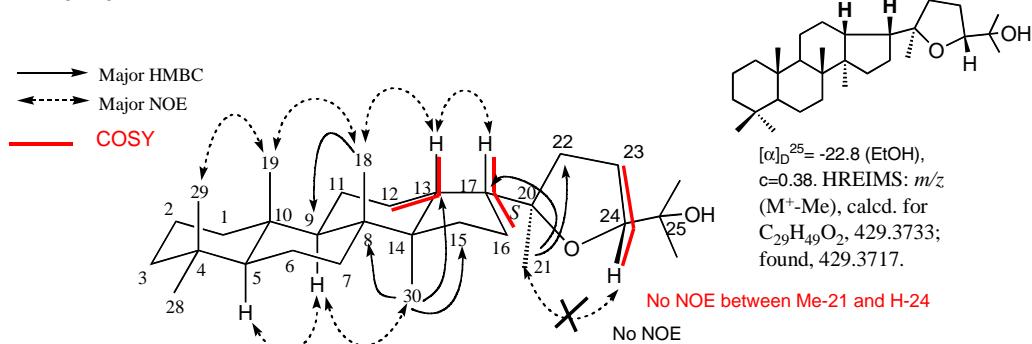
Assignments of carbon and proton signals at C2 and C6 are exchangeable.


Product 35

Product 35 from diol 19


The NMR signals in C₆D₆ were identical to those of product 31. [α]_D²⁵ = +22.8 (EtOH), c=0.28. HREIMS: *m/z* (M⁺), calcd. for C₃₀H₅₂O₂, 444.3967; found, 444.3961.

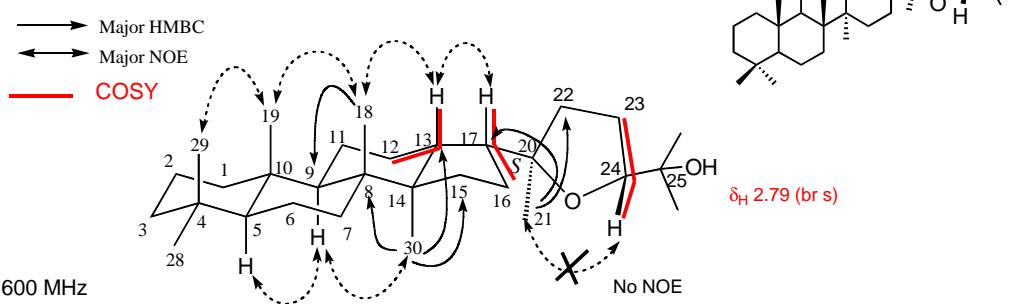
Product 36


Product 36 from diol 19. The NMR signals were the same as those of product 32. $[\alpha]_D^{25} = +4.08$ (EtOH), $c=0.29$. HREIMS: m/z (M^+), calcd. for $C_{30}H_{52}O_2$, 444.3967; found, 444.3979.

Product 37

NMR data of Product 37 in C₆D₆.

Product 37 (oil) from 19 in C₆D₆

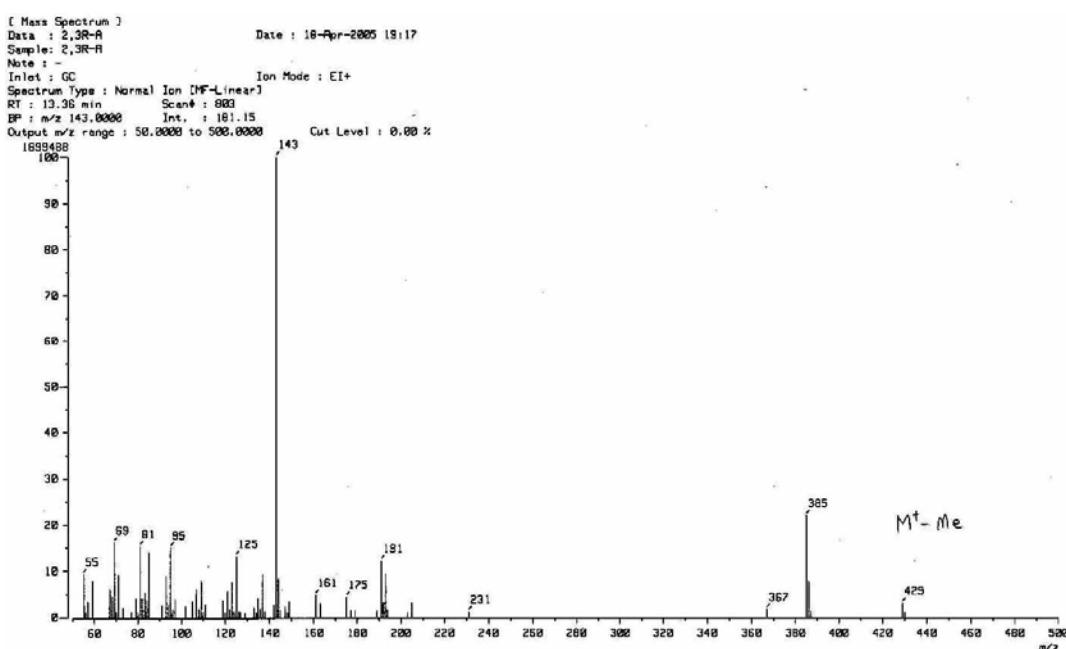

NMR data in C₆D₆ (δ _H 7.28, δ _C 128 ppm)

NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	0.96(m); 1.77 (m)	40.89	9	1.57(m)	51.15	17	2.17(m)	48.73	25	—	69.83
2	1.52(m); 1.72(m) ^a	19.16^b	10	—	37.74	18	1.110(3H,s)	16.15	26	1.231 (3H,s) ^c	24.64^d
3	1.31(m); 1.54 m)	42.48	11	1.26(m); 1.70(m)	22.76	19	1.027(3H, s)	16.49	27	1.405(3H,s) ^c	28.36^d
4	—	33.55	12	1.56(m);1.96 (m)	25.80	20	—	85.51	28	1.048(3H,s)	33.68
5	0.96(brd, 12.4 Hz)	57.36	13	2.10 (ddd, 11.5,10.8,3.2Hz)	44.03	21	1.231 (3H,s)	28.65	29	1.008 (3H, s)	21.78
6	1.52(m); 1.63(m) ^a	19.10^b	14	—	49.36	22	1.48 (m); 1.85(m)	38.28	30	1.196 (3H, s)	16.65
7	1.43(m); 1.78(m)	35.73	15	1.26(m);1.57(m)	32.76	23	1.56(m);1.96 (m)	26.48			
8	—	41.20	16	1.61 (m);1.82(m)	27.99	24	3.67 (dd, 10.5,5.0Hz)	87.59			

