ELECTRONIC SUPPLEMENTARY MATERIAL

New strategies for the synthesis of anthrapyran antibiotics: discovery of a novel antitumor agent and total synthesis of (S)-espicufolin

L. F. Tietze,* Kersten M. Gericke, Ramakrishna Reddy Singidi and Ingrid Schuberth
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany. Fax: +49551 399476; Tel: +49 551 393271; E-mail: ltietze@gwdg.de

Human Tumor Colony Forming Ability (HTCF) Test:

Human bronchial carcinoma cells of line A549 (ATCC CCL 185) were cultivated at $37{ }^{\circ} \mathrm{C}$ and $7.5 \% \mathrm{CO}_{2}$ in Dulbecco's modified Eagle's medium (DMEM, Biochrom) supplemented with fetal calf serum (10%, heat-inactivated for 30 min at $56^{\circ} \mathrm{C}$, GibcoBRL), NaHCO_{3} (44 mm , Biochrom) and L-glutamine (4 mm , GibcoBRL).
Adherent cells of line A549 were sown in triplicate in 6 multiwell plates at concentrations of $10^{2}, 10^{3}$ and 10^{4} cells per cavity. Culture medium was removed by suction after cultivating 24 h and the cells were washed with the incubation medium Ultraculture (UC, serum-free special medium, Cambrex Bioproducts). Next, cells were incubated for 24 h in Ultraculture with solutions of the compounds to be tested at various concentrations freshly prepared in DMSO (VWR) and diluted with incubation medium to a final concentration of 1% DMSO in the wells. Control wells contained 1% DMSO. After 24 h of exposure, the test substance were removed by suction and the cells were washed with fresh medium. Cultivation was performed at $37{ }^{\circ} \mathrm{C}$ and $7.5 \% \mathrm{CO}_{2}$ in air for 12 days in culture medium. The medium was removed by suction, the colonies were dried, stained with Löffler's methylene blue (VWR) and counted macroscopically.

The relative colony forming rate was determined according to the following formula:
relative colony forming rate $[\%]=\frac{(\text { number of colonies grown with test compound }) \times 100}{(\text { number of colonies grown in the control })}$

Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007

General and experimental procedures and analytical data for compounds 5-7, 9-10, 1620 and 36-41:

General: All reactions were performed in flame-dried glassware under an atmosphere of argon. Solvents were dried and purified according to the method defined by Perrin and Armarego. ${ }^{1}$ Commercial reagents were used without further purification. Thin-layer chromatography (TLC) was carried out on precoated Alugram SIL G/UV 254 (0.25 mm) plates from Macherey-Nagel \& Co. Column chromatography was carried out on silica gel 60 from Merck with particle size $0.063-0.200 \mathrm{~mm}$ for normal pressure and $0.020-0.063 \mathrm{~mm}$ for flash chromatography ($\mathrm{P}=$ pentane). Melting points were recorded on a Mettler FP61 and are uncorrected. IR spectra were determined on a Bruker Vektor 22, UV-VIS spectra on a PerkinElmer Lambda 2, and mass spectra on a Varian MAT 311A, Varian MAT 731 for EI-HRMS, and a Bioapex fourier transformation ion cyclotron resonance mass spectrometer for ESIHRMS. ${ }^{1} \mathrm{H}$ NMR spectra were recorded either on a Varian VXR-200 MHz or Varian UNITY-300 MHz. ${ }^{13} \mathrm{C}-$ NMR spectra were recorded at 50 or 75 MHz . Spectra were taken at room temperature in deuterated solvents as indicated using the solvent peak as internal standard. Elemental analysis was performed at the Mikroanalytisches Labor des Institutes für Organische und Biomolekulare Chemie der Universität Göttingen.

5-Hydroxy-1,4-naphthoquinone (juglone, 5). A suspension of freshly recrystallised CuCl $(12.0 \mathrm{~g}, 0.121 \mathrm{~mol})$ in acetonitrile (500 mL) was placed in a 4 L three-neck flask fitted with a mechanical stirrer and a gas inlet tube and a strong current of air was bubbled through it. A suspension of 1,5 -dihydroxynaphthalene $(4,30.0 \mathrm{~g}, 0.187 \mathrm{~mol})$ in acetonitrile $(500 \mathrm{~mL})$ was added with vigorous stirring at $20^{\circ} \mathrm{C}$ in the dark over 30 min . Afterwards, another amount of $\mathrm{CuCl}(12.0 \mathrm{~g}, 0.121 \mathrm{~mol})$ was added followed by the addition of $4(30.0 \mathrm{~g}, 0.187 \mathrm{~mol})$ in acetonitrile (500 mL) over 30 min . This procedure was carried out again with the same amount of reactants $(\mathrm{CuCl}, 12.0 \mathrm{~g}, 0.121 \mathrm{~mol} ; 4,30.0 \mathrm{~g}, 0.187 \mathrm{~mol}$ in 500 mL acetonitrile). The resulting mixture was stirred for 8 h and then the solvent was removed under reduced pressure. The crude product was purified in a Soxhlet extractor with n-heptane (1.6 L) as solvent to afford $5(53.7 \mathrm{~g}, 55 \%)$ as orange-red needles, $\operatorname{Rf} 0.34(\mathrm{P}-\mathrm{EtOAc}, 8: 1) ; \mathrm{mp} 154{ }^{\circ} \mathrm{C}$ (Found: C, 69.09; H, 5.49. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{3}$ requires C, 68.97; H, 3.47\%); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 207.5$ $\left(\lg \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.508\right), 248.5$ (4.128) and 420.0 (3.540); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3386,3070$, $1665,1644,1600,1486,1451,1364,1338,1290$ and $1226 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.91(1 \mathrm{H}$,
s, OH), $7.69-7.60(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 8-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $2.5,6-\mathrm{H})$ and, $6.96(2 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.2,184.2,161.4,139.5,138.59,136.5,131.7,124.4$, 119.1 and $114.9 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 174.0\left(100 \%,[\mathrm{M}]^{+}\right), 146.0\left(10 \%,[\mathrm{M}-\mathrm{CO}]^{+}\right)$and $118(36 \%,[\mathrm{M}-$ $\left.\left.\mathrm{C}_{2} \mathrm{O}_{2}\right]\right)^{+}$.

