Supplementary material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Supplementary Information for

Substituent Effects on Aromatic Stacking Interactions

Scott L. Cockroft, Julie Perkins, Cristiano Zonta, Harry Adams, Sharon E. Spey, Caroline. M. R. Low, Jeremy G. Vinter, Kevin R. Lawson, Christopher J. Urch, and Christopher. A. Hunter*

General Synthetic and Analysis Procedures: Chemicals were purchased and used without further purification. CH₂Cl₂ was dried by distillation from CaH₂. Thin layer chromatography was carried out using aluminium sheets coated with silica gel 60F (Merck), and the plates were inspected using UV light. Column chromatography was carried out using silica gel 40-60 μ m (BDH). Preparative TLC was performed using 20 cm x 20 cm, 1500 μ m silica gel plates containing UV 254 nm indicator (Analtech). Melting points were determined using a Reichter Kofler hot stage. Elemental analyses were carried out using a Perkin Elmer 2400 CHN analyzer working at 975 °C. FAB mass spectra were carried out on a Kratos MS 80 in positive ion mode with *m*-nitrobenzyl alcohol as a matrix. ES+ and ES- mass spectra were obtained on a Micromass Platform spectrometer. GC/MS traces and chemical ionization spectra were obtained using a Perkin Elmer TurboMass mass spectrometer and Autosystem XL gas chromatograph. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on either a Bruker AC250 or AMX400 spectrometer with residual solvent as an internal standard. Fluorine chemical shifts were referenced to an external CFCl₃ reference. All chemical shifts are quoted in ppm on the δ scale and the coupling constants expressed in Hz. Signal splitting patterns are described as follows: s (singlet), br s (broad singlet), d (doublet), t (triplet), m (multiplet), * denotes signal due to nitropyrrole minor conformer as

This journal is © The Royal Society of Chemistry 2007

detailed in reference¹. \dagger denotes signal due to ~30% Z-methylamide conformer of compounds **20d** and **20f** (or their precursors) as discussed in the main text.

Reactions were carried out according to the following general procedures unless otherwise stated:

Acid chloride preparation. Acid chlorides were formed by suspending the corresponding acid in dry CH_2Cl_2 under a nitrogen atmosphere. An excess of oxalyl chloride was added and 1-2 drops of catalytic *N*,*N*-dimethylformamide. The reaction mixture was stirred until all the acid had gone in to solution (typically 30-60 minutes), and the CH_2Cl_2 and excess oxalyl chloride were removed under reduced pressure. The acid chloride was used without further purification.

Amide coupling reactions. These reactions were carried out in CH_2Cl_2 under a nitrogen atmosphere. The acid chloride was prepared as above, redissolved in CH_2Cl_2 and added dropwise to a stirred solution of the amine and base (where applicable) in CH_2Cl_2 or $CHCl_3$. The reactions were stirred until the reaction was considered to be complete (typically for 16 h) and the solvent removed under reduced pressure. Products were isolated by column chromatography or preparative TLC.

Piperidine deprotection using Me₃Sil. The benzylchloroformate-protected or bis(benzylchloroformate)-protected compound was dissolved in CH_2Cl_2 or CH_3CN respectively. Me₃SiI was added, and the mixture stirred until the reaction was complete as determined by TLC (0.5 - 16 h). The solvent was removed under reduced pressure, and the resulting solid was washed repeatedly with diethyl ether and dried.

Piperidine and aniline deprotection using H₂/Pd black. The bis-(benzylchloroformate)-protected compound was dissolved in methanol, one small spatula of Pd black was added and the reaction was stirred under a H₂ atmosphere for 16 h. The reaction mixture was filtered through cotton wool and the solvent removed under reduced-pressure.

This journal is © The Royal Society of Chemistry 2007

Solubilising group coupling. The solubilising group acid (Sol-OH), 1-hydroxybenzotriazole (HOBt) and 1,3-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) were dissolved in CH_2Cl_2 and stirred for 1 h, and then the free piperidine was added portion-wise with a few drops of triethylamine. The reaction mixture was stirred for 16 h. The reaction was quenched with a small amount of methanol, and the solvent was removed under reduced pressure. The reaction mixture was redissolved in CH_2Cl_2 washed with 1 M HCl, saturated Na₂CO₃ and dried over Na₂SO₄. The product was isolated by column chromatography or preparative TLC ($CH_2Cl_2/Methanol 98:2$).

Compound 1: 4-nitroso-*N*,*N*,3,5-tetramethylaniline. *N*,*N*-tetramethylaniline (10.26 g, 6.66 ml, 68.0 mmol) was dissolved in concentrated HCl (100 ml) at -10 °C in an ethylene glycol/dry ice bath. Sodium nitrite (4.69 g, 68 mmol) in water (8.4 ml) was added below the surface of the stirring HCl solution over 1h. After one further hour, the reaction mixture was allowed to return to room temperature before water (20 ml) was carefully added. Concentrated NaOH solution was added to basify the aqueous phase. The green product was extracted from the yellow aqueous phase with CH_2Cl_2 (100 ml). The organic phase was passed through a cotton wool plug to remove emulsified water and the solvent removed under reduced pressure to yield green crystals (3.27 g, 50%) which were used without further purification.

¹H NMR (CDCl₃) δ 6.30 (s, 2H, **ar**) 3.14 (s, 6H, **nme**) 2.65 (s, 6H, **me**) NO me ar NMe₂ nme

¹³C NMR (CDCl₃) δ161.7, 154.4, 138.2, 110.8, 40.2, 21.2 ppm

Compound 2: N,N,2,6-tetramethylaniline. A green solution of 4-nitro-*N,N,3,5-tetramethylaniline* (1) (0.3 g, 15.4 mmol) was refluxed with SnCl₂ (9.0g, 47.5 mmol) in ethanol

This journal is © The Royal Society of Chemistry 2007

(100 ml) for 1.5 h until it changed to a brown/deep red colour. The reaction was allowed to cool to room temperature, concentrated NaOH was added to basify the solution. A pink precipitate formed leaving an orange solution. Water (200 ml) was added and the product extracted with CH_2Cl_2 (1000 ml). The product was identified as a purple spot by TLC. The solvent was removed under reduced pressure to yield a brown oil which was purified using column chromatography (silica, ethylacetate/hexane 50:50 v/v, pink/yellow band collected). The solvent was removed under reduced pressure to yield a pink/orange oil (2.6g, 90%), which was used without further purification.

¹H NMR of free base (CDCl₃) δ

6.55 (s, 2H, **ar**) 3.25 (br s, 2H, **nh2**) 2.85 (s, 6H, **nme**) 2.18 (s, 6H, **me**) ESMS m/z 165.1398 (MH⁺) (calculated for C₁₀H₁₇N₂ 165.1392)

Compound 3: 3,5-dimethyl-4-nitroanisole. Concentrated nitric acid (69% v/v, 4 ml) in glacial acetic acid (6 ml) was added dropwise over 1h to a stirred solution of 3,5-dimethylanisole (3.0 g, 22 mmol) in glacial acid (40 ml) at 15 °C. The reaction was stirred for 30 minutes after which time a very dark blue colouration developed. The reaction mixture was neutralised with 1 M NaOH and extracted with CH_2Cl_2 (3 x 200 ml). The organic phase was passed through a cotton wool plug to remove suspended water and the solvent removed under reduced pressure. GC/MS(CI) and ¹H NMR identified the yellow crystals collected (3.7 g) to be a ~50:50 mixture of 3,5-dimethyl-4-nitroanisole and 3,5-dimethyl-2-nitroanisole. This isomer mixture was dissolved in ethanol (250 ml) and refluxed with SnCl₂ (30 g, 0.158 mol) for 70 h. The reaction mixture was allowed to cool and added to 1 M NaOH solution (1000 ml). The cream coloured precipitate and product were extracted with CH_2Cl_2 (1000 ml) and the organic phase was seen to turn a pink colour. The residual colouration in the aqueous phase was extracted with

This journal is © The Royal Society of Chemistry 2007

diethyl ether. The organic extracts were combined, solvents were removed under reduced pressure and products purified by column chromatography (silica, CH₂Cl₂). Unreacted 3,5-dimethyl-4-nitroanisole (**3**) was the first yellow band to elute (1.8 g, 50%). The unwanted 3,5-dimethyl-2-nitroanisole had been completely reduced to more highly retained 2,6-dimethyl-3-nitroaniline (brown/pink band).

¹H NMR (CDCl₃) δ 6.59 (s, 2H, **ar**) 3.80 (s, 3H, **ome**) 2.31 (s, 6H, **me**) ¹³C NMR (CDCl₃) δ 160.0, 145.5, 132.4, 113.9, 55.5, 18.4 ppm

CI GC/MS m/z 182 (MH⁺), (calculated for C₉H₁₂NO₃ 182)

Compound 4: 2,6-dimethyl-4-methoxyaniline. Glacial acetic acid (15 ml) was carefully added dropwise to 3,5-dimethyl-4-nitroanisole (3) (0.85 g 47.0 mmol) and zinc metal dust (1.30 g) refluxing in toluene (10 ml). After 2.5 h the colour of the solution changed from yellow to red/brown with a white precipitate. The reaction was allowed to cool and filtered. The solvent was removed from the filtrate to yield a dark oil, which was subsequently dissolved in CH_2Cl_2 (100 ml) and washed with 1 M NaOH (100 ml). The organic layer was removed and the aqueous layer was extracted with further CH_2Cl_2 until all colouration was removed. CH_2Cl_2 extracts were combined and passed through a cotton wool plug to remove suspended water. The solvent was removed under reduced pressure to yield a dark oil. The oil was dissolved in diethyl ether and acidified (HCl) diethyl ether added to precipitate the hydrochloride salt of the product from solution. The purple precipitate was filtered off and dried under vacuum (0.61 g, 69%).

¹H NMR free base (CDCl₃) δ
6.55 (s, 2H, *ar*)
3.72 (s, 3H, *ome*)
2.16 (s, 6H, *me*)

NH₂ nh me ar OMe ome Supplementary material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

Not seen (s, 2H, **nh**) ¹H NMR HCl salt (CDCl₃) δ 10.21 (br s, 3H, **nh**) 6.55 (s, 2H, **ar**) 3.82 (s, 3H, **ome**) 2.65 (s, 6H, **me**) ESMS *m*/*z* 152.1080 (MH⁺), (calculated for C₉H₁₄NO 152.1075)

Compound 5: N-tosyl-2,6-dimethylaniline. 2,6-Dimethylaniline (34.0 g, 28.0 mmol) and toluenesulphonyl chloride (63.9 g 33.7 mmol) were dissolved/suspended in pyridine (75 ml) and refluxed for 4 h. The reaction mixture was poured whilst stirring into 2 M HCl solution (250 ml), and extracted with diethyl ether. The solvent was removed under reduced pressure. The resulting solid was recrystallised from hot ethanol to yield white crystals (47.2 g, 61%).