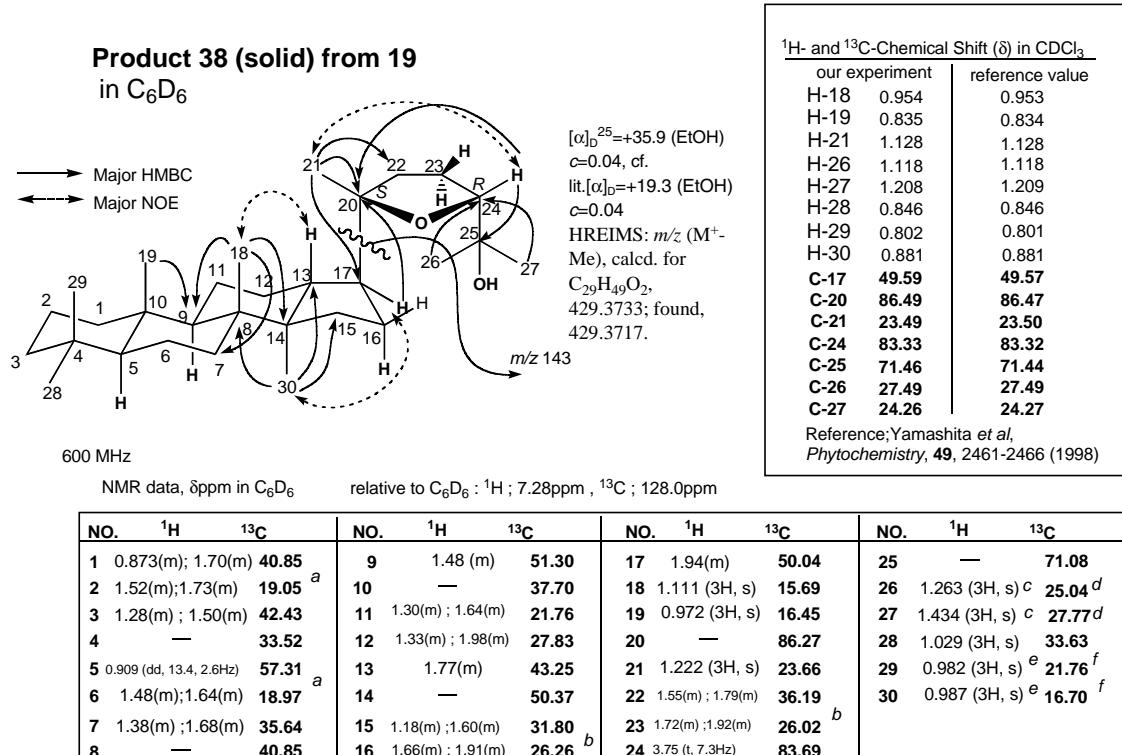
The signals of a-d are exchangeable in respect to the same letters.

NMR data of Product 37 in Acetone d_6

Product 37 (oil) from 19
 in acetone d_6

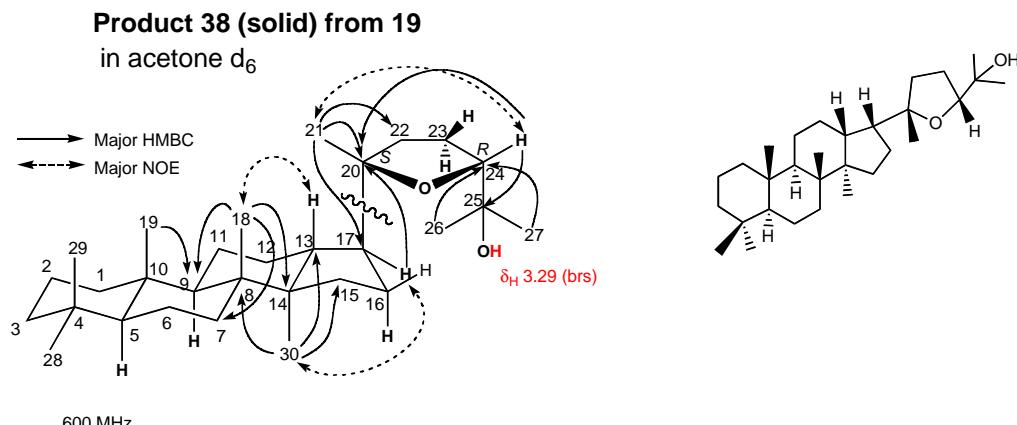


NMR data in acetone d_6 (δ_H 2.04, δ_C 29.8 ppm)

