Supporting information

The use of a [4+2] cycloaddition reaction for the preparation of a series of 'tethered' $\mathrm{Ru}(\mathrm{II}) /$ diamine and aminoalcohol complexes.

Fung Kei (Kathy) Cheung, Aidan M. Hayes, David J. Morris and Martin Wills. * Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. m.wills@warwick.ac.uk.

Contents:

i) Preparation of reagents for synthetic processes and ketone reductions S 2

References

ii) $\quad 1 \mathrm{H}-\mathrm{NMR}$ spectra of compounds lacking CHN analyses. S17
i) Preparation of reagents for synthetic processes and ketone reductions.

General Experimental Details

All reactions, unless otherwise stated, were run under an atmosphere of nitrogen at ambient temperature $\left(18-22^{\circ} \mathrm{C}\right) .0{ }^{\circ} \mathrm{C}$ refers to an ice slush bath and $-78^{\circ} \mathrm{C}$ refers to a dry ice-acetone bath. Heated experiments were conducted using thermostatically controlled oil baths. Reactions were monitored by TLC using aluminium backed silica gel 60 (F254) plates, visualised using UV 254 nm and phosphomolybdic acid, ninhydrin, potassium permanganate or vanillin dips as appropriate. Flash column chromatography was carried out routinely using $60 \AA$ silica gel (Merck). Reagents were used as received from commercial sources unless otherwise stated. NMR spectra were recorded on a Bruker DPX (300 or 400 MHz) spectrometer. Chemical shifts are reported in δ units, parts per million downfield from TMS. Coupling constants (J) are measured in hertz. IR spectra were recorded on a Perkin-Elmer Spectrum One FT-IR Golden Gate. Mass spectra were recorded on a 7070 E VG mass spectrometer. Melting points were recorded on a Stuart Scientific SMP 1 instrument and are uncorrected. Optical rotations were measured with an AA1000 polarimeter and are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Determination of enantiomeric excesses by HPLC analysis was achieved using a Merck-Hitachi L-6200A HPLC pump, Merck-Hitachi L-4000 UV absorbance detector, Axiomm 727 data module and a Daicel Chiralcel OD, OD-H or AD $4.6 \times 25 \mathrm{~cm}$ column. Determination of enantiomeric excesses by GC analysis was achieved using a Chrompac cyclodextrin- $\beta-236 \mathrm{M}-1950 \mathrm{~m}$ or Chiracel β-DEX-120 25 m column.

Synthesis of 3,4,4-trimethylpent-1-en-3-ol.

To a stirred solution of 1 M vinylmagnesium bromide in THF ($36 \mathrm{~cm}^{3}, 36.0 \mathrm{mmol}$) was added a solution of pinacolone $(3.005 \mathrm{~g}, 30.0 \mathrm{mmol})$ in THF $\left(9 \mathrm{~cm}^{3}\right)$ at a rate to maintain gentle reflux without external heating. The reaction mixture was stirred overnight at reflux, cooled, quenched with the addition of saturated ammonium chloride solution (aq.) $\left(10 \mathrm{~cm}^{3}\right)$, diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with DCM ($2 \times 50 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum at room tempaerature to give the crude product. The residue was purified by distillation to give the alcohol ${ }^{1}(2.25 \mathrm{~g}, 59 \%)$ as a colourless oil; bp $61-63^{\circ} \mathrm{C} / 50 \mathrm{mbar} ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) $3485(\mathrm{OH}), 1642(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.24(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3}\right), 1.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.09(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and 1.5, $=\mathrm{CHH}$ trans to $=\mathrm{CR}), 5.22(1 \mathrm{H}$, dd, $J 17.3$ and $1.5,=\mathrm{CH} H$ cis to $=\mathrm{CR}), 6.08(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and $11.1,=\mathrm{CHR}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 23.3$ (q), 25.3 (q), 37.1 (s), 77.3 (s), 112.3 (t), 143.3 (d).

Synthesis of 2-adamantan-1-ylbut-3-en-2-ol.

