Preparation of new axially chiral bridged 2,2'-bipyridines and Pyridyl monooxazoline (Pymox). Evaluation in copper (I)catalyzed enantioselective cyclopropanation.

Alexis Bouet,^a Barbara Heller,^b Cyril Papamicaël,^a Georges Dupas,^a Sylvain Oudeyer,^a Francis Marsais^a and Vincent Levacher^{*a}

Supplementary information

Methyl 2-(3-acetylpyridyl)benzoate (12). To a solution of boronic ester 11 (2.46g, 8.66 mmol) and 2-chloro-3-acetylpyridine 10 (1.12 g, 7.2 mmol) in toluene (140 mL), ethanol (15 mL), water (778 μ L), were added K₂CO₃ (2.99 g, 21.6 mmol) and Pd[(PPh₃)]₄ (455 mg, 0.34 mmol). The mixture was degassed by N₂ for 30 min and then stirred at 60°C for 4 hours. The reaction mixture was quenched with water (50 mL). The aqueous phase was extracted with CH₂Cl₂ (2 x 40 mL) and the combined organic layers were evaporated under vacuum. Flash chromatography (eluent: EtOAc/cyclohexane: 1/1) of the residue provided 12 as a yellow oil (1.81 g, 98%). ¹H NMR 300 MHz, (CDCl₃) δ 8.63 (dd, *J* = 4.9 Hz and 1.7 Hz, 1H), 7.97 (dd, *J* = 7.8 Hz and 1.5 Hz, 2H), 7.48 (m, 2H), 7.30 (dd, *J* = 7.7 Hz and 4.7 Hz, 1H), 7.20 (d, *J* = 7.0 Hz, 1H), 3.61 (s, 3H), 2.09 (s, 3H). ¹³C NMR 75 MHz, (CDCl₃) δ 201.3, 167.6, 158.7, 151.2, 142.3, 136.6, 135.0, 132.4, 130.9, 130.8, 130.1, 129.1, 122.5, 52.5, 29.8. IR ν_{max} cm⁻¹ (KBr): 2952, 1724, 1694, 1561, 1269. Anal. Calcd. for C₁₅H₁₃NO₃: C, 70.58; H, 5.13; N, 5.49. Found: C, 70.45; H, 5.04; N, 5. 63.

Trans-(3R,13bS,aS)-13b-methyl-3-phenyl-2,3-dihydro-13bH-benz[e]oxazolo[3,2-

a]pyrido[2,3-c]azepin-5-one (13). To a solution of methyl 2-(3-acetylpyridyl)benzoate **12** (1.80 g, 7.06 mmol) in toluene (50 mL) was added (*R*)-phenylglycinol (1.07 g, 7.80 mmol). The mixture was refluxed for 2 days and then cooled to room temperature. Solvent was removed under vacuum. Flash chromatography (eluent: CH₂Cl₂) provided **13** (1.55 g, 60%) as a yellow solid. Mp: 84°C. ¹H NMR 300 MHz, (CDCl₃) δ 8.75 (dd, *J* = 4.8 and 1.5 Hz, 1H), 8.05 (d, *J* = 7.9 Hz, 1H), 7.96 (dd, *J* = 7.8 and 1.7 Hz, 1H), 7.90 (dd, *J* = 7.7 and 1.1 Hz, 1H), 7.10-7.70 (m, 8H), 5.48 (m, 1H), 4.33 (m, 2H), 1.58 (s, 3H). ¹³C NMR 75 MHz, (CDCl₃) δ 164.8, 153.3, 150.0, 140.8, 137.7, 136.4, 133.5, 131.8, 131.1, 130.6, 129.9, 129.8, 129.0, 128.0, 127.2, 123.1, 93.0, 71.4, 62.3, 26.0. IR ν_{max} cm⁻¹ (KBr): 2924,

1723, 1635, 1423, 1395. Anal. Calcd. for C₂₂H₁₈N₂O₂: C, 77.17; H, 5.30; N, 8.18. Found: C, 76.94; H, 5.16; N, 8.39. $[\alpha]^{20}_{D} = -16.0$ (*c* = 1.0, CH₂Cl₂).