¹H NMR (CDCl₃) δ 7.57 (d, J = 7.1 Hz, 2H, **tar1**) 7.24 (d, *J* = 7.1 Hz, 2H, *tar2*) tar2 tme tar1 7.08 (t, 1H, **t**) `ŅH^{nh} 6.99 (d, 2H ar) 6.08 (br s, 1H, **nh**) 2.41 (s, 3H, *tme*) 2.03 (s, 6H, **me**) ¹³C NMR (CDCl₃) *δ*143.6, 137.7, 132.6, 129.6, 128.7, 127.7, 127.2, 21.5, 18.7 ppm FAB MS m/z 276 (MH⁺), (calculated for C₁₅H₁₈NO₂S 276). CHN Found C 65.55 H 6.25 N 5.00 S 11.59 (calculated for C15H17NO2S C 65.43 H 6.22 N 5.09 S 11.64) mp 124-126°C

This journal is © The Royal Society of Chemistry 2007

Compound 6: N-tosyl-2,6-dimethyl-4-nitroaniline. *N*-tosyl-2-6-dimethylaniline (5) (7.05 g, 25.6 mmol) was suspended in glacial acetic acid (145 ml), conc. nitric acid (30 ml) and water (145 ml). To this was added sodium nitrite (3.53 g, 51.3mmol) and the reaction was heated at 140 $^{\circ}$ C for 4 h. The reaction mixture was cooled to room temperature and then cooled in a refrigerator overnight. The resulting colourless crystals were filtered off and washed repeatedly with water until the washings were neutral (6.1 g, 74%).

¹H NMR (CDCl₃) δ 7.90 (s, 2H, **s**) 7.60 (d, J = 7.1Hz, 2H, **tar1**) 7.30 (d, J = 7.1 Hz, 2H, **tar2**) 6.20 (br s, 1H, **nh**) 2.45 (s, 3H, **tme**) 2.15 (s, 6H, **me**) ¹³C (CDCl₃) δ 146.3, 144.6, 139.4, 138.8, 137.3, 130.1, 127.2, 123.7, 21.8, 19.2 ppm HRMS-CI m/z 320.0843 (M+), (calculated for C₁₅H₁₆N₂O₄S 320.0831) mp 165-167 °C

Compound 7: **2,6-dimethyl-4-nitroaniline.** *N*-Tosyl-2,6-dimethyl-4-nitroaniline (**6**) (3.0 g, 9.4 mmol) was dissolved in H_2SO_4 (15 ml) and water (1 ml) and warmed at 40°C for 16 h. The reaction mixture was poured slowly into an ice/water/NaOH mixture. This was extracted with ethyl acetate. The solvent was removed under reduced pressure to yield yellow crystals (1.0 g, 64%).

¹H NMR (CDCl₃) δ 7.90 (s, 2H, **ar**) 4.30 (br s, 2H, **nh**) 2.20 (s, 6H, **me**) ¹³C (CDCl₃) δ 149.3, 138.1, 124.5, 120.4, 17.4 ppm HRMS-CI *m/z* 166.0734 (M⁺), (calculated for C₈H₁₀N₂O₂ 166.0742)

This journal is © The Royal Society of Chemistry 2007

mp 165-167°C

Compound 8a: N,N'-bis[(2,6-dimethyl-4-dimethylamino)-phenyl]-isophthalamide. 8a was prepared by the standard amide coupling procedure using 2,6-dimethyl-4-dimethylaminoaniline (2) (0.80 g, 0.48 mmol), isophthaloyl dichloride (0.48 g, 0.24 mmol) and triethylamine (0.60 g, 0.58 mmol) in CH₂Cl₂ (50 ml). Purification by column chromatography (ethyl acetate/hexane 60:30, first band) yielded a colourless solid (0.85 g, 76%).

¹H NMR (CDCl₃) δ 8.46 (s, 1H, **s**) 8.10 (d, J = 7.6 Hz, 2H, **d**) 7.62 (t, J = 7.6 Hz, 1H, **t**) ^{Me₂N</sub> ^{Me₂N</sub> 7.39 (s, 2H, **nh**) 6.49 (s, 4H, **aa**) 2.93 (s, 12H, **nme2**) 2.25 (s, 12H, **me**) ¹³C NMR (CDCl₃) δ 165.7, 149.9, 136.1, 135.2, 130.2, 125.9, 123.0, 112.2, 40.7, 18.9 ppm HRMS-CI *m/z*: 459.2773 (MH⁺), (calculated for C₂₈H₃₅N₄O₂: 459.2760) mp >250 °C}}

Compound 8b: N,*N*'-bis(2,6-dimethylphenyl)-isophthalamide. 8b was prepared by the standard amide coupling procedure using 2,6-dimethylaniline (2.0 g, 16.5 mmol), isophthaloyl dichloride (1.65 g, 8.1 mmol) and triethylamine (3.3 g, 32.8 mmol), with a catalytic amount of 4-dimethylaminopyridine in CH₃CN (120 ml). Purification by column chromatography (ethyl acetate/hexane 60:30) yielded a colourless solid (1.3 g, 43%).

This journal is © The Royal Society of Chemistry 2007

7.66 (t, J = 7.6 Hz, 1H, **t**) 7.50 (s, 2H, **nh**) 7.14 (m, 6H, **at**, **ad**) 2.29 (s, 12H, **me**) ¹³C NMR (CDCl₃) δ 164.9, 135.5, 135.0, 133.4, 130.4, 129.4, 128.4, 127.7, 126.1, 18.5 ppm HRMS-ES *m/z*: 373.1898 (MH⁺), (calculated for C₂₄H₂₅N₂O₂ 373.1916) mp >250 °C

Compound 8c: N,N'-bis-(4-methoxy-2,6-dimethyl-phenyl)-isophthalamide. 8c was prepared by the standard amide coupling procedure using 2,6-dimethyl-4-methoxyaniline (4) (1.0 g, 6.6 mmol), isophthaloyl dichloride (0.68 g, 3.3 mmol) and triethylamine (1.53 g, 8.0 mmol) in CH_2Cl_2 (80 ml). Purification by column chromatography (gradient of CH_2Cl_2 /methanol 100:0 to 97:3) yielded a colourless solid (0.38 g, 27%).

¹³C NMR (CDCl₃) δ : 165.3, 158.5, 137.0, 135.0, 130.3, 129.3, 126.3, 126.0, 113.5, 55.3, 18.8 ppm HRMS-ES *m/z*: 433.2118 (MH⁺), (calculated for C₂₆H₂₉N₂O₄: 433.2127)

Compound 8d: N,N'-bis-(4-chloro-2,6-dimethyl-phenyl)-isophthalamide. 8d was prepared by the standard amide coupling procedure using 2,6-dimethyl-4-chloroaniline (0.64 g, 3.3 mmol),

This journal is © The Royal Society of Chemistry 2007

isophthaloyl dichloride (0.12 g, 0.8 mmol) and triethylamine (0.51 g, 5.0 mmol) in CH_2Cl_2 (20 ml). Purification by preparative TLC (CH_2Cl_2 / methanol 95:5) yielded a colourless solid (0.32 g, 87%).

¹H NMR (CDCl₃) δ 8.48 (s, 1H, **s**) 8.13 (d, J = 7.6 Hz, 2H, **d**) 7.67 (t, J = 7.6 Hz, 1H, **t**) 7.44 (s, 2H, **nh**) 7.14 (s, 4H, **aa**) 2.27 (s, 12H, **me**) ¹³C NMR (CDCl₃/ CD₃OD) δ 166.1, 137.5, 134.4, 132.7, 132.5, 130.8, 129.2, 128.0, 126.3 ppm HRMS-ES m/z: 441.1153 (MH⁺), (calculated for C₂₄H₂₃N₂O₂Cl₂: 441.1137)

Compound 8e: N,N'-bis-(2,6-dimethyl-4-nitro-phenyl)-isophthalamide. 8e was prepared by the standard amide coupling procedure using 2,6-dimethyl-4-nitroaniline (7) (0.64 g, 3.8 mmol), isophthaloyl dichloride (0.39 g, 1.9 mmol) in refluxing pyridine (20 ml) for 3 days. Purification by column chromatography (CH₂Cl₂/Methanol 100:0 to 98:2) yielded a colourless solid (0.30 g, 33%).¹H

NMR (CDCl₃) δ

8.52 (s, 1H, **s**) 8.18 (d, J = 7.6 Hz, 2H, **d**) 8.03 (s, 4H, **aa**) 7.73 (t, J = 7.6 Hz, 1H, **t**) 9.10 7.58 (s, 2H, **nh**) 2.40 (s, 12H, **me**) ¹³C NMR (DMSO- d_6) & 165.0, 145.7, 134.2, 137.9, 134.8, 131.4, 129.2, 127.7, 122.9, 18.6 ppm HRMS-CI m/z: 463.1619 (MH⁺), (calculated for C₂₄H₂₃N₄O₆: 463.1617) HRMS-ES m/z: 485.1427 (MNa⁺), (calculated for C₂₄H₂₂N₄O₆Na: 485.1437) mp >250 °C

This journal is © The Royal Society of Chemistry 2007

Compound 9: N,N'-bis-(2,6-difluoro-phenyl)-isophthalamide. 9 was prepared by the standard amide coupling procedure using 2,6-difluoroaniline (0.60 g, 4.6 mmol), isophthaloyl dichloride (0.16 g, 0.8 mmol) and triethylamine (0.16 g, 1.6 mmol) in CH₂Cl₂ (10 ml). Purification by preparative TLC (Et₂O, first band) yielded a colourless solid (0.09 g, 31%).

```
<sup>1</sup>H NMR (CDCl<sub>3</sub>) \delta

8.50 (s, 1H, s)

8.16 (d, J = 7.6 Hz, 2H, d)

7.67 (t, J = 7.6 Hz, 1H, t)

7.53 (s, 2H, nh)

7.26 (under CDCl<sub>3</sub>, 4H, ad)

7.02 (t, J = 8.0 Hz, 2H, at)

<sup>13</sup>C NMR (CDCl<sub>3</sub>/CD<sub>3</sub>OD) \delta 166.0 (t), 159.3 (d), 156.8 9 (d), 133.7, 131.6, 129.1, 127.9 (t), 126.8, 111.7 (dd) ppm

<sup>19</sup>F NMR (CDCl<sub>3</sub>) \delta-118 ppm

HRMS-ES m/z: 389.0913 (MH<sup>+</sup>), (calculated for C<sub>20</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub>F<sub>4</sub>: 389.0913)
```

Compound 10: N,N'-dihexyl-isophthalamide. 10 was prepared as previously described.²

Compound 11: 4,4-bis-(4-amino-3,5-dimethyl-phenyl)-piperidine-1-carboxylic acid benzyl ester. 11 was prepared as previously described.¹

Compound 12g: 4-(4-Amino-3,5-dimethyl-phenyl)-4-3-piperidine-1-carboxylic acid benzyl ester.