To a stirred solution of 1 M vinylmagnesium bromide in THF ($14.5 \mathrm{~cm}^{3}, 14.5 \mathrm{mmol}$) was added a solution of 1-adamantylmethyl ketone $(2.150 \mathrm{~g}, 30.0 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at a rate to maintain gentle reflux without external heating. The reaction mixture was stirred overnight at reflux, cooled, quenched with the addition of saturated ammonium chloride solution (aq.) ($10 \mathrm{~cm}^{3}$), diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with DCM $(2 \times 30$
$\left.\mathrm{cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum to give the crude product. The residue was purified by flash column chromatography $(2.5 \% \mathrm{EtOAc} /$ hexane to $10 \% \mathrm{EtOAc} /$ hexane $)$ to give the alcohol ${ }^{2}(1.36$ $\mathrm{g}, 55 \%)$ as a colourless oil; $\mathrm{v}_{\max } / \mathrm{cm}^{-1}($ thin film $) 3489(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.36(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.58-1.82(12 \mathrm{H}, \mathrm{m}$, adamantyl 6 x $\left.\mathrm{CH}_{2}\right), 1.96-2.02(3 \mathrm{H}, \mathrm{m}$, adamantyl 3 xCH$), 5.09(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and $1.6,=\mathrm{CHH}$ trans to $=\mathrm{CR}), 5.18(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and $1.6,=\mathrm{CH} H$ cis to $=\mathrm{CR}), 6.03(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 11.1, $=\mathrm{CHR}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 22.1(\mathrm{q}), 28.6(3 \mathrm{x} \mathrm{d}), 36.3(3 \mathrm{x} \mathrm{t}), 37.1(3 \mathrm{x} \mathrm{t})$, 38.3 (s), 77.2 (s), 112.3 (t), 142.9 (d); Found (EI) $206.1652[\mathrm{M}]^{+}, \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ requires 206.1671 (1.9 mDa error); $m / z(\mathrm{EI}) 188\left(\mathrm{M}-\mathrm{OH}_{2}{ }^{+}, 10 \%\right), 135$ (100), 107 (15), 93 (30), 79 (30).

Synthesis of 2-phenylbut-3-en-2-ol.

To a stirred solution of 1 M vinylmagnesium bromide in THF ($36 \mathrm{~cm}^{3}, 36.0 \mathrm{mmol}$) was added a solution of acetopheneone $(3.60 \mathrm{~g}, 30.0 \mathrm{mmol})$ in THF at a rate to maintain gentle reflux without external heating. The reaction mixture was stirred at reflux for 1 hour, cooled, quenched with the addition of saturated ammonium chloride solution (aq.) $\left(10 \mathrm{~cm}^{3}\right)$, diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with DCM ($2 \times 50 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum to give the crude product. The residue was purified by flash column chromatography (5\% $\mathrm{EtOAc} /$ hexane to $10 \% \mathrm{EtOAc} /$ hexane $)$ to give the alcohol $^{3}(2.73 \mathrm{~g}, 61 \%)$ as a colourless
oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.96(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.13(1 \mathrm{H}, \mathrm{dd}, J$ 10.8 and $1.3,=\mathrm{C} H \mathrm{H}$ trans to $=\mathrm{CR}), 5.29(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and $1.3,=\mathrm{C} H \mathrm{H}$ cis to $=\mathrm{CR})$, $6.16(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and $10.8,=\mathrm{CHR}), 7.22-7.27(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.31-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.44-7.48 (2 H, m, Ph); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 29.4$ (q), 74.8 (s), 112.4 (t), 125.2 ($2 \times \mathrm{d}$), 127.0 (d), 128.3 (2 xd), 144.9 (d), 146.5 (s).

Synthesis of 4,4-dimethyl-3-methylenepent-1-ene.

To a stirred solution of tetrabutylammonium perrhenate $(0.531 \mathrm{~g}, 1.08 \mathrm{mmol})$ and paratoluenesulphonic acid mono-hydrate $(0.103 \mathrm{~g}, 0.54 \mathrm{mmol})$ in $\mathrm{DCM}\left(40 \mathrm{~cm}^{3}\right)$ was added a solution of 3,4,4-trimethylpent-1-en-3-ol (1.015 g, 4.92 mmol$)$ in DCM ($20 \mathrm{~cm}^{3}$). The reaction mixture was stirred overnight, diluted with diethyl ether $\left(75 \mathrm{~cm}^{3}\right)$ and saturated $\mathrm{NaHCO}_{3}\left(75 \mathrm{~cm}^{3}\right)$ added. The layers were separated and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to a small volume by distillation at ambient pressure. The residue was filtered (silica) and washed with pentane ($50 \mathrm{~cm}^{3}$) and again concentrated to a small volume by distillation at ambient pressure. The residue was then distilled under reduced pressure (30 mbar) at room temperature, collecting the product in a trap at $-78{ }^{\circ} \mathrm{C}$ to give the diene ${ }^{4}(0.163 \mathrm{~g}, 14 \%)$ as a colourless oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CR}_{2}\right), 5.01(1 \mathrm{H}, \mathrm{dd}, J$ 10.8 and $2.3, \mathrm{CHR}=\mathrm{CHH}$ trans to CR$), 5.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{CR}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $2.3, \mathrm{CHR}=\mathrm{CH} H$ cis to CR$), 6.42\left(1 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $\left.10.8, \mathrm{C} H \mathrm{R}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 29.3$ (3 x q), 35.0 (s), 107.1 (t), 114.6 (t), 137.0 (d), 156.7 (s).

Synthesis of 1-(1-methyleneallyl)-adamantane.