3-Bromo-5-hydroxy-1,4-naphthoquinone (3-bromojuglone, 6). A suspension of juglone (5, $12.0 \mathrm{~g}, 68.9 \mathrm{mmol})$ in acetic acid $(180 \mathrm{~mL})$ was treated in the dark at $20^{\circ} \mathrm{C}$ with bromine $(68.9 \mathrm{mmol}, 3.60 \mathrm{~mL})$. After stirring for 15 min , the reaction mixture was poured onto ice. The resultant slurry was stirred for 10 min after which the dibrominated intermediate was filtered off under reduced pressure. The pale-orange solid was washed with a little amount of ice-water and then immediately treated with ethanol $(80 \mathrm{~mL})$ and stirred for 10 min under reflux using a pre-heated oil bath. The mixture was cooled down to $20^{\circ} \mathrm{C}$ and the red precipitate was filtered off under reduced pressure. The residue was washed with a small amount of cold ethanol and then subjected to silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Concentration of the appropriate fractions in vacuo furnished 3-bromojuglone ($\mathbf{6}, 14.0 \mathrm{~g}$, 80 \%) as an orange solid, Rf 0.46 (P-EtOAc, 8:1); mp $168^{\circ} \mathrm{C}$ (Found: C, 47.72; H, 2.05. $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{BrO}_{3}$ requires $\mathrm{C}, 47.46 ; \mathrm{H}, 1.99 \%$); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 212.0\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 4.462), 247.5 (3.705), 282.0 (4.041) and 426.5 (3.515); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3421,3051$, 1655,1630, 1582, 1487, 1458, 1363, 1291, 1275 and 1214; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.73(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 7.68(1 \mathrm{H}, \mathrm{t}, J 7.4,7-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and $2.0,8-\mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.31$ ($1 \mathrm{H}, \mathrm{dd}, J 7.4,2.0,6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.8,181.6,162.0,141.2,139.3,137.2$, 131.6, 124.7, 119.9 and 113.9; m/z (EI) 253.9, 251.9 (100%, [M] ${ }^{+}$), $173.0\left(50 \%,[\mathrm{M}-\mathrm{Br}]^{+}\right)$ and $145.0\left(46 \%,[\mathrm{M}-\mathrm{Br}-\mathrm{CO}]^{+}\right)$; (EI) 251.9422. $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{BrO}_{3}$ requires 251.9422.

3-Bromo-5-isopropoxy-[1,4]naphthoquinone (7). To a mixture of 3-bromojuglone (6, $1.46 \mathrm{~g}, 5.77 \mathrm{mmol})$ and silver(I) oxide ($2.67 \mathrm{~g}, 11.5 \mathrm{~mol}$) in $\mathrm{CHCl}_{3}(70 \mathrm{~mL})$ was added 2iodopropane ($1.73 \mathrm{~mL}, 17.3 \mathrm{mmol}$) and the resulting suspension was stirred for 24 h at $20^{\circ} \mathrm{C}$. Then, additional silver(I) oxide ($1.33 \mathrm{~g}, 5.77 \mathrm{mmol}$) and 2-iodopropane ($0.58 \mathrm{~mL}, 5.77 \mathrm{mmol}$) was added and stirring was continued for another 12 h (TLC-control). The mixture was filtered trough a plug of celite ${ }^{\circledR}$ and the filter cake was rinsed carefully with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of the solvent under reduced pressure, the crude product was subjected to silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Concentration of the appropriate fractions in vacuo afforded

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is (c) The Royal Society of Chemistry 2007naphthoquinone 7 ($1.69 \mathrm{~g}, 99$ \%) as a yellow solid, Rf 0.38 (P-EtOAc, $4: 1$); mp $73{ }^{\circ} \mathrm{C}$ (Found: C, 52.75; H, 3.96. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{3}$ requires C, 52.91; H, 3.76\%); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 211.5$ ($\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.533$), 258.0 (4.033), 277.0 (4.106) and 407.0 (3.558); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3046, 2978, 2932, 1668, 1612, 1598, 1581, 1467, 1436, 1376, 1309, 1293, 1275 and 1205; δ_{H} ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.72-7.62(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 8-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and 2.3, $6-\mathrm{H}), 4.74\left(1 \mathrm{H}\right.$, sept., $\left.J 6.0, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ and $1.47\left(6 \mathrm{H}, \mathrm{d}, J 6.0,2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ (75.5 MHz, CDCl_{3}) 182.6, 175.9, 159.1, 142.8, 138.2, 135.2, 134.0, 120.8, 119.3, 72.27 and 21.93; m/z (EI) $296.1\left(12 \%,[\mathrm{M}]^{+}\right), 294.1\left(10 \%,[\mathrm{M}]^{+}\right), 254.0\left(100 \%,\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}\right]^{+}\right), 252.1$ $\left(97 \%,\left[M-\mathrm{C}_{3} \mathrm{H}_{6}\right]^{+}\right), 173.1\left(84 \%,\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}-\mathrm{Br}\right]^{+}\right)$and $145.1\left(56 \%\right.$, $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}-\mathrm{Br}-\right.$ $\mathrm{CO}]^{+}$); Found (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$294.99662. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{3}+\mathrm{H}^{+}$requires 294.99643.