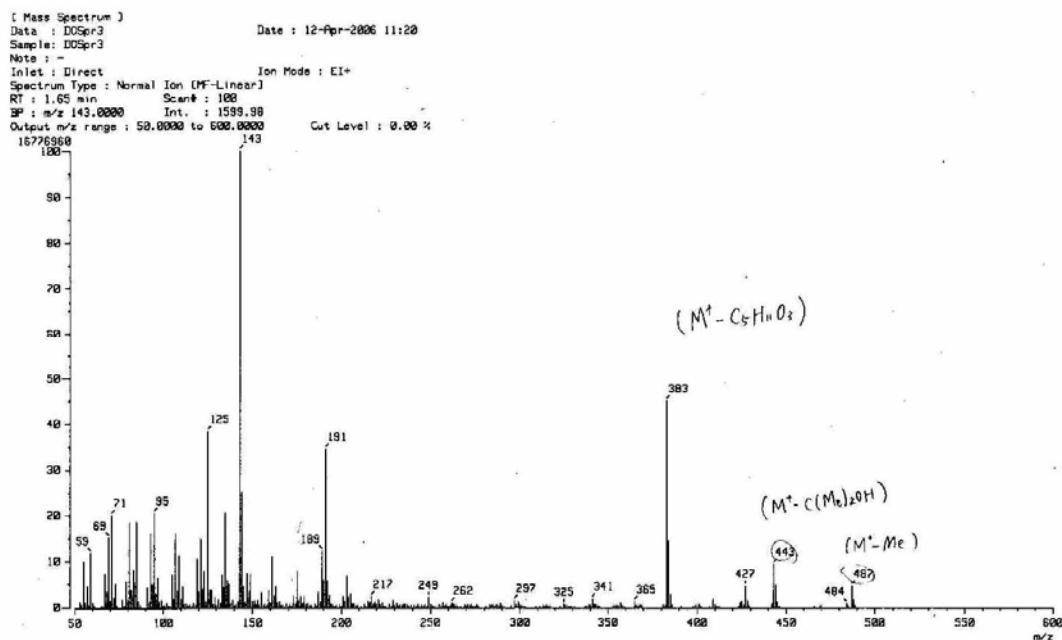

NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C
1	0.88(m); 1.66(brd, 13.0 Hz)	41.30	9	1.44 (m)	51.64	17	2.25 (m)	49.30	25	—	70.44
2	1.38(m); 1.62(m) ^a	19.43^b	10	—	38.13	18	0.970(3H,s)	16.30	26	1.055 (3H,s) ^c	25.84^d
3	1.15(m); 1.36(brd, 12.8 Hz)	42.83	11	1.20(m); 1.58(m)	23.17	19	0.861 (3H,s)	16.38	27	1.159(3H,s) ^c	27.28^d
4	—	33.91	12	1.52(m); 1.93 (m)	26.78	20	—	86.01	28	0.851(3H,s)	33.75
5	0.82(m)	57.75	13	2.10 (ddd, 11,10,3.2Hz)	44.53	21	1.188(3H, s)	28.87	29	0.818(3H,s)	21.85
6	1.41(m); 1.54(m) ^a	19.33^b	14	—	49.80	22	1.58 (m); 1.91(m)	38.65	30	1.024 (3H, s)	16.92
7	1.26(m); 1.61(m)	36.04	15	1.05(m); 1.44(m)	33.08	23	1.75 (m); 1.84(m)	26.37			
8	—	41.62	16	1.54 (m); 1.77(m)	28.25	24	3.71 (dd, 10.5,5.2Hz)	88.16			

The signals of a-d are exchangeable in respect to the same letters.

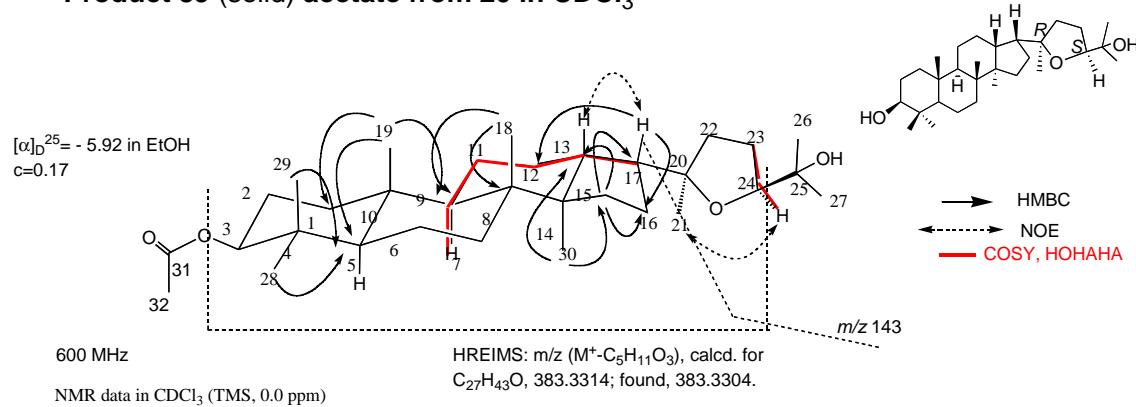
Product 38



NMR data of 38 in C₆D₆.


The signals of *a-f* are exchangeable in respect to the same letters.

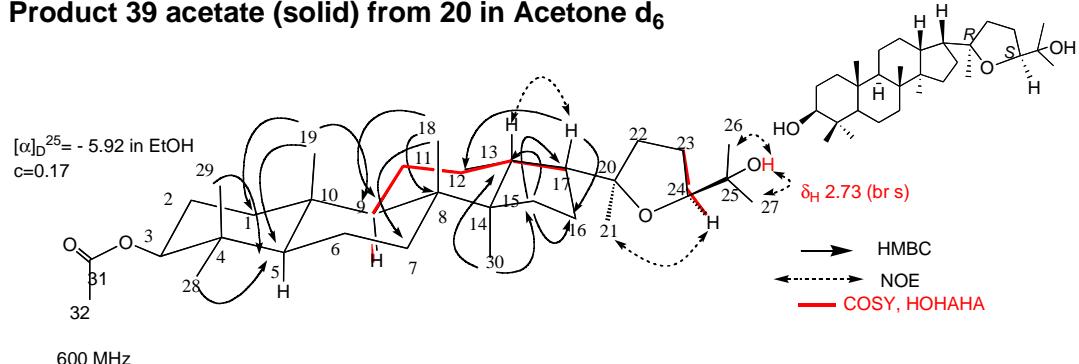
NMR data of 38 in Acetone d₆


The proton and carbon signals of *a* and *b* are exchangeable.

Product 39

NMR data of 39 acetate in $CDCl_3$.