To a stirred solution of tetrabutylammonium perrhenate $(0.242 \mathrm{~g}, 0.49 \mathrm{mmol})$ and paratoluenesulphonic acid mono-hydrate $(0.047 \mathrm{~g}, 0.25 \mathrm{mmol})$ in $\mathrm{DCM}\left(30 \mathrm{~cm}^{3}\right)$ was added a solution of 2-adamantan-1-ylbut-3-en-2-ol ($1.015 \mathrm{~g}, 4.92 \mathrm{mmol}$) in $\operatorname{DCM}\left(20 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred overnight, diluted with diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ and saturated $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ added. The layers were separated and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum to give the crude product. The residue was purified by flash column chromatography (pentane) to give the diene ${ }^{5}(1.36 \mathrm{~g}, 55 \%)$ as a colourless oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.62-1.76(12 \mathrm{H}, \mathrm{m}$, adamantyl 6 x $\left.\mathrm{CH}_{2}\right)$, 1.97-2.05 ($3 \mathrm{H}, \mathrm{m}$, adamantyl 3 x CH$), 4.72\left(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CR}_{2}\right), 5.00(1 \mathrm{H}$, dd, $J 10.8$ and 2.3, $\mathrm{CHR}=\mathrm{C} H \mathrm{H}$ trans to CR $), 5.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{CR}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{dd}, J$ 17.1 and 2.3, $\mathrm{CHR}=\mathrm{CH} H$ cis to CR$), 6.44\left(1 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $\left.10.8, \mathrm{C} H \mathrm{R}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}$ (100.6 MHz; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 28.7(3 \mathrm{x} \mathrm{d}), 36.9(3 \mathrm{x} \mathrm{t}), 40.5(\mathrm{~s}), 41.2(3 \mathrm{x} \mathrm{t}), 107.1(\mathrm{t})$, 114.7 (t), 136.4 (d), 157.1 (s$).$

Synthesis of (1-methyleneallyl)-benzene.

To a stirred solution of 2-phenylbut-3-en-2-ol $(1.870 \mathrm{~g}, 12.6 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added para-toluenesulphonic acid mono-hydrate $(0.480 \mathrm{~g}, 2.5 \mathrm{mmol})$. The reaction
mixture was stirred overnight at $60{ }^{\circ} \mathrm{C}$, diluted with saturated $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{DCM}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum to give the crude product. The residue was purified by flash column chromatography (pentane) to give the $\operatorname{product}^{6}(0.528 \mathrm{~g}, 33 \%)$ as a colourless oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 5.16-5.23\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHR}=\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CR}_{2}\right), 5.29-5.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{CR}_{2}\right), 6.62\left(1 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $\left.10.8, \mathrm{C} H \mathrm{R}=\mathrm{CH}_{2}\right)$, 7.27-7.38 (5 H, m, Ph); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 116.9$ (t), 117.2 (t), 127.5 (d), 128.1 (2 x d), 128.3 (2 x d), 138.2 (d), 139.8 (s$), 148.3$ (s$).$

Synthesis of methanesulfonic acid but-3-ynyl ester.

To a stirred solution of 3-butyn-1-ol (4.63 g, 66.1 mmol) and triethylamine ($10.01 \mathrm{~g}, 99.1$ $\mathrm{mmol})$ in DCM $\left(60 \mathrm{~cm}^{3}\right)$ was added a solution of methanesulphonyl chloride $(11.36 \mathrm{~g}$, $99.1 \mathrm{mmol})$ in $\operatorname{DCM}\left(30 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred overnight, diluted with 2 M HCl solution $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with DCM ($30 \mathrm{~cm}^{3}$). The combined extracts were washed with 1 M HCl solution $\left(30 \mathrm{~cm}^{3}\right)$, saturated sodium hydrogen carbonate solution $\left(30 \mathrm{~cm}^{3}\right)$, and brine $\left(30 \mathrm{~cm}^{3}\right)$ and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum to give the product $(9.64 \mathrm{~g}, 98 \%)$ as a clear oil; $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3286 $(\equiv \mathrm{CH}), 1333$ and $1168\left(\mathrm{SO}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.08(1 \mathrm{H}, \mathrm{t}, J 2.7, \equiv \mathrm{CH})$, $2.67\left(2 \mathrm{H}, \mathrm{dt}, J 6.8\right.$ and $\left.2.7, \equiv \mathrm{CCH}_{2}\right), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.32\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{OSO}_{2}\right)$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 19.5(\mathrm{t}), 37.5(\mathrm{q}), 66.9(\mathrm{t}), 70.7(\mathrm{~d}), 78.4(\mathrm{~s})$. Found (EI)
$149.0257[\mathrm{MH}]^{+}, \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3}$ S requires $149.0272\left(1.5 \mathrm{mDa}\right.$ error); $m / z(\mathrm{EI}) 149\left(\mathrm{MH}^{+}, 50 \%\right)$, 109 (50), 79 (100), 70 (45).

Synthesis of thioacetic acid S-but-3-ynyl ester.