Methyl 3-methylbut-2-enoate (9). 3-Methyl-but-2-enoic acid (8, $70.0 \mathrm{~g}, 0.700 \mathrm{~mol}$) in $\mathrm{MeOH}(260 \mathrm{~mL})$ was treated with a catalytically amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(4.0 \mathrm{~mL})$ and then stirred for 16 h under reflux. Afterwards, $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ was added to the reaction mixture, the layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 120 \mathrm{~mL})$. The combined organic phases were washed subsequently with half-saturated aqueous NaHCO_{3} solution $(300 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was distilled over a 10 cm Vigreux-column to afford the ester 9 ($73.7 \mathrm{~g}, 92 \%$) as a colourless liquid, $R \mathrm{f} 0.50\left(\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}, 20: 1\right.$); bp $135^{\circ} \mathrm{C}$; (Found: C, $63.31 ; \mathrm{H}$, 9.11. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 63.14 ; \mathrm{H}, 8.83 \%\right)$, $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 215.5\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 4.102); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2951,1723,1662,1448,1379,1351,1281$ and $1233 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.68\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, 2-\mathrm{H}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.17\left(3 \mathrm{H}, \mathrm{d}, J 1.1,(E)-3-\mathrm{CH}_{3}\right)$ and 1.90 ($3 \mathrm{H}, \mathrm{d}, J 1.1,(Z)-3-\mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.1,156.7,115.6,50.71,27.33$ and 20.13; $m / z(E I) 114.2\left(33 \%,[M]^{+}\right), 99.1\left(4 \%,\left[M-\mathrm{CH}_{3}\right]^{+}\right), 83.1\left(100 \%\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right]^{+}\right)$and 55.1 $\left(58 \%,\left[\mathrm{C}_{2} \mathrm{H}_{7}\right]^{+}\right)$.

1-Methoxy-3-methyl-1-trimethylsilyloxy-1,3-butadiene (10). A solution of diisopropylamine ($60.8 \mathrm{~mL}, 0.434 \mathrm{~mol}$) in THF (300 mL) was treated with stirring at $-78^{\circ} \mathrm{C}$ dropwise with $n \mathrm{BuLi}(174 \mathrm{~mL}, 0.434 \mathrm{~mol}, 2.5 \mathrm{~m}$ in n-hexane) during 1 h . The mixture was warmed within 2 h to $20^{\circ} \mathrm{C}$, cooled again to $-78^{\circ} \mathrm{C}$, and then ester $9(45.0 \mathrm{~g}, 0.395 \mathrm{~mol})$ was added dropwise over 30 min . After being stirred for 1.5 h , TMSCl ($60.5 \mathrm{~mL}, 0.473 \mathrm{~mol}$) in THF

Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007

$\left(50 \mathrm{~mL}\right.$) was added dropwise during 1.5 h and then the mixture was warmed to $20^{\circ} \mathrm{C}$ over 1.5 h . The solvent was removed under reduced pressure and the slurry suspended with pentane $(300 \mathrm{~mL})$, filtered through a sintered glass fritted funnel (porosity 3), and concentrated in vacuo. The crude product was distilled under reduced pressure over a 10 cm Vigreux-column to afford the butadiene $10(69.2 \mathrm{~g}, 94 \%)$ as a colourless liquid, Rf 0.41 ($\mathrm{P}-$ $\left.\mathrm{Et}_{2} \mathrm{O}, 19: 1\right) ;$ bp $35^{\circ} \mathrm{C}(0.4 \mathrm{mmHg}) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 214.5\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 3.400\right) ; v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3080,2963,2841,1655,1607,1444,1413,1372,1352,1307,1254$ and $1211 ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $4.78(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.8,(Z)-4-\mathrm{H}), 4.54\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}},(E)-4-\mathrm{H}\right), 4.26(1 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H})$, $3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.93\left(3 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, 3-\mathrm{CH}_{3}\right)$ and $0.23\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$, CDCl_{3}) 173.4, 140.3, 107.4, 80.47, 54.97, 23.62 and $0.36 ; m / z(\mathrm{EI}) 186.2\left(12 \%,[\mathrm{M}]^{+}\right)$and $171.2\left(4 \%,\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\right), 89.1(18 \%), 82.1$ (100\%), $73.1\left(42 \%,\left[\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{Si}^{+}\right]^{+}\right)$.
(3RS)-3-(tert-Butyl-dimethyl-silanyloxy)-butyric acid ethylester (16). A solution of 3-hydroxy-butyric acid ethylester (15, $2.66 \mathrm{~mL}, 20.0 \mathrm{mmol}$), imidazole ($3.40 \mathrm{~g}, 50.0 \mathrm{mmol}$), and a catalytically amount of DMAP (50 mg) in DMF (100 mL) was treated at $20^{\circ} \mathrm{C}$ with $\operatorname{TBSCl}(4.52 \mathrm{~g}, 30.0 \mathrm{mmol})$. After being stirred for 16 h , the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic layers were washed with brine $(250 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was subjected to silica gel flash chromatography $\left(\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}\right.$, $50: 1 \rightarrow 20: 1$) and concentration of the appropriate fractions in vacuo afforded ester 16 $(4.92 \mathrm{~g}, 100 \%)$ as a colourless liquid, (Found: C, $58.69 ; \mathrm{H}, 10.42 . \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$ requires C, $58.49 ; \mathrm{H}, 10.63 \%), \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 216.5\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 2.413\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 2958, 2931, 2858, 1739, 1473, 1377, 1301 and 1256; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.25\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}\right.$, $3-\mathrm{H}), 4.09\left(2 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.44\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.8.0,2-\mathrm{H}_{\mathrm{a}}\right), 2.33(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and $\left.5.4,2-\mathrm{H}_{\mathrm{b}}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J 6.1,4-\mathrm{H}_{3}\right), 0.83(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{TBS}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$, TBS) and $0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{TBS}\right) ; \delta_{\mathrm{C}}$ (75.5 MHz, CDCl_{3}) 171.7, 65.84, 60.24, 44.94, 25.70, 23.91, 17.93, 14.17, -4.53 and -5.07 ; $m / z(E S I) 269.0\left(80 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(3RS)-3-(tert-Butyl-dimethyl-silanyloxy)-butan-1-ol (17). A solution of ester 16 (2.46 g , 10.0 mmol) in THF (15 mL) was treated at $20^{\circ} \mathrm{C}$ dropwise during 5 min with a solution of LiBH_{4} ($5.50 \mathrm{~mL}, 11.0 \mathrm{mmol}, 2 \mathrm{~m}$ in THF). After being stirred for 3 h under reflux, the