Product 39 (solid) acetate from 20 in CDCl_3

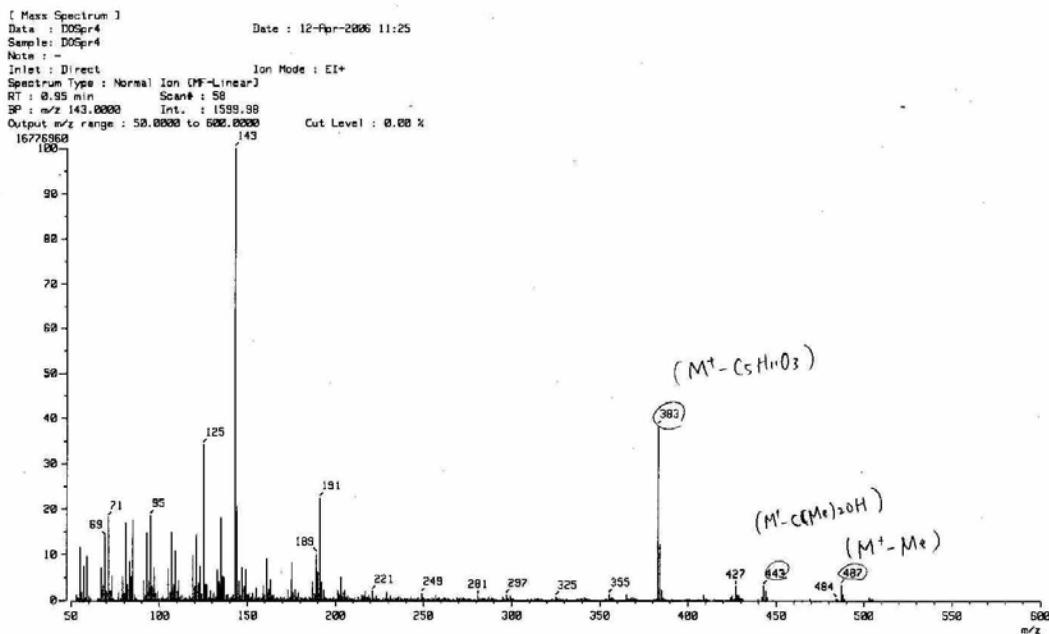


NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.04(dd, 12.5,12.5,4.5Hz);1.68(m)	38.68	9	1.34(dd, 12.7, 2.6Hz	50.65	17	2.23(ddd,8.9, 9.0,11.0Hz)	48.59	25	—	71.55
2	1.61(2H,m)	23.71	10	—	37.90	18	0.935(3H,s)	15.82 ^a	26	1.119(3H,s) d	24.46 ^c
3	4.48(dd,11.1, 5.1Hz)	80.94	11	1.17(m);1.53(m)	22.51 ^b	19	0.846(3H,s)	16.46	27	1.217(3H,s) d	27.43 ^c
4	—	37.06	12	1.43(m);1.86(m)	25.76	20	—	85.45	28	0.854(3H,s)	27.94
5	0.84(m)	55.96	13	2.07(m)	43.49	21	1.189(3H,s)	24.88	29	0.846(3H,s)	16.27 ^a
6	1.43(m);1.53(m)	18.23	14	—	49.16	22	1.6(m); 1.73(m)	37.93	30	0.963(3H,s)	16.90
7	1.26(bd,12.7Hz)	35.21	15	1.10(m);1.43(m)	32.44	23	1.77(m);1.84(m)	25.63 ^b	31	—	170.9
8	—	40.75	16	1.75(m); 1.58(m)	26.85	24	3.714(t, 6.8 Hz)	83.43	32	2.044(3H,s)	21.30

The carbon signals of a-c are exchangeable each other in respect to the same letters.
The protons desinatied as d is interchangeable.

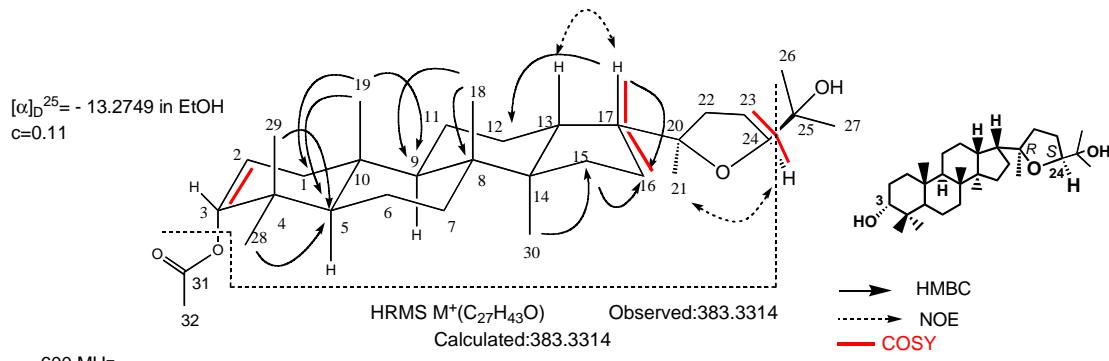
NMR data of 39 acetate in Acetone d_6 .

Product 39 acetate (solid) from 20 in Acetone d_6



NMR data in acetone d_6 relative to the solvent peak (δ_H , 2.04, δ_C 29.8 ppm)

NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C
1	1.06(m);1.68(m)	39.33	9	1.46(m)	51.39	17	2.25(m)	49.19	25	—	71.60
2	1.62(2H, m)	24.42	10	—	38.53	18	0.971(3H,s)	16.19 ^a	26	1.09 (3H, s)	26.71b
3	4.43(dd,11.3, 5.0Hz)	80.99	11	1.21(m);1.57(m)	23.22	19	0.887(3H,s)	16.83	27	1.13(3H,s)	26.32 b
4	—	37.79	12	1.46(m); 1.90(m)	26.58	20	—	85.75	28	0.841(3H,s)	28.24 ^a
5	0.91(dd, 11.7, 2.5Hz)	55.63	13	2.11(m)	44.41	21	1.183 (3H,s)	25.19	29	0.852 (3H,s)	16.65
6	1.47(m); 1.52(m)	18.98	14	—	49.89	22	1.55(m); 1.71(m)	38.43	30	1.030(3H,s)	17.37
7	1.26(m);1.61(m)	35.96	15	1.08(m);1.45(m)	33.17	23	1.81(m);1.86(m)	26.18	31	—	170.9
8	—	41.43	16	1.63(m);1.73(m)	27.27	24	3.72 (t, 7.3 Hz)	84.59	32	1.979(3H,s)	21.04


The carbon signals of a and b are exchangeable each other.

Product 40

NMR data of 40 acetate in CDCl₃.

Product 40 acetate (oil) from 21 in CDCl₃

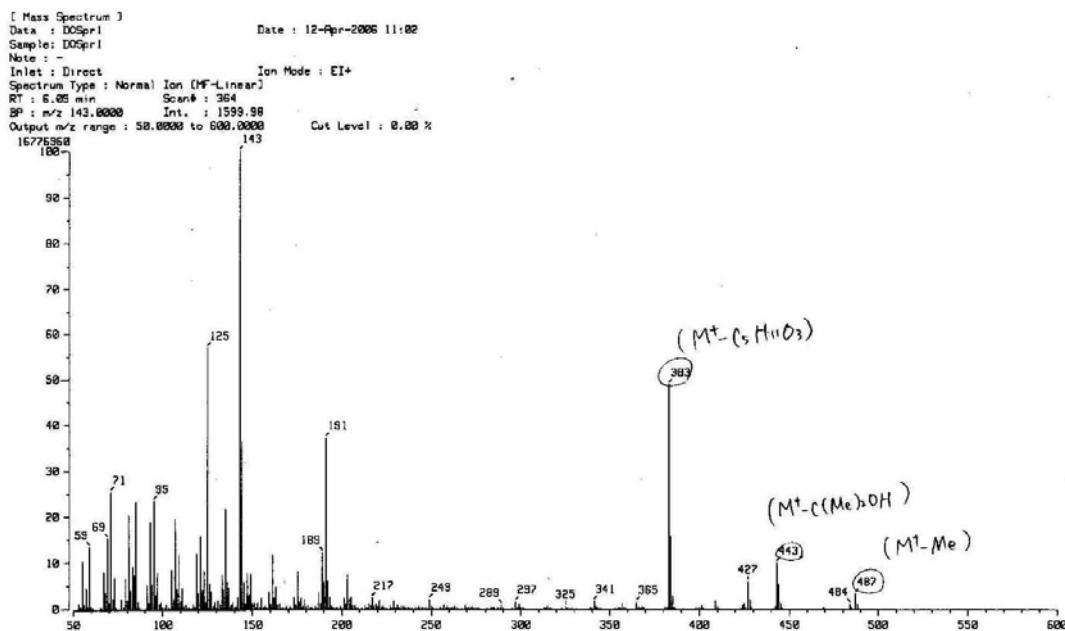

NMR data in CDCl₃ (TMS, 0.0 ppm)

NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.15(m);1.42(m)	34.25	9	1.44(m)	50.52	17	2.25(m)	48.52	25	—	71.59
2	1.57(m);1.87(m)	22.91	10	—	37.17	18	0.946(3H,s)	16.02 ^b	26	1.223(3H,s) ^d	27.45 ^c
3	4.62(bs)	78.42	11	1.16(m); 1.58(m)	22.35 ^a	19	0.852(3H,s)	15.87 ^b	27	1.104 (3H,s) ^d	24.43 ^c
4	—	36.77	12	1.57(m);1.85(m)	25.77	20	—	85.45	28	0.835(3H,s)	27.86
5	1.23(m)	50.77	13	2.06(m)	43.51	21	1.989(3H,s)	25.01	29	0.881(3H,s)	21.73
6	1.42(2H, m)	18.22	14	—	49.28	22	1.60(m); 1.76(m)	37.94	30	1.024(3H,s)	17.13
7	1.26(m);1.59(m)	35.12	15	1.10(m);1.45(m)	32.46	23	1.76(m);1.87(m)	25.70 ^a	31	—	170.8
8	—	40.94	16	1.58(m);1.75(m)	26.83	24	3.72 (t, 7.2Hz)	83.49	32	2.09(3H,s)	21.40

The signals of a-d are exchangeable each other in respect to the same letters.

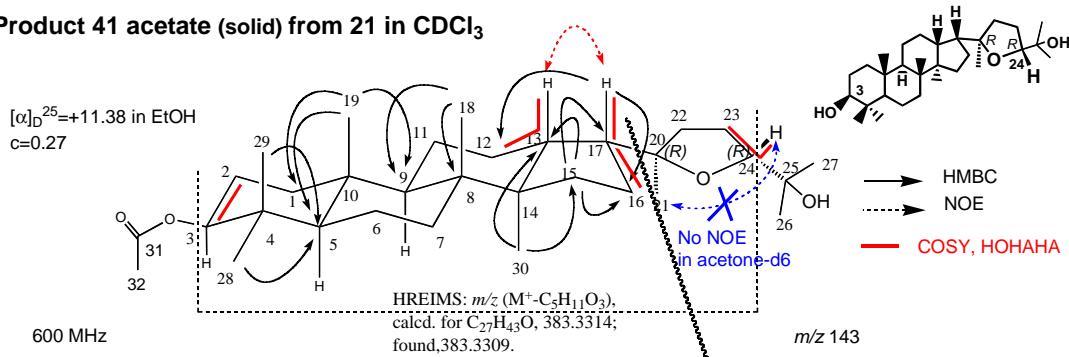
NMR data of 40 acetate in Acetone d₆.

Product 40 acetate (oil) from 21 in acetone d₆



NMR data in acetone d₆ relative to the solvent peak (δ_H , 2.04, δ_C 29.8 ppm)

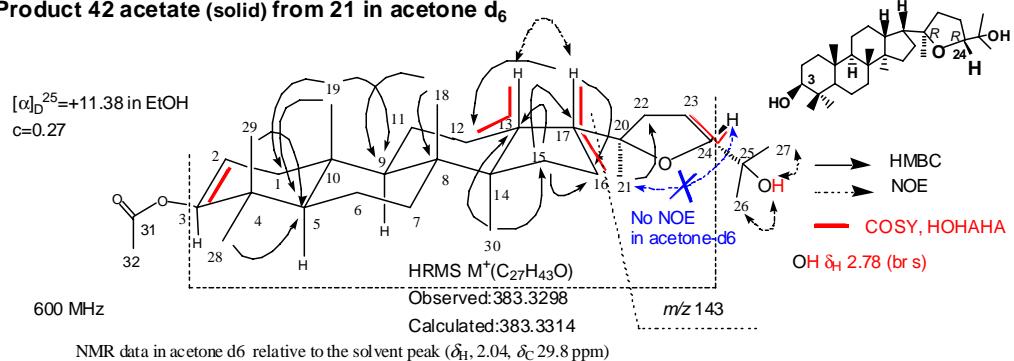
NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.23(m);1.43(m)	34.99	9	1.50 (m)	51.41	17	2.25(m)	49.16	25	—	71.61
2	1.50(m);1.90(m)	23.53	10	—	37.89	18	0.980(3H,s)	16.23	26	1.054(3H,s) ^b	26.71 ^c
3	4.56 (br s)	78.42	11	1.21(m); 1.58(m)	23.04	19	0.893 (3H,s) ^a	19.40	27	1.133(3H,s) ^b	26.34 ^c
4	—	37.41	12	1.46(m);1.90(m)	26.58	20	—	85.75	28	0.832(3H,s)	28.27
5	1.31(m)	51.63	13	2.11 (m)	44.36	21	1.191(3H,s)	25.23	29	0.898(3H,s) ^a	22.05
6	1.45(m)	18.89	14	—	49.94	22	1.58(m);1.74(m)	38.44	30	1.044(3H,s)	17.50
7	1.27(m);1.62(m)	35.92	15	1.08(m);1.45(m)	33.13	23	1.82(m);1.90(m)	26.19	31	—	170.5
8	—	41.59	16	1.63(m);1.74(m)	27.25	24	3.72 (t, 7.2 Hz)	84.63	32	2.00 (3H,s)	21.10


The signals of a-c are exchangeable in respect to the same letters.

Product 41

NMR data of 41 acetate in $CDCl_3$.

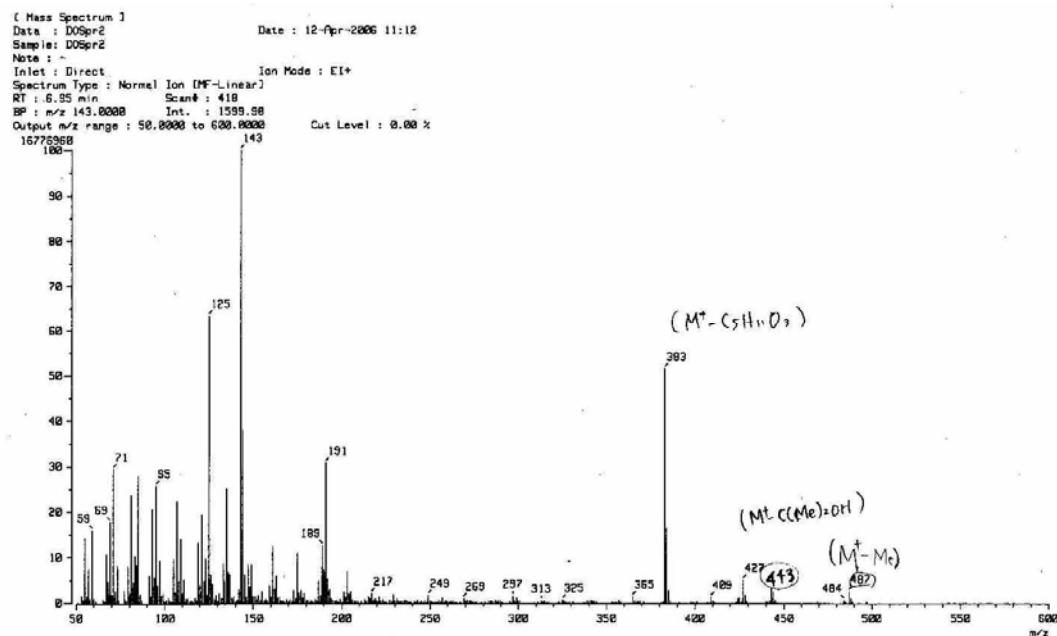
Product 41 acetate (solid) from 21 in $CDCl_3$