To a stirred solution of methanesulfonic acid but-3-ynyl ester ($18.73 \mathrm{~g}, 126.5 \mathrm{mmol}$) in acetonitrile $\left(400 \mathrm{~cm}^{3}\right)$ was added potassium thioacetate $(28.88 \mathrm{~g}, 253.0 \mathrm{mmol})$. The reaction mixture was stirred for 2 days, diluted with water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \mathrm{x} 200 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum to give the crude product. The residue was purified by distillation to give the thioester ($8.70 \mathrm{~g}, 54 \%$) as a clear oil; bp $76-78^{\circ} \mathrm{C} / 30 \mathrm{~mm} \mathrm{Hg}$; $v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3291(\equiv \mathrm{C}-\mathrm{H}), 2938\left(\mathrm{CH}_{2}\right), 1686(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 2.03(1 \mathrm{H}, \mathrm{t}, J 2.6, \equiv \mathrm{CH}), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3)$, $2.49(2 \mathrm{H}, \mathrm{dt}, J 7.0$ and 2.6 , $\equiv \mathrm{CCH} 2), 3.04(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH} 2 \mathrm{~S}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.6(\mathrm{t}), 26.2(\mathrm{t})$, 28.7 (q), 67.8 (d), 80.2 (s), 193.4 (s). Found (EI) $127.0202[\mathrm{M}-\mathrm{H}]^{+}, \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{OS}$ requires 127.0218 (1.5 mDa error); m / z (EI) $129\left(\mathrm{MH}^{+}, 5 \%\right.$), $128\left(\mathrm{M}^{+}, 5\right), 127$ (10), 113 (35), 79 (70), 78 (100), 63 (55), 61 (15).

Synthesis of but-3-yne-1-sulfonic acid sodium salt.

To a stirred solution of thioacetic acid S-but-3-ynyl ester ($5.00 \mathrm{~g}, 39.1 \mathrm{mmol}$) in acetic acid $\left(65 \mathrm{~cm}^{3}\right)$ at $60^{\circ} \mathrm{C}$ was added dropwise 30% hydrogen peroxide solution in water (25 $\mathrm{cm}^{3}, 196.0 \mathrm{mmol}$) and the reaction mixture was stirred for 3 hours, cooled and concentrated under vacuum to give the crude product, using heptane to azeotropically
remove any traces of acetic acid. The residue was dissolved in water ($50 \mathrm{~cm}^{3}$) and neutralized with 2 M sodium hydroxide solution. The solution was then concentrated under vacuum to give the sulfonate ester ($5.98 \mathrm{~g}, 99 \%$) as an off-white solid; $\mathrm{mp}>320$ ${ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1}($ solid $) 3307(\equiv \mathrm{CH}), 1321$ and $1155\left(\mathrm{SO}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $2.31(1 \mathrm{H}, \mathrm{t}, J 2.6, \equiv \mathrm{CH}), 2.54\left(2 \mathrm{H}, \mathrm{dt}, J 7.3\right.$ and $\left.2.6, \equiv \mathrm{CCH}_{2}\right), 2.99(2 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\mathrm{CH}_{2} \mathrm{SO}_{3} \mathrm{Na}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.5$ (t). 49.6 (t), 70.8 (d), 82.7 (s). Found (LSIMS) $132.9967[\mathrm{M}]^{-}, \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{3}$ S requires 132.9959 (0.8 mDa error); m / z (LSIMS) 133 ($\mathrm{M}^{-}, 100 \%$).

Synthesis of but-3-yne-1-sulfonyl chloride 15.

To a suspension of but-3-yne-1-sulfonic acid sodium salt (7.05 g, 45.5 mmol) in DCM $\left(15 \mathrm{~cm}^{3}\right)$ and thionyl chloride ($23 \mathrm{~cm}^{3}$) was added dimethylformamide (15 drops). The reaction mixture was refluxed for 5 hours, cooled to room temperature and concentrated under vacuum to give the crude product. The residue was purified by distillation to give $15(2.38 \mathrm{~g}, 34 \%)$ as a pale yellow oil; bp $44-45{ }^{\circ} \mathrm{C} / 0.5 \mathrm{~mm} \mathrm{Hg} ; v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3295(\equiv \mathrm{C}-\mathrm{H}), 2994$ and $2930\left(\mathrm{CH}_{2}\right), 1368$ and $1166\left(\mathrm{SO}_{2} \mathrm{Cl}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 2.17(1 \mathrm{H}, \mathrm{t}, J 2.5, \equiv \mathrm{CH}), 2.93-2.98\left(2 \mathrm{H}, \mathrm{m}, \equiv \mathrm{CCH}_{2}\right), 3.85(2 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Cl}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.6(\mathrm{t}), 62.6(\mathrm{t}), 71.8(\mathrm{~d}), 77.3$ (s). Found (EI) 149 (5\%), 78 (75), 63 (100).

Synthesis of pent-4-ynyl 4-methylbenzenesulfonate 26.