Trans-(*3R*,13b*S*,a*S*)-13b-methyl-3-phenyl-2,3-dihydro-13b*H*-benz[e]oxazolo[3,2-a]-*N*-oxide-pyrido[2,3-c]azepin-5-one (14). To a solution of lactam 13 (1.55 g, 4.53 mmol) in CH₂Cl₂ (30 mL) was added *m*-chloroperbenzoic acid (70%, 3.35 g, 13.6 mmol). The mixture was stirred for 3 days and 2N aqueous potassium carbonate (50 mL) was added. After phase separation, the aqueous phase was extracted with dichloromethane (50 mL). Drying (MgSO₄) and evaporation of CH₂Cl₂ afforded 1.5 g of a pale brownish oil. Flash chromatography on silica gel (eluent: EtOAc then EtOH) of the crude product provided 14 (1.32 g, 81%) as a white solid. Mp: 104°C. ¹H NMR 300 MHz, (CDCl₃) δ 8.27 (m, 2H), 7.70 (d, *J* = 7.1 Hz, 1H), 7.19-7.46 (m, 10H), 5.37 (m, 1H), 4.18 (m, 2H), 1.34 (s, 3H). ¹³C NMR 75 MHz, (CDCl₃) δ 164.0, 144.0, 143.2, 140.9, 140.4, 134.6, 130.9, 130.3, 130.1, 129.1, 128.2, 127.3, 127.2, 124.8, 120.7, 92.3, 71.6, 61.7, 25.0. IR ν_{max} cm⁻¹ (KBr): 3063, 2883, 1644, 1394. Anal. Calcd. for C₂₂H₁₈N₂O₃: C, 73.73; H, 5.06; N, 7.82. Found: C, 73.64; H, 5.17; N, 7.79. [α]²⁰_D = - 218.2 (*c* = 0.55, CH₂Cl₂).

Trans-(*3R*,13b*S*,a*S*)-13b-methyl-3-phenyl-2,3-dihydro-13bH-benz[e]oxazolo[3,2-a](6cyano)pyrido[2,3-c]azepin-5-one (15). Prepared as described for **9** according to procedure A from pyridine *N*-oxide **14** (750 mg, 2.09 mmol), trimethysilyl cyanide (229 mg, 2.31 mmol) and dimethylcarbamoyl chloride (199 µL, 2.36 mmol). Flash chromatography (eluent: cyclohexane/EtOAc: 1/1) provided **15** (443 mg, 58%) as a yellow solid. Mp: 94°C. ¹H NMR 300 MHz, (CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.78 (dd, *J* = 7.7 and 0.8 Hz, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.53 (dt, *J* = 7.5 Hz and 1.3 Hz, 1H), 7.41-7.49 (m, 3H), 7.20-7.30 (m, 3H), 5.37 (d, *J* = 4.9 Hz, 1H), 4.18 (m, 2H), 1.46 (s, 3H). ¹³C NMR 75 MHz, (CDCl₃) δ 163.5, 154.7, 140.7, 139.9, 134.1, 133.5, 133.1, 132.2, 131.7, 130.4, 129.9, 128.6, 127.8, 127.4, 126.8, 116.9, 92.2, 71.1, 62.0, 25.1. IR ν_{max} cm⁻¹ (KBr): 2924, 2850, 1636, 1394. Anal. Calcd. for C₂₃H₁₇N₃O₂: C, 75.19; H, 4.66; N, 11.44. Found: C, 75.27; H, 4.73; N, 11.33. [α]²⁰_D = - 36.8 (*c* = 1.1, CH₂Cl₂).

Phenyl(3-carboxypyridin-2-yl)methanone (16). To a solution of 2,3pyridinedicarboxylic anhydride (7.46 g, 50 mmol) in dry THF (80 mL) at -78°C was added dropwise phenylmagnesium chloride in THF (2M, 26.2 mL, 52.5 mmol). The mixture was stirred for 2 hours, warmed to room temperature and quenched with 1M HCl (55 mL). After phase separation, the aqueous phase was extracted with CH₂Cl₂ (2 x 30 mL). The combined organic phases were washed with brine and dried over MgSO₄. Solvent was removed under vacuum and the residue was triturated in ether. Filtration provided **16** (4.20 g, 37%) as a pale powder. Mp: 134°C. ¹H NMR 300 MHz, (DMSO) δ 8.84 (d, *J* = 3.8 Hz, 1H), 7.99 (d, *J* = 7.5 Hz, 1H), 7.75 (m, 1H), 7.66 (m, 3H), 7.53 (m, 2H). ¹³C NMR 75 MHz, (DMSO) δ 194.8, 166.5, 150.5, 147.4, 137.0, 136.8, 136.7, 133.9, 129.4, 129.2, 126.7. IR ν_{max} cm⁻¹ (KBr): 2853, 1797, 1668, 1287. Anal. Calcd. for C₁₃H₉NO₃: C, 68.72; H, 3.99; N, 6.16. Found: C, 68.96; H, 4.14; N, 6.00.