12g was prepared as previously described.¹

Compound 13a: 4-(4-amino-3,5-dimethyl-phenyl)-4-[4-(2,6-dimethyl-benzoylamino)-3,5-dimethylphenyl]-piperidine-1-carboxylic acid benzyl ester. 13a was prepared by the standard amide coupling procedure using 2,6-dimethyl benzoic acid (0.75 g, 5.0 mmol), 11 (11.4 g, 24.9 mmol) and

This journal is © The Royal Society of Chemistry 2007

triethylamine (0.61 g, 6.0 mmol) in CH_2Cl_2 (200 ml). The reaction mixture was washed with 1 M HCl to recover excess **11**. Purification by medium pressure column chromatography (CH_2Cl_2 /methanol 98:2) yielded a colourless solid (1.50 g, 51%).

¹H NMR (DMSO- d_6) δ 9.66 (s, 1H, **p1**) pr3 7.40-7.30 (m, 6H, n2, pr2, pr3, pr4) 7.21 (t, 1H, **ar2**) pr1 7.10 (d, 2H, **ar1**) h3 7.01 (s, 2H, **b3**) H₂N b2 6.88 (s, 2H, **b2**) 5.05 (s, 2H, **pr1**) ar3 ar2 3.60-3.20 (m, 6H, **n1**, **c2**) 2.38 (s, 6H, **m1**) 2.30-2.10 (m, 4H, **c1**) 2.24 (s, 6H, **b4**) 2.11 (s, 6H, **b1**) ¹³C NMR (CDCl₃) δ 168.4, 161.5, 155.4, 134.8, 134.5, 128.9, 128.4, 127.8, 127.7, 127.1, 127.0, 105.5, 66.9, 43.5, 41.0, 20.0, 19.9, 18.3 ppm HRMS-CI m/z 590.3339 (MH⁺), (calculated for $C_{38}H_{44}N_3O_3$ 590.3382)

Compound 13b: 4-(4-amino-3,5-dimethyl-phenyl)-4--piperidine-1-carboxylic acid benzyl ester. 13b was prepared as previously described.¹

Compound 13c: 4-{4-[(acridine-9-carbonyl)-amino]-3,5-dimethyl-phenyl}-4-(4-amino-3,5dimethyl-phenyl)-piperidine--carboxylic acid benzyl ester. 13c was prepared by the standard amide coupling procedure using 9-acridine-carboxylic acid (2.0 g, 8.9 mmol), 11 (20 g, 44.7 mmol) and pyridine (5 ml) in CH₂Cl₂. Purification by column chromatography (CH₂Cl₂/methanol 98:2, second band was excess **8**, third band was product) yielded a yellow solid (3.3 g, 60%).

This journal is © The Royal Society of Chemistry 2007

¹H NMR (CDCl₃) δ 8.19 (d, 2H, **a1**) pr1 8.10 (d, 2H, **a4**) c2 с1 b3 b1 7.87 (s, 1H, **n2**) b4 n2 7.70 (t, 2H, **a3**) b2 H_2N n1 7.50 (t, 2H, **a2**) 7.40-7.30 (m, 5H, pr2, pr3, pr4) 7.03 (s, 2H, **b3**) 6.83 (s, 2H, **b2**) 5.05 (s, 2H, **pr1**) 3.80-3.30 (m, 6H, **n1**, **c2**) 2.47 (s, 6H, **b4**) 2.40-2.20 (m, 4H, **c1**) 2.16 (s, 6H, **b1**) 13 C NMR (CDCl₃) δ 165.5, 155.3, 148.4, 147.4, 141.0, 140.8, 136.9, 134.6, 131.0, 130.3, 129.6, 128.4, 127.9, 127.7, 127.1, 126.9, 126.8, 125.1, 122.3, 121.7, 66.9, 45.5, 41.0, 35.8, 20.0, 18.0 ppm HRMS-CI m/z 663.3363 (MH⁺), (calculated for $C_{43}H_{43}N_4O_3$ 663.3378) mp 163-165 °C

Compound 13e: 4-(4-amino-3,5-dimethyl-phenyl)-4-[4-(2,6-dimethyl-4-nitro-benzoylamino)-3,5dimethyl-phenyl]-piperidine-1-carboxylic acid benzyl ester. 13e was prepared by the standard amide coupling procedure using 2,6-dimethyl-4-nitrobenzoic acid (0.75 g, 4.0 mmol, prepared according to the procedure described in reference³ 11 (3.0 g, 6.5 mmol) and triethylamine (1.1 g, 10.9 mmol) in toluene (200 ml). The reaction mixture was refluxed overnight. The reaction mixture was washed with 1 M HCl to recover excess 11. Purification by column chromatography (CH₂Cl₂/methanol 98:2) yielded a yellow solid (0.50 g, 20%)

¹H NMR (CDCl₃) δ

7.91 (s, 2H, **ar2**)

This journal is © The Royal Society of Chemistry 2007

¹³C NMR (CDCl₃) δ 166.61, 155.40, 147.31, 147.28, 143.60, 140.83, 140.45,136.82, 136.43, 135.24, 134.42, 131.15, 130.65, 122.45, 121.82, 121.63, 66.90, 53.50, 43.40, 41.04, 35.87, 19.99, 19.85, 18.06 ppm HRMS-CI m/z 635.323 (MH⁺), (calculated for C₃₈H₄₃N₄O₅ 635.321) mp 121-122°C

Compound 13f: 4-(4-amino-3,5-dimethyl-phenyl)-4-(3,5-dimethyl-4-pentafluorobenzoylaminophenyl)-piperidine-1-carboxylic acid benzyl ester. 13f was prepared as previously described.¹ *Compound 14a:* 4-[4-(2,6-dimethyl-benzoylamino)-3,5-dimethyl-phenyl]-4-{3,5-dimethyl-4-[(4nitro-1H-pyrrole-2-carbonyl)-amino]-phenyl}-piperidine-1-carboxylic acid benzyl ester. 14a was prepared by the standard amide coupling procedure using 4-nitro-pyrrole-2-carboxylic acid (0.49 g, 0.32 mmol), 13a (1.56 g, 0.26 mmol) and pyridine (1 ml) in CH₂Cl₂ (75 ml). Purification by column chromatography (CH₂Cl₂/methanol 98:2), yielded a pale yellow solid (0.80 g, 41%).

This journal is © The Royal Society of Chemistry 2007

7.64 (s, 1H, **p3**) 7.50-6.90 (m, 8H, **ar2**, **ar3**, **pr2**, **pr3**, **pr4**) 5.07 (s, 2H, **pr1**) 3.60-3.40 (m, 4H, **c2**) 2.39 (s, 6H, **ar1**) 2.45-2.35 (m, 4H, **c1**) 2.28 (s, 6H, **b4**) 2.15 (s, 6H, **b1**) ¹³C NMR (DMSO- d_6) δ 167.9, 158.2, 155.0, 145.5, 145.0, 139.0, 137.5, 136.8, 135.9, 135.5, 134.3, 133.1, 132.5, 128.8, 128.6, 128.2, 127.9, 126.7, 126.5, 106.5, 66.5, 43.8, 35.2, 20.1, 20.0, 18.9 ppm HRMS-CI m/z 728.3481 (MH⁺), (calculated for C₄₃H₄₆N₅O₆ 728.3448). mp 192-194 °C

Compound 14b: 4-{4-[(anthracene-9-carbonyl)-amino]-3,5-dimethyl-phenyl}-4-{3,5-dimethyl-4-[(4-nitro-1H-pyrrole-2-carbonyl)-amino]-phenyl}-piperidine-1-carboxylic acid benzyl ester. 14b was prepared as previously described.¹

Compound 14c: 4-{4-[(acridine-9-carbonyl)-amino]-3,5-dimethyl-phenyl}-4-{3,5-dimethyl-4-[(4-nitro-1H-pyrrole-2-carbonyl)-amino]-phenyl}-piperidine-1-carboxylic acid benzyl ester. 14c was prepared by the standard amide couplings procedure using 4-nitropyrrole-2-carboxylic acid (0.30 g, 2.0 mmol) in CH_2Cl_2 (50 ml), 13c (1.05 g, 1.51 mmol) and pyridine (1 ml) in CH_2Cl_2 (100 ml). Purification by column chromatography (CH_2Cl_2 /methanol 98:2) yielded a yellow solid (1.1 g, 85%).

¹H NMR (DMSO-*d*₆) δ
12.91 (s, 1H, *p1*)
10.39 (s, 1H, *n2*)
9.62 (s, 1H, *n1*)
8.27-8.24 (m, 4H, *a1*, *a4*)
7.98-7.90 (m, 4H, *p2*, *a2*)

This journal is © The Royal Society of Chemistry 2007

7.75 (t, 2H, **a3**) 7.50-7.25 (m, 6H, **p3**, **pr2**, **pr3**, **pr4**) 7.22 (s, 2H, **b3**) 7.18 (s, 2H, **b2**) 5.08 (s, 2H, **pr1**) 3.50-3.30 (m, 4H, **c2**) 2.50-2.30 (m, 4H, **c1**) 2.45 (s, 6H, **b4**) 2.17 (m, 6H, **b1**)

¹³C NMR (DMSO-*d*₆) δ 164.7, 157.7, 154.5, 148.2, 145.1, 144.9, 142.1, 136.9, 136.3, 135.4, 132.1, 132.0, 1330.6, 129.4, 128.3, 127.7, 127.4, 126.9, 126.4, 126.0, 125.4, 121.9, 105.7, 66.0, 43.3, 40.8, 34.7, 19.4, 18.4 ppm HRMS-CI m/z 801.3363 (MH⁺), (calculated for C₄₈H₄₅N₆O₆ 801.3400). mp 222-224 °C

Compound 14e: 4-[4-(2,6-dimethyl-4-nitro-benzoylamino)-3,5-dimethyl-phenyl]-4-{3,5-dimethyl-4-[(4-nitro-1H-pyrrole-2-carbonyl)-amino]-phenyl}-piperidine-1-carboxylic acid benzyl ester. 14e was prepared by the standard amide coupling procedure using 4-nitro-pyrrole-2-carboxylic acid (0.3 g, 1.9 mmol), **16a** (1.0 g, 1.6 mmol) and triethylamine (0.5 ml) in CH₂Cl₂ (100 ml). Purification by column chromatography (CH₂Cl₂/methanol 98:2) yielded a yellow solid (1.3 g, 88 %).