NMR data in $CDCl_3$ (TMS, 0.00 ppm)

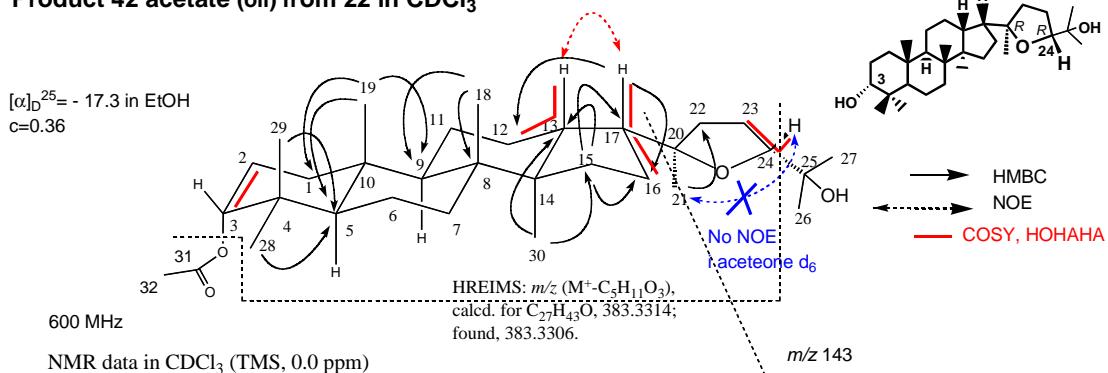
NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C	NO.	1H	^{13}C
1	1.048(m); 1.69(m)	38.70	9	1.37(dd, 12.7, 2.7Hz)	50.63	17	2.24(m)	48.56	25	—	70.12
2	1.64(2H,m)	23.73	10	—	37.08	18	0.936(3H,s)	15.83 ^c	26	1.099(3H,s) ^b	24.02 ^b
3	4.48(dd, 11.1, 5.2Hz)	80.95	11	1.17(m); 1.55(m)	22.62 ^d	19	0.857(3H,s)	16.30	27	1.200(3H,s) ^b	28.48 ^b
4	—	37.90	12	1.47(m); 1.93(m)	25.86 ^d	20	—	85.63	28	0.847(3H,s)	28.04 ^a
5	0.84(m)	55.98	13	2.07(m)	43.73	21	1.200(3H,s)	27.95 ^a	29	0.847(3H,s)	16.36 ^c
6	1.44(m); 1.52(m)	18.32	14	—	49.05	22	1.63(m); 1.90(m)	37.90	30	0.965(3H,s)	16.47 ^c
7	1.26(brd, 12.4); 1.57(m)	35.25	15	1.08(m); 1.42(m)	32.41	23	1.72(m); 1.85(m)	25.92 ^d	31	—	170.9
8	—	40.76	16	1.49(m); 1.76(m)	27.73	24	3.71(dd, 10.7, 5.2Hz)	86.95	32	2.04(3H,s)	21.31

The signals of a-d are exchangeable.

NMR data of 41 acetate in Acetone d₆.


Product 42 acetate (solid) from 21 in acetone d₆

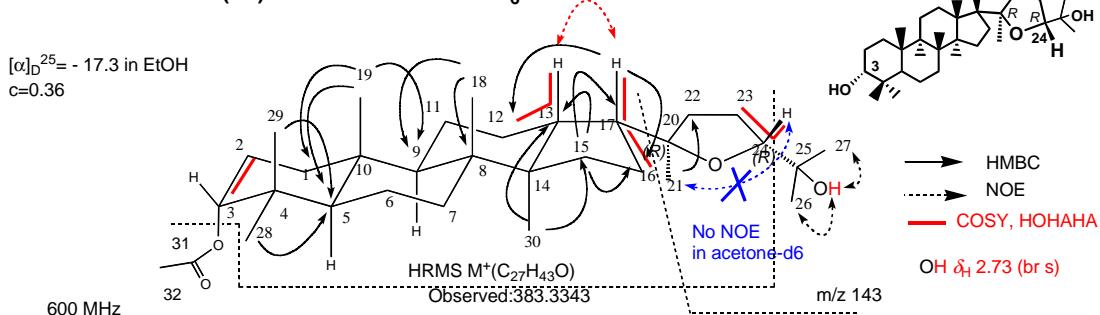
NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.08(m);1.70(m)	39.35	9	1.47(m)	51.39	17	2.25(m)	49.33	25	—	70.39
2	1.61(2H, m)	24.44	10	—	37.79	18	0.974(3H,s)	16.21	26	1.049(3H,s) ^b	25.82 ^c
3	4.43(dd, 11.4, 5.0Hz)	80.99	11	1.21(m);1.56(m)	23.33	19	0.889(3H,s)	16.66	27	1.134(3H,s) ^b	27.36 ^c
4	—	38.53	12	1.53(m);1.94(m)	26.75	20	—	86.01	28	0.843(3H,s)	28.25
5	0.915(dd, 11.6, 2.3 Hz)	55.65	13	2.08(m)	44.63	21	1.189(3H,s)	28.89	29	0.855(3H,s)	16.88 ^a
6	1.48(m);1.55(m)	19.00	14	—	49.77	22	1.57(m);1.92(m)	38.64	30	1.031(3H,s)	16.84 ^a
7	1.28(m);1.64(m)	35.99	15	1.07(m);1.43(m)	33.14	23	1.74(m);1.83(m)	26.36	31	—	170.67
8	—	41.46	16	1.53(m);1.77(m)	28.27	24	3.71(dd, 10.6, 5.2)	88.24	32	1.980(3H,s)	21.05


The signals of a-c exchangeable in respect to the same letters.