Trans-(3R,13b*S*,a*S*)-13b-methyl-3-phenyl-2,3-dihydro-13b*H*-benz[e]oxazolo[3,2-a]-6-(4,5-dihydro-4,4-dimethyloxazol-2-yl)-pyrido[2,3-c]azepin-5-one (2d). Prepared as described for 2a according to procedure B from dry ZnCl₂ (16.7 mg, 0.12 mmol), cyanopyridine 15 (450 mg, 1.22 mmol) and 2-amino-2-methylpropanol (120.3 mg, 1.35 mmol) in chlorobenzene (6 mL). Flash chromatography of the residue on neutral alumina (eluent: EtOAc/cyclohexane: 1/1) provided ligand 2d (323 mg, 60%) as a white solid. Mp: 106°C. ¹H NMR 300 MHz, (CDCl₃) δ 8.15 (m, 2H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.88 (dd, *J* = 7.7 and 1.1 Hz, 1H), 7.64 (dt, *J* = 7.5 and 1.1 Hz, 1H), 7.52 (m, 3H), 7.42-7.31 (m, 3H), 5.47 (dd, *J* = 4.1 and 2.8 Hz, 1H), 4.31 (m, 2H), 4.24 (s, 2H), 1.57 (s, 3H), 1.44 (s, 3H), 1.42 (s, 3H). ¹³C NMR 75 MHz, (CDCl₃) δ 164.4, 161.4, 153.3, 147.6, 140.8, 139.6, 135.9, 133.5, 132.1, 131.9, 130.6, 130.5, 130.0, 129.1, 128.1, 127.3, 123.6, 93.1, 80.2, 77.0, 68.5, 62.3, 28.8, 25.9. IR ν_{max} cm⁻¹ (KBr): 3435, 2925, 2852, 1633. Anal. Calcd. for C₂₇H₂₅N₃O₃: C, 73.78; H, 5.73; N, 9.56. Found: C, 73.61, H, 5.99; N, 9.37. [α]²⁰_D = - 39.9 (*c* = 5.96, CH₂Cl₂).

(3S,9bR)-2,3-Dihydro-9b-phenyl-3-phenyl-oxazolo[3',2':1,2]pyrrolo[3,4-b]pyridin-5-

(9b*H*)-one (17). To a solution of benzoylnicotinic acid 16 (4.00 g, 15.5 mmol) in toluene (200 mL) was added (*R*)-phenylglycinol (2.41 g, 17.6 mmol). The solution was refluxed overnight in a Dean-Stark apparatus and then cooled to room temperature. Toluene was evaporated under vacuum. Crystallisation of the residue by addition of cyclohexane afforded after filtration lactam 17 (2.89 g, 50%) as a beige solid. Mp: 176°C. ¹H NMR 300 MHz, (CDCl₃) δ 8.60 (d, *J* = 4.1 Hz, 1H), 7.35 (m, 3H), 7.13 (m, 4H), 6.98 (m, 5H), 5.11 (t, *J* = 8.3 Hz, 1H), 4.69 (t, *J* = 8.5 Hz, 1H), 3.99 (*J* = 8.7 Hz, 1H). ¹³C NMR 75 MHz, (CDCl₃) δ 173.0, 153.0, 149.1, 142.1, 138.3, 137.2, 132.0, 129.2, 129.1, 128.6, 127.7, 126.9, 126.7, 125.9, 99.7, 76.7, 60.1. IR ν_{max} cm⁻¹ (KBr): 2853, 2448, 1667, 1287,

934. Anal. Calcd. for C₂₁H₁₆N₂O₂: C, 76.81; H, 4.91; N, 8.53. Found: C, 76.71; H, 5.09; N, 8.46. $[\alpha]^{20}_{D} = -247.0$ (*c* = 2.13, CH₂Cl₂).

(3S,9bR)-2,3-Dihydro-9b-phenyl-3-phenyl-oxazolo[3',2':1,2]N-oxyde-pyrrolo[3,4-

b]pyridin-5(9bH)-one (18). To a solution of lactam **17** (2.72 g, 8.3 mmol) in CH₂Cl₂ (50 mL) was added *m*-chloroperbenzoic acid (6.14 g, 35.6 mmol). The mixture was stirred for 3 days. The organic phase was washed with 15% aqueous potassium carbonate (50 mL). After drying (MgSO₄) and evaporation of CH₂Cl₂ under vacuum, the residue was dissolved in a minimal amount of CH₂Cl₂. Then a large excess of ether was added. The resulting oil was vigorously triturated and the solid formed was filtered off to afford **18** (2.17 g, 76%) as a beige powder. Mp: 208°C. ¹H NMR 300 MHz, (CDCl₃) δ 8.24 (d, *J* = 6.4 Hz, 1H), 7.57 (d, *J* = 6.0 Hz, 2H), 7.05-7.36 (m, 10 H), 5.31 (t, *J* = 8.1 Hz, 1H), 4.90 (t, *J* = 8.6 H, 1H), 4.17 (t, *J* = 8.6 Hz, 1H). ¹³C NMR 75 MHz, (CDCl₃) δ 167.3, 147.0, 142.6, 138.3 (x2), 136.6, 129.9, 129.7, 129.6, 128.9, 128.1, 127.0, 126.3, 120.5, 98.6, 76.7, 60.6. IR ν_{max} cm⁻¹ (KBr): 3069, 1736, 1438, 1325, 1242. Anal. Calcd. for C₂₁H₁₆N₂O₃: C, 73.24; H, 4.68; N, 8.13. Found: C, 73.10; H, 4.64; N, 8.26. [α]²⁰_D = - 341.7 (*c* = 2.71, CH₂Cl₂).