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is (c) The Royal Society of Chemistry 2007reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then treated dropwise during 10 min with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(1.00 \mathrm{~mL})$. After additional stirring for 30 min , the mixture was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. Subjecting the crude material to silica gel flash chromatography ($\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}, 20: 1 \rightarrow 2: 1$) and concentration of the appropriate fractions in vacuo afforded alcohol 17 ($1.65 \mathrm{~g}, 80 \%$) as a colourless liquid, Rf 0.14 ($\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}$, 4:1); (Found: C, 58.87 ; H, 11.61. $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ requires C, $58.77 ; \mathrm{H}, 11.84 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3358,2957,2931,2858,1651,1473,1376$ and $1256 ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $4.07\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, 3-\mathrm{H}\right), 3.86-3.76\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.74-3.64\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{b}}\right)$, $2.58\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}\right.$, disappears after H/D-exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.82-1.69\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{a}}\right)$, $1.66-1.54\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{b}}\right), 1.17\left(3 \mathrm{H}, \mathrm{d}, J 6.4,4-\mathrm{H}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{TBS}\right), 0.07(3 \mathrm{H}$, s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{TBS}\right)$ and $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{TBS}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 68.40,60.48$, 40.38, 25.77, 23.39, 17.92, -4.37 and -5.00 ; m / z (ESI) 205.0 (100%, $[\mathrm{M}+\mathrm{H}]^{+}$), Found (ESI) $\left[\begin{array}{llllll} \\ \mathrm{M}+\mathrm{H}]^{+} & \text {205.16177. } & \mathrm{C}_{10} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}^{+} \text {requires 205.16183, } \quad[\mathrm{M}+\mathrm{Na}]^{+} \quad \text { 227.14379. }\end{array}\right.$ $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+}$requires 227.14378.
(3RS)-3-(tert-Butyl-dimethyl-silanyloxy)-butyraldehyde (18): A solution of alcohol $\mathbf{1 7}$ ($613 \mathrm{mg}, 3.00 \mathrm{mmol}$), diisopropylethyl amine ($2.48 \mathrm{~mL}, 15.0 \mathrm{mmol}$), and DMSO (2.13 mL , $30.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with $\mathrm{SO}_{3} \cdot \mathrm{Py}(1.19 \mathrm{~g}, 7.50 \mathrm{mmol})$ and stirred for 1 h . Afterwards, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$, washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The resulting crude material was subjected to silica gel flash chromatography $\left(\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}, 20: 1 \rightarrow 10: 1\right)$ and concentration of the appropriate fractions in vacuo afforded aldehyde $\mathbf{1 8}$ ($523 \mathrm{mg}, 86 \%$) as a colourless liquid, which was directly used within in the next step, $R \mathrm{f} 0.35\left(\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}, 10: 1\right) ; \mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2957,2931,2858,2721$, $1729,1473,1376,1256$ and $1218 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.76(1 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{CHO}), 4.32(1 \mathrm{H}$, $\left.\mathrm{m}_{\mathrm{c}}, 3-\mathrm{H}\right), 2.52\left(1 \mathrm{H}\right.$, ddd, $J 15.7,7.1$ and $\left.2.5,2-\mathrm{H}_{\mathrm{a}}\right), 2.43\left(1 \mathrm{H}, \mathrm{ddd}, J 15.7,5.0\right.$ and $\left.2.2,2-\mathrm{H}_{\mathrm{b}}\right)$, $1.21\left(3 \mathrm{H}, \mathrm{d}, J 6.2,4-\mathrm{H}_{3}\right), 0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{TBS}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{TBS}\right), 0.03$ (3 H, s, Si(CH3 $\left.)_{2}, \mathrm{TBS}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.2,64.50,52.94,25.68,24.14,17.91$, 4.42, -5.00; $m / z(\mathrm{DCI}) 405.4\left(2 \%,[2 \times \mathrm{M}+\mathrm{H}]^{+}\right), 220.2\left(100 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$and $203.2(48 \%$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007

But-2-ynal (20). A solution of but-2-ynol (19, $6.00 \mathrm{~g}, 85.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 mL) was treated at $20^{\circ} \mathrm{C}$ with $\mathrm{MnO}_{2}(74.4 \mathrm{~g}, 0.86 \mathrm{~mol})$ and stirred for 18 h . The reaction mixture was filtered through a plug of celite ${ }^{\circledR}$ and the filter cake was rinsed carefully with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of the solvent via distillation over a Vigreux-column $(30 \mathrm{~cm})$ the crude material was distilled to afford the aldehyde $20(3.93 \mathrm{~g}, 67 \%)$ as pale yellow liquid, bp $105-108{ }^{\circ} \mathrm{C}$; δ_{H} ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.16\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, \mathrm{CHO}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.3$, 95.16, 80.87 and 4.24; $m / z(E I) 68.1\left(30 \%,[\mathrm{M}]^{+}\right)$and $67.1\left(100 \%,[\mathrm{M}-\mathrm{H}]^{+}\right)$.