Product 42

NMR data of 42 acetate in CDCl₃

Product 42 acetate (oil) from 22 in CDCl₃

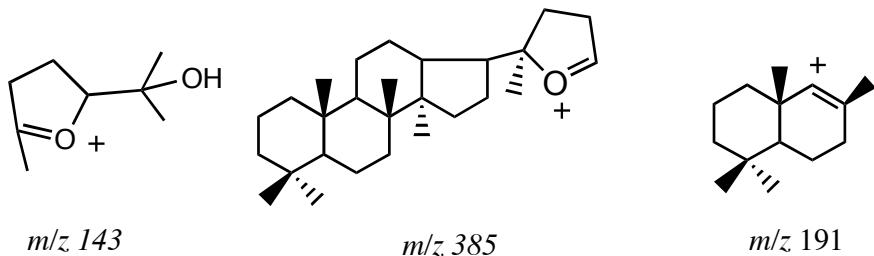


NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.17(m); 1.42(m)	34.25	9	1.46(m)	50.49	17	2.24(m)	48.55	25	—	70.15
2	1.58(m); 1.78(m)	22.92	10	—	37.18	18	0.947(3H,s)	15.87	26	1.103(3H,s) ^a	23.98 ^b
3	4.62(bs)	78.42	11	1.17(m); 1.58(m)	22.44	19	0.855(3H,s)	16.04	27	1.208(3H,s) ^a	28.88 ^b
4	—	36.77	12	1.46(m); 1.95(m)	25.86 ^c	20	—	85.64	28	0.834(3H,s)	28.00
5	1.23(m)	50.78	13	2.07(m)	43.75	21	1.208(3H,s)	28.00	29	0.882(3H,s)	21.73
6	1.42(2H,m)	18.25	14	—	49.16	22	1.62(m); 1.92(m)	38.01 ^c	30	1.023(3H,s)	16.53
7	1.26(m); 1.61(m)	35.15	15	1.08(m); 1.42(m)	32.42	23	1.73(m); 1.83(m)	25.98	31	—	170.8
8	—	40.94	16	1.50(m); 1.76(m)	27.65	24	3.72(dd, 10.8, 5.1Hz)	87.05	32	2.089(3H,s)	21.40

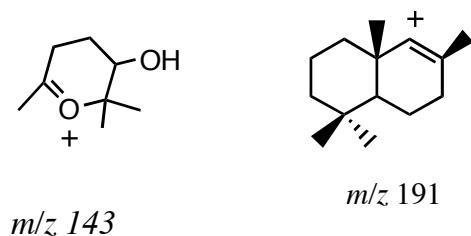
The signals of a-c are exchangeable in respect to the same letters.

NMR data of 42 acetate in Acetone d₆.

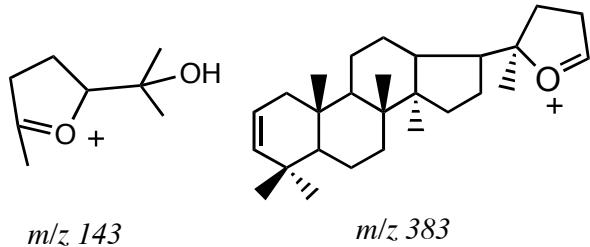
Product 42 acetate (Oil) from 22 in acetone d₆

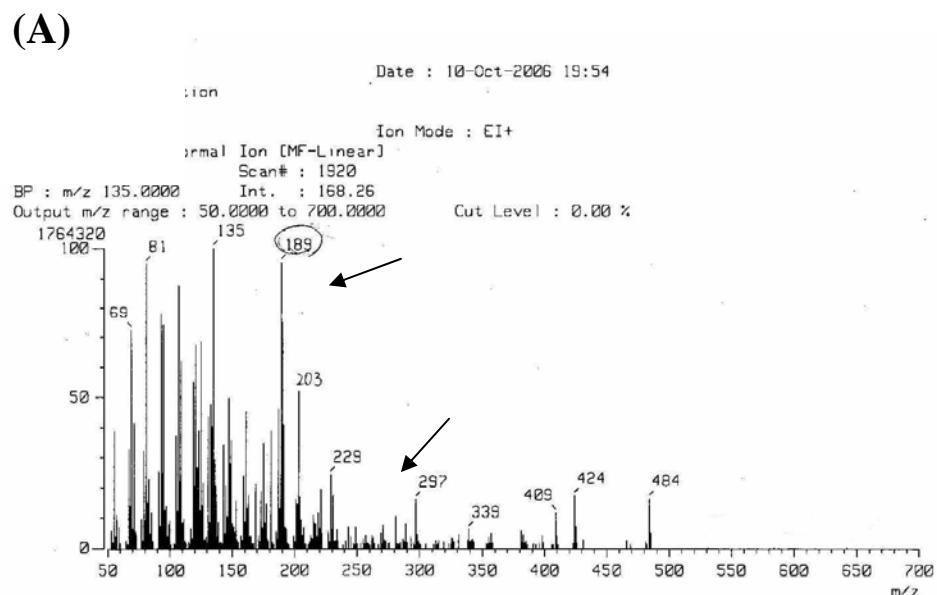
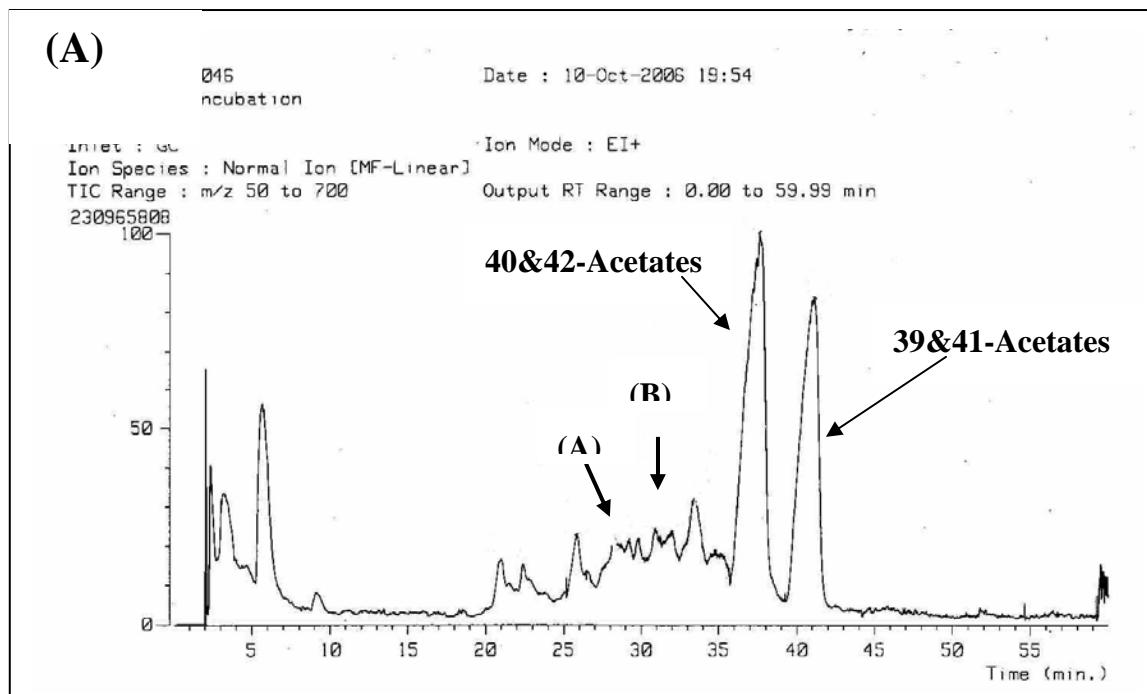