(3S,9bR)-2,3-Dihydro-9b-phenyl-3-phenyl-oxazolo[3',2':1,2]pyrrolo[3,4-b](6-

chloro)pyridin-5(9bH)-one (19). To a solution of pyridine *N*-oxide 18 (200 mg, 0.61 mmol) in dry CH₂Cl₂ (10 mL) were added phosphorus oxychloride (33 µL, 3.54 mmol) and triethylamine (611 µL, 4.38 mmol). The mixture was refluxed for 1 night and then cooled to 0°C. The solution was quenched with water (10 mL) and neutralized with 20% aqueous potassium carbonate. After phase separation, the aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL). After drying (MgSO₄), the solvent was removed under vacuum and the resultant crude product was purified by flash chromatography (eluent: cyclohexane/EtOAc: 1/1) providing 2-chloropyridine 19 (90 mg, 41%) as a white product. Mp: 80°C. ¹H NMR 300 MHz, (CDCl₃) δ 7.54 (m, 3H), 7.34 (m, 4H), 7.10-7.21 (m, 5H), 5.30 (t, *J* = 8.3 Hz, 1H), 4.89 (dd, *J* = 9.0 and 8.3 Hz, 1H), 4.19 (t, *J* = 9 Hz, 1H). ¹³C NMR 75 MHz, (CDCl₃) δ 171.8, 155.6, 149.8, 141.4, 138.3, 137.1, 134.8, 129.7, 129.6, 129.0, 128.3, 128.2, 127.1, 126.2, 99.6, 77.2, 60.7. IR v_{max} cm⁻¹ (KBr): 2926, 1736, 1588, 1434, 1320. Anal. Calcd. for C₂₁H₁₅ClN₂O₂: C, 69.52; H, 4.17; N, 7.72. Found: C, 69.41; H, 4.31; N, 7.77. [α]²⁰_D = - 365.1 (*c* = 1.06, CH₂Cl₂).

6,6'Bis(3S,9bR)-2,3-dihydro-9b-phenyl-3-phenyl-oxazolo[3',2':1,2]pyrrolo[3,4-

b]pyridin-5(9bH)-one (1c). To a stirred solution of nickel(II) chloride hexahydrate (300 mg, 1.26 mmol) and triphenylphosphine (1.33 g, 5.07 mmol) in dry, degassed DMF (6 mL) was added zinc dust (<10 µm, 106.7 mg, 1.63 mmol) and the resultant suspension was heated at 60 °C for 1 hour. A solution of chloropyridine 19 (451 mg, 1.24 mmol) in dry, degassed DMF (6 mL) was then added. The resultant mixture was heated at 60°C for 4 hours. The reaction mixture was then allowed to cool to room temperature and was poured into an aqueous solution of ammonia (10% w/w, 50 mL). The resultant mixture was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo*. Flash chromatography of the residue on silica gel (eluent: EtOAc/cyclohexane 1:4) provided ligand 1c (370 mg, 91%) as a white solid. Mp: 192 °C. ¹H NMR 300 MHz, (CDCl₃) δ 8.75 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.51 (dd, J = 7.5 and 1.7 Hz, 4H), 7.26 (m, 6H), 7.12 (m, 10H), 5.28 (t, J = 8.5 Hz, 2H), 4.86 (t, J = 4.9 Hz, 2H), 4.15 (t, J = 8.7 Hz, 2H). ¹³C NMR 75 MHz, (CDCl₃) δ 173.1, 158.4, 149.2, 143.0, 138.5, 137.4, 133.2, 129.5, 129.4, 128.9, 128.0, 127.0, 126.2, 125.7, 99.8, 77.0, 60.5. IR v_{max} cm⁻¹ (KBr): 1736, 1318, 698. Anal. Calcd. for C₄₂H₃₀N₄O₄: C, 77.05; H, 4.62; N, 8.56. Found: C, 76.91, H, 4.51, N, 8.42. $\left[\alpha\right]_{D}^{20} = -321.4$ (c = 0.28, CH_2Cl_2).