This journal is © The Royal Society of Chemistry 2007

6.91 (s, 2H, b2)
5.03 (s, 2H, pr1)
3.48 (br s, 4H, c2)
2.51 (s, 6H, ar1)
2.40-2.30 (m, 4H, c1)
2.27 (s, 6H, b4)
2.14 (s, 6H, b1)
¹³C (DMSO-d₆) δ 166.21, 157.96, 154.75, 146.81, 144.72, 144.39, 143.96, 135.43, 135.47, 134.83, 131.62, 128.00, 127.44, 127.17, 126.35, 125.89, 121.84, 66.32, 59.78, 43.18, 40.29, 20.58, 19.74, 19.49, 18.46, 13.75 ppm
HRMS-FAB *m/z* 773.330 (MH⁺), (calculated for C₄₃H₄₅N₆O₈ 773.330)

Compound 14f: 4-{3,5-dimethyl-4-[(4-nitro-1H-pyrrole-2-carbonyl)-amino]-phenyl}-4-(3,5dimethyl-4-pentafluorobenzoylamino-phenyl)-piperidine-1-carboxylic acid benzyl ester. 14f was prepared as previously described.¹

Compound 14g: 4-(4-acetylamino-3,5-dimethyl-phenyl)-4-{3,5-dimethyl-4-[(4-nitro-1H-pyrrole-2carbonyl)-amino]-phenyl}-piperidine-1-carboxylic acid benzyl ester. 14g was prepared as previously described.¹

Compound 15a: 4-nitro-1H-pyrrole-2-carboxylic acid {4-[4-[4-(2,6-dimethyl-benzoylamino)-3,5-dimethyl-phenyl]-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-dimethyl-phenyl}amide. 15a was prepared by the standard piperidine deprotection using Me₃SiI (~0.4 ml), 14a (0.8 g, 1.1 mmol) in CH₂Cl₂ (100 ml), followed by the standard solubilising group coupling using a few drops of triethylamine, the solubilising group acid, Sol-OH (1.22 g, 1.6 mmol), 1,-3-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (0.42 g, 2.2 mmol) and 1-hydroxy-benzatriazole (HOBt) (0.29 g, 2.2 mmol) in CH₂Cl₂ (100 ml) to yield a pale yellow waxy solid (1.1 g, 75%).

This journal is © The Royal Society of Chemistry 2007

sol protons s2 ¹H NMR (CDCl₃) (0.0068 M) δ s6 10.32 (br s, 1H, **p1**) s3 10.05 (s, **p1***) s7 s4 c2 с1 7.65 (s, 1H, **p2**) b1 b3 b4 n2 7.46 (s, 1H, **n1**) b2 7.27 (s, 1H, **p3**) 7.19 (m, 1H, **ar3**) ar3 ar2 7.07 (m, 2H, **ar2**) 6.99 (s, 2H, **b3**) 6.98 (s, 2H, **b2**) 6.94 (s, 1H, **n2**) 6.54 (s, 2H, **s1**) 5.37 (s, **p3***) 3.93 (m, 6H, s2, s3, s4) 3.85-3.50 (br m, 4H, **c2**) 2.46 (s, 6H, ar1) 2.34 (s, 6H, **b4**) 2.19 (s, 6H, **b1**) 2.50-2.10 (br m, 4H, **c1**) 1.90-1.65, 1.55-1.0 (br m, 72H, sol protons) 0.90-0.85 (m, 9H, s5, s6, s7) 13 C NMR (CDCl₃) δ 170.5, 168.9, 158.5, 153.1, 145.3, 144.9, 139.1, 137.4, 137.1, 135.8, 135.3, 134.3, 131.5, 131.1, 130.6, 129.0, 127.8, 127.0, 126.5, 125.7, 105.3, 73.5, 69.2, 44.1, 31.9, 30.2, 29.7, 29.7, 29.6, 29.4, 29.3, 26.1, 22.6, 19.9, 18.7, 14.1 ppm HRMS-CI *m/z*: 1334.9724 (MH⁺), (calculated for C₈₄H₁₂₈N₅O₈ 1334.9762)

Compound 15b: 4-nitro-1H-pyrrole-2-carboxylic acid {4-[4-{4-[(anthracene-9-carbonyl)-amino]-3,5-dimethyl-phenyl}-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-dimethyl-phenyl}amide. 15b was prepared as previously described.¹

This journal is © The Royal Society of Chemistry 2007

Compound 15c: acridine-9-carboxylic acid {4-[4-{3,5-dimethyl-4-[(4-nitro-1H-pyrrole-2-carbonyl)-amino]-phenyl}-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-dimethyl-

phenyl}-amide. 15c was prepared by the standard piperidine deprotection using Me₃SiI (~0.4 ml), **14c** (1.0 g, 1.25 mmol) in CH₂Cl₂ (50 ml), followed by the standard solubilising group coupling using a few drops of triethylamine, the solubilising group acid, Sol-OH (1.0 g, 1.4 mmol), 1,-3- (dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (0.37 g, 1.9 mmol) and 1-hydroxy-benzatriazole (HOBt) (0.25 g, 1.9 mmol) in CH₂Cl₂ (50 ml) to yield a pale yellow waxy solid (0.85 g, 50%).

sol protons s2 ¹H NMR (CDCl₃) (0.043 M) δ 11.11 (s, 1H, **p1**) s3 10.75 (s, **p1***) s4 c2 c1 8.15 (m, 2H, **a1**) b3 b1 h4 n2 8.11 (m, 2H, a4) b2 8.07 (s, 1H, **n1**) н **п1** 7.90 (s, 1H, **n2**) 7.53 (s, 1H, **p2**) 7.47 (m, 2H, **a2**) 7.69 (m, 2H, **a3**) 7.29 (s, 1H, **p3**) 7.07 (s, 2H, **b3**) 6.97 (s, 2H, **b2**) 6.54 (s, 2H, **s1**) 5.37 (s, **p3***) 3.97-3.95 (m, 6H, s2, s3, s4) 3.90-3.50 (br m, 4H, **c2**) 2.50-2.20 (br m, 4H, **c1**) 2.46 (s, 6H, **b4**) 2.13 (s, 6H, **b1**)

This journal is © The Royal Society of Chemistry 2007

1.90-1.70, 1.60-1.20 (m, 72H, **sol protons**) 0.95-0.80 (m, 9H, **s5**, **s6**, **s7**) ¹³C NMR (CDCl₃) δ 170.5, 135.7, 158.3, 153.2, 148.5, 145.4, 140.6, 139.3, 137.6, 135.8, 135.4, 131.4, 131.0, 130.6, 130.3, 129.8, 127.2, 127.0, 126.6, 125.6, 124.9, 122.3, 105.5, 73.5, 69.3, 44.3, 31.9, 30.3, 29.7, 29.7, 29.6, 29.4, 29.3, 29.6, 26.1, 22.6, 20.0, 18.8, 14.0 ppm HRMS-CI *m/z* 1407.9715 (MH⁺), (calculated for C₈₉H₁₂₇N₆O₈ 1407.9715) CHN Found C 74.54 H 8.97 N 5.83, (calculated for C₈₉H₁₂₆N₆O₈1.5H₂O C 74.49 H 9.06 N 5.86)

Compound 15e: 4-nitro-1H-pyrrole-2-carboxylic acid {4-[4-[4-(2,6-dimethyl-4-nitrobenzoylamino)-3,5-dimethyl-phenyl]-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-

dimethyl-phenyl}-amide. 15e was prepared by the standard piperidine deprotection using Me₃SiI (~0.2 ml), **14e** (0.3 g, 0.4 mmol) in CH₂Cl₂ (50 ml), followed by the standard solubilising group coupling using a few drops of triethylamine, the solubilising group acid, Sol-OH (0.5 g, 0.4 mmol), 1,-3-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (0.8 g, 0.8 mmol) and 1-hydroxybenzatriazole (HOBt) (0.1 g, 0.8 mmol) in CH₂Cl₂ (50 ml) to yield a pale yellow waxy solid (0.25 g, 45%).

¹H NMR (DMSO- d_6) δ 12.33 (s, 1H, **p1**) 9.53 (s, 1H, **n1**) 9.26 (s, 1H, **n2**) 7.87 (s, 2H, **ar2**) 7.62 (s, 1H, **p2**) 7.56 (s, 1H, **p3**) 6.95 (s, 2H, **b3**) 6.93 (s, 2H, **b3**) 6.93 (s, 2H, **b2**) 6.47 (s, 2H, **s1**) 3.88 (m, 6H, **s2**, **s3**, **s4**) 3.75-3.40 (m,4H,**c2**) 2.52 (s, 6H, **ar1**)

This journal is © The Royal Society of Chemistry 2007

2.40-2.30 (m, 4H, **c1**) 2.28 (s, 6H, **b4**) 2.14 (s, 6H, **b1**) 1.80-1.20 (m, 72H, **sol protons**) 0.90-0.85 (m, 9H, **s5**, **s6**, **s7**) ¹³C (DMSO- d_6) δ 169.82, 167.98, 166.46, 152.37, 147.09, 144.20, 141.70, 138.76, 137.32, 136.68, 135.79, 135.20, 135.16, 134.89, 130.83, 130.17, 126.57, 126.06, 125.38, 124.83, 124.36, 122.09, 107.08, 103.31, 73.12, 68.90, 24.19, 31.63, 30.69, 30.06, 29.95, 29.42, 29.40, 29.36, 29.06, 25.85, 22.39, 19.97, 19.74, 18.72, 10.98 ppm HRMS-ES *m/z* 1379.957 (MH⁺), (calculated for C₈₄H₁₂₇N₆O₁₀ 1379.961)

Compound 15*f*: 4-nitro-1H-pyrrole-2-carboxylic acid {4-[4-(3,5-dimethyl-4-pentafluorobenzoylamino-phenyl)-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6dimethyl-phenyl}-amide. 15*f* was prepared as previously described.¹

Compound 15g: 4-nitro-1H-pyrrole-2-carboxylic acid {4-[4-(4-acetylamino-3,5-dimethyl-phenyl)-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-dimethyl-phenyl}-amide. 15g was prepared as previously described.¹

Compound 16: 4-(4-amino-3,5-dimethyl-phenyl)-4-(4-benzyloxycarbonylamino-3,5-dimethylphenyl)-piperidine-1-carboxylic acid benzyl ester. Benzyl chloroformate (0.53 g, 0.44 ml, 31.1 mmol) in CH_2Cl_2 (10 ml) was added to 11 (5.65 g, 12.4 mmol) in CH_2Cl_2 (125 ml) at 0 °C in the absence of additional base.⁴ The reaction was allowed to return to room temperature and stirred for 16 h. The reaction mixture was diluted with CH_2Cl_2 and washed with 1 M HCl to extract excess 11 (2 x 650 ml). The organic phase was collected and the solvent removed under reduced pressure before being washed with 1 M NaOH (200 ml). The solvent was removed under reduced pressure and the crude