1-Hydroxy-8-isopropoxy-3-methoxymethylanthraquinone (31). To a solution of juglone derivative $7(2.00 \mathrm{~g}, 6.78 \mathrm{mmol})$ in benzene $(40 \mathrm{~mL})$ was added at $20^{\circ} \mathrm{C}$ dropwise a mixture of diene 29 and $30(4.40 \mathrm{~g}, 20.3 \mathrm{mmol})$ within 10 min . After being stirred for 1 h , the mixture was heated under reflux for 3 h , additional diene 29 and $30(2.93 \mathrm{~g}, 13.6 \mathrm{mmol})$ was added and stirring was continued for further 3 h . Next, the reaction mixture was poured onto silica gel (50 g), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added, and then the suspension was stirred for 24 h . After removing the solvent under reduced pressure, the silica gel was eluted carefully with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10:1) and the combined organic fractions were concentrated in vacuo to afford the crude product. This material was subjected to silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and concentration of the appropriate fractions in vacuo furnished anthraquinone 31 ($1.11 \mathrm{~g}, 50 \%$) as a yellow solid, Rf 0.35 (P-EtOAc, 4:1); mp $160^{\circ} \mathrm{C}$ (Found: C, 69.93; H, 5.75. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}$ requires C, 69.93; $\mathrm{H}, 5.56 \%$); $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 224.5\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 4.609), 257.0 (4.341) and 413.0 (3.964); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2972,2930$, 2824, 1672, 1640, $1585,1488,1440,1377,1318,1301,1262$ and $1240 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.08(1 \mathrm{H}, \mathrm{s}$, $8-\mathrm{OH}), 7.91(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $0.9,5-\mathrm{H}), 7.71-7.64(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{br}$ d, $J 8.2,7-\mathrm{H}), 7.26(1 \mathrm{H}, \mathrm{d}, J 0.7,2-\mathrm{H}), 4.75\left(1 \mathrm{H}\right.$, sept., $\left.J 5.8, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.51(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $1.50\left(6 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 188.2, 182.7, 162.7, 159.5, 147.2, 135.8, 135.2, 132.7, 122.3, 121.6, 121.4, 120.0, 117.1, 116.2, 73.40, 72.58, 58.59 and 22.02; m / z (EI) $326.2\left(22 \%,[\mathrm{M}]^{+}\right)$and $254.1(100 \%,[\mathrm{M}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{7}-\mathrm{CHO}\right]^{+}$); Found (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$327.12271. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}+\mathrm{H}^{+}$requires 327.12270.

2-Bromo-1-hydroxy-8-isopropoxy-3-methoxymethylanthraquinone (32). A solution of anthraquinone $31(1.55 \mathrm{~g}, 4.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was treated at $20^{\circ} \mathrm{C}$ with a catalytic amount of diisopropyl amine (10 drops) and then a solution of NBS ($1.27 \mathrm{~g}, 7.14 \mathrm{mmol}$) in

Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007

$\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added dropwise during 10 min . After being stirred for 3 h (TLCcontrol), additional NBS ($423 \mathrm{mg}, 2.38 \mathrm{mmol}$) was added and stirring was continued for another 1.5 h . Next, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed subsequently with 0.2 N HCl solution $(250 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was subjected to silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and concentration of the appropriate fractions in vacuo afforded anthraquinone $32(1.85 \mathrm{~g}, 96 \%)$ as an orange solid, $R \mathrm{f} 0.37$ ($\mathrm{P}-$ EtOAc, 4:1); mp $198^{\circ} \mathrm{C}$; (Found: C, 56.08; H, 4.35. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrO}_{5}$ requires $\mathrm{C}, 56.31 ; \mathrm{H}$, $4.23 \%) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 229.0\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.583\right)$, 261.0 (4.411), 286.0 (4.007) and 416.5 (4.036); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2977, 2935, 1671, 1635, 1582, 1481, 1441, 1407, 1339, $1302,1290,1261$ and 1235 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.91(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{OH}), 7.91(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $0.9,5-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{t}, J 7.7,6-\mathrm{H}), 7.35(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.7,7-\mathrm{H}), 4.76$ (1 H, sept., $\left.J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $1.51(6 \mathrm{H}, \mathrm{d}$, $\left.J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 188.0,182.2,159.7,158.7,146.5,135.7,135.6$, 130.9, 121.4, 121.2, 120.1, 118.3, 117.3, 116.2, 73.73, 72.72, 59.03 and 22.02; m/z (EI) 406.2, $\left.404.2\left(56 \%,[M]^{+}\right), 364.1,362.1\left(35 \%, M-C_{3} H_{6}\right]^{+}\right), 334.1,332.1 \quad(100 \%$, $[\mathrm{M}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{6}-\mathrm{CO}\right]^{+}$) and 283.2 (70\%, [M - Br] ${ }^{+}$); Found (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$405.03310. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrO}_{5}$ requires 405.03321 .

2-Bromo-1,8-diisopropoxy-3-ethoxymethylanthraquinone (33). A solution of anthraquinone $32(1.70 \mathrm{~g}, 4.20 \mathrm{mmol})$ in a mixture of acetone $(120 \mathrm{~mL})$ and DMF $(40 \mathrm{~mL})$ was treated subsequently at $20^{\circ} \mathrm{C}$ with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.91 \mathrm{~g}, 12.6 \mathrm{mmol})$ and 2-iodopropane $(0.84 \mathrm{~mL}, 8.40 \mathrm{mmol})$. After being stirred for 16 h under reflux, the reaction mixture was filtered through a plug of celite ${ }^{\circledR}$. The filter cake was rinsed carefully with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then the combined organic phases were concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and washed subsequently with aqueous $2 \mathrm{M} \mathrm{Na} \mathrm{NO}_{3}(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was subjected to silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 40: 1\right)$ and concentration of the appropriate fractions in vacuo afforded anthraquinone $33(1.76 \mathrm{~g}, 94 \%)$ as a yellow solid, $R \mathrm{ff} 0.40$ ($\mathrm{P}-\mathrm{EtOAc}, 4: 1$); $\mathrm{mp} 123{ }^{\circ} \mathrm{C} ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 223.5\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.554\right)$, 262.5 (4.518) and 370.0 (3.855); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2970,2930,2822,1676,1584,1469,1445,1405,1382,1307,1278$ and $1236 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.10(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.0,5-\mathrm{H}), 7.61$

Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007

($1 \mathrm{H}, \mathrm{t}, J 8.0,6-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.0,7-\mathrm{H}), 4.67\left(1 \mathrm{H}\right.$, sept., $\left.J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.58(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 4.41\left(1 \mathrm{H}\right.$, sept., $\left.J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.44(6 \mathrm{H}, \mathrm{d}, J 6.2$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ and $1.41\left(6 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 183.2,182.4,157.5$, $154.3,144.2,135.0,133.7,133.0,128.7,126.8,125.7,121.7,121.0,119.1,79.88,73.93$, 72.59, 58.95, 22.23 and 21.99, m / z (ESI) $916.8\left(100 \%,[2 \times \mathrm{M}+\mathrm{Na}]^{+}\right)$and $469.1(10 \%$, $[\mathrm{M}+\mathrm{Na}]^{+}$); Found (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$447.08002. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrO}_{5}+\mathrm{H}^{+}$requires 447.08016.