(3S,9bR)-2,3-Dihydro-9b-phenyl-3-phenyl-oxazolo[3',2':1,2]pyrrolo[3,4-b](6-

cyano)pyridin-5(9bH)-one (20). Prepared as described for **9** according to procedure A from pyridine *N*-oxide **18** (1.00 g, 2.90 mmol), trimethysilyl cyanide (294 mg, 2.96 mmol) and dimethylcarbamoyl chloride (305 μL, 3.32 mmol). Flash chromatography (eluent: cyclohexane/EtOAc: 1/1) provided **20** (571 mg, 56%) as a yellow solid. Mp: 86°C. ¹H NMR 300 MHz, (CDCl₃) δ 7.72 (m, 2H), 7.50 (m, 2H), 7.30 (m, 3H), 7.02-7.13 (m, 5H), 5.25 (t, *J* = 8.3 Hz, 1H), 4.85 (t, *J* = 8.8 Hz, 1H), 4.14 (t, *J* = 8.6 Hz, 1H). ¹³C NMR 75 MHz, (CDCl₃) δ 171.0, 150.9, 144.5, 137.9, 136.9, 136.4, 134.1, 131.9, 130.1, 129.8, 129.1, 128.3, 127.1, 126.2, 116.7, 99.6, 77.1, 60.8. IR ν_{max} cm⁻¹ (KBr): 2926, 1736, 1323, 1211. Anal. Calcd. for C₂₂H₁₅N₃O₂: C, 74.78; H, 4.28; N, 11.89. Found: 74.70; H, 4.39; N, 11.81. [α]²⁰_D = - 331.8 (*c* = 1.07, CH₂Cl₂).

(3*S*,9b*R*)-2,3-Dihydro-9b-phenyl-3-phenyl-oxazolo[3',2':1,2]pyrrolo[3,4-b][6-(4,5dihydro-4,4-dimethyloxazol-2-yl)]-pyridin-5(9b*H*)-one (2e). Prepared as described for 2a according to procedure B from dry ZnCl₂ (14.0 mg, 0.10 mmol), cyanopyridine 20 (353.4 mg, 1.00 mmol) and 2-amino-2-methylpropanol (151.0 mg, 1.10 mmol) in chlorobenzene (5 mL). Flash chromatography (eluent: CH₂Cl₂/EtOAc: 4/1) provided ligand **2e** (340 mg, 80%) as a white powder. Mp: 114°C. ¹H NMR 300 MHz, (CDCl₃) δ 8.18 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.55 (m, 2H), 7.34 (m, 3H), 7.20 (m, 3H), 7.13 (m, 2H), 5.34 (t, J = 8.3 Hz, 1H), 4.91 (t, J = 7.1 Hz, 1H), 4.22 (s, 2H), 4.21 (t, J = 7.6 Hz, 1H), 1.40 (s, 3H), 1.39 (s, 3H). ¹³C NMR 75 MHz, (CDCl₃) δ 172.0, 161.0, 150.9, 149.6, 143.8, 138.5, 137.4, 132.9, 129.6, 129.5, 128.9, 128.1, 127.6, 127.1, 126.3, 99.7, 77.2, 68.6, 60.7, 28.8, 28.7. IR ν_{max} cm⁻¹ (KBr): 2972, 1729, 1327, 1097. Anal. Calcd. for C₂₆H₂₃N₃O₃: C, 73.39; H, 5.45; N, 9.88. Found: C, 73.24; H, 5.37; N, 10.03. [α]²⁰_D = - 300.0 (c = 0.96, CH₂Cl₂).

X-ray data of 2,2'-bipyridine 1a:

Bond lengths [Å] and angles [°] for compound **1a**.

C(4)-C(125)	1.410
C(4)-C(130)	1.373
C(4)-H(5)	0.948
N(6) - C(125)	1 328
N(6) C(126)	1 3 2 8
C(96) C(120)	1.520
C(80) - C(115)	1.529
C(86)-C(116)	1.513
C(86)-N(170)	1.489
C(86)-O(177)	1.419
C(87)-C(90)	1.534
C(87)-O(177)	1.441
C(87)-H(88)	0.991
C(87)-H(89)	0.989
C(90)-C(92)	1.514
C(90) - N(170)	1.467
C(90)-H(91)	1 002
C(92)- $C(93)$	1 4 1 5
C(02) - C(101)	1 374
C(92) - C(101)	1.074
C(93)-C(95)	1.302
C(93)-H(94)	0.951
C(95)-C(97)	1.348
C(95)-H(96)	0.950
C(97)-C(99)	1.343
C(97)-H(98)	0.949
C(99)-C(101)	1.365
C(99)-H(100)	0.950
C(101)-H(102)	0.951
C(103)-C(104)	1.498
C(103)-N(170)	1.342
C(103)-O(176)	1.240
C(104)-C(105)	1.416
C(104)-C(120)	1.381
C(105)-C(106)	1.481
C(105)-N(171)	1.352
C(106)-C(107)	1.406
C(106)-C(115)	1.409
C(107)-C(109)	1 379
C(107)-H(108)	0.950
C(109)-C(111)	1 377
C(100) = O(111)	0.040
$C(109)-\Pi(110)$	1 277
$C(111) \sqcup (112)$	0.050
C(112) C(115)	1 202
C(113)-C(115)	1.392
C(113)-H(114)	0.950
C(116)-H(117)	0.980
C(116)-H(118)	0.980
C(116)-H(119)	0.981
C(120)-C(122)	1.377
C(120)-H(121)	0.950
C(122)-C(124)	1.394
C(122)-H(123)	0.951
C(124)-C(125)	1.492
C(124)-N(171)	1.340
C(126)-C(128)	1.355
C(126)-H(127)	0.950
C(128)-C(130)	1.361