This journal is © The Royal Society of Chemistry 2007

product dissolved in diethyl ether by trituration. The diethyl ether solution was filtered through cotton wool and acidified (HCl) diethyl ether was added to precipitate the white HCl salt of the product. The precipitate was filtered, collected and neutralised to yield slightly yellow solid (1.29 g, 71%).

c1

b2

b1

cb2 cb1

cb3

b3

NH₂

n2

¹H NMR (CDCl₃) δ

7.38-7.07 (m, 10H, **pr2**, **pr3**, **pr4**, **cb2**, **cb3**, **cb4**)

6.82 (s, 2H, **b2**) 6.69 (s, 2H, **b3**) 5.90 (s, 1H, **n1**)

5.08 (s, 2H, **cb1**)

5.02 (s, 2H, **pr1**)

3.60-3.27 (m, 8H, **c1, c2**)

2.20 (br s, 2H, **n2**)

2.10 (s, 6H, **b1**)

2.05 (s, 6H, **b4**)

¹³C (CDCl3) δ155.4, 154.4, 146.5, 140.7, 137.0, 136.5, 135.5, 135.0, 131.2, 128.6, 128.5, 128.2, 127.9, 127.8, 126.9, 126.7, 121.7, 67.1, 66.9, 43.5, 41.1, 36.1, 18.7, 18.1 ppm HRMS-ES *m/z* 592.3190 (MH⁺), (calculated for C₃₇H₄₂N₃O₄ 592.3175)

Compound 17: 4-(4-benzyloxycarbonylamino-3,5-dimethyl-phenyl)-4-(3,5-dimethyl-4methylamino-phenyl)-piperidine-1-carboxylic acid benzyl ester. 16 (0.85 g, 14.3 mmol), 4 Å, 5 μ m activated molecular sieves (8.45 g), glacial acetic acid (90 μ l) and 37% formaldehyde in water (130 μ l) in tetrahydrofuran (25 ml) were stirred for 16 h. The solvent was removed under reduced pressure and tetrahydrofuran (25 ml) was added, and this cycle repeated 3 times. 1 M sodium cyanoborohydride in tetrahydrofuran (1.43 ml) was added and the mixture stirred for 7 h. Glacial acetic acid (90 μ l) was added and the reaction mixture stirred for 16 h. The reaction mixture was filtered through tightly packed cotton wool and the solvent was removed

This journal is © The Royal Society of Chemistry 2007

under reduced pressure. The crude product was dissolved in CH_2Cl_2 (200 ml), washed with 1 M NaOH (200 ml), and suspended water removed by filtration through cotton wool. The solvent was removed under reduced pressure and the product was purified using column chromatography (CH_2Cl_2 /methanol, 99.5:0.5, third band) to yield a slightly yellow solid (0.40 g, 46%).

¹H NMR (CDCl₃) δ

7.37-7.04 (m, 10H, pr2, pr3, pr4, cb2, cb3, cb4) 6.84 (s, 2H, **b2**) 6.75 (s, 2H, **b3**) pr1 6.26 (s, 1H, **n1**) c2 c1 b3 5.08 (s, 2H, **cb1**) me 5.03 (s, 2H, **pr1**) b2 н **n2** 3.63-3.31 (m, 8H, **c2**) 2.85 (s, 3H, **me**) 2.66 (s, 2H, **n2**) 2.22 (s, 2H, **c1**) 2.15 (s, 6H, **b1**) 2.11 (s, 6H, **b4**) 13 C (CDCl₃) δ 155.5, 154.4, 146.0, 145.4, 138.9, 137.0, 136.5, 135.6, 131.5, 128.9, 128.5, 128.2, 127.9, 127.8, 127.4, 126.7, 67.0, 67.0, 43.6, 41.1, 36.0, 36.0, 35.4, 18.9, 18.8 ppm

HRMS-ES m/z 606.3318 (MH⁺), (calculated for C₃₈H₄₄N₃O₄ 606.3332)

Compound 18d: 4-(4-benzyloxycarbonylamino-3,5-dimethyl-phenyl)-4-{4-[(2,6-difluoro-benzoyl)-methyl-amino]-3,5-dimethyl-phenyl}-piperidine-1-carboxylic acid benzyl ester. **18d** was prepared by the standard amide coupling procedure using 2,6-difluorobenzoyl chloride (0.060 g, 0.34 mmol), **17** (0.19 g, 0.31 mmol) and triethylamine (0.031 g, 0.31 mmol) in CH₂Cl₂ (10 ml). The solvent was removed under reduced pressure and the crude product dissolved in diethyl ether (10 ml) and acidified

This journal is © The Royal Society of Chemistry 2007

(HCl) diethyl ether was added to precipitate any unreacted **17**, which was collected by filtration. The solvent was removed from the filtrate under reduced pressure to yield a colourless solid (0.24 g, 95%).

¹H NMR (CDCl₃) δ 7.47-7.13 (m, 10H + 70% 1H ar2, pr2, pr3, pr4, cb2, cb3, cb4) 7.00-6.95 (m, 70% 2H, **ar1**) 6.98 (s, 70% 2H, **b3**) 6.96 (s, 70% 2H, **b2**) c2 c1 b3 b1 b4 6.79 (s, 30% 2H, **b2†**) cb2 cb1 cb3 6.75 (s, 30% 2H, **b3†**) b2 6.63 (m, 30% 3H, ar1†, ar2†) 6.16 (s, 1H, *n1*) 5.17 (s, 2H, **cb1**) 5.11 (s, 70% 2H, pr1) 5.10 (s, 30% 2H, pr1†) 3.73-3.25 (m, 4H, **c2**) 3.33 (s, 30% 3H, *met*) 3.06 (s, 70% 3H, **me**) 2.33 (br s, 4H, **c1**) 2.21 (s, 70% 6H, **b4**) 2.21 (s, 70% 6H, **b1**) 2.19 (s, 30% 6H, **b4†**) 2.15 (s, 30% 6H, **b1†**) 19 F (CDCl₃) δ -109**†**, -113 ppm HRMS-ES m/z 746.3393 (MH⁺), (calculated for C₄₅H₄₆N₃O₅F₂ 746.3406)

Compound 18e: 4-(4-benzyloxycarbonylamino-3,5-dimethyl-phenyl)-4-{4-[(2,6-dimethyl-4-nitrobenzoyl)-methyl-amino]-3,5-dimethyl-phenyl}-piperidine-1-carboxylic acid benzyl ester. 2,6dimethyl-4-nitrobenzoic acid chloride was generated according to the standard acid chloride preparation using 2,6-dimethyl-4-nitrobenzoic acid (0.43 g, 2.2 mmol) and oxalyl chloride (0.84 g, 6.6 mmol) in CH₂Cl₂ (12 ml). **18e** was then prepared by the standard amide coupling procedure using the

This journal is © The Royal Society of Chemistry 2007

freshly prepared acid chloride, **17** (0.50 g, 0.83 mmol) and triethylamine (0.084 g, 0.83 mmol) in refluxing chloroform (15 ml) for 6 days. The solvent was removed under reduced pressure. The crude product dissolved in diethyl ether (10 ml) and acidified (HCl) diethyl ether was added to precipitate any unreacted **17**, which was collected by filtration. The product was purified by preparative TLC (CH₂Cl₂/methanol, 98:2) to yield a slightly yellow solid (0.58 g, 90%).

¹H NMR (CDCl₃) δ 7.95 (s, 2H, **ar2**) 7.47-7.14 (m, 10H, pr2, pr3, pr4, cb2, cb3, cb4)o 6.95 (s, 4H, **b3**, **b2**) c2 c1 b3 6.01 (s, 1H, **n1**) 5.17 (s, 2H, **cb1**) b2 5.11 (s, 70% 2H, **pr1**) NO₂ ar2 3.75-3.54 (m, 4H, **c2**) 2.96 (s, 3H, **me**) 2.56 (s, 6H, **ar1**) 2.32 (br s, 10H, **c1, b4**) 2.21 (s, 6H, **b1**) 13 C (CDCl₃) δ 168.7, 155.4, 154.3, 147.5, 146.5, 144.3, 143.0, 137.3, 136.9, 136.4, 136.1, 135.8, 135.0, 131.6, 128.6, 128.5, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 126.9, 122.9, 67.0, 65.9, 43.8, 43.8, 40.9, 40.9, 37.0, 35.8, 35.5, 29.7, 20.4, 19.6, 18.8 ppm HRMS-ES m/z 805.3602 (MNa⁺), (calculated for C₄₇H₅₀N₄O₇Na 805.3577)

Compound 18f: 4-(4-benzyloxycarbonylamino-3,5-dimethyl-phenyl)-4-[3,5-dimethyl-4-(methylpentafluorobenzoyl-amino)-phenyl]-piperidine-1-carboxylic acid benzyl ester. 18f was prepared by the standard amide coupling procedure using pentafluorobenzoyl chloride (0.084 g, 0.36 mmol), 17 (0.20 g, 0.33 mmol) and triethylamine (0.033 g, 0.33 mmol) in CH₂Cl₂ (2 ml). The solvent was removed under reduced pressure and the crude product dissolved in diethyl ether (2 ml) and acidified

This journal is © The Royal Society of Chemistry 2007

(HCl) diethyl ether was added to precipitate any unreacted **17**, which was collected by filtration. The solvent was removed from the filtrate under reduced pressure to yield a colourless solid (0.26 g, 99%).

¹H NMR (CDCl₃) δ

7.39-7.05 (m, 10H, pr2, pr3, pr4, cb2, cb3, cb4) 6.91 (br s, 70% 2H, **b3**) pr3 6.88 (s, 70% 2H, b2) pr1 6.77 (s, 30% 2H, **b2†**) c2 c1 b3 b1 b4 6.71 (s, 30% 2H, **b3†**) cb2 cb1 6.10 (s, 1H, *n1*) cb3 b2 n1 5.08 (s, 2H, **cb1**) 5.03 (s, 70% 2H, **pr1**) 5.02 (s, 30% 2H, pr1†) 3.65-3.33 (m, 4H, **c2**) 3.24 (s, 30% 3H, *met*) 3.02 (s, 70% 3H, **me**) 2.25 (br s, 4H, **c1**) 2.16 (s, 70% 6H, **b4**) 2.14 (s, 70% 6H, **b1**) 2.11 (s, 30% 6H, **b4†**) 2.09 (s, 30% 6H, **b1**†) ¹⁹F NMR (CDCl₃) δ -137**†**, -141, -152, -152**†**, -160, -162**†** ppm HRMS-ES m/z 800.3161 (MH⁺), (calculated for C₄₅H₄₃N₃O₅F₅ 800.3123)

Compound 19d: N-{4-[4-(4-amino-3,5-dimethyl-phenyl)-1-(3,4,5-tris-tetradecyloxy-benzoyl)piperidin-4-yl]-2,6-dimethyl-phenyl}-2,6-difluoro-*N*-methyl-benzamide. 19d was prepared by the standard piperidine deprotection using H₂/Pd black, 18d (0.24 g, 0.32 mmol) in methanol (15 ml), followed by the standard solubilising group coupling using triethylamine (0.038 g, 0.38 mmol), the solubilising group acid, Sol-OH (0.22 g, 0.28 mmol), 1,-3-(dimethylaminopropyl)-3-ethylcarbodiimide

This journal is © The Royal Society of Chemistry 2007

hydrochloride (EDC) (0.07 g, 0.34 mmol) and 1-hydroxy-benzatriazole (HOBt) (0.05 g, 0.37 mmol) in

CH₂Cl₂ (7 ml) to yield a pale yellow waxy solid (0.30 g, 78%).