To a solution of 4-penty-1-ol $(8.52 \mathrm{~g}, 101 \mathrm{mmol})$ and triethylamine $(11.25 \mathrm{~g}, 111 \mathrm{mmol})$ in acetonitrile $\left(85 \mathrm{~cm}^{3}\right)$ was added para-toluene sulphonyl chloride $(18.68 \mathrm{~g}, 98 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, stirred overnight, filtered and concentrated under vacuum. The residue was dissolved in dichoromethane $\left(200 \mathrm{~cm}^{3}\right)$, washed with $2 \mathrm{M} \mathrm{HCl}\left(200 \mathrm{~cm}^{3}\right)$, sat. NaHCO_{3} solution $\left(200 \mathrm{~cm}^{3}\right)$ and sat. NaCl solution $\left(200 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under vacuum to give the crude product. The residue was purified by flash chromatography (5 \% EtOAc/hexane to 30 \% EtOAc/hexane) to give 26 (17.34 g, 74\%) as a colourless oil. (Found: C, $60.11 ; \mathrm{H}, 5.92 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 60.48 ; \mathrm{H}, 5.92 \%$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3289(\equiv \mathrm{CH}), 1356$ and $1173\left(\mathrm{SO}_{2} \mathrm{O}\right), 812$ (disubstituted benzene); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$ 1.82-1.91 (3 H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and $\equiv \mathrm{CH}$), $2.26(2 \mathrm{H}, \mathrm{dt}, J 7.0$ and 2.6, $\left.\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J 6.2, \mathrm{CH}_{2} \mathrm{OSO}_{2}\right), 7.35(2 \mathrm{H}, \mathrm{d}, J 8.2$, $\mathrm{ArH} o$ to $\left.\mathrm{CH}_{3}\right), 7.80\left(2 \mathrm{H}, \mathrm{d}, J 8.2\right.$, $\mathrm{ArH} o$ to $\left.\mathrm{SO}_{2}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.3(\mathrm{t}), 21.3$ (q), 27.4 (t$), 68.6$ (t), $69.4(\mathrm{~d}), 81.9(\mathrm{~s}), 127.6(2 \mathrm{x} \mathrm{d}), 129.7(2 \mathrm{x} \mathrm{d}), 132.5(\mathrm{~s}), 144.7(\mathrm{~s})$. Found (LSIMS): $239.0737[\mathrm{MH}]^{+}, \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}$ requires 239.0742 (2.2 ppm error); m/z (CI) $256\left(\mathrm{MNH}_{4}^{+}, 100 \%\right), 239\left(\mathrm{MH}^{+}, 5\right), 174$ (10), 91 (5).

Synthesis of cobalt cycloaddition catalyst 18.

To a stirred solution of 1,2-bis(diphenylphosphino)ethane ($2.000 \mathrm{~g}, 5.02 \mathrm{mmol}$) in THF $\left(60 \mathrm{~cm}^{3}\right)$ was added cobalt(II) bromide $(1.098 \mathrm{~g}, 5.02 \mathrm{mmol})$. The resulting brown solution was stirred overnight to give a green precipitate, which was collected by vacuum filtration to give $\mathbf{1 8}^{7}(2.870 \mathrm{~g})$ as a green solid, which was used in the cycloaddition reactions without further purification or characterisation.

Synthesis of rhodium cycloaddition catalyst 19.

To a suspension of $\left[\mathrm{Rh}(\right.$ cyclooctadiene $) \mathrm{Cl}_{2}(0.098 \mathrm{~g}, 0.20 \mathrm{mmol})$ in acetone $\left(15 \mathrm{~cm}^{3}\right)$ was added naphthalene $(0.102 \mathrm{~g}, 0.80 \mathrm{mmol})$ followed by silver tetrafluoroborate $(0.077$ $\mathrm{g}, 0.40 \mathrm{mmol}$). The reaction mixture was stirred for 1 hour, filtered (celite) and concentrated under vacuum to give $\mathbf{1 9}^{8}(0.182 \mathrm{~g})$ as a yellow/orange solid which was used in the cycloaddition reactions without further purification or characterisation.

Reduction of ketones in isopropyl alcohol using tethered ruthenium aminoalcohol

 chiral ligands, typical procedure:To a suspension of ruthenium dimer $(0.00425 \mathrm{mmol})$ in isopropanol $\left(15 \mathrm{~cm}^{3}\right)$ was added a 0.1 M solution of potassium hydroxide $\left(0.85 \mathrm{~cm}^{3}, 0.085 \mathrm{mmol}\right)$ and the solution stirred at $28{ }^{\circ} \mathrm{C}$ for 20 minutes. Substrate $(1.70 \mathrm{mmol})$ was added and the reaction mixture stirred at $28{ }^{\circ} \mathrm{C}$ for 2 hours, diluted with hexane $\left(30 \mathrm{~cm}^{3}\right)$, filtered (silica), washed (50% $\mathrm{EtOAc} /$ hexane) and concentrated under vacuum to give the reduction product. The residue was purified by flash chromatography where necessary.