C(128)-H(129)	0.951
C(130)-H(131)	0.950
C(125)-C(4)-C(130)	118.713
H(5)-C(4)-C(125)	120.685
H(5)-U(4)-U(130)	120.602
C(125)-N(0)-C(120) C(115) C(86) C(116)	110.994
C(115)-C(86)-N(170)	100 753
C(115)-C(86)-O(177)	110 513
C(116)-C(86)-N(170)	114 338
C(116)-C(86)-O(177)	105.811
N(170)-C(86)-O(177)	102.255
C(90)-C(87)-O(177)	103.837
H(88)-C(87)-C(90)	111.033
H(88)-C(87)-O(177)	110.925
H(88)-C(87)-H(89)	108.947
H(89)-C(87)-C(90)	111.032
H(89)-C(87)-O(177)	111.017
C(87)- $C(90)$ - $C(92)$	113.428
C(87) - C(90) - N(170) C(87) - C(90) + H(91)	100.001
C(92)-C(90)-N(170)	115 049
H(91)-C(90)-C(92)	109.034
H(91)-C(90)-N(170)	109.013
C(90)-C(92)-C(93)	121.102
C(90)-C(92)-C(101)	123.808
C(93)-C(92)-C(101)	114.831
C(92)-C(93)-C(95)	121.461
C(92)-C(93)-H(94)	119.247
H(94)-C(93)-C(95)	119.292
C(93)-C(95)-C(97)	119.213
$U(93)-U(95)-\Pi(96)$	120.200
C(95)-C(95)-C(97)	120.552
C(95)-C(97)-H(98)	119 196
H(98)-C(97)-C(99)	119.252
C(97)-C(99)-C(101)	119.252
C(97)-C(99)-H(100)	120.402
H(100)-Č(99)-Č(101)	120.346
C(92)-C(101)-C(99)	123.433
C(92)-C(101)-H(102)	118.287
C(99)-C(101)-H(102)	118.280
C(104)-C(103)-N(170)	119.012
C(104)- $C(103)$ - $O(176)$	119.493
C(103) C(104) C(105)	121.430
C(103)-C(104)-C(103)	117 577
C(105)-C(104)-C(120)	117.447
C(104)-C(105)-C(106)	123.634
C(104)-C(105)-N(171)	122.005
C(106)-C(105)-N(171)	114.353
C(105)-C(106)-C(107)	118.231
C(105)-C(106)-C(115)	123.365
C(107)-C(106)-C(115)	118.404
C(106)-C(107)-C(109)	121.738
U(100)-U(107)-H(108) U(100)-U(107)-C(100)	119.209
C(107)-C(107)-C(109)	119.000
C(107)-C(109)-C(111)	120.900
H(110)-C(109)-C(111)	120.553
· · · · · · · · ·	

C(109)-C(111)-C(113)	120.783
C(109)-C(111)-H(112)	119.513
H(112)-C(111)-C(113)	119.703
C(111)-C(113)-C(115)	121.199
C(111)-C(113)-H(114)	119.414
H(114)-C(113)-C(115)	119.387
C(86)-C(115)-C(106)	120.860
C(86)-C(115)-C(113)	120.270
C(106)-C(115)-C(113)	118.857
C(86)-C(116)-H(117)	109.505
C(86)-C(116)-H(118)	109.519
C(86)-C(116)-H(119)	109.443
H(117)-C(116)-H(118)	109.506
H(117)-C(116)-H(119)	109.397
H(118)-C(116)-H(119)	109.457
C(104)-C(120)-C(122)	120.554
C(104)-C(120)-H(121)	119.823
H(121)-C(120)-C(122)	119.623
C(120)-C(122)-C(124)	118.860
C(120)-C(122)-H(123)	120.510
H(123)-C(122)-C(124)	120.630
C(122) - C(124) - C(125)	121.843
C(122)-C(124)-N(171) C(125)-C(124)-N(171)	122.049
C(123)-C(124)-N(171)	10.107
C(4) - C(125) - N(0) C(4) - C(125) - C(124)	121.700
N(6) C(125) C(124)	121.570
N(6) - C(126) - C(128)	124 966
N(6)-C(126)-H(127)	117 541
H(127)-C(126)-C(128)	117 493
C(126)-C(128)-C(130)	118 652
C(126)-C(128)-H(129)	120 691
H(129)-C(128)-C(130)	120.657
C(4)-C(130)-C(128)	118.852
C(4)-C(130)-H(131)	120.602
C(128)-C(130)-H(131)	120.546
C(86)-N(170)-C(90)	111.586
C(86)-N(170)-C(103)	126.883
C(90)-N(170)-C(103)	120.402
C(105)-N(171)-C(124)	119.016
C(86)-O(177)-C(87)	108.696