¹H NMR (CDCl₃) δ 7.45-7.29 (m, 70% 1H ar2) 7.06-6.88 (m, 70% 2H, ar1) 6.99 (s, 70% 2H, **b3**) 6.83 (s, 70% 2H, **b2**) 6.77 (s, 30% 2H, **b2†**) sol protons s2 6.75 (s, 30% 2H, **b3†**) 6.66 (m, 30% 3H, ar1†, ar2†) s3 6.54 (s, 70% 2H, s1) c2 6.52 (s, 30% 2H, **s1**†) с1 b3 b1 3.94 (m, 6H, s2, s3, s4) H_2N b2 3.73-3.27 (m, 4H, **c2**) n1 3.32 (s, 30% 3H, *met*) 3.05 (s, 70% 3H, **me**) 2.26-2.22 (br s, 6H, **c1**, **n1**) 2.25 (s, 70% 6H, **b4**) 2.18 (s, 30% 6H, **b4†**) 2.15 (s, 70% 6H, **b1**) 2.10 (s, 30% 6H, **b1**†) 1.84-1.64, 1.53-1.11 (m, 72H, sol protons) 0.87 (m, 9H, s5, s6, s7) 19 F (CDCl₃) δ -109**†**, -113 ppm HRMS-ES m/z 1218.9409 (MH⁺), (calculated for C₇₈H₁₂₂N₃O₅F₂ 1218.9353)

Compound 19e: N-{4-[4-(4-amino-3,5-dimethyl-phenyl)-1-(3,4,5-tris-tetradecyloxy-benzoyl)piperidin-4-yl]-2,6-dimethyl-phenyl}-2,6,N-trimethyl-4-nitro-benzamide. 19e was prepared by the standard piperidine deprotection using Me₃SiI (0.4 ml), 18e (0.36 g, 0.46 mmol) in CH₂Cl₂ (100 ml), followed by the standard solubilising group coupling using triethylamine (0.061 g, 0.60 mmol), the

This journal is © The Royal Society of Chemistry 2007

solubilising group acid, Sol-OH (0.31 g, 0.41 mmol), 1,-3-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (0.10 g, 0.51 mmol) and 1-hydroxy-benzatriazole (HOBt) (0.075 g, 0.55 mmol) in CH₂Cl₂ (10 ml) to yield a pale yellow waxy solid (0.048 g, 8%).

Compound 19f: N-{4-[4-(4-amino-3,5-dimethyl-phenyl)-1-(3,4,5-tris-tetradecyloxy-benzoyl)piperidin-4-yl]-2,6-dimethyl-phenyl}-2,3,4,5,6-pentafluoro-*N*-methyl-benzamide. 19f was prepared by the standard piperidine deprotection using H₂/Pd black, 18f (0.26 g, 0.33 mmol) in methanol (15 ml), followed by the standard solubilising group coupling using triethylamine (0.042 g, 0.42 mmol), the solubilising group acid, Sol-OH (0.25 g, 0.32 mmol), 1,-3-(dimethylaminopropyl)-3-

This journal is © The Royal Society of Chemistry 2007

ethylcarbodiimide hydrochloride (EDC) (0.074 g, 0.38 mmol) and 1-hydroxy-benzatriazole (HOBt) (0.05 g, 0.36 mmol) in CH_2Cl_2 (7 ml) to yield a colourless waxy solid (0.23 g, 50%).

¹H NMR (CDCl₃) δ 6.96 (br d, 70% 2H **b3**) 6.83 (s, 2H, **b2**) sol protons 6.67 (s, 30% 2H, **b3†**) 6.53 (s, 70% 2H, **s1**) s.3 6.53 (s, 30% 2H, **s1**†) 3.93 (m, 6H, s2, s3, s4) c1 b3 3.50 (br s, 2H, **n1**) H_2N b2 n1 3.73-3.27 (m, 4H, **c2**) 3.33 (s, 30% 3H, *met*) 3.08 (s, 70% 3H, **me**) 2.50-2.00 (br m, 4H, **c1**) 2.23 (s, 70% 6H, **b4**) 2.17 (s, 30% 6H, **b4†**) 2.15 (s, 70% 6H, **b1**) 2.11 (s, 30% 6H, **b1†**) 1.84-1.64, 1.53-1.11 (m, 72H, sol protons) 0.87 (m, 9H, s5, s6, s7) ¹⁹F NMR (CDCl₃) δ. -137**†**, -141, -152, -153**†**, -160, -162**†** ppm HRMS-ES m/z 1272.9038 (MH⁺), (calculated for C₇₈H₁₁₉N₃O₅F₅ 1272.9070)

Compound 20d: 4-nitro-1H-pyrrole-2-carboxylic acid $\{4-[4-\{4-[(2,6-difluoro-benzoyl)-methyl-amino]-3,5-dimethyl-phenyl\}-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-dimethyl-phenyl}-amide. 20d was prepared by the standard amide coupling procedure using 4-nitro-pyrrole-2-carboxylic acid (0.058 g, 0.37 mmol), 19d (0.30 g, 0.25 mmol) and triethylamine (1 drop) in CH₂Cl₂ (10 ml). Purification by preparative TLC (CH₂Cl₂/methanol 97:3), yielded a pale yellow waxy solid (0.13 g, 38%).$

This journal is © The Royal Society of Chemistry 2007

¹H NMR (CDCl₃) (0.061 M) δ 11.07 (s, 95% 1H p1, p1†) 10.74 (s, 5% 1H **p1***) 8.39 (s, 30% 1H, *n1†*) 8.30 (s, 70% 1H, **n1**) 7.53 (s, 30% 2H **p2†, p3†**) 7.41 (s, 70% 1H **p2**) 7.35-7.25 (m, 70% 1H ar2) sol protons s2 7.26 (s, 70% 1H **p3**) 7.06-6.88 (m, 70% 2H, ar1) s7 s4 7.00 (s, 70% 2H, **b3**) с1 c2 b1 b3 6.91 (s, 70% 2H, **b2**) 0 6.88 (s, 30% 2H, **b3†**) b2 Н **n1** 6.76 (s, 30% 2H, **b2†**) 6.55 (s, 70% 2H, **s1**) 6.52 (s, 30% 2H, **s1**†) 6.35-6.21 (m, 30% 3H, ar1†, ar2†) 5.28 (s, **p3***) 3.94 (m, 6H, s2, s3, s4) 3.73-3.27 (m, 4H, **c2**) 3.31 (s, 30% 3H **met**) 3.06 (s, 70% 3H **me**) 2.40-2.22 (br s, 4H, **c1**) 2.23 (s, 70% 6H, **b4**) 2.19 (s, 30% 6H, **b4†**) 2.11 (s, 30% 6H, **b1†**) 2.07 (s, 70% 6H, **b1**) 1.84-1.65, 1.56-1.11 (m, 72H, sol protons) 0.87 (m, 9H, **s5**, **s6**, **s7**) 19 F (CDCl₃) δ -109**†**, -113 ppm HRMS-ES m/z 1378.9252 (MNa⁺), (calculated for C₈₃H₁₂₃N₅O₈F₂Na 1378.9237)

This journal is © The Royal Society of Chemistry 2007

Compound 20e: 4-nitro-1H-pyrrole-2-carboxylic acid {4-[4-{4-[(2,6-dimethyl-4-nitro-benzoyl)methyl-amino]-3,5-dimethyl-phenyl}-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-

dimethyl-phenyl}-amide. 20e was prepared by the standard amide coupling procedure using 4-nitropyrrole-2-carboxylic acid (0.018 g, 0.11 mmol), **19e** (0.049 g, 0.04 mmol) and pyridine (1 drop) in CH_2Cl_2 (10 ml). Purification by preparative TLC (CH_2Cl_2 /methanol 98:2), yielded a pale yellow waxy solid (0.016 g, 28%).

This journal is © The Royal Society of Chemistry 2007

HRMS-ES m/z 1393.9728 (MH⁺), (calculated for C₈₅H₁₂₉N₆O₁₀ 1392.97)

Compound 20f: 4-nitro-1H-pyrrole-2-carboxylic acid {4-[4-[3,5-dimethyl-4-(methyl-pentafluorobenzoyl-amino)-phenyl]-1-(3,4,5-tris-tetradecyloxy-benzoyl)-piperidin-4-yl]-2,6-

dimethyl-phenyl}-amide. 20f was prepared by the standard amide coupling procedure using 4-nitropyrrole-2-carboxylic acid (0.034 g, 0.21 mmol), **19f** (0.23 g, 0.18 mmol) and pyridine (1 drop) in CH_2Cl_2 (10 ml). Purification by preparative TLC (CH_2Cl_2 /methanol 98:2), yielded a colourless waxy solid (0.25 g, 28%).

¹H NMR (CDCl₃) (0.0035 M) δ: sol protons s2 9.92 (s, 95% 1H, **p1**, **p1†**) s3 9.86 (s, 5% 1H, **p1***) 7.77 (s, 70% 1H, **p2**) c2 с1 b3 b1 b4 7.61 (s, 30% 1H, **p2†**) me 7.30 (s, 30% 1H, **p3†**) b2 н Н**п1** 7.26 (s, 70% 1H, **p3**) 7.20 (s, 70% 1H, *n1*) 7.18 (s, 30% 1H, *n1†*) 7.04 (s, 30% 2H, **b3†**) 7.01 (s, 70% 2H, **b3**) 6.87 (s, 30% 2H, **b2†**) 6.86 (s, 70% 2H, **b2**) 6.63 (s, 30% 2H, **s1**†) 6.54 (s, 70% 2H, **s1**) 5.34 (s, 5% **p3***) 4.01-3.89 (m, 6H, s2, s3, s4) 3.88-3.42 (br m, 4H, **c2**) 3.33 (s, 30% 3H, **nme†**) 3.11 (s, 70% 3H, **nme**) 2.49-2.34 (br m, **c1**)

This journal is © The Royal Society of Chemistry 2007

2.25 (s, 70% 6H, **b4**) 2.22 (s, 70% 6H, **b1**) 2.19 (br s, 30% 2H, **b1†**, **b4†**) 1.84-1.67, 1.64-1.15 (m, 72H, **sol protons**) 0.98-0.75 (m, 9H, **s5**, **s6**, **s7**) ¹⁹F NMR (CDCl₃) δ : -137**†**, -141, -152, -153**†**, -160, -162**†** ppm HRMS-ES *m/z*: 1410.9170 (MH⁺), (calculated for C₈₃H₁₂₁F₅N₅O₈: 1410.9135)

Compound 21c: *N*-(2,6-dimethylphenyl)acridine-9-carboxamide. 21c was prepared by the standard amide coupling procedure using acridine-9-carboxylic acid (0.10 g, 0.45 mmol), 2,6-dimethylaniline (0.10 g, 0.89mmol) and pyridine (2 drops) in CH_2Cl_2 (30 ml). Purification by column chromatography (CH_2Cl_2 /methanol 100:0 to 99:1, second band) yielded a yellow solid (0.09 g, 62%). Crystals of suitable quality for X-ray crystal structure determination were grown by slow evaporation petroleum ether/ CH_2Cl_2 .