Reduction of ketones in formic acid/triethylamine using tethered ruthenium diamine chiral ligands, typical procedure:

A solution of ruthenium dimer (0.0075 mmol) or pre-formed ruthenium monomer (0.015 $\mathrm{mmol})$ in formic acid : triethylamine $5: 2$ azeotrope $\left(1.5 \mathrm{~cm}^{3}\right)$ was stirred in a flame dried Schlenk tube at $28^{\circ} \mathrm{C}$ for 30 minutes. Substrate (3.00 mmol) was added and the reaction mixture was stirred at $28{ }^{\circ} \mathrm{C}$ for 22 hours. The reaction mixture was filtered (silica), washed ($50 \% \mathrm{EtOAc} /$ hexane) and concentrated under vacuum to give the reduction product. The residue was purified by flash chromatography where necessary.

1-Phenylethanol KPA.

Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- β-236M-19 $50 \mathrm{~m}, \mathrm{~T}=115{ }^{\circ} \mathrm{C}, \mathrm{P}=7$ psi, ketone $13.2 \mathrm{~min} ., R$ isomer $19.3 \mathrm{~min} ., S$ isomer 20.3 min .); $[\alpha]_{\mathrm{D}}{ }^{22}+49.0\left(\mathrm{c} 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) 98 \%$ ee $(R)\left(\right.$ lit. $^{9}[\alpha]_{\mathrm{D}}{ }^{23}+48.6$ (c 1.0 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 96 \%$ ee $(R)) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.47\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{3}\right), 2.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.86(1$ $\left.\mathrm{H}, \mathrm{q}, J 6.4, \mathrm{PhCHCH}_{3}\right), 7.33-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 24.9(\mathrm{q})$, 70.2 (d), 125.2 ($2 \times \mathrm{d}$), 127.2 (d), 128.3 ($2 \times \mathrm{d}$), 145.6 (s$).$

1-Cyclohexylethanol.

Method A: Enantiomeric excess by HPLC of 2-naptholate ester derivative (Chialcel OD$\mathrm{H}, 4 \%$ iso-propanol/hexane $\left(0.7 \mathrm{~mL} \mathrm{~min}{ }^{-1}\right), R$ isomer $8.3 \mathrm{~min} ., S$ isomer 9.6 min .), conversion by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; Method B: Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- β-236M-19 50m, $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{P}=7 \mathrm{psi}$, ketone $17.6 \mathrm{~min} ., R$ isomer 26.3 min., S isomer 26.9 min.$) ;[\alpha]_{\mathrm{D}}{ }^{18}-1.61$ (c 1.80 in $\left.\mathrm{CHCl}_{3}\right) 19 \%$ ee $(R)\left(\right.$ lit. ${ }^{10}$ $[\alpha]_{\mathrm{D}}+3.51\left(\mathrm{c} 3.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) 95 \%$ ee $\left.(S)\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.92-1.32(6 \mathrm{H}, \mathrm{m}$, cyclohexyl), $1.15\left(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CH}_{3}\right), 1.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.63-1.88(5 \mathrm{H}, \mathrm{m}$, cyclohexyl), $3.54\left(1 \mathrm{H}, \mathrm{dt}, J 6.3\right.$ and $\left.6.3, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 20.4 (q), 26.2 (2 x overlapping t), 26.5 (t , 28.4 (t), 28.7 (t$), 45.1$ (d), 72.2 (d).

3,3-Dimethylbutan-2-ol.

Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- β-236M-19 $50 \mathrm{~m}, \mathrm{~T}=80^{\circ} \mathrm{C}, \mathrm{P}=7$ psi, ketone $5.5 \mathrm{~min} ., R$ isomer $8.7 \mathrm{~min} ., S$ isomer 8.9 min .); $[\alpha]_{\mathrm{D}}{ }^{23}$ $+2.0\left(\mathrm{c} 0.9\right.$ in $\left.\mathrm{CCl}_{4}\right) 63 \%$ ee $(S)\left(\right.$ lit. ${ }^{11}[\alpha]_{\mathrm{D}}{ }^{29}-43.0\left(\mathrm{c} 1.5\right.$ in $\left.\mathrm{CCl}_{4}\right) 99 \%$ ee $\left.(R)\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.58-1.82(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 3.44-3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.8(\mathrm{q}), 25.4(3 \mathrm{x} \mathrm{q})$, 34.9 (s), 75.6 (d).

1-Adamantanylethanol.