Torsion angles [°] for compound 1a

-2.416
178.467
177.777
-1.341
2.873
-177.220
-177.319
2.588
0.852
-179.989
0.210
-179.842
-67.180

C(116)-C(86)-C(115)-C(113)	111.464
N(170)-C(86)-C(115)-C(106)	62.121
N(170)-C(86)-C(115)-C(113)	-119.235
O(177)- $O(86)$ - $O(115)$ - $O(106)$	7 201
C(115)-C(86)-C(116)-H(117)	58 133
C(115)-C(86)-C(116)-H(118)	-61 960
C(115)-C(86)-C(116)-H(119)	178.046
N(170)-C(86)-C(116)-H(117)	-68.801
N(170)-C(86)-C(116)-H(118)	171.107
N(170)-C(86)-C(116)-H(119)	51.112
O(177)-C(86)-C(116)-H(117)	179.470
O(177)- $C(86)$ - $C(116)$ - $H(118)$	59.378
$O(177)$ - $O(86)$ - $O(110)$ - $\Pi(119)$ O(115) $O(86)$ $N(170)$ $O(90)$	-00.017
C(115)-C(86)-N(170)-C(103)	-60 275
C(116)-C(86)-N(170)-C(90)	-123.680
C(116)-C(86)-N(170)-C(103)	68.556
O(177)-C(86)-N(170)-C(90)	-9.835
O(177)-C(86)-N(170)-C(103)	-177.599
C(115)-C(86)-O(177)-C(87)	-87.356
C(116)-C(86)-O(177)-C(87)	149.410
N(170)-C(86)-O(177)-C(87)	29.422
O(177)-C(87)-C(90)-C(92) O(177)-C(87)-C(90)-N(170)	-94.979 28 554
O(177)-C(87)-C(90)-H(91)	143 226
H(88)-C(87)-C(90)-C(92)	24.282
H(88)-C(87)-C(90)-N(170)	147.815
H(88)-C(87)-C(90)-H(91)	-97.513
H(89)-C(87)-C(90)-C(92)	145.652
H(89)-C(87)-C(90)-N(170)	-90.815
$\Gamma(09)$ - $C(07)$ - $C(90)$ - $\Pi(91)$	23.001
H(88)-C(87)-O(177)-C(86)	-157 058
H(89)-C(87)-O(177)-C(86)	81.656
C(87)-C(90)-C(92)-C(93)	-125.284
C(87)-C(90)-C(92)-C(101)	48.555
N(170)-C(90)-C(92)-C(93)	119.379
N(1/0)-C(90)-C(92)-C(101)	-66.782
H(91)-C(90)-C(92)-C(93) H(91)-C(90)-C(92)-C(101)	-3.415
C(87)-C(90)-N(170)-C(86)	-11 625
C(87)-C(90)-N(170)-C(103)	157.039
C(92)-C(90)-N(170)-C(86)	110.783
C(92)-C(90)-N(170)-C(103)	-80.552
H(91)-C(90)-N(170)-C(86)	-126.412
H(91)-C(90)-N(170)-C(103)	42.253
C(90)-C(92)-C(93)-C(93)	-0.922
C(101)-C(92)-C(93)-C(95)	4.871
C(101)-C(92)-C(93)-H(94)	-175.283
C(90)-C(92)-C(101)-C(99)	-179.320
C(90)-C(92)-C(101)-H(102)	0.787
C(93)-C(92)-C(101)-C(99)	-5.132
C(93)-C(92)-C(101)-H(102)	1/4.9/6
C(92)-C(93)-C(95)-C(97)	-1.009 179 064
H(94)-C(93)-C(95)-C(97)	179,065
H(94)-C(93)-C(95)-H(96)	-0.782
C(93)-C(95)-C(97)-C(99)	-2.914