¹H NMR (CDCl₃) δ 8.29 (d, 2H, **a1**) 8.22 (d, 2H, **a4**) 7.79 (t, 2H, **a3**) 7.59 (t, 2H, **a2**) 7.52 (br s, 1H, **nh**) 7.21 (br s, 3H, **ar1**, **ar2**) 2.53 (s, 6H, **me**) ¹³C NMR (CDCl₃) δ 165.5, 148.6, 135.2, 133.1, 130.3, 129.8, 128.8, 127.9, 126.9, 125.1, 122.4, 19.6 FAB-MS *m/z* 326 (M⁺), (calculated for C₂₂H₁₈N₂O, 326) mp > 230 °C (decomposes)

Compound 21d: N-(2,6-dimethylphenyl)-2,6-difluorobenzamide. 21d was prepared by the standard amide coupling procedure using 2,6-difluorobenzoyl chloride (0.74g, 4.2 mmol), 2,6-dimethylaniline (0.56 g, 4.6 mmol) and triethylamine (0.23 g, 4.6 mmol) in CH₂Cl₂ (40 ml).

This journal is © The Royal Society of Chemistry 2007

Recrystallisation from $CH_2Cl_2/cyclohexane$ yielded 0.46 g (42%) of colourless solid. Crystals of suitable quality for X-ray crystal structure determination were grown by slow evaporation from ethanol.

¹H NMR (CDCl₃) δ ¹H

Compound 21e: *N*-(2,6-dimethyl-4-nitrophenyl)-2,6-dimethylnitrobenzamide. 21e was prepared by standard amide coupling procedure using 2,6-dimethyl-4-nitrobenzoic acid (0.3 g,

1.5 mmol), 2,6-dimethylaniline (0.2 g, 1.6 mmol), triethylamine (0.2 ml, 1.5 mmol) and a catalytic amount of 4-dimethylaminopyridine in CH_2Cl_2 (50 ml). Purification by column chromatography (CH_2Cl_2 /methanol 100:0 to 99:1) yielded a yellow solid (0.06 g, 15%.) Crystals of suitable quality for X-ray crystal structure determination were grown from CH_2Cl_2 /petroleum ether.

¹H NMR (CDCl₃) δ 7.98 (s, 2H, **a2**) 7.30 (s, 1H, **nh**) 7.19 (t, 1H, **ar2**) 7.05 (d, 2H, **ar1**) 2.45 (s, 6H, **mea**) 2.39 (s, 6H, **me**) FAB MS *m/z*: 299 (MH⁺), (calculated for C₁₇H₁₉N₂O₃, 299)

 $mp > 230 \circ C$ (decomposes)

This journal is © The Royal Society of Chemistry 2007

Compound 21f: *N*-(2,6-dimethylphenyl)-2,3,4,5,6-pentafluorobenzamide. 21f was prepared by the standard amide coupling procedure using pentafluorobenzoyl chloride (1.00 g, 4.20 mmol), 2,6-dimethylaniline (0.56 g, 4.6 mmol) in CH₂Cl₂ (20 ml). The reaction mixture was washed with water and the solvent was removed under reduced pressure. Recrystallisation from CH₂Cl₂/cyclohexane yielded a colourless solid (1.21 g, 90%). Polymorph α was crystallised by slow evaporation from a mixture of CH₂Cl₂ and cyclohexane. Polymorph β was crystallised from CH₂Cl₂.

¹H NMR (CDCl₃) δ 7.22-7.11 (m, 4H, **ar1**, **ar2**, **nh**) 2.31 (s, 6H, **me**) ¹⁹F (CDCl₃) δ : -141, -152, -160 ppm FAB-MS *m/z*: 316 (MH⁺), (calculated for C₁₅H₁₁F₅NO 316) CHN Found: 57.06 H 2.98 N 4.21 (calculated for C₁₅H₁₀ F₅NO C 57.15 H 3.20 N 4.44) mp 188-189 °C (polymorph α)

Compound 21g: N-(2,6-dimethylphenyl)acetamide. 3 ml acetic anhydride was poured over 2,6dimethylaniline (2.0 g, 16.5 mmol) and stirred gently. After approximately 2 minutes a white precipitate formed which was filtered, washed repeatedly with water and dried (2.7 g, 78%). Crystals of suitable quality for X-ray crystal structure determination were grown by slow evaporation from CH_2Cl_2 .

¹H NMR (DMSO- d_6) δ 9.24 (br s, 1H **nh**) 7.05 (br s, 3H, **ar1**, **ar2**) 2.14 (s, 6H, **me**) 2.04 (s, 3H, **mea**) ¹³C (DMSO- d_6) δ 168.3, 135.9, 135.6, 128.0, 126.7, 23.0, 18.6 ppm Supplementary material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2007

FAB-MS m/z: 164 (MH⁺), (calculated for C₁₀H₁₄NO 164) mp 147 °C (decomposes)

Compound 22a: *N*-(4-(dimethylamino)-2,6-dimethylphenyl)-2,6-dimethylbenzamide. 22a was prepared by the standard amide coupling procedure using 2,6-dimethyl benzoic acid (0.16 g, 1.04 mmol), 2,6-dimethyl-4-dimethylaminoaniline 2 (0.21 g, 1.25 mmol), triethylamine (0.126 g, 1.25 mmol) and a catalytic amount of 4-dimethylaminopyridine in CH_2Cl_2 (50 ml). Purification by column chromatography (CH_2Cl_2 /methanol 100:0 to 99:1, first band) yielded a pale brown solid (0.12 g, 31%). Crystals of suitable quality for X-ray crystal structure determination were grown by slow evaporation petroleum ether/ CH_2Cl_2 .

¹H NMR (CDCl₃) δ

7.20 (t, 1H **a2**) 7.05 (d, 2H, **a1**) 6.80 (br s, 1H, **nh**) 6.50 (s, 2H, **ar1**) 2.95 (s, 6H, **nme**) 2.50 (s, 6H, **mea**) 2.35 (s, 6H, **me**) ¹³C NMR (CDCl₃) δ 169.0, 149.8, 137.9, 135.9, 134.6, 128.7, 127.7, 122.8, 112.6 FAB-MS *m/z*: 296 (M⁺), (calculated for C₁₉H₂₄N₂O 296) mp 216-218 °C

Compound 22b: *N*-(4-(dimethylamino)-2,6-dimethylphenyl)-2,6-difluorobenzamide. 22b was prepared by the standard amide coupling procedure using 2,6-difluorobenzoyl chloride (0.74 g, 4.2 mmol), *N*,*N*,2,6-tetramethylaniline dihydrochloride salt, **2** (0.996 g, 4.2 mmol) and triethylamine 1.30 g (12.6 mmol) in CH_2Cl_2 (40 ml). Purification by silica column chromatography CH2Cl2/methanol

This journal is © The Royal Society of Chemistry 2007

(100:0 to 99:1) yielded a colourless solid 0.6 g (46%) of colourless solid. Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from CH₂Cl₂.

¹H NMR (CDCl₃) δ 7.13 (m, 4H, **a1**, **a2**, **nh**) 7.00 (t, 2H, **ar1**) 6.45 (s, 2H, **ar1**) 2.95 (s, 6H, **nme**) ¹⁹F (CDCl₃) δ -113 ppm HRMS-ES *m/z*: 304.1402 (MH⁺), (calculated for C₁₇H₁₉F₂N₂O 304.1387)

Compound 22f: *N*-(4-(dimethylamino)-2,6-dimethylphenyl)-2,3,4,5,6-pentafluorobenzamide. 22f was prepared by the standard amide coupling procedure using pentafluorobenzoyl chloride (0.32 g, 1.42 mmol), 2,6-dimethyl-4-dimethylaminoaniline (0.21 g, 1.29 mmol) and triethylamine (0.14 g, 1.42 mmol) in CH₂Cl₂ (30 ml). Purification by column chromatography (CH₂Cl₂/methanol 100:0 to 99:1, first band) yielded a pale yellow solid 0.10 g, (22%). Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from acetone/water.

¹H NMR (CDCl₃) δ 7.00 (br s, 1H, **nh**) 6.45 (s, 2H, **a1**) 2.95 (s, 6H, **nme**) 2.25 (s, 6H, **me**) ¹³C NMR (CDCl₃) δ 156.6, 150.0, 135.9, 121.5, 111.9, 40.5, 18.6 ¹⁹F NMR (CDCl₃) δ -141, -151, -160 FAB-MS *m/z*: 358 (MH⁺), (calculated for C₁₇H₁₆F₅N₂O, 358) mp 205-207 ° C

Compound 23d: 2,6-difluoro-*N*-(4-methoxy-2,6-dimethylphenyl)benzamide. 23d was prepared by the standard amide coupling procedure using 2,6-difluorobenzoyl chloride (0.20 g, 1.15 mmol), 2,6-

This journal is © The Royal Society of Chemistry 2007

dimethyl-4-methoxyaniline **4** (0.174 g, 1.15 mmol) and triethylamine 0.116 g (1.15 mmol) in CH_2Cl_2 (90 ml). Purification by silica column chromatography (CH_2Cl_2 /methanol 100:0 to 97:3), yielded 0.6 g (46%) of colourless solid. Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from CH_2Cl_2 .