Enantiomeric excess by GC analysis (Chiracel β-DEX-120 $25 \mathrm{~m}, \mathrm{~T}=115^{\circ} \mathrm{C}, \mathrm{P}=48 \mathrm{psi}$, R isomer 57.1 min., S isomer 58.4 min.), conversion by ${ }^{1} \mathrm{H}-\mathrm{NMR} ;[\alpha]_{\mathrm{D}}{ }^{18}+0.4$ (c 1.5 in CHCl_{3}) 12% ee $(R)\left(\right.$ lit. ${ }^{12}[\alpha]_{\mathrm{D}}{ }^{25}-1.6$ (c 2.2 in $\left.\mathrm{CHCl}_{3}\right) 99.8 \%$ ee (S)); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.10\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.45-1.75(12 \mathrm{H}, \mathrm{m}$, adamantyl $6 \times \mathrm{CH}_{2}$), 1.96-2.02 ($3 \mathrm{H}, \mathrm{m}$, adamantyl 3 xCH), $3.28(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CHOH})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 16.5(\mathrm{q}), 28.4(3 \mathrm{x} \mathrm{d}), 36.6(\mathrm{~s}), 37.3(3 \mathrm{xt}), 37.7(3 \mathrm{xt})$, 75.8 (d).

1-Cyclohexylpropan-1-ol.

Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- β-236M-19 $50 \mathrm{~m}, \mathrm{~T}=100{ }^{\circ} \mathrm{C}, \mathrm{P}=15 \mathrm{psi}$, ketone $19.9 \mathrm{~min} ., S$ isomer $31.5 \mathrm{~min} ., R$ isomer 32.1 min .); $[\alpha]_{\mathrm{D}}{ }^{23}-1.92\left(\mathrm{c} 0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right) 28 \%$ ee $(S)\left(\mathrm{lit} .^{13}[\alpha]_{\mathrm{D}}{ }^{25}-3.9\right.$ (c 3.05 in $\left.\mathrm{CHCl}_{3}\right) 99 \%$ ee $(S)) ; \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.99-1.82(14 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{OH}$ and cyclohexyl), $3.25-3.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 10.2(\mathrm{q}), 26.2(\mathrm{t}), 26.4(\mathrm{t}), 26.6(\mathrm{t}), 26.8(\mathrm{t}), 27.7(\mathrm{t}), 29.3(\mathrm{t}), 77.6(\mathrm{~d})$.

Octan-2-ol.

Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- β-236M-19 $50 \mathrm{~m}, \mathrm{~T}=70^{\circ} \mathrm{C}, \mathrm{P}=10 \mathrm{psi}$, ketone $29.3 \mathrm{~min} ., R$ isomer $54.1 \mathrm{~min} ., S$ isomer 55.1 min .); $[\alpha]_{\mathrm{D}}{ }^{23}+3.31\left(\mathrm{c} 0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right) 24 \%$ ee $(S)\left(\mathrm{lit}{ }^{14}[\alpha]_{\mathrm{D}}{ }^{25}+9.0\left(\mathrm{c} 1.23\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right) 99 \%$ ee
$(S)) ; \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18(3 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right), 1.27-1.47\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{x} \mathrm{CH}_{2}\right), 1.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.1(\mathrm{q}), 22.6(\mathrm{t}), 23.4(\mathrm{q}), 25.7(\mathrm{t}), 29.3(\mathrm{t}), 31.8(\mathrm{t}), 39.4$ (t), 68.1 (d).

References

1) Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842-2843
2) Sasaki, T.; Shimizu, K.; Ohno, M. Chem. Pharm. Bull. 1984, 32, 1433-40.
3) Marson, C. M.; Walker, A. J.; Pickering, J.; Hobson, A. D. J. Org. Chem., 1993, 58, 5944-5951.
4) (a) Trætteberg, M.; Hopf, H.; Lipka H.; Hänel, R. Chem. Ber., 1994, 127, 14591467. (b) Overberger, C. G.; Fischman, A.; Roberts, C. W.; Around L. H.; Lal, J. J. Am. Chem. Soc., 1951, 73, 2540-2543.
5) Yurchenko, A. G.; Kyrij, A. B.; Likhotvorik, I. R.; Melnik, N. N.; Zaharzh, P.; Bzhezovski, V. V.; Kushko, A. O. Synthesis, 1991, 393-394.
6) Brown, P. A.; Bonnert, R. V.; Jenkins, P. R.; Lawrence, N. J.; Selim, M. R. J. Chem. Soc., Perkin Trans. 1, 1991, 8, 1893-1900.
7) (a) Hilt, G.; du Mesnil, F.-X. Tetrahedron Lett., 2000, 41, 6757. (b) Hilt, G.; Lüers, S. Synthesis, 2002, 5, 609 .
8) Paik, S.-J.; Son, S. U.; Chung, Y. K. Org. Lett., 1999, 1, 20459) Hayashi, T.; Matsumoto, Y.; Ito, Y. Tetrahedron: Asymmetry, 1991, 2, 601.
9) Li, G.; Kabalka, G. W. J. Organomet. Chem., 1999, 581, 66-69.
10) Imai, T.; Tamura, T.; Yamamuro, A.; Sato, T.; Wollmann, T. A.; Kennedy, R. M.; Masamune, S. J. Am. Chem. Soc., 1986, 108, 7402-7404.
11) Evans, D. A.; Michael, F. E.; Tedrow, J. S.; Campos, K. R. J. Am. Chem. Soc., 2003, 125, 3534-3543.
12) Richmond, M.L.; Seto, C. T. J. Org. Chem., 2003, 68, 7505-7508.
13) Nakamura, K.;Matsuda, T. J. Org. Chem., 1998, 63, 8957-8964.
ii) $\quad 1 \mathrm{H}-\mathrm{NMR}$ spectra of compounds lacking CHN analyses.