NMR data in acetone d₆ relative to the solvent peak (δ _H 2.04, δ _C 29.8 ppm)

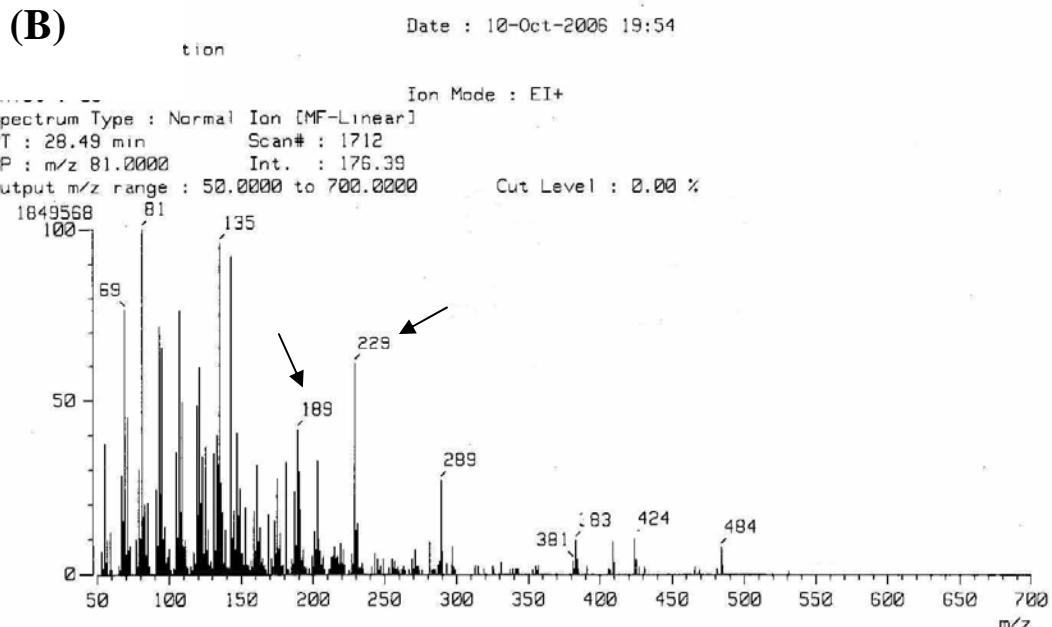
NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C	NO.	¹ H	¹³ C
1	1.22(m); 1.43(m)	34.99	9	1.51(m)	51.40	17	2.25(m)	49.31	25	—	70.43
2	1.51(m); 1.90(m)	23.54	10	—	37.89	18	0.981(3H,s)	16.25	26	1.056(3H,s) ^a	25.79 ^b
3	4.56 (br s)	78.43	11	1.22(m); 1.58(m)	23.14	19	0.895(3H,s)	16.41	27	1.139(3H,s) ^a	27.34 ^b
4	—	37.41	12	1.53(m); 1.94(m)	26.76	20	—	86.03	28	0.832(3H,s)	28.27
5	1.31(2H, m)	51.64	13	2.11(m)	44.59	21	1.193(3H,s)	28.90	29	0.898(3H,s)	22.06
6	1.45(m)	18.91	14	—	49.83	22	1.57(m); 1.92(m)	38.68	30	1.046(3H,s)	17.00
7	1.27(m); 1.63(m)	35.95	15	1.07(m); 1.44(m)	33.11	23	1.76(m); 1.85(m)	26.38	31	—	170.5
8	—	41.63	16	1.54(m); 1.76(m)	28.23	24	3.72(dd, 10.6, 5.3Hz)	88.28	32	2.00(3H,s)	21.10


The signals of a-b are exchangeable in respect the same letters.

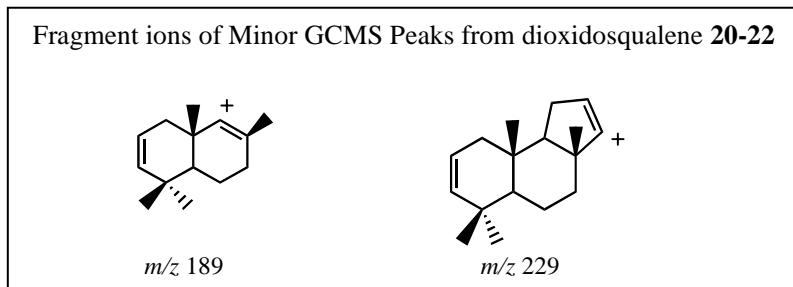
7. Major Fragment ions of Enzymatic Products in EI-MS of Products 33,34 and 37-42


Products 33, 37, 40



Product 34



Acetates of Products 39-42



8. GCMS of acetate mixtures obtained by incubating diastereomeric mixture of dioxidosqualene 20-22 (Minor Peaks)

The ions of m/z 189 and m/z 229 suggest the following fragments. m/z 229 is characteristic of a 6/6/5-fused tricyclic skeleton. Probably, these minor product peaks would contain bi- and tricyclic compounds. It should be noted that (B) and (C) do not show the EIMS spectra of pure products, because many peaks are overlapped in the GCMS trace (A).

7. References

- 1) a) Sato, T. and T. Hoshino, *Biosci. Biotechnol. Biochem.*, 1999, **63**, 1171. b) T. Sato, M. Kouda and T. Hoshino, *Biosci. Biotechnol. Biochem.*, 2004, **68**, 728-738.
- 2) a) J-L. Abad, J. Casa, F. Sanchez-Baeza and A. Messeguer, *J. Org. Chem.*, 1995, **60**, 3648-3656. b) G.A. Crispino and K. B. Sharpless, *Tetrahedron Lett.*, 1992, **33**, 4273-4274.
- 3) R.B. Boar and K. Damps, *J. Chem. Soc., Perkin Trans. 1*, **1997**, 709-712.
- 4) J-Luis Abad and F. Camps, *Tetrahedron*, 2004, **60**, 11519-11525.