2-Bromo-1,8-diisopropoxy-9,10-dimethoxy-3-methoxy-methylanthracene (34). A solution of anthraquinone $33(1.60 \mathrm{~g}, 3.58 \mathrm{mmol}$) and tetra- n-butylammonium bromide (346 mg , 1.07 mmol) in THF (60 mL) was treated at $20^{\circ} \mathrm{C}$ with a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(3.74 \mathrm{~g}$, $21.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and stirred for 20 min . Next, a solution of $\mathrm{KOH}(4.62 \mathrm{~g}$, $82.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added (yellow solution turned into deep-reed) and stirring was continued for additional 15 min . After addition of dimethyl sulfate (5 mL) the reaction mixture was stirred for 12 h (solution turned back into yellow) and then poured into $\mathrm{H}_{2} \mathrm{O}$ $(150 \mathrm{~mL})$. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was subjected to silica gel column filtration $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and concentration of the appropriate fractions in vacuo afforded anthraquinone $34(1.69 \mathrm{~g}, 99 \%)$ as a yellow oil, Rf 0.41 (P-EtOAc, 10:1); $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 203.0\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.330\right), 230.0$ (4.120), 270.0 (4.959), 364.0 (3.744), 382.0 (4.014), 399.5 (3.887) and 422.0 (3.754); $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2978,2932,1616,1556,1511,1451,1396,1352,1305$ and $1255 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.09(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $0.7,5-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and 7.3 , $6-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{br}$ d, $J 7.3,7-\mathrm{H}), 4.76-4.60\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{2} \mathrm{OCH}\right), 4.06(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.47\left(6 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{C}-8-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ and $1.36\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}-1-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.8,150.6,149.2,148.1,134.7$, 128.0, 125.9, 125.7, 120.7, 120.5, 117.0, 116.7, 115.2, 110.2, 78.06, 74.91, 71.88, 63.67, 62.86, 58.68, 22.04 and 21.88; $m / z(E S I) 501.1\left(100 \%,[M+N a]^{+}\right)$; Found (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ 477.12721. $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BrO}_{5}+\mathrm{H}^{+}$requires 477.12711.
(S)-2-Methylbutyraldehyde (36). A solution of oxalyl dichloride ($8.64 \mathrm{~mL}, 99.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(230 \mathrm{~mL})$ was treated at $-78^{\circ} \mathrm{C}$ at the same time and within 45 min with a solution of DMSO ($14.2 \mathrm{~mL}, 200 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and (S)-2-methyl-1-butanol (35, 9.86 mL ,

Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007
$90.8 \mathrm{mmol})$. After being stirred for $15 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(63.5 \mathrm{~mL}, 0.454 \mathrm{~mol})$ was added dropwise within 15 min . After another 15 min at this temperature, the solution was warmed within 1 h to $20^{\circ} \mathrm{C}$. Afterwards, $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 200 \mathrm{~mL})$. The combined organic phases were washed with $2 \% \mathrm{ic} \mathrm{HCl}$ and then with 5% ic $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtration, the solvent and dimethylsulfide were carefully removed via distillation using a Vigreux-column (30 cm). The residue was distilled using a 15 cm Vigreux-column to yield the aldehyde 36 ($6.21 \mathrm{~g}, 79 \%$) as a colourless liquid, which was directly used within the next step, bp $90-92^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}=+37.6^{\circ}\left(c 1.4, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.63(1 \mathrm{H}, \mathrm{d}, J 2.0,1-\mathrm{H}), 2.29\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}\right.$, $2-\mathrm{H}), 1.75\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.44\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, 3-\mathrm{H}_{\mathrm{b}}\right), 1.10\left(3 \mathrm{H}, \mathrm{d}, J 7.0,1^{\prime}-\mathrm{CH}_{3}\right)$ and $0.96(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5,4-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 205.4,47.73,23.49,12.83$ and 11.33.
(5S)-5-Methyl-hept-1-ene-4-ol (37). A solution of aldehyde 36 ($2.00 \mathrm{~g}, 23.2 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ was treated dropwise at $-78^{\circ} \mathrm{C}$ within 30 min with a solution of allylmagnesium bromide ($25.5 \mathrm{mmol}, 25.5 \mathrm{~mL}, 1.0 \mathrm{~m}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) ($1.19 \mathrm{~g}, 7.50 \mathrm{mmol}$) and stirred for 1 h . Afterwards, the reaction mixture was treated with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(100 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtration, the solvent and dimethylsulfide were carefully removed via distillation using a Vigreux-column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$, washed (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtetrated and concentrated under reduced pressure. The resulting crude material was subjected to silica gel flash chromatography $\left(\mathrm{P}^{\left.-\mathrm{Et}_{2} \mathrm{O}, 20: 1 \rightarrow 50: 1\right) \text { and }}\right.$ concentration of the appropriate fractions in vacuo afforded alcohol $37(1.81 \mathrm{~g}, 68 \%)$ as a colourless liquid. Due to its high volatility it was directly used within in the next step, $R \mathrm{f} 0.36$ ($\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}, 5: 1$).
tert-Butyldimethyl ((5S)-5-methylhept-1-en-4-yloxy) silane (38). A solution of alcohol 37 $(1.60 \mathrm{~g}, 14.1 \mathrm{mmol})$ and 2,6 -lutidine $(6.00 \mathrm{~g}, 6.52 \mathrm{~mL}, 56.0 \mathrm{mmol})$ was treated at $0{ }^{\circ} \mathrm{C}$ dropwise within 5 min with TBSOTf $(6.67 \mathrm{~g}, 5.80 \mathrm{~mL}, 25.2 \mathrm{mmol})$. After being stirred for 30 min , the reaction mixture was washed with half-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was subjected to silica gel flash chromatography (P) and concentration of the