[(R, R)-2-(but-3-yne-1-sulfonylamino)-1,2-diphenylethyl]-carbamic acid tert-butyl

ester 17.

$\{(R, R)$-2-[2-(4-methylcyclohexa-1,4-dienyl)-ethanesulfonylamino]-1,2-

diphenylethyl\}-carbamic acid tert-butyl ester 20a.

$\{(R, R)$-2-[2-(4-tert-butylcyclohexa-1,4-dienyl)-ethanesulfonylamino]-1,2-
diphenylethyl\}-carbamic acid tert-butyl ester 20b.

$\{(R, R)$-2-[2-(4-adamantan-1-ylcyclohexa-1,4-dienyl)-ethanesulfonylamino]-1,2-

diphenylethyl\}-carbamic acid tert-butyl ester 20c.

\{(R,R)-1,2-diphenyl-2-[2-(4-phenylcyclohexa-1,4-dienyl)-ethanesulfonylamino]-ethyl\}-carbamic acid tert-butyl ester 20d.

2-p-tolyl-ethanesulfonic acid ((R, R)-2-amino-1,2-diphenylethyl)-amide ammonium

 chloride ruthenium dimer 21 a .

2-(4-tert-butyl-phenyl)-ethanesulfonic acid ((R, R)-2-amino-1,2-diphenylethyl)-amide ammonium chloride ruthenium dimer 21 b .

2－（4－adamantan－1－yl－phenyl）－ethanesulfonic acid（（ R, R ）－2－amino－1，2－diphenylethyl）－

amide ammonium chloride ruthenium dimer 21 c ．

$9+\angle 5 \cdot 1$
$\begin{aligned} & 8629.1 \\ & 0269 \%\end{aligned}$
$\begin{aligned} & 0269^{\prime} I \\ & 1 \angle I L \cdot\end{aligned}$
$\begin{aligned} & \text { ILILI - } \\ & 0 \varepsilon 6 L I-~\end{aligned}$
266L. - $=$
$\left.\begin{array}{l}2226 \% \\ 2966 \%\end{array}\right]$
2100%
stroz-

006 がカ $^{\circ}$
682 S．${ }^{\circ}$
0289 t
s90L＇t＝
91EL + －
$956 Z^{\circ} 5$
t60 5
E999．5
0289.5
ع090．9
$62 \angle 09-5$

0IEL＇9
EZSL：9

26Eでし
$6 \angle D Z L$
$0897^{\circ} \mathrm{L}$

L915 7 －
CItt $8-1$
EE59：8

2-biphenyl-4-yl-ethanesulfonic acid ($(\boldsymbol{R}, \boldsymbol{R})$-2-amino-1,2-diphenylethyl)-amide

ammonium chloride ruthenium dimer 21 d .

tert-butyl (1R,2S)-1-hydroxy-1-phenylpropan-2-yl(pent-4-ynyl) carbamate 25.

[3-(4-tert-butyl-cyclohexa-1,4-dienyl)-propyl]-[(1S,2R)-2-(tert-

butyldimethylsilanyloxy)-1-methyl-2-phenylethyl]-carbamic acid tert-butyl
carbamate 28b.

[3-(4-adamantan-1-ylcyclohexa-1,4-dienyl)-propyl]-[(1S,2R)-2-(tert-butyldimethylsilanyloxy)-1-methyl-2-phenylethyl]-carbamic acid tert-butyl carbamate 28c.

528
[(1S,2R)-2-(tert-butyldimethylsilanyloxy)-1-methyl-2-phenylethyl]-[3-(4-
phenylcyclohexa-1,4-dienyl)-propyl]-carbamic acid tert-butyl carbamate 28d.

[3-(4-tert-butylcyclohexa-1,4-dienyl)-propyl]-((1S,2R)-2-hydroxy-1-methyl-2-

phenylethyl)-carbamic acid tert-butyl carbamate.

[3-(4-adamantan-1-yl-cyclohexa-1,4-dienyl)-propyl]-((1S,2R)-2-hydroxy-1-methyl-2-
phenylethyl)-carbamic acid tert-butyl carbamate.

((1S,2R)-2-hydroxy-1-methyl-2-phenylethyl)-[3-(4-phenylcyclohexa-1,4-dienyl)-propyl]-carbamic acid tert-butyl carbamate.

(1R,2S)-2-[3-(4-tert-butylphenyl)-propylamino]-1-phenylpropan-1-ol ruthenium dimer 29b.

980IS
9758.5
9698.5
Z9EI'9
EISI'9

ruthenium dimer 29c.

29d.