C(93)-C(95)-C(97)-H(98)	177.046
H(96)-C(95)-C(97)-C(99)	176.932
H(96)-C(95)-C(97)-H(98)	-3.107
C(95)-C(97)-C(99)-C(101)	2.770
C(95)-C(97)-C(99)-H(100)	-177.200
H(98)-C(97)-C(99)-C(101)	-177.191
H(98)-C(97)-C(99)-H(100)	2.839
C(97)-C(99)-C(101)-C(92)	1.522
C(97)-C(99)-C(101)-H(102)	-178.586
H(100)-C(99)-C(101)-C(92)	-178.508
H(100)-C(99)-C(101)-H(102)	1.384
N(170)-C(103)-C(104)-C(105)	47.138
N(170)-C(103)-C(104)-C(120)	-139.430
O(176) - C(103) - C(104) - C(105) O(176) - C(103) - C(104) - C(120)	-133.014
C(104) - C(103) - C(104) - C(120)	7 295
C(104)-C(103)-N(170)-C(80)	-7.305
O(176)-C(103)-N(170)-C(86)	175 423
O(176)-O(103)-N(170)-O(00)	8 632
C(103)-C(104)-C(105)-C(106)	-4 151
C(103)-C(104)-C(105)-N(171)	174 757
C(120)-C(104)-C(105)-C(106)	-177 585
C(120)-C(104)-C(105)-N(171)	1.323
C(103)-C(104)-C(120)-C(122)	-176.740
C(103)-C(104)-C(120)-H(121)	3.213
C(105)-C(104)-C(120)-C(122)	-2.831
C(105)-C(104)-C(120)-H(121)	177.122
C(104)-C(105)-C(106)-C(107)	141.138
C(104)-C(105)-C(106)-C(115)	-38.624
N(171)-C(105)-C(106)-C(107)	-37.846
N(171)-C(105)-C(106)-C(115)	142.392
C(104)-C(105)-N(171)-C(124)	-0.118
C(106)-C(105)-N(171)-C(124)	178.884
C(105)-C(106)-C(107)-C(109)	179.103
C(105)-C(106)-C(107)-H(108)	-0.822
C(115)-C(106)-C(107)-C(109)	-1.123
C(115)-C(106)-C(107)-H(108)	178.952
C(105)-C(106)-C(115)-C(86)	0.935
C(105)-C(106)-C(115)-C(113)	-177.727
C(107)- $C(106)$ - $C(115)$ - $C(86)$	-1/8.826
C(107)- $C(106)$ - $C(115)$ - $C(113)$	2.511
C(106) - C(107) - C(109) - C(111)	
$U(108) C(107) C(109) - \Pi(110)$	179.002
H(108) - C(107) - C(109) - C(111) H(108) - C(107) - C(109) - C(111)	0.213
C(107) C(109) C(111) C(113)	-0.213
C(107)-C(109)-C(111)-H(112)	_170 831
H(110)-C(109)-C(111)-C(113)	-179.851
H(110)-C(109)-C(111)-H(112)	0.022
C(109)-C(111)-C(113)-C(115)	1 185
C(109)-C(111)-C(113)-H(114)	-178,705
H(112)-C(111)-C(113)-C(115)	-178.706
H(112)-C(111)-C(113)-H(114)	1.404
C(111)-C(113)-C(115)-C(86)	178.741
C(111)-C(113)-C(115)-C(106)	-2.588
H(114)-C(113)-C(115)-C(86)	-1.369
H(114)-C(113)-C(115)-C(106)	177.301
C(104)-C(120)-C(122)-C(124)	3.133
C(104)-C(120)-C(122)-H(123)	-177.016
H(121)-C(120)-C(122)-C(124)	-176.820

H(121)-C(120)-C(122)-H(123)	3.031
C(120)-C(122)-C(124)-C(125)	177.638
C(120)-C(122)-C(124)-N(171)	-1.899
H(123)-C(122)-C(124)-C(125)	-2.213
H(123)-C(122)-C(124)-N(171)	178.251
C(122)-C(124)-C(125)-C(4)	169.123
C(122)-C(124)-C(125)-N(6)	-10.037
N(171)-C(124)-C(125)-C(4)	-11.314
N(171)-C(124)-C(125)-N(6)	169.526
C(122)-C(124)-N(171)-C(105)	0.398
C(125)-C(124)-N(171)-C(105)	-179.164
N(6)-C(126)-C(128)-C(130)	0.318
N(6)-C(126)-C(128)-H(129)	-179.728
H(127)-C(126)-C(128)-C(130)	-179.631
H(127)-C(126)-C(128)-H(129)	0.324
C(126)-C(128)-C(130)-C(4)	-1.888
C(126)-C(128)-C(130)-H(131)	178.205
H(129)-C(128)-C(130)-C(4)	178.157
H(129)-C(128)-C(130)-H(131)	-1.750