Supplementary Material for Organic \& Biomolecular Chemistry

 This journal is (c) The Royal Society of Chemistry 2007appropriate fractions in vacuo afforded the desired product $38(4.92 \mathrm{~g}, 100 \%)$ as a mixture of of diastereoisomers ($d r \approx 1.1: 1$) in form of a colourless liquid, $R \mathrm{f} 0.67$ (diastereomer 1), 0.60 (diastereomer 2) $(\mathrm{P}) ;[\alpha]_{D}^{20}+3.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3078,2959,2931,1642$, $1463,1380,1362$ and 1254; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.90-5.58(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.07-4.04(2 \mathrm{H}$, $\mathrm{m},(Z)-1-\mathrm{H},(E)-1-\mathrm{H}), 3.61-3.50(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.22-2.09\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.53-1.32$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 1.16-0.99\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{b}}\right), 0.89-0.79\left(15 \mathrm{H}, \mathrm{m}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 7-\mathrm{H}_{3}$, $\left.1^{\prime}-\mathrm{CH}_{3}\right)$ and $-0.03,-0.01\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{TBS}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.3,136.0$, $116.3,116.2,75.70,75.24,40.03,39.38,38.92,37.59,25.90,25.69,25.54,24.93,18.15$, $14.30,13.54,12.12,12.00,-4.13,-4.26,-4.57,-4.60 ; \mathrm{m} / \mathrm{z}(\mathrm{DCI}) 260.32\left(10 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$, 243.3 ($\left.100 \%,[\mathrm{M}+\mathrm{H}]^{+}\right)$.
(4S)-3-(tert-Butyldimethylsilyloxy)-4-methylhexanal (39). A solution of olefin (38) (1.21 g, $5.00 \mathrm{mmol})$ in $t-\mathrm{BuOH}(20 \mathrm{~mL})$, THF $(6.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.7 \mathrm{~mL})$ was treated at $20^{\circ} \mathrm{C}$ with NMO ($811 \mathrm{mg}, 6.00 \mathrm{mmol}$) and $\mathrm{OsO}_{4}(5.0 \mathrm{~mol} \%, 63 \mathrm{mg}, 2.53 \mathrm{~mL}, 0.250 \mathrm{mmol}, 2.5 \% \mathrm{ic}$ solution in $t-\mathrm{BuOH})$. After being stirred for $2 \mathrm{~h}_{2} \mathrm{O}(8.5 \mathrm{~mL})$ and $\mathrm{NaIO}_{4}(3.21 \mathrm{~g}, 15.0 \mathrm{mmol})$ were added and stirring was continued for another 45 min . Afterwards, the reaction mixture was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$-solution $(30 \mathrm{~mL})$ and the mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was subjected to silica gel flash chromatography $\left(\mathrm{P}-\mathrm{Et}_{2} \mathrm{O}, 30: 1 \rightarrow 20: 1\right)$ and concentration of the appropriate fractions in vacuo afforded aldehyde $\mathbf{3 9}$ ($945 \mathrm{mg}, 77 \%$) as a colourless oil. Due to its high sensitivity it was directly used within in the next step.

(4S)-3-(tert-Butyl-dimethyl-silanyloxy)-1-(1,8-diisoprop-oxy-9,10-dimethoxy-3-

 methoxymethyl-anthracene-2-yl)-4-methylhexan-1-ol (40). A solution of anthracene 34 $(1.20 \mathrm{~g}, 2.51 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was treated at $-78^{\circ} \mathrm{C}$ dropwise during 1 min with $n \mathrm{BuLi}$ ($1.15 \mathrm{~mL}, 2.89 \mathrm{mmol}, 2.5 \mathrm{~m}$ in n-hexane). After being stirred for 1 min , aldehyde 39 (925 mg , $3.78 \mathrm{mmol})$ in THF (4 mL) was added quickly. Stirring was continued for 15 min at $-78{ }^{\circ} \mathrm{C}$, and then the reaction mixture was warmed to $20^{\circ} \mathrm{C}$ during 1 h . The reaction mixture was treated with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, stirred for 5 min and then poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$.
Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007