¹H NMR (CDCl₃) δ
7.40 (m, 1H, a2)
7.02 (br s, 2H, nh)
7.04-6.94 (m, 2H, a1)
6.66 (s, 2H, ar1)
3.78 (s, 3H, ome)
2.33 (s, 6H, me)

HRMS-ES m/z: 292.1157 (MH⁺), (calculated for C₁₆H₁₆F₂NO₂, 292.1149)

Compound 23f: 2,3,4,5,6-pentafluoro-*N*-(4-methoxy-2,6-dimethylphenyl)benzamide. 23f was prepared by the standard amide coupling procedure using pentafluorobenzoyl chloride (0.33 g, 1.4 mmol), 2,6-dimethyl-4-methoxyaniline hydrochloride salt, 4 (0.25 g, 0.13 mmol), triethylamine 0.263 g (0.26 mmol) and a catalytic amount of 4-dimethylaminopyridine in CH_2Cl_2 (60 ml). Purification by silica column chromatography (CH_2Cl_2) yielded 0.38 g (85%) of colourless solid. Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from CH_2Cl_2 .

¹H NMR (CDCl₃) δ 7.11 (br s, 1H, **nh**) 6.65 (s, 2H, **ar1**) 3.78 (s, 3H, **ome**) 2.27 (s, 6H, **me**) HRMS-ES m/z: 346.0859 (MH⁺), (calculated for C₁₆H₁₃F₅NO₂, 346.0866)

S38

This journal is © The Royal Society of Chemistry 2007

Compound 24a: *N*-(2,6-dimethyl-4-nitrophenyl)-2,6-dimethylbenzamide. 2,6-dimethyl benzoic acid chloride (0.22 g, 1.51 mmol) and 2,6-dimethyl-4-nitroaniline 7 (0.25 g, 1.51 mmol) were refluxed in pyridine (10 ml) for 48 hours. The reaction mixture was washed repeatedly with 1 M HCl. The solvent was removed under reduced pressure and the product was purified by column chromatography (CH_2Cl_2 /methanol 98:2) to yield a yellow solid 0.10 g (25%). Crystals of suitable quality for X-ray crystal structure determination were grown by slow evaporation petroleum ether/ CH_2Cl_2 .

¹H NMR (CDCl₃) δ 7.98 (s, 2H, **ar1**) 7.30 (s, 1H, **nh**) 7.19 (t, 1H, **a2**) 7.05 (d, 2H, **a1**) 2.45 (s, 6H, **me**) 2.39 (s, 6H, **mea**) FAB MS *m/z*: 299 (MH⁺), (calculated for C₁₇H₁₉N₂O₃, 299) mp 230 °C (decomposes)

Compound 24b: *N*-(2,6-dimethyl-4-nitrophenyl)anthracene-9-carboxamide. 9-anthracenecarboxylic acid chloride (0.40 g, 1.80 mmol) and 2,6-dimethyl-4-nitroaniline 7 (0.2 g, 1.2 mmol) in pyridine (10 ml) was refluxed for 24 hours. 2 M HCl was added to the cool reaction mixture and the organic products extracted with CH₂Cl₂. The combined organic extracts were washed with 1 M HCl and water. The organic phase was evaporated to dryness. The product was isolated by column chromatography (CH₂Cl₂/methanol 98:2) to yield a yellow solid 0.15 g (48%). Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from CH₂Cl₂.

¹H NMR (CDCl₃) δ:
8.50 (s, 1H, **a5**)
8.30 (d, 2H, **a1**)
8.10 (d, 2H, **a4**)

This journal is © The Royal Society of Chemistry 2007

8.10 (s, 2H, ar1)
7.65-7.45 (m, 4H, a2,a3)
7.45 (br s, 1H, nh)
2.60 (s, 6H, me)
¹³C NMR (DMSO-d₆) & 166.8, 145.4, 141.4, 137.2, 132.3, 130.7, 128.7, 128.0, 127.5, 127.0, 125.7, 124.9, 122.9, 19.3
FAB MS m/z: 370 (M⁺) C₂₃H₁₈N₂O₃ requires 370.
mp >300 ° C

Compound 24d: N-(2,6-dimethyl-4-nitrophenyl)-2,6-difluorobenzamide. 24d was prepared by the standard amide coupling procedure using 2,6-difluorobenzoyl chloride (0.481 g, 2.2 mmol), 2,6-dimethyl-4-nitroaniline, 7 (0.46 g, 2.1 mmol) and triethylamine (0.21 g, 2.1 mmol) in CH₂Cl₂ (40 ml). After 16 hours, a further 100 μ l of 2,6-difluorobenzoyl chloride was added and the reaction refluxed gently for 3 hours. Purification by silica column chromatography (CH₂Cl₂), yielded 0.2 g (32%) of colourless solid. Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from ethanol.

¹H NMR (CDCl₃) δ 8.02 (s, 2H, **ar1**) 7.46 (m, 1H, **a2**) 7.25 (s, 1H, **nh**) 7.04 (t, 2H, **a1**) 2.45 (s, 6H, **me**)

HRMS-ES *m/z*: 307.0892 (MH⁺), (calculated for C₁₅H₁₃N₂O₃F₂ 307.0894)

Compound 24e: *N*-(2,6-dimethyl-4-nitrophenyl)-2,6-dimethyl-4-nitrobenzamide. 24e was prepared by standard amide coupling procedure using 2,6-dimethyl-4-nitrobenzoic acid (0.2 g, 1.0 mmol), 2,6dimethyl-4-nitroaniline 7 (0.16 g, 1.0 mmol), triethylamine (0.2 ml, 1.5 mmol), and a catalytic amount of 4-dimethylaminopyridine in CH₂Cl₂ (50 ml). Purification by silica column chromatography (CH₂Cl₂)

This journal is © The Royal Society of Chemistry 2007

yielded an orange solid 0.03 g (10%). Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from ethanol.

¹H NMR (DMSO-*d*₆) δ 7.29 (s, 2H, **ar1**) 6.63 (s, 2H, **a1**) 2.45 (s, 6H, **me**) 2.17 (s, 6H, **a1**) 2.45 (s, 6H, **mea**) ¹³C NMR (DMSO-*d*₆) δ : 165.71, 147.10, 145.42, 140.61, 139.15, 137.14, 136.56, 122.91, 122.25, 19.47, 19.15 HRMS-CI *m/z*: 343.118 (M⁺), (calculated for C₁₇H₁₇N₃O₅, 343.117)

Compound 24f: *N*-(2,6-dimethyl-4-nitrophenyl)-2,3,4,5,6-pentafluorobenzamide. 24f was prepared by the standard amide coupling procedure using pentafluorobenzoyl chloride (0.16 g, 0.69 mmol), 2,6-dimethyl-4-nitroaniline 7 (0.102 g, 0.61 mmol), 0.062 g (0.61 mmol) triethylamine and a catalytic amount of 4-dimethylaminopyridine in CH_2Cl_2 (20 ml). Purification by silica column chromatography (CH_2Cl_2), yielded a colourless solid 0.06 g (27%). Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from CH_2Cl_2 .

¹H NMR (CDCl₃) δ 8.04 (s, 2H, **ar1**) 7.31 (br s, 1H, **nh**)

2.43 (s, 6H, **me**)

D₂N ar1 nh me O F F F

HRMS-ES m/z: 361.0596 (MH⁺), (calculated for C₁₅H₁₀N₂O₃ F₅, 361.0612)

Compound 25: *N*,2,6-trimethylbenzenamine. 2,6-dimethylaniline (0.5 g, 4.1 mmol) was stirred with methyliodide (0.59 g, 4.1 mmol) until a solid mass had formed. The crude product was dissolved in CH_2Cl_2 (40 ml) and washed with 1 M NaOH solution (40 ml). The organic solvent was removed under vacuum to yield a pink oil 0.55 g (99 %). The product was used without further purification.

This journal is © The Royal Society of Chemistry 2007

¹H NMR (CDCl₃) δ 7.12 (d, 2H, **ar1**) 6.68 (t, 1H, **ar2**) 3.16 (br s, 1H, **nh**) 2.85 (s, 3H, **nme**) 2.34 (s, 6H, **me**) ¹³C NMR (CDCl₃) δ : 147.6, 129.1, 128.9, 121.8, 35.4, 18.4 HRMS-EI *m/z*: 135.105435 (M⁺), (calculated for C₉H₁₃N, 135.104800)

Compound 26e: *N*-(2,6-dimethylphenyl)-*N*,2,6-trimethyl-4-nitrobenzamide. 26e was prepared by the standard amide coupling procedure using 2,6-dimethyl-4-nitrobenzoic acid (0.08 g, 0.4 mmol), *N*,2,6-trimethylbenzenamine **25** (0.05 g, 0.4 mmol), triethylamine (0.06 ml, 0.4 mmol), in CH₂Cl₂ (10 ml). Purification by preparative TLC (CH₂Cl₂) yielded a colourless solid 0.01 g (8%). Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from ethanol.

¹H NMR (CDCl₃) δ 7.97 (s, 2H, **a1**) 7.25-7.12 (m, 3H, **ar1**, **ar2**) 3.02 (s, 3H, **nme**) 2.59 (s, 6H, **mea**) 2.39 (s, 6H, **me**)

Compound 26f: *N*-(2,6-dimethylphenyl)-2,3,4,5,6-pentafluoro-*N*-methylbenzamide. 26f was prepared by the standard amide coupling procedure using pentafluorobenzoyl chloride (0.64 g, 2.8 mmol), *N*,2,6-trimethylbenzenamine 25 (0.34 g, 2.5 mmol), triethylamine (0.35 ml, 2.5 mmol), in CH_2Cl_2 (10 ml). Purification by silica column chromatography (CH_2Cl_2) yielded a colourless solid 0.56 g (68%). Crystals of suitable quality for X-ray structure determination were grown by slow evaporation from ethanol.

This journal is © The Royal Society of Chemistry 2007

¹H NMR (CDCl₃) δ

7.25-7.05 (s, 70% 3H, ar1, ar2) 7.05-6.90 (s, 30% 3H, ar1†, ar2†) 3.30 (s, 30% 3H, nme†) 3.08 (s, 70% 3H, nme) 2.24 (s, 70% 6H, me) 2.18 (s, 30% 6H, me†) ¹⁹F NMR (CDCl₃) δ : -137†, -141, -152, -153†, -160, -162† ppm

HRMS-ES *m/z*: 329.0855 (M⁺), (calculated for C₁₆H₁₂F₅NO, 329.0839)

References

(1) Adams, H.; Hunter, C. A.; Lawson, K. R.; Perkins, J.; Spey, S. E.; Urch, C. J.; Sanderson, J. M. *Chem. Eur. J.* **2001**, *7*, 4863-4877.

(2) Carver, F. J.; Hunter, C. A.; Jones, P. S.; Livingstone, D. J.; McCabe, J. F.; Seward, E. M.; Tiger, P.; Spey, S. E. *Chem. Eur. J.* **2001**, *7*, 4854-4862.

(3) Bello, P.; Heaton, N. J.; Chana, A.; Jimenez-Barbero, J.; Riande, E.; Herradon, B. J. Phys. Org. Chem. 2004, 17, 71-82.

(4) Okubo, H.; Yamaguchi, M. J. Org. Chem. 2001, 66, 824-830.