Afterwards, the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude material was subjected to silica gel flash chromatography (P-EtOAc, 40:1 \rightarrow 20:1) and concentration of the appropriate fractions in vacuo afforded a complex diastereomeric mixture (two major and one minor diastereoisomer) of alcohol 40 ($1.51 \mathrm{~g}, 93 \%$) as a yellow foam, Rf 0.31 (diastereoisomer 1), 0.26 (diastereoisomer 2 and 3) (P-EtOAc, 10:1); $\lambda_{\max }$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 202.0\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.431\right)$, 229.0 (4.139), 267.0 (5.002), 363.5 (3.798, sh), 381.5 (4.069), 397.0 (3.943) and 420.0 (3.777); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2959,2931,1616,1556$, 1452, 1397, 1360 and $1264 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ diastereomer 1: $8.00\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4{ }^{\prime}-\mathrm{H}\right)$, $7.84\left(1 \mathrm{H}, \mathrm{dd}, J 8.6\right.$ and $\left.0.7,5^{\prime} ’-\mathrm{H}\right), 7.32\left(1 \mathrm{H}, \mathrm{dd}, J 8.6\right.$ and $\left.7.3,6^{\prime}{ }^{\prime}-\mathrm{H}\right), 6.83(1 \mathrm{H}, \mathrm{br}$ d, $J 7.3$, 7’’-H), $5.60\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, 1-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OCH}_{3}\right), 4.74(1 \mathrm{H}, \mathrm{d}, J 12.2$, $\left.\mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{OCH}_{3}\right), 5.71-5.54(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.69-4.49\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 3.99-4.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, 3-\mathrm{H}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH} \mathrm{O}_{3}\right), 2.07$ $\left(1 \mathrm{H}, \mathrm{m}_{\mathrm{c}}, 2-\mathrm{H}_{\mathrm{a}}\right), 1.78-1.64\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}\right), 1.56-1.02\left(14 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}, 5-\mathrm{H}_{\mathrm{b}}\right.$, $\left.\left.5-\mathrm{H}_{\mathrm{a}}\right), 1.01-0.92\left(12 \mathrm{H}, \mathrm{m}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 6-\mathrm{H}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J 6.8,1\right.$ ' $\left.-\mathrm{CH}_{3}\right), 0.19,0.10$ $\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{TBS}\right) ; \delta_{\mathrm{C}}\left(150.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ diastereomer 1: 154.8, 149.7, 147.8, 134.1, 132.3, 127.7, 126.0, 125.5, 120.5, 119.3, 118.5, 115.3, 110.5, 77.20, 73.90, 72.65, 72.08, 66.33, 63.16, 62.81, 58.19, 40.58, 39.15, 26.05, 22.90, 22.17, 21.71, 18.11, 13.66, 12.26, -4.26 and $-4.63 ; \mathrm{m} / \mathrm{z}$ (ESI) 1307.3 ($100 \%,[2 \times \mathrm{M}+\mathrm{Na}]^{+}$) and 665.4 (89%, $[\mathrm{M}+\mathrm{Na}]^{+}$); Found (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} 665.38453 . \mathrm{C}_{37} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}^{+}$requires 665.38440.
(1RS,3RS)-2-(1,3-Dihydroxy-butyl)-1,8-diisopropoxy-3-methylanthraquinone (41)
solution of a diastereomeric mixture of anthracene $40(1.05 \mathrm{~g}, 1.63 \mathrm{mmol})$ in 1,4-dioxane $(120 \mathrm{~mL})$ was treated at $20^{\circ} \mathrm{C}$ with silver(II) oxide $(1.01 \mathrm{~g}, 8.15 \mathrm{mmol})$ and stirred for 5 min until a suspension was formed. Afterwards, $4 \mathrm{~N} \mathrm{HNO}_{3}(10 \mathrm{~mL})$ was added dropwise within 5 min until the silver(II) oxide was completely dissolved. After being stirred for another 10 min , the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was dissolved in THF (100 mL) and treated at $0^{\circ} \mathrm{C}$ with a solution of TBAF• $3 \mathrm{H}_{2} \mathrm{O}(1.03 \mathrm{~g}, 3.26 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. The temperature was raised to $20^{\circ} \mathrm{C}$ and stirring was continued for additional 30 min . The reaction was then poured into half-sat. $\mathrm{NaCl}(300 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic

Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2007

layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude material was subjected to silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 10: 1 \rightarrow 1: 1\right)$ and concentration of the appropriate fractions in vacuo afforded a complex diastereomeric mixture (two major and one minor diastereoisomer) of anthraquinone 41 ($693 \mathrm{mg}, 85 \%$) as a yellow foam, $R \mathrm{f} 0.25$ (diastereomer 1), 0.16 (diastereomer 2 and 3) (P-EtOAc, 2:1); $[\alpha]_{D}^{20}-3.6^{\circ}$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm} 193.0\left(\mathrm{lg} \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 4.489\right), 223.0$ (4.517), 260.5 (4.418) and 371.5 (3.792); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3451,2973,2932,1676,1584,1464,1383,1276 . ;$ mixture of diastereoisomers: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00,7.96,(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{d}$, $J 8.2,5-\mathrm{H}), 7.60$ ($1 \mathrm{H}, \mathrm{t}, J 8.2,6-\mathrm{H}), 7.29$ ($1 \mathrm{H}, \mathrm{d}, J 8.2,7-\mathrm{H}$), $5.59-5.45$ ($1 \mathrm{H}, \mathrm{m}, 1 ’-\mathrm{H}), 4.83$ $\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{OCH}_{3}\right), 4.73-4.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}} \mathrm{OCH}_{3}\right), 4.53-4.33(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.97-3.73\left(1 \mathrm{H}, \mathrm{m}, 3{ }^{\prime}-\mathrm{H}\right), 3.46,3.45,3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 2.18-1.95$ ($1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}$), $1.86-1.66\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 1.63-1.36\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}-8-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.\mathrm{C}-1-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{\mathrm{a}}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{C}-1-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 1.25-1.03\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$ and $0.97-0.85\left(6 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{3}, 1^{\prime}{ }^{\prime}-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 183.9,183.0,157.2,157.2,154.7$, 143.6, 142.7, 142.7, 141.6, 141.5, 141.02, 135.07, 133.68, 133.03, 132.72, 128.68, 128.7, 126.1, 126.0, 123.2, 123.2, 123.0, 121.3, 121.3, 121.3, 119.1, 78.95, 78.89, 78.52, 78.46, $76.48,76.04,72.80,72.72,72.55,72.39,72.02,70.90,70.85,67.37,67.31,58.46,58.31$, $40.62,40.45,41.70,40.53,39.79,38.69,25.66,25.27,25.08,25.00,22.46,22.42,22.03$, $22.00,14.62,14.35,13.94,13.89,11.88,11.73$ and 11.69 (a few signals have a too weak intensity or are covered by other signals); m / z (ESI) $521.25\left(36 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 499.27(100 \%$, $[\mathrm{M}+\mathrm{H}]^{+}$); Found (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$499.26914. $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{7}+\mathrm{H}^{+}$requires 499.26903. $[\mathrm{M}+\mathrm{Na}]^{+}$ 521.25097. $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{7}+\mathrm{Na}^{+}$requires 521.25097

[^0]
[^0]: ${ }^{1}$ D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd ed., Pentagon Press, Oxford, 1